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Abstract

Many novel traits such as antibiotic resistance are spread by plasmids between species. Yet
plasmids have different host ranges. Restriction-modification systems (R-M systems) are by
far the most abundant bacterial defense system and therefore represent one of the key
barriers to plasmid spread. However, their effect on plasmid evolution and host range has
been neglected. Here we analyse the avoidance of targets of the most abundant R-M systems
(Type II) for complete genomes and plasmids across bacterial diversity. For the most common
target length (6 bp) we show that target avoidance is strongly correlated with the taxonomic
distribution of R-M systems and is greater in plasmid genes. We find stronger avoidance of R-
M targets in plasmids which are smaller and have a broader host range. Our results suggest
two different evolutionary strategies for plasmids: small plasmids primarily adapt to R-M
systems by tuning their sequence composition, and large plasmids primarily adapt through the
carriage of additional genes protecting from restriction. Our work provides systematic
evidence that R-M systems are important barriers to plasmid transfer and have left their mark

on plasmids over long evolutionary time.
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Introduction

When DNA enters a bacterial cell from the world outside, it is a potential threat. If transcribed
into RNA then translated into protein by the cell's own molecular machinery it may produce
disaster. Mobile genetic elements (MGEs) such as lytic phage attempt to hijack cellular
machinery to their own advantage: the transcription of phage DNA leads to copies of phage
being produced at the expense of the bacterial host, followed by lysis and cell death. For this
reason, bacteria have evolved many ‘defense systems’ which offer protection against external
DNA. Defense systems impair or block infection by MGEs. Their evolution is closely linked to
MGEs (Koonin, Makarova, and Wolf 2017) and they help to shape routes of gene flow between
bacteria (Haudiquet et al. 2022). The majority of prokaryotic genomes contain at least one R-
M system (83%) making them by far the most abundant defense systems — over twice as
abundant as CRISPR-Cas (Tesson et al. 2022). R-M systems recognise specific DNA motifs
and are grouped into four broad types I-IV (Loenen et al. 2014).

Within R-M systems, Type Il are the most abundant, present in 39.2% of bacterial genomes
(Tesson et al. 2022) with a mean of ~0.5 systems per genome (Oliveira, Touchon, and Rocha
2014). Type Il R-M systems consist of two enzyme activities: a restriction endonuclease which
cuts double-stranded DNA (dsDNA) at targets and a methyltransferase which modifies targets
to protect them from cleavage. These enzymes are typically encoded by separate genes
located close together in the genome. The targets of restriction are short sequences of 4-8
bases which are usually palindromic i.e. they are equal to their own reverse complement
(Pingoud and Jeltsch 2001) due of the symmetrical subunits of the protein multimers that
recognize the target (Arber and Linn 1969; Smith and Wilcox 1970). Any occurrences of the
restriction target in the cell's own DNA should be protected from restriction by the
methyltransferase. In contrast, DNA originating from a different species or strain should lack
this methylation at target sites and will be cleaved by the restriction endonuclease when it
enters the cell.

R-M systems are the most-studied class of defense systems and have been heavily
investigated since their discovery in the 1960s (Arber 1965; Roberts 2005). Their widespread
prevalence across bacteria suggests they provide an important defense against MGEs, which
implies a strong selective pressure on MGEs to evade their targeting. Work on the first
sequenced phage genomes in the 1980s showed evidence of selection against restriction
targets (Sharp, 1986) which was backed up by subsequent research (Burge, Campbell, and
Karlin 1992; Gelfand and Koonin 1997; Rocha, Danchin, and Viari 2001; Rusinov et al. 2018).
By providing an innate or ‘first-line’ immunity, R-M systems can impair incoming MGEs prior
to the activation of other ‘second-line’ defense systems. They are compatible with CRISPR-
Cas (Dupuis et al. 2013) and restriction endonuclease cleavage of viral DNA can stimulate the
subsequent adaptive CRISPR response (Maguin et al. 2022).

As well as functioning as defense systems, R-M systems can also be viewed as selfish
elements that serve to propagate themselves. Because the methyltransferase decays more
quickly than the endonuclease, a Type Il R-M system can function as an addiction system to
ensure its own persistence (Ichige and Kobayashi 2005; Kusano et al. 1995), similar to toxin-
antitoxin systems (Mruk and Kobayashi 2014). This addictive quality may contribute to their
occasional occurrence on MGEs such as plasmids: around 10.5% of plasmids carry R-M
systems (Oliveira, Touchon, and Rocha 2014) and experiments have shown R-M system
carriage can lead to increased plasmid stability in cells (Kusano et al. 1995).
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Despite the different interpretations of the evolutionary role of R-M systems, it is clear that
they shape pathways of gene flow between populations. In line with this, bacteria possessing
cognate R-M systems have higher rates of horizontal gene flow between them (Oliveira,
Touchon, and Rocha 2016). One major route of this gene flow is plasmid transfer. Plasmids
are vehicles for novel traits that are beneficial across species (Lehtinen, Huisman, and
Bonhoeffer 2021) including antibiotic resistance (MacLean and San Millan 2019). However,
plasmid transfer is often constrained by taxonomic boundaries. The host range of a plasmid
is defined as the range of different bacteria it can infect, with plasmids traditionally divided into
‘narrow’ or ‘broad’ host range. It has been suggested that plasmids with narrower host ranges
tend to have a similar sequence composition to their host chromosomes due to ameliorative
adaptation, which could include adaptation to defense systems (Suzuki et al. 2010).

More recent large-scale analyses of plasmids have quantified host range by grouping similar
plasmids into clusters (Acman et al. 2020; Redondo-Salvo et al. 2020). These studies suggest
many plasmids have a limited observed host range: considering only clusters with at least four
plasmids, single-species plasmid clusters make up 45% of plasmid taxonomic units (PTUS)
(Redondo-Salvo et al. 2020) or 52% of plasmid cliques (Acman et al. 2020). As barriers to the
spread of dsDNA MGEs, R-M systems contribute to shaping the possible routes of plasmid
transfer (Thomas and Nielsen 2005). Yet existing studies of R-M systems and plasmids are
experimental and mostly limited to transfer within a single species — for example, in
Helicobacter pylori (Ando et al. 2000) or Enterococcus faecalis (Price et al. 2016).

Over fifty years ago Arber and Linn (1969) speculated that because ‘transferable plasmids
have a fair chance of alternating rather frequently among hosts of various specificity...[we
should] expect that with relatively small DNA molecules many original sites for the specificities
of the most common hosts have been lost’. Yet despite the detailed characterisation of R-M
systems compared to other defense systems (Roberts et al. 2015) and their ubiquity across
bacteria, we still do not know whether this hypothesis holds true across plasmids. As such,
we lack a systematic understanding of the role of R-M systems in shaping plasmid transfer
routes across known bacterial diversity.

Here we investigate the avoidance of Type Il restriction targets in plasmids, using a dataset of
8,552 complete genomes from 72 species containing 21,814 plasmids, as well as a separate
dataset of plasmids with information on host range. Our results confirm that avoidance of
restriction targets is a general feature of plasmids. By analysing the taxonomic distribution of
Type Il R-M systems and plasmids together, we show that avoidance patterns are associated
with a plasmid’s size and host range: small and broad host range plasmids show greater
avoidance of R-M targets. Our findings suggest that Type Il R-M systems are important drivers
of plasmid evolution and shape routes of plasmid transfer in bacterial populations.
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Results

Avoidance of 6-bp palindromes is stronger in plasmid genes than in core genes

The pangenome of a species consists of all the gene families found in the species as a whole
(Mclnerney, McNally, and O’Connell 2017; Shapiro 2017). MGEs are important contributors
to the accessory component of the pangenome — genes which are variably present or absent
in different members of the species. As defense systems, Type |l R-M systems should exert
a selective pressure within a pangenome for avoidance of their short targets, which are often
palindromic and 4-6bp in length. Older studies have shown that both phage and bacteria avoid
short palindromes (Rocha, Danchin, and Viari 2001; Sharp 1986), and one study on the 49kb
backbone of the broad host range IncP-1 plasmid found an under-representation of 6-bp
palindromes (Wilkins et al. 1996).

We hypothesised that the plasmid-borne components of the pangenome should show stronger
avoidance of R-M targets than core genes. To test this hypothesis, we assembled a dataset
of high-quality reference genomes for species from NCBI RefSeq (n=72 species with >25
genomes). Within each species, we separated genes into three pangenome components:
genes where >99% of genomes in the species had exactly one copy (‘core’), other genes on
the chromosome (‘non-core’), and all genes carried on other replicons (‘plasmid’). As an initial
proxy for restriction targets, we first analysed the avoidance of short palindromes in each
pangenome component for k=4 and k=6 (DNA palindromes require k to be even).

There are two important considerations when testing the avoidance of targets across bacterial
diversity. First, when testing evidence of avoidance of a specific target it is important to
account for differences in sequence composition; for example, a GC-rich sequence should a
priori contain fewer occurrences of an AT-rich target. To do so, we used a maximal Markov
model to calculate an exceptionality score for each k-mer (Schbath 1997). This exceptionality
score is based on the deviation between the actual occurrences of the k-mer from the null
expectation of occurrences one would expect given the distribution of (k-1)-mers. Positive
values of the exceptionality score for a k-mer (>0) indicate evidence of over-representation
and negative values (<0) indicate avoidance. To ensure that exceptionality scores had the
same statistical power for comparisons between components, we also subsampled
pangenome components to fixed lengths (see Methods). Genes in all three components
clearly avoided palindromes (exceptionality score < 0, k=6 Fig. 1a, for k=4 see Fig. S1). We
found a hierarchy of avoidance, with plasmid genes avoiding 6-bp palindromes significantly
more on average than core and non-core chromosomal genes (p<0.001 two-sided Wilcoxon
paired test, Fig. 1a). There was a significant correlation at the species level for palindrome
avoidance in core and plasmid genes (Fig. 1b).

Second, genome composition is correlated with phylogeny and public databases are unevenly
sampled, making overall findings about ‘average’ effects from comparative studies potentially
misleading. Phylogenetically controlled analyses are required to draw reliable conclusions
(Stone, Nee, and Felsenstein 2011; Hadfield and Nakagawa 2010). We controlled for
phylogenetic signal in our analysis by modelling palindrome avoidance in pangenome
components with generalized linear mixed models (GLMMs) (Hadfield 2022), controlling for
phylogeny and number of genomes (see Methods and Table S1). For 6-bp palindromes,
plasmid genes showed an overall greater avoidance than core genes despite variability
between species (Fig. 1¢; R?=7.4%, Table S1b) with strong phylogenetic signal (>40%; Table
S1b), suggesting that the taxonomic distribution of R-M systems may be an important
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contributor to these phylogenetically clustered patterns of target avoidance. Notably, variation
in palindrome avoidance was much greater in plasmid genes than core genes (Fig. 1c, inset
panel) consistent with the expectation that plasmids seen within a species may have diverse
evolutionary histories. This greater variability suggests the importance of considering
differences between individual plasmids.
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Fig. 1. Avoidance of short palindromes (k=6) is stronger but more variable in plasmids.

(a) A hierarchy of 6-bp palindrome avoidance scores, with significantly greater avoidance in plasmid genes compared to core
and non-core chromosomal genes (p<0.001, two-sided Wilcoxon paired test). (b) Mean avoidance is strongly structured by
species, with a strong correlation between avoidance in core and plasmid genes (Spearman's p=0.55, p<0.001). (c) Relative
palindrome avoidance for species for core vs. plasmid genes (>0 denotes greater avoidance in plasmid genes). Points are mean,
error bars show standard error. The modelled effect was computed using a phylogenetically-controlled GLMM (see Methods).
Data shown are mean avoidance scores of 6-bp palindromes (4°=64) calculated with R'MES after pangenome construction then
subsampling each per-isolate pangenome compoment to 50kbp i.e. only genomes with at least 50kbp are included (3,912 isolate
genomes across 44 species). The inset panel shows within-species variation in mean palindrome avoidance score for each
pangenome component. Only species with at least 3 genomes meeting these criteria are shown. For 4-bp palindromes, there
was no significant difference between plasmid and core genes (Fig. S1) and mean avoidance was uncorrelated with 6-bp
palindrome avoidance (Spearman's p=0.005, Fig. S2). Notably, Wilkins et al. (1996) found that 4-bp palindromes were not
strongly avoided in the IncP-1 backbone and suggested that R-M systems with 6-bp targets were a stronger selective pressure,
in line with our findings here.
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The taxonomic distribution of Type Il R-M systems correlates with target avoidance

Our genomic dataset spanned a wide range of bacterial diversity (Fig. S3). We hypothesised
that selective pressure for avoidance of a target should correlate with the frequency of
encounter with an R-M system targeting it. Reliable prediction of targets for novel sequences
is only possible for Type Il R-M systems where restriction and methylation are carried out by
different enzymes (Oliveira, Touchon, and Rocha 2016) (see Methods). We developed a
pipeline (‘rmsFinder’) to predict both the presence and targets of Type Il R-M systems in our
dataset using the curated REBASE database of known R-M enzymes. We produced a
presence-absence matrix of k-mers targeted by Type Il R-M systems across species in our
dataset: when we detected a system with a target tin a genome from species s, we classed t
as a within-species restriction target of s. In turn, we used this presence-absence matrix to
produce a taxonomic dictionary of targets for each species (Fig. 2a), ranging from within-
species to within-phylum targeting based on the detected presence of R-M systems across
our dataset. We detected 8,469 Type Il R-M systems where we could confidently predict their
target in 2,740 genomes (32.0%). Of these systems, 7,734 (91.3%) were carried on the
chromosome. R-M systems targeted 103 known REBASE motifs. Accounting for ambiguous
bases, R-M systems targeted 278 specific k-mers (Table 1). Since motifs of k=7 and 9 were
not prevalent (only observed in 66 genomes) we analysed targets for k=4,5,6 (98/103 motifs;
Table 1) across our pangenome dataset. Type Il R-M systems for these targets showed a
highly variable presence/absence distribution across species (Fig. S4-S6 for different k).

For all pangenome components and all k, avoidance of targets was strongly correlated with
the taxonomic distribution of the associated R-M systems (k=6 Fig. 2d-e; k=4 Fig. S7 and k=5
Fig. S8). Species pangenomes have the greatest avoidance of targets of the R-M systems
found within that species. Core and non-core chromosomal genes had highly similar
avoidance patterns. We found that 6-bp targets within the same taxonomic family were
avoided more by plasmid genes at nearby taxonomic levels (species to family), with this
difference decreasing at higher taxonomic orders (class, phylum) and with no difference when
considering avoidance of all observed R-M targets within the dataset (kingdom). Selective
pressure from R-M systems has imposed selection for plasmids to avoid R-M targets, and the
strength of this avoidance is proportional to their frequency of encounter. This is consistent
with the hypothesis that R-M systems are closely connected with taxonomic boundaries and
plasmid host range.

Length (k) REBASE motifs  k-mer targets Palindromes Genomes* Species
4 12 12 10 of 12 690 33/72

5 30 46 - 1430 60/72

6 56 128 45 of 64 1423 53/72

7 4 28 - 61

9 1 64 - 5

Table 1: Detected Type Il R-M targets across the dataset of 8,552 genomes.
* Number of genomes with at least 1 R-M system targeting a target of length k.
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Fig. 2. The taxonomic distribution of R-M systems correlates with avoidance of their targets.
(a-c) Methodological approach to connect Type Il R-M system distribution to target avoidance: (a) We search for Type Il R-M
systems in n=8,552 genomes from 72 species, detecting complete systems with confident prediction of targets them in 2,740
genomes (Table 1). From these hits, we created a taxonomic hierarchy of their targets across a set of species. (b) We construct
a pangenome for each species in our dataset, then separate each individual isolate into genes in three pangenome components:
core, non-core and plasmid. (c) We subsample pangenome components to a fixed size and use R'MES to calculate exceptionality
scores for fixed-length k-mers for k=4,5,6 for each species, using the taxonomic hierarchy of R-M targets to correlate
exceptionality scores with R-M distribution. (d-e) Exceptionality scores for 6-mers by pangenome component as a function of the
taxonomic hierarchy of R-M targets: (d) averaged over all species and (e) for individual species. Subsampling is to 50kbp for
each within-isolate pangenome component. Other subsampling lengths show the same pattern (see github repository).

The density of within-species R-M targets increases with plasmid size

It is the actual number of occurrences of a R-M target within a plasmid that determines the
extent to which it will be restricted by the associated R-M system. The expected number of
target occurrences increases linearly with the size of the plasmid: for a plasmid of length L,
the probability of containing a given k-mer scales as ~ L/4%. For a random k-mer, one should
expect a constant mean density. However, when we examine plasmids from the most
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prevalent species in our genomic dataset, Escherichia coli, the density of R-M targets
increases with plasmid size: larger plasmids have a disproportionate number of targets (Fig.
3a-b). This pattern is consistent across species (Fig. 3c-e).

From an evolutionary perspective, this result is consistent with the way that selective pressure
from R-M systems acts at the whole-plasmid level. The efficiency of R-M systems in restricting
sequences should increase with target frequency, although some systems can restrict
sequences with only a single target and others require two targets to function (Embleton,
Siksnys, and Halford 2001; Bath et al. 2002). R-M systems thus exert a selective pressure for
target depletion: without other avoidance mechanisms, to avoid restriction a plasmid must lose
the restriction targets from its sequence. The number of targets, and thus the number of
mutations required to lose them, increases with plasmid length.

By way of an example, consider the case of a target of length k=6. Each extra 5kb of sequence
will, on average, add ~1 more occurrence of the target (4°=4,096). At one extreme, for a small
5kb plasmid, losing its only copy of the target requires only one mutation. This mutation will
carry a large fitness advantage. However, larger plasmids will require many more mutations
to become target-free: a 100kb plasmid will contain ~20 copies. While the final target-free
sequence will have a large fithess advantage relative to its initial state, it must be reached
gradually. Each mutational step will likely have only a weakly positive advantage compared to
the previous step. Therefore, the larger a plasmid gets, the less evolutionarily accessible the
mutational route to evade R-M systems becomes. The clear increase we find in the density of
R-M targets with plasmid size across thousands of plasmids suggests that larger plasmids
need other mechanisms of avoiding restriction.
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Fig. 3. Larger plasmids have a higher density of the targets of within-species R-M systems.
(a-b) Results for the best-sampled species in our genomic dataset, Escherichia coli, for the mean density of
within-species R-M targets of length (a) k=5 (4 targets) and (b) k=6 (33 targets). Each point is the mean density
of targets within a single plasmid (no deduplication), black lines show median for each category. (c-e) Results for
at a per-species level for different values of k. Species without R-M systems with targets of length k are omitted.
Each point represents the median of the mean densities of within-species R-M targets for plasmids in that
species, including only size/species combinations with >5 plasmids. Dashed lines shows the expected) density of
a random k-mer in a random sequence (4%). Comparisons between the largest (>100kb) and smallest (<10kb)
plasmid categories are significant (p<0.05) for k<=5 and 6 but not for k=4.

Plasmid host range correlates with stronger avoidance of R-M targets
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Previous work by Redondo-Salvo et al. (2020) clustered 10,634 plasmids based on their
sequence similarity, defining 276 plasmid taxonomic units (PTUs) with at least four member
plasmids (3,725 plasmids). They defined a host range for each PTU using its observed hosts,
ranging from I-VI (from species to phylum). Under the hypothesis that R-M systems are a
significant barrier to plasmid transfer, we would expect PTUs with a greater host range to have
experienced more recent selection from a wider variety of R-M systems and therefore to have
greater avoidance of R-M targets.

Using 6-bp palindromes as a proxy for Type Il R-M targets, we find that host range is correlated
with avoidance (Fig. 4). Interestingly, the avoidance of 6-bp palindromes in plasmids that are
not members of an assigned PTU suggests that they are most similar to PTUs with a within-
species host range in terms of palindrome avoidance. Many singleton plasmids (those
detected only once) are probably indeed restricted to single species, although notably there is
a long tail of more negative exceptionality scores, which suggests some may have broader
host ranges and/or be more recent entrants into the pangenome of that species, so still have
more avoidance of targets of R-M systems seen outside the species.

00+ - -

-0.5 1

-1.01

Mean exceptionality score of palindromes

-1.51

R

Unassigned | I i Y, v Vi
plasmids

PTU host range

Fig. 4. PTU host range is associated with greater avoidance of 6-bp R-M targets. Avoidance of 6-bp
palindromes in PTUs >10kbp correlates with PTU host range. Each point is one PTU (mean exceptionality score)
apart from unassigned plasmids (those not classified into a clasdsed , lines show within-category median.
Unassigned plasmids which are not members of a PTU show a mean avoidance of palindromes most similar to
PTUs with a host range at the family level (lll). (b) The most-sampled Enterobacterales species avoid 6-bp R-M
targets correlated with their host range. PTU host range as assigned by Redondo-Salvo et al.: | (species) to VI
(phylum). R-M target category based on observed distribution of Type Il R-M systems in the whole genome
dataset, from within-species to within-phylum (categories are hierarchically inclusive), and also shown are
palindromic k-mers for comparison. Only plasmids >10kbp are included (subsampling to 10kbp for exceptionality
score calculation).
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We then modelled the avoidance of R-M targets using our taxonomic hierarchy in 4,000 PTUs
seen in the same species as our dataset of complete genomes (see Methods). Linear models
for exceptionality scores of 6-bp R-M targets in PTUs showed that the host range of plasmids
was consistently associated with stronger avoidance of targets (Fig. 5a). In contrast, plasmid
length was associated with weaker avoidance (Fig. 5b), a finding recapitulated for other values
of k, confirming that small plasmids show greater signatures of mutational adaptation to evade
R-M systems (k=4 Fig. S9; k=5 Fig. S10).

The magnitude of coefficient estimates decreased in magnitude for R-M targets from
progressively wider taxonomic distributions (Fig. 5a-b), consistent with avoidance patterns
being signatures of plasmid adaptation to their hosts within taxonomic boundaries. The
number of plasmids within a PTU did not affect its average avoidance patterns (Fig. 5c).
Models explained more variance at lower taxonomic levels of R-M target distribution (Fig. 5d),
with the most variance explained for PTU avoidance of R-M targets from the same order as
the plasmid. Taken together, these modelling results provide strong evidence that PTUs of
small size and broad-host range have greater avoidance of R-M targets. Furthermore, these
effects are most noticeable for R-M targets from nearby taxonomic levels. Evading R-M
targeting through mutation is an important adaptive route for small, broad host range plasmids
— raising the question of how larger plasmids evade R-M systems.

(a) PTU host range (b) PTU median length (log10) (c) No. of plasmids in PTU (d) Model summary
1 1 1
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1 1 1
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Fig. 5. Small and broad host range PTUs have stronger avoidance of R-M targets.
(a-c) Coefficients in linear models (mean estimates with standard error shown by errorbars) for the exceptionality
score of R-M targets. A different model was run for each possible of level of R-M targets within the taxonomic
hierarchy, from R-M targets of R-M systems within-species to within-kingdom, with three variables for each PTU:
host range, median length, and number of plasmids. (a) PTU host range, converted to a numeric variable for
modelling where larger values denote broader host range, is negatively associated with exceptionality score of R-
M targets i.e. broader host range PTUs have stronger avoidance. (b) Median length of plasmids within PTU (log10
for modelling) is positively associated with exceptionality score of R-M targets i.e. larger plasmids have weaker
avoidance. (c) Number of plasmids within the PTU has no significant effect. (d) Total variance explained by each
model, with colours denoting the three different variables (red: host range, blue: length, green: number of plasmids).

Broad host range plasmids carry more methyltransferases

The carriage of anti-restriction genes can help MGEs to evade restriction even when they
carry sites recognized by the host (Spoerel, Herrlich, and Bickle 1979). Most of these sytems
remain poorly described. Yet, a well-characterised way to evade restriction is by encoding a
solitary Type Il MTase. Such 'orphan' MTases are present in many prokaryotes and likely have
functions linked to genome regulation (Blow et al. 2016), but they can also provide a plasmid
with effective protection against restriction against multiple R-M targets (Fomenkov et al.
2020). Our hypothesis about the necessity of adaptation through gene carriage for large


https://doi.org/10.1101/2022.12.15.520556
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.15.5205586; this version posted December 15, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Shaw, Rocha, MacLean 11

plasmids suggests that solitary MTases should be frequently carried by larger plasmids and
particularly those with a broader host range.

We searched all 10,634 plasmids in the Redono-Salvo dataset for MTases: 1,444 carried at
least one Type Il MTase with a predicted target (13.6% of which 243 carried >1 MTase), of
which 789 had an MTase with a 4-6bp target (173 plasmids had >1 MTase). Larger plasmids
within PTUs with a broad host range were more likely to carry MTases (Fig. 6). Analysing at
the level of PTUs and subsetting based on their size, large PTUs (>100kbp) had both a greater
proportion of their members carrying MTases and a greater normalised density of MTases
(Fig. S11). We modelled MTase carriage as a function of PTU median length (log10) and host
range. Both size and host range were associated with MTase carriage. When only considering
large PTUs (>100kbp; n=61 PTUSs), host range was strongly associated with a greater per-
base density of Type Il MTases (p<0.001, adjusted R?=34.3%). Though carriage of MTases
could also be linked to modulation of host chromosome gene expression, these patterns are
consistent with the expected differential responses to selective pressure from R-M systems.
Small plasmids rarely carry MTases but can still have a broad host range despite this because
of adaptive mutations. In contrast, most large plasmids with a broad host range carry MTases.

>100kb |304/1391| 55/236 | 38/371 0/2
£ 50-100kb |155/874 | 114/342 | 21/227 | 168/242 | 48134 | 2114 | 329 Proportion with MTase
(@]
g N
T 10-50kb [146/2161| 10/267 | 6/158 | 21178 | 6/95 | o0 | o7 050
&
o 0.25
O 1-10kb |25/2080| 0285 | 1/272 | 10/296 | 3/117 | o016 | o0/24

0.00

<1kb | 0/403

Unassigned | Il 1 v \ VI
plasmids

Host range
(of parent PTU)

Figure 6. Large plasmids with a broad host range are more likely to carry MTases.
Numbers show the number of plasmids in that category with at least one MTase out of the total number of plasmids.
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Discussion

In human history, trade routes such as the Silk Road have been shaped by geography and
politics; they have played an important long-term role in the movement of people, goods, and
ideas. In bacterial evolution, routes of horizontal gene transfer between species have been
shaped by defense systems. Here, by analysing the taxonomic distribution of the most
prevalent of these defense systems — Type Il R-M — we show that they have shaped the
evolution and host range of plasmids. Our findings are consistent with a fifty-year-old
hypothesis of Arber and Linn (1969) that small plasmids should avoid R-M targets in relation
to their frequency of encounter.

The avoidance of short palindromes, assumed to be a proxy for Type Il R-M targets, has
previously been reported as a generic feature of bacterial genomes. However, these analyses
have been limited in scope and not phylogenetically controlled. We have verified that this
avoidance persists when accounting for phylogeny across a wide range of bacteria.
Furthermore, we have gone beyond examining palindromes alone, and shown that the
taxonomic distribution of R-M systems is correlated with avoidance of their targets. We found
that plasmid genes show greater avoidance than core genes. They also show much greater
variation, consistent with their diversity of evolutionary histories. We found that the host range
of plasmid taxonomic units (PTUs) was associated with greater avoidance, suggesting that an
interplay between R-M systems and plasmid host range. Models of R-M target avoidance
explained the most variance for targets of systems seen within the same taxonomic order,
which coincides with the observation that only 2.5% of PTUs have wider host ranges
(Redondo-Salvo et al. 2020). Our findings are understandable from the perspective of an
evolutionary arms race between bacteria and plasmids.

We found that small plasmids had a greater avoidance of R-M targets. We argued this is
consistent with the greater evolutionary 'accessibility' of target removal by mutation compared
to large plasmids: small plasmids need fewer mutations to become target-free, and each of
these mutations has a strong fithess advantage. Furthermore, smaller plasmids tend to exist
at higher plasmid copy number per cell. Since multi-copy plasmids can accelerate adaptive
evolution by providing a greater mutational supply (San Millan et al. 2016) and avoidance of
restriction is likely to be adaptive, this may contribute to an even greater depletion of restriction
targets. Phage avoidance of R-M targets is greater for non-temperate phage, which have a
lifestyle more dependent on horizontal transmission (Rusinov et al. 2018). Small multi-copy
plasmids may be more ‘phage-like’ in this sense.

Plasmids have a highly bimodal size distribution: a strong peak at 5kb, very few plasmids at
around 20kb, and a broad peak around 100kb (Smillie et al. 2010). But their fithess costs do
not seem to be correlated with their size, at least when considering (Vogwill and MacLean
2015). The bimodal distribution is so widely recognised, yet it presents a puzzle: if adding
genes to plasmids is cheap, why do so many plasmids remain small? Physical considerations
of horizontal gene transfer must play a role. First, the apparatus of conjugation and transfer
machinery has a minimum size (~10 kb), giving larger conjugative plasmids a minimum size.
Second, there may be selection for mobilisable plasmids that are able to exploit phage
mechanisms for horizontal transfer, giving small plasmids a maximum size of ~40kb
(Humphrey et al. 2021). As is often the case in biology, there are likely multiple contributing
factors. We suggest one that may have been overlooked is the role of R-M systems.
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First, we found that 6-bp targets were the most common Type Il R-M system. The first peak
in plasmid size at 5kb is the length at which the expectation of a given 6-mer is ~1 (4°=4,096),
making it possible to evade any 6-mer targeting system through a single mutation (for 7-mer
targets, the corresponding size is ~16.3kb). Second, species with many and diverse Type Il
R-M systems appear to have smaller plasmids, suggesting that R-M systems drive small
plasmids to remain small. The relative absence of intermediate plasmids could be explained
by this factor. Third, increasing plasmid size has a larger R-M-associated cost for smaller
plasmids: the difference between zero and one or two copies of a target is a large one. It
should be noted that some R-M systems interact with two recognition sites to cleave DNA,
and more targets will probably increase the efficiency of restriction (Embleton, Siksnys, and
Halford 2001; Bath et al. 2002). However, once plasmids have many copies of an R-M target
in their sequence, having an additional target present is unlikely to be as great a proportional
burden as the first few targets. Instead, because mutational adaptation becomes increasingly
difficult with plasmid size, carrying additional genes becomes the main route of adaptation:
genes which allow the evasion of R-M systems (single MTases, or anti-restriction enzymes)
or other genes that confer benefits on the host to increase the likelihood of vertical inheritance
after breakthrough infection. Most pairs of plasmids with 95% identical relaxases have fewer
than 50% of homologs (Coluzzi et al. 2022), demonstrating that gene gain and loss are rapid.
For this reason, larger plasmids are able to expand in size if required. R-M systems can
therefore simultaneously drive small plasmids to become smaller and large plasmids to
become larger. A similar logic applies to all defense systems targeting small DNA maotifs.

Our work has limitations. Most notably, plasmid sequences are subject to a far greater range
of selective pressures than we have explored here. Even considering just other defense
systems alone, we have not investigated: the dual-function Type 1IG enzymes with combined
REase and MTase function (Loenen et al. 2014), the less common but still highly prevalent
Type |, lll, and IV R-M systems (Roberts et al. 2015) or indeed other ‘antiviral’ systems
altogether (Tesson et al. 2022). There is also a growing appreciation that MGEs use 'defense’
systems as weapons of intragenomic conflict (Rocha and Bikard 2022). Other pressures apart
from defense systems may shape sequence composition: for example, there is some evidence
that plasmids are AT-rich compared to chromosomes to reduce their metabolic burden (Dietel
et al. 2019). In restricting our analysis to Type Il R-M systems we have been deliberately
conservative. Although we believe our findings are consistent with their expected action
against plasmids, our analysis is only a partial picture of these complex overlapping pressures.

In conclusion, although Type Il R-M systems are usually studied through the lens of phage
defense, they have also shaped plasmid evolution. The selective pressure from R-M systems
manifests differently with different plasmid sizes: small plasmids have the possibility of evading
restriction through mutation, but large plasmids must adapt through accessory genes. More
generally, our work suggests that avoidance patterns in MGEs contain information on the
immune pressures they have endured. At a time when many novel ‘phage defense systems’
are being discovered, analysis of avoidance patterns can elucidate how these systems may
have shaped the evolution and spread of other MGEs.
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Materials and Methods

Predicting Type Il R-M systems. Our analysis approach requires a presence/absence database of R-
M systems targeting particular motifs across different species of bacteria. We therefore developed a
pipeline ‘rmsFinder to detect Type Il R-M systems and then predict their target motifs:
(https://github.com/liampshaw/rmsFinder). Previous work (Oliveira, Touchon, and Rocha 2016)
determined protein similarity thresholds above which enzymes are likely to have the same target
specificity: 50% (REases) and 55% (MTases). We used these as default values to define predicted
targets. rmsFinder uses previously published hidden Markov models (HMMs) from either Oliveira,
Touchon, and Rocha (2016) (--hmm oliveira) or Tesson et al. (2022) (--hmm tesson) to find putative
Type Il REases and MTases in a proteome. It then compares these putative enzymes to those enzymes
in REBASE (Roberts et al. 2015) which have known or previously predicted targets.

In rmsFinder, we define the presence of a Type Il R-M system as the presence of an MTase and REase
with a shared predicted target within 4 genes of each other. rmsFinder returns both a list of possible
hits to MTases and REases as well as this final prediction of Type Il R-M systems with a known target.
This final level of prediction can operate using different subsets of REBASE enzymes at decreasing
levels of stringency:

e ‘gold’ - REBASE ‘gold standard’ proteins for which the biochemical function has been
experimentally characterized and the nucleotide sequence coding for the exact protein is
known.

e ‘nonputative’ - REBASE proteins that are known to have biochemical function (i.e. excluding
proteins predicted bioinformatically by REBASE based on protein similarity).

e ‘all’ - all REBASE proteins, including putative protein sequences predicted bioinformatically by
REBASE based on similarity to existing proteins.

Other parameters of rmsFinder are available on the github page. Results presented in this manuscript
are from the ‘all’ mode of rmsFinder using REBASE v110 (downloaded 19 October 2021). We use the
proteins defined within REBASE as Type |l REases or MTases. We investigated the possibility of
predicting the targets of Type IIG systems where the restriction and methylation functions are encoded
in a single enzyme, but found that this was not reliable (data not shown) and so restricted our analysis
only to Type Il systems where the REase and MTase are separate enzymes.

Species genomes. We downloaded genomes for all n=104 species with >25 complete genomes in
NCBI RefSeq (as of 20 January 2022) then filtered them with PanACoTA v1.3.1 (Perrin and Rocha
2021). After filtering, n=72 species had >25 complete genomes (8,552 genomes in total; 'RefSeq:>25'
dataset). For each species, we used PanACoTA v1.3.1 to perform a pangenome analysis. We defined
a gene family as ‘core’ if >99% of genomes had exactly one member (corepers subcommand of
PanACoTA with ‘-t 0.99 -X’). This is a more relaxed definition than a strict core genome where all
genomes are required to have exactly one copy of each core gene; such a definition can produce
reduced core genomes when using public genomes, because an error in any single assembled genome
can remove a gene from the core genome. After annotating to find CDSs, we split each RefSeq genome
into three gene components: core genes on the chromosome (‘core’), non-core genes on the
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chromosome (‘non-core’), and genes on other replicons (‘plasmid’). Three species in our dataset
contained secondary chromosomes: Burkholderia pseudomallei (81/91 isolates), Vibrio cholerae
(57/70) and Vibrio parahaemolyticus (43/43). For the purposes of our analysis, we treated genes on
these secondary chromosomes as 'plasmid' genes. Excluding them did not change our conclusions
(Fig. S12). We analysed target avoidance both for the entire genome and for each pangenome
component separately.

Plasmid genomes. We downloaded the dataset of n=10,634 plasmids previously analysed by
Redondo-Salvo et al. (Redondo-Salvo et al. 2020). We used their existing classification of these
plasmids into plasmid taxonomic units (PTUs). Redondo-Salvo et al. define the host range of a PTU
from I-VI based on its observed distribution across taxonomic levels, from narrow (I: within-species) to
broad (VI: within-phylum) (see Supp. Dataset 2 of that paper). We filtered the plasmids to n=4,000
plasmids that were seen in species from our RefSeq:>25 dataset (using TaxName in Redondo-Salvo
Dataset S2 and disregarding extra specificity after genus and species). For modelling purposes, we
note that host range is not strongly correlated with plasmid size (e.g. for k=6 linear model dataset,
Spearman's p=0.046, p=0.10).

R-M target distribution. We ran rmsFinder on the 8,552 filtered genomes in our dataset of 72 species,
of which 2,740 (32.0%) contained a Type Il R-M system with a predicted target motif. Of these R-M-
containing genomes, 2,035/2,740 (74.3%) contained a single R-M system (range: 0-18 R-M systems;
Helicobacter pylori genomes accounted for all those with >9 R-M systems). Six species contained no
predicted R-M systems (Bacillus anthracis, Chlamydia trachomatis, Corynebacterium
pseudotuberculosis, Limosilactobacillus reuteri, Mycobacterium tuberculosis, Piscirickettsia salmonis).
R-M systems targeted 104 known REBASE motifs corresponding to 278 unambiguous sequences
(hereafter: ‘targets’) of which the vast majority were between 4 and 6 bases long (Table 1). Where a
motif contained ambiguity codes (e.g. ATNNAT) we include all possibilities as independent targets i.e.
with equal weighting compared to unambiguous targets. Out of the 98 motifs of 4-6 bases, 26 were
targeted by only a single species. On average, a given REBASE motif was targeted by systems found
in a median of 3 species (range: 1-28) and 21 genomes (range: 1-790).

We then aggregated these results by species into a binary presence/absence matrix of species against
k-mers for k=4,5,6. In this matrix a 1 denotes that a functional R-M system targets the k-mer, and a 0
that no R-M system was observed in the dataset targeting that k-mer. We then used the AMR package
in R to generate taxonomic classifications for all species. For a given species, we can therefore define
the set of motifs that are targeted by R-M systems observed within-species, within-genus, within-family
etc. up to the order of phylum. This ‘taxonomic dictionary’ allows us to explore how the distribution of
R-M systems is linked to avoidance of their associated targets in bacterial genomes and plasmids.

Calculating target avoidance. Sequence composition strongly affects the number of times a short
motif appears in a stretch of DNA. For example, one would expect few occurrences of GGCC in an AT-
rich genome. We therefore used R'MES v3.1.0 (https://forgemia.inra.fr/sophie.schbath/rmes) to
calculate an exceptionality score for all k-mers (k=4,5,6). R'MES controls for sequence composition by
using a Markov chain model to calculate the expected occurrences of a word W of length k using the
observed occurences of shorter words. This gives a null expectation which can be compared with the
actual occurences of W to produce an exceptionality Z-score. For our analyses, we use the maximal
model of order m=k-2 which uses the observed occurrences of all words with lengths < k-1 (Schbath
1997). The use of a maximal Markov model has the advantage that when a k-mer is observed
significantly less than expected under the null model, this is a strong sign of selection against the word
itself, rather than against the substrings it contains. Where a k-mer has zero observed occurrences and
zero expected occurrences, its score as calculated by R'MES is defined as zero. Using the taxonomic
dictionary of the presence of systems targeting particular R-M targets (Fig. 2a-c) we then calculated the
median exceptionality score for defined groups of targets for each species. For example: assume that
for a given species Sa, we detect R-M systems which target ki, k2 and ks. A different species Sp within
the same genus has R-M systems targeting ki, ks and ks. The within-species R-M targets of Saare {ku,
kz. ks} and the within-genus targets are {ki, kz, ks, ks, ks}. This logic extends up the taxonomic hierarchy,
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up through family, order, class, phylum and finally to kingdom, the set of targets includes all k-mers
targeted by any R-M system detected within our dataset. We use only the presence of an R-M system
and do not use any prevalence information.

Controlling for sequence length. The statistical power to detect significant deviation in the abundance
of motifs compared to expectation increases with sequence size. To control for differences in length
between genome components, we ran analyses on both whole sequences and also subsampled
sequences down to fixed lengths (2.5, 5, 10, 50, and 100 kbp). See github repository for more details.

Controlling for phylogeny. We modelled the difference in R-M target avoidance between plasmid
genes and core genes at a within-isolate level, subsampling to 10kbp; n=4,553 genomes across 60
species with at least 10kbp in each of the three pangenome components. Differences between plasmids
and chromosomes can be biased by the phylogenetic structure of bacteria. To account for this, we
followed the methodology of Dewar et al. (2021), using MCMCglmm (Hadfield 2022) to include
phylogeny and number of genomes as random effects in a generalized linear mixed model. For the host
species phylogeny, we used a recent tree computed by Zhu et al. (2019) based on 381 marker genes.
17/72 species names were missing from the tree with a simple match. We manually checked these
missing species and amended the Zhu phylogeny by either: renaming the taxon (n=5) or adding sister
tips to members of the genera already in the tree based on a literature review (n=12), using half of the
branch length distance to the nearest other taxon in the tree. We also manually amended the position
of Klebsiella michiganensis to place it within the Klebsiella genus. The tree is provided in supplementary
material (Fig. S4).

Modelling for palindrome avoidance. We used MCMCglmm v2.34 (Hadfield 2022) with two fixed
effects (phylogeny, number of genomes) for the mean ranks of avoidance. For full details of code, see
the github repository.

Software. rmsFinder is written in python. Bioinformatic analysis of genomes and plasmids was carried
out using the Biomedical Research Computing (BMRC) facility at the University of Oxford. We
conducted downstream analyses in R v4.1.2 and RStudio v2022.07.2 using We following R packages:
dplyr v1.0.9, ggplot2 v3.3.6, cowplot v1.1.1, formatR v1.12, ape v5.6-1, ggtree v3.2.1, ggridges v0.5.3,
MCMCglmm v2.34, phytools v1.0-3, reshape2 v1.4.4, tidyr v1.2.0, ggrepel v0.9.1, ggbeeswarm v0.6.0.
All code is available on github.

Data availability. Genomes analysed are all from public databases (NCBI) and accessions are
available via the github repository. Analysis scripts and intermediate data are available online:
https://github.com/liampshaw/R-M-and-plasmids.
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