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Abstract 

 
In this study, we introduce PIGEON—a novel statistical framework for quantifying and 

estimating polygenic gene-environment interaction (GxE) using a variance component 

analytical approach. Based on PIGEON, we outline the main objectives in GxE studies, 

demonstrate the flaws in existing GxE approaches, and introduce an innovative 

estimation procedure which only requires summary statistics as input. We demonstrate 

the statistical superiority of PIGEON through extensive theoretical and empirical analyses 

and showcase its performance in multiple analytic settings, including a quasi-

experimental GxE study of health outcomes, gene-by-sex interaction for 530 traits, and 

gene-by-treatment interaction in a randomized clinical trial. Our results show that 

PIGEON provides an innovative solution to many long-standing challenges in GxE 

inference and may fundamentally reshape analytical strategies in future GxE studies. 
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Introduction 

 

The environment is often ignored or treated as a nuisance in human complex trait genetics 

research. However, in epidemiology, social sciences, medicine, and many other related 

disciplines, there is a great interest in quantifying the effect heterogeneity of an exposure 

(e.g., a treatment, a policy change, a natural experiment), and, more specifically, its 

interaction with genetics, as a means of identifying subgroups that may maximally shift in 

response to environmental instruments1-5. This is broadly referred to as gene-

environment interaction (GxE)6. While this concept seems intuitive, GxE has not been 

consistently defined in the literature, especially for complex traits due to their polygenic 

nature7. Perhaps more importantly, many existing complex trait GxE methods lack a solid 

statistical foundation. It is often unclear how to compare different GxE approaches or even 

whether they can be compared, since they may be estimating entirely different 

parameters. We will illustrate this issue throughout the current paper. These issues have 

held back a broader consensus of findings in the GxE field, for which we propose a 

solution in this study. Here, we aim to achieve two main goals. First, we introduce a unified 

statistical framework to model polygenic GxE effects for complex traits, which allows us 

to define the parameters of interest and compare existing GxE approaches. Second, we 

introduce an innovative approach to estimating GxE interactions using genome-wide 

summary data. 

 

The evolution of GxE methodology mirrors method development in genome-wide 

association studies (GWAS). Early G×E studies were primarily based on a candidate 

gene approach8 which suffered from low replicability9. High-throughput genotype data 

made it possible to perform GxE scans for millions of single nucleotide polymorphisms 

(SNPs)10, a design often referred to as genome-wide interaction study (GWIS). Although 

GWIS improves the replicability and robustness of interaction findings, it introduces an 

extreme burden of multiple testing which severely limits its statistical power11. Therefore, 

a two-step approach is sometimes employed to first filter SNPs (e.g., based on GWAS 

associations) and then only test GxE using selected SNPs12-16.  

 

However, it is now well established that most human complex traits are highly polygenic7. 

As a result, modern GWAS analyses have generally focused less on individual SNPs, but 

instead employ tools that embrace polygenicity, including genome-wide heritability 

estimation17,18 and enrichment analysis19,20, genetic correlation analysis which quantifies 

shared genetics across multiple traits21,22, and polygenic scores (PGS) which estimate 

genetic predisposition by aggregating effects of many SNPs22-25. GxE studies are going 

through a similar transition, focusing more on how the polygenic basis of a trait varies 

across environments26-29. For example, some studies estimate the phenotypic variance 

explained by many SNPxE interaction terms using similar methods from heritability 

estimation28-31. Other studies perform stratified GWAS in different environments and then 

test differential heritability and/or imperfect genetic correlation between the 

environments26,27,32. Further, PGSxE studies have gained popularity in the GxE 

literature3,33-35. It is a two-step approach that first summarizes each individual’s genetic 
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predisposition into a PGS, and then tests the interaction between PGS and the 

environment1,36-38. Although all these approaches are referred to as GxE in the literature, 

the relationship between these approaches is poorly understood. For example, it is 

unclear whether PGSxE and differential heritability analysis aim to estimate the same 

parameter (as we explain below, they do not). Existing methods are also plagued by 

technical challenges including statistical biases, computational burden, and constraints in 

the data. We will provide detailed discussions of these issues in the following sections. 

 

In this paper, we introduce a statistical framework named polygenic gene-environment 

interaction (PIGEON) for quantifying and estimating polygenic GxE. Using this framework, 

we demonstrate the relation and differences between existing GxE methods. We also 

equip PIGEON with an estimation method only requiring GWIS and GWAS summary 

statistics as inputs. Our method provides unbiased estimates, is robust to sample overlap 

and heteroskedasticity, and allows for hypothesis-free scans for PGSxE across many 

PGS. We demonstrate PIGEON’s superior performance over existing methods through 

extensive theoretical analysis, simulation studies, and real data applications. In this study, 

we pursue three main applications, all of which leverage genome-wide data and 

exogenous environmental exposures, to showcase the broad applications of PIGEON. 

We validated our approach by replicating a quasi-experimental PGS-by-education 

interaction (PGSxEdu) study for health-related outcomes in the UK Biobank (UKB)1.  We 

then used PIGEON to build a catalog of polygenic gene-by-sex interactions (GxSex) for 

530 traits in UKB. We further applied PIGEON to investigate the effect heterogeneity of 

smoking cessation treatment in a randomized clinical trial. 

 

 

Results 

 

Two main objectives in polygenic GxE inference  

 

The PIGEON model is illustrated in Figure 1. It is built on a linear mixed model that 

captures both the additive effects and GxE effects for many SNPs.  

�! =	$�!"�#!
+ �!�$ +$�!"�!�%! + �!& + �!'�!

(

")'

(

")'

 

Here, �! is the standardized phenotype with a mean of 0 and variance of 1 for the i-th 
individual, �!" is the j-th standardized SNP, �! is the standardized environment, �!& is the 

noise term, and �!'�  quantifies the heteroskedasticity due to residual-environment 

interaction (i.e., varying residual variance across environments)30,39. Polygenic additive 

effects and interaction effects (i.e., �#!
 and �%!) are modeled as random variables. Details 

on this model and its more generalized forms are presented in Methods and 

Supplementary Note 1. 

 

PIGEON defines two main objectives in polygenic GxE inference using a variance 

component analysis framework. First, the overall GxE contribution is quantified by the 
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variance of interaction effects (i.e., ���(�%!) ) and the proportion of the phenotypic 

variance attributed to it. This is conceptually similar to SNP heritability23 but focuses on 

interaction effects rather than additive effects. Hypothesis testing on this quantity provides 

evidence for the existence of GxE. Its magnitude quantifies the degree of GxE for the trait 

of interest.  

 

Figure 1. PIGEON workflow. (a) Two main objectives in polygenic GxE inference based on the PIGEON 
model (b) Estimating polygenic GxE using GWIS and GWAS summary statistics. 

 

However, a non-zero GxE variance component alone does not provide much mechanistic 

insight. Therefore, we propose another key objective in polygenic GxE analysis–

estimating covariant GxE, defined as the covariance between SNP additive effects and 
SNPxE interaction effects (i.e., ���(�#!

, �%!)). We note that additive effects and interaction 

effects can be obtained from the same trait or two different traits (Methods). Here, 

covariant GxE provides crucial insights into the whole-genome interaction mechanisms 

by correlating SNPs’ effects on complex traits with their tendency to interact with the 

environment. This is analogous to genetic correlation analysis in the GWAS literature 

where researchers use existing GWAS to help interpret genetic associations obtained in 

a new GWAS. 

 

Together, these two objectives lay out the foundation for (1) quantifying the evidence for 

polygenic GxE interaction and (2) interpreting the mechanisms underlying these 

interactions. In the next section, we demonstrate that existing GxE approaches, i.e., GxE 
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variance estimation, differential heritability analysis between environments, genetic 

correlation analysis between environments, and PGSxE analysis can all be linked to 

these two objectives, which allows us to understand the connection and distinction 

between these approaches. 

 
 

Comparing polygenic GxE methods in the PIGEON framework 

 

Next, we consolidate and compare several GxE methods under the PIGEON framework 

and demonstrate the advantages of variance-covariance component analysis for 

polygenic GxE. We present the statistical details and technical discussions in Methods 

and Supplementary Note 2. For illustration, we assume G-E independence (i.e., the 

environment has zero heritability), but later we will relax this assumption and investigate 

how the correlation between genes and environments affect polygenic GxE inference. 

Table 1 provides a summary of the comparison between PIGEON and other approaches. 

Objectives Methods Proposition Implications

PIGEON GxE variance components: �2
I �2

I > 0 indicates the presence of GxE

Differential

heritability

analysis
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Component from the product of heteroscedasticity and heritability

Testing the equality of heritability may have

false positive results for the presence of GxE due to

heteroskedasticity. (i.e., when �2
I = 0 and �2

/1
6= 0)

Differential
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analysis

Difference in genetic variance between two environments:
p
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G

�
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I
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analysis
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H0 : rg = 1 , H0 : �2
G�

2
I

�
r2GI � 1

�

| {z }

It can still be 0 if �2

I
> 0 and rGI = ±1

= 0
Testing genetic correlation = 1 may have

false negative results for the presence of GxE .

PIGEON Oracle PGSxE coefficients:
ãGI

�2
G

Estimating oracle PGSxE is equivalent to estimating

covariant GxE without calculating the oracle PGS.

Bias of empirical PGSxE due to noisy PGS:

E
h
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ãGI

�2
G

|{z}
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Bias due to noisy PGS

(i) Oracle PGSxE represents the upper bound and

infinite sample (in GWAS) limit of the empirical PGSxE

(ii) Empirical PGSxE is biased but does not have

false positives due to noisy PGS.

Bias of empirical PGSxE due to noisy PGS and sample overlap:

E
h
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(Emp,Ovp)
I

i
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(Emp)
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Bias and false positives due to sample overlap

Empirical PGSxE is biased and

has false positives results due to sample overlap.

Model: Yi =
PM

j=1 Gij�Gj + Ei�E +
PM

j=1 GijEi�Ij + /i0 + /i1Ei, where Yi, Gij , and Ei are all standardized; Notation: GxE variance �2
I = M Var(�Ij),

residual variance �2
/0

= Var(/i0), heritability �2
G = M Var(�Gj), covariant GxE ãGI = M Cov(�Ij ,�Gj), rGI = ãGI/

p

�2
I�

2
G, expectation of the binary environment p,

quantity related to phenotypic variance W , heteroskedasticity variance �2
/1

= Var(/i1), genetic correlation rg, effective number of independent SNPs Meff, PGSxE sample size NI ,

GWAS sample size NG, Number of overlapped sample between GWAS and PGSxE sample NS , ã/0,/1 = Cov(/i0, /i1), r/0,/1 = ã/0,/1/
p

�2
/0
�2
/1

, skewness of E µE(3)

  

  
Empirical PGSxE

Provide the 

interpretation

of polygenic 

GxE

Detect the 

presence

of polygenic 

GxE

               

                              
                                             
               Table 1. Summary of the theoretical results of PIGEON and other approaches for polygenic GxE inference



 

To perform statistical inference on the presence of GxE, we can test the null hypothesis 

that no SNPs have interactions with the environment, i.e., �&: �%" = 0	for all j. However, 

the high dimensionality in GWAS data creates a challenge. In PIGEON, the same null 

hypothesis can be specified as having a zero GxE variance, i.e., �&: �%* = 0, which only 

requires estimating one parameter28-31. Here, �%* is the total variance of SNPxE effects in 

the genome, i.e., �%* = ����(�%!). Several commonly-used approaches provide flawed 

estimates of this quantity. For example, heritability could vary across discrete 

environments just because of heteroscedasticity (i.e., difference in the non-genetic 

variance components) in the absence of GxE, leading to false positive results (Table 1). 

Notably, comparing genetic variance instead of heritability27 does not solve the issue 

either – genetic variance may be the same across environments in the presence of GxE, 

leading to false negative results (Table 1). Similarly, genetic correlation analysis between 

environments has its limitations. A perfect genetic correlation can be achieved when the 

SNP additive effects are proportional between environments (Table 1; also known as 

“amplification” in the GxE literature40), leading to false negative results. Even testing both 

genetic variance and perfect genetic correlation between environments may fail to identify 

GxE (Supplementary Note 2). Therefore, heritability, genetic variance, and genetic 

correlation analyses fail to properly estimate polygenic GxE effects. Some of these 

approaches also suffer from technical issues such as an inability to handle quantitative 

environmental exposures. To assess the presence or absence of polygenic GxE, 

researchers should estimate the GxE variance component. 

 

In PGSxE analysis, we are interested in quantifying the interaction between the 

environment and each individual’s true PGS (i.e., PGS computed from each SNP’s true 

effect size). We refer to this as oracle PGSxE analysis. We show that estimating oracle 

PGSxE is equivalent to estimating covariant GxE (Supplementary Note 2). This finding 

has several major implications. It shows that oracle PGSxE coefficient can be estimated 

without calculating PGS. Instead, we could equivalently estimate the covariance between 

polygenic additive and interaction effects. It also suggests that although PGSxE analysis 

and several other approaches we have discussed above (e.g., differential heritability) are 

all believed to estimate “GxE”, they in fact quantify two different objectives in GxE 

discussed above. A null PGSxE, which could simply result from uncorrelated SNP 

additive and SNPxE interaction effects, does not imply the absence of GxE. In addition, 

we refer to the PGSxE analysis based on scores estimated from GWAS as empirical 

PGSxE. This analytical strategy is substantially affected by the imprecision in PGS 

estimation due to limited sample sizes in GWAS41. Ignoring the uncertainty in empirical 

PGS will lead to interaction estimates that are biased towards zero (Table 1 and 

Supplementary Note 3). Oracle PGSxE represents the upper bound and infinite sample 

(in GWAS) limit of the empirical PGSxE (Methods), analogous to the heritability being 

the upper bound of PGS predictive R-squared in the GWAS literature42. It is also important 

to note that empirical PGSxE analysis requires no overlap between the GWAS used to 

construct PGS and the sample for PGSxE analysis. Under sample overlap, PGS will 

overfit and cause biased interaction estimates and false findings in empirical PGSxE 



analysis (Table 1). Therefore, estimating covariant GxE through variance component 

analysis is a superior alternative to replace the commonly used PGSxE analysis.  

 

 

Estimating GxE using GWIS and GWAS summary statistics 

 

Next, we introduce PIGEON linkage disequilibrium (LD) score regression (PIGEON-

LDSC) to estimate GxE variance and covariant GxE using only summary statistics from 

GWAS and GWIS (Figure 1b)21. For the GxE variance component estimation, PIGEON-

LDSC regresses the squared SNPxE Z-scores from GWIS summary statistics on LD 

scores, and estimates the GxE variance parameter from the regression slope31. To 

estimate covariant GxE, PIGEON-LDSC uses summary statistics from both GWAS and 

GWIS, and regresses the product of GWAS and GWIS Z-scores on LD scores. Oracle 

PGSxE effect size can be subsequently obtained from normalizing covariant GxE by trait 

heritability (Methods).  

 

 
Figure 2. Comparison of PIGEON and PGSxE analysis. (a) Estimating oracle PGSxE with PIGEON-
LDSC. (b) Conventional study design for PGSxE analysis. 
 

Importantly, the sample overlap between GWAS and GWIS will only affect the intercept 

of the regression but not the slope. Therefore, PIGEON-LDSC’s interaction effect 

estimates are robust to sample overlap. Because of this, a key feature of our estimation 

framework is the ability to implement hypothesis-free scans for PGSxE across many PGS. 

That is, given an environmental exposure of interest, we can search through many 

published GWAS to identify the PGS that modifies the exposure effect – we simply need 

to estimate the genetic correlation between the GWIS summary data and publicly 

available GWAS summary statistics for many traits. In addition, PIGEON is 

computationally efficient, robust to the heteroskedasticity across environments, able to 

quantify GxE interaction with dichotomized PGS, and can be used for binary outcomes. 
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We provide details on these features in the Supplementary Note 4-6. We also present 

a comparison between PIGEON-LDSC and the empirical PGSxE approach in Figure 2. 

 

 

Simulation results 

 

We performed numerous simulations using genotype data from UKB43 to demonstrate 

the unbiasedness, power, and robustness of PIGEON inference results (Methods). We 

included 40,000 independent samples and 734,046 SNPs in the analysis after quality 

control (QC). Phenotypes were simulated under the polygenic GxE model with a binary 

environment variable. Each simulation was repeated 100 times.  

 

 
Figure 3. Simulation results. (a) Statistical power and type-I error of PIGEON GxE variance component 
estimation, differential heritability between environments, genetic correlation between environments. (b) 
Statistical power and type-I errors of PIGEON’s oracle PGSxE estimation and empirical PGSxE analysis 
based on clumping and PRS-CS scores. GWAS and GWIS have no sample overlap. (c) Same as b except 
that GWAS and GWIS share 100% of the samples. (d) Point estimation for GxE variance components using 
PIGEON (e) Point estimation for PGSxE coefficients when GWAS and GWIS have no sample overlap. (f) 
Same as e but with 100% sample overlap. 
 

We equally divided 40,000 samples into two sub-cohorts with 20,000 each. We performed 

GWIS on the first sub-cohort and applied PIGEON-LDSC to estimate the GxE variance 

component. We compared PIGEON with differential heritability and genetic correlation 

analyses. PIGEON showed higher power than both approaches (Figure 3a and 
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Supplementary Figure 1) and provided unbiased estimates for GxE variance (Figure 

3d and Supplementary Figure 1). We also compared PIGEON with GxEsum, another 

approach designed to estimate GxE variance component31, and demonstrate the bias in 

its implementation (Supplementary Figure 2 and Supplementary Note 7). 

 

Next, we evaluated the performance of bivariate PIGEON-LDSC in estimating covariant 

GxE. We compared PIGEON with the empirical PGSxE approach based on two scores: 

clumping PRS44 and PRS-CS45. In the absence of sample overlap, where the GWAS and 

GWIS were performed in different sub-cohorts, no methods showed inflated type-I error. 

PIGEON showed similar power compared to PRS-CS PGSxE and slightly higher power 

than clumping PGS (Figure 3b). Importantly, PIGEON provided unbiased estimates for 

the oracle PGSxE, while both clumping and PRS-CS PGSxE results were severely biased 

(Figure 3e). When GWAS and GWIS were generated in the same sub-cohort with a full 

sample overlap, PGSxE approaches showed severe type-I error inflation and biased 

estimates while PIGEON estimates remained unbiased with well-controlled type-I error 

(Figure 3c and f). Altering the sample size ratio between GWIS and GWAS reached the 

same conclusions in simulations (Supplementary Figure 3). We also employed an 

approach to correct for measurement error in PGSxE analysis46. Measurement error 

correction led to both inflated type-I error and lower statistical power, showing inferior 

performance compared to PIGEON (Supplementary Note 7 and Supplementary Figure 

4). These simulation results are consistent with our theoretical analysis and demonstrate 

the superiority of PIGEON over commonly used GxE approaches.  

 

 

PGS-by-education interaction for health outcomes 

 

To further compare PIGEON and the PGSxE approach, we replicated the analysis in 

Barcellos et al.1 to study whether genetics moderate the effect of an education reform on 

later life health-related outcomes. We focused on their most significant PGSxE findings 

for the dichotomous summary health index (Methods), but also replicated their null 

results as negative controls. We performed PIGEON and PGSxE to quantify the 

interaction  between the effect of education reform, and genetic predisposition for body 

mass index (BMI)47 and educational attainment (EA)48. We used the same BMI and EA 

GWAS as Barcellos et al., which excluded UKB samples to avoid PGS overfitting. 

 

Our results are summarized in Table 2. PIGEON showed similar P-values, but 

substantially elevated interaction effect estimates by 19.7%-55% compared to PGSxE 

analysis. This is consistent with our observation in simulations – empirical PGSxE 

analysis underestimates interaction effects due to measurement error in the constructed 

PGS measure. Both PIGEON and PGSxE found null results for the continuous health 

index. We also repeated the PIGEON analysis using two recently-published, larger 

GWAS for BMI49 and EA50 which included UKB samples. We obtained highly consistent 

results in this analysis, demonstrating PIGEON’s robustness to sample overlap. Further, 

we applied PIGEON to perform a hypothesis-free search for novel PGSxEdu interactions 



using GWAS summary statistics for 30 complex traits (Supplementary Tables 1-2). We 

found a significant interaction between the education reform and the genetic risk for 

smoking initiation51, suggesting that education is more effective in improving health for 

people with a higher genetic risk for smoking. We also validated this finding using the 

empirical PGSxE approach after removing UKB samples from the smoking initiation 

GWAS51 (Supplementary Table 3). 

 

Dichotomous summary index (N = 172,664) 

GWAS summary statistics PIGEON Empirical PGSxE 

Trait GWAS 
Contains 

UKB 
BETA SE P-value BETA SE P-value 

BMI Locke et al. No -0.20 0.077 9.4e-3 -0.16 0.037 2.3e-5 

EA Okbay et al., 2016 No 0.26 0.075 4.7e-4 0.12 0.065 0.07 

BMI Yengo et al. Yes -0.25 0.065 1.4e-4 - - - 

EA Okbay et al., 2022 Yes 0.20 0.064 1.4e-3 - - - 

Continuous summary index (N = 172,664) 

GWAS summary statistics PIGEON Empirical PGSxE 

Trait GWAS 
Contains 

UKB 
BETA SE P-value BETA SE P-value 

BMI Locke et al. No 0.033 0.072 0.65 0.024 0.041 0.56 

EA Okbay et al., 2015 No -0.002 0.075 0.97 -0.043 0.076 0.57 

BMI Yengo et al. Yes 0.023 0.064 0.72 - - - 

EA Okbay et al., 2022 Yes -0.006 0.063 0.92 - - - 

Table 2. PGS x education effects on summary health index in UKB. The upper and lower table show 
the results for dichotomous and continuous summary indices, respectively. We compare the results of 
PIGEON and empirical PGSxE. Dash (-) means that analysis could not be performed due to the sample 
overlap between GWAS and GxE cohorts. Abbreviations are as follows: BMI, body mass index; EA, 
educational attainment measured by years of education; SE, standard error. 
 
 

Polygenic GxSex interaction for 530 complex traits 

 

Next, we deployed PIGEON to create an atlas of polygenic GxSex interactions for 530 

complex traits in UKB. We obtained GWIS summary statistics for 530 traits by 

transforming the sex-stratified GWAS summary statistics traits released by Bernabeu et 

al.27 (Supplementary Table 4), and used them as input for PIGEON-LDSC (Methods). 

We estimated the proportion of phenotypic variance attributed to GxSex and searched for 

covariant GxSex (or equivalently, oracle PGSxSex interactions) on these traits using 30 

GWAS (Supplementary Table 1). We also estimated additive effect genetic 

correlations21 between 530 UKB traits and 30 GWAS to help interpret the sign of 

polygenic GxSex interactions (Methods).  



Figure 4. A catalog of polygenic GxSex in UKB.  (a) The number of significant polygenic GxSex (P< 
0.05/530=9.43e-5 with Bonferroni correction) identified by three approaches: PIGEON variance component 
estimation, differential heritability, and differential genetic correlation. (b) Heatmap on the left shows the 
results for oracle PGSxE with males coded as 1 and females as 0. The right-hand side shows the genetic 
covariance estimates between external GWAS and female-specific UKB GWAS to assist in interpreting the 
sign of interactions. Only quantitative traits showing at least one significant interaction (P< 
0.05/530/30=3.14e-6 with Bonferroni correction) are shown. The complete results for all traits and all PGS 
are presented in Supplementary Table 5. (c) Effect of BMI PGS on fat mass and lean mass traits. (d) 
Effect of anorexia PGS on fat mass and lean mass traits. Significant interactions with larger PGS effects in 
females are highlighted in pink. Those with larger effects in males are highlighted in blue. Interactions that 
did not reach statistical significance are colored in grey. 

 

PIGEON identified 64 traits with significant GxSex variance components (P < 9.4e-5 using 

Bonferroni correction). As a comparison, analysis based on differential heritability and 

genetic correlation between the sexes identified substantially fewer interactions (21 and 

45, respectively; Figure 4a). Bivariate PIGEON-LDSC further detected 280 significant 

PGSxSex effects (P < 3.0e-6 using Bonferroni correction) for a total of 87 traits (Figure 

4b). For example, we found significant BMI PGS-Sex interactions for fat-free mass and 

fat mass traits but with opposite directions. Here, fat-free mass assessed by 

bioimpedance analysis is a component of total body mass and is commonly taken as an 
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approximation of skeletal muscle mass52. BMI PGS showed larger effects on fat mass 

traits in females than in males, but its effect on fat-free mass traits is stronger in males 

than in females (Figure 4c).   
 

We also identified a significant anorexia PGSxSex interaction on BMI (P = 5.0e-14; 

Figure 4d), suggesting that the sex difference in BMI genetics is partly explained by the 

genetics of anorexia – anorexia PGS is substantially more associated with lower BMI in 

females than in males. We replicated this finding using an independent BMI GWIS cohort 

from Locke et al.47 which does not contain the UKB sample (P = 1.0e-4). We also adjusted 

for BMI PGSxE in the model to account for the correlation between anorexia and BMI 

PGS (Methods). The anorexia PGS×Sex signal remained significant (P=1.0e-7), 

indicating an independent contribution of anorexia to the sex differences in BMI genetics. 

In the context of the literature on anorexia nervosa, this finding aligns with a) strong 

female bias in disorder presentation (9:1 ratio in females vs. males affected by anorexia53, 

and b) evidence that genetic correlations between fat percentage and anorexia differ 

according to sex, with more robust genetic associations between (low) body fat 

percentage and anorexia genetics in females as compared to males54. Full result of 

polygenic GxSex for 530 traits is provided in Supplementary Figure 5 and 

Supplementary Tables 4-5. 

 

 

Heterogenous effect of smoking cessation treatment on lung function 

 

Finally, we investigated PIGEON’s application in genomic precision medicine. We applied 

PIGEON to the Lung Health Study (LHS) to quantify the heterogenous treatment effect 

due to individual genetic differences. LHS is a randomized clinical trial designed to test 

the effectiveness of smoking intervention and bronchodilators in smokers with mild lung 

function impairment55. The main finding of the LHS was that aggressive smoking 

interventions significantly reduced the age-related decline in expiratory volume in one 

second (FEV1), but the effect of bronchodilator usage was not statistically significant56. 

Based on this, we considered FEV1 as the outcome and bronchodilator usage and 

aggressive smoking intervention as two exposures in our analysis (Methods). We found 

a significant interaction between smoking initiation PGS and bronchodilator usage – trial 

participants with a high genetic risk for smoking initiation benefited from the use of 

bronchodilator to reduce the decline in FEV1 (P = 6.0e-3). We verified our finding by 

stratifying individuals using smoking initiation PGS and estimating the bronchodilator 

effects on FEV1 in each subgroup (Figure 5). We found that the use of bronchodilator 

significantly reduces the declines of FEV1 among individuals in the high smoking initiation 

PGS group (BETA = 31.5, P = 6.7e-03), while no such effect was observed using all 

samples (BETA = 13.6, P = 0.1) or in the low PGS group (BETA = -2.84, P = 0.80). In 

contrast, the effect of smoking intervention on FEV1 was not moderated by any of the 

genetic scores we tested. 

 



 
Figure 5. Heterogeneous treatment effect of bronchodilator on FEV1 across PGS groups. Individuals 
were stratified into low and high PGS groups based on their PGS of smoking initiation with median as the 
cutoff. The black rhombus indicates the treatment effect estimates in each group. Error bars show the 95% 
confidence intervals. 

 

 

Impact of gene-environment correlation on polygenic GxE inference 

 

Finally, we investigate the impact of gene-environment correlation (rGE) on polygenic 

GxE inference. Under the polygenic model, we quantify rGE by allowing the environment 

to be heritable. Additionally, genetic effects on the environment can be correlated with 

both the additive effects and SNPxE interaction effects on the trait outcome (Figure 6a). 

Using this framework, we derived the bias in GxE variance component estimation 

introduced by rGE (Supplementary Note 8). Notably, given rGE, estimates of GxE 

variance component are unbiased under the null, suggesting that rGE will not lead to false 

positive results. In addition, if the additive effects on the environment and SNPxE 

interaction effect on the trait outcome are uncorrelated, GxE variance-covariance 

estimation will be unbiased. Note that this is a much weaker condition compared to the 

typical assumption that the environment is independent from genetics in the GxE literature. 

 

If this weak condition is violated, we propose an approach to correct the bias in PIGEON 

parameter estimates. We extended PIGEON LDSC to obtain the debiased estimates by 

additionally incorporating the GWAS summary statistics for the environment (Figure 6b, 

Supplementary Note 8). Simulation results support the validity of these derivations, 

showing that rGE leads to biased estimates and potential false positives findings 

(Supplementary Figures 6-7), and that PIGEON provides unbiased estimates and well-

controlled false positives for GxE variance, covariant GxE, and oracle PGSxE in the 

presence of rGE (Figure 6c-f). 

 

All samples

High PGS group

Low PGS group

220 0 20 40
Effect of bronchodilator on increasing FEV1 (mL) (95% CI)



 
Figure 6. Impact of rGE on polygenic GxE inference (a) To quantify rGE, we allow the environment to 
have a polygenic genetic basis. The additive genetic effects on the environment can be correlated with both 
the additive effects and GxE interaction effects on the trait outcome. (b) PIGEON-LDSC leverages GWAS 
summary statistics for the environment to correct for the bias introduced by rGE. (c and d) Simulation results 
for GxE variance estimation in the presence of rGE. (e and f) Simulation results for oracle PGSxE estimation 
in the presence of rGE. “Original” means using the methods derived under G-E independence. 

 

 

Discussion 
 

We presented PIGEON, a unified statistical framework for quantifying and estimating 

polygenic GxE. Taking a page out of the playbook for polygenic estimation of heritability 
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and genetic correlation, we reimagined GxE analysis from a variance component 

estimation perspective and demonstrated the limitations of existing GxE methods. We 

also developed a new estimation approach that uses GWIS and GWAS summary data 

alone as input. We demonstrated its statistical superiority (i.e., unbiasedness, robustness, 

and computationally efficient) through extensive theoretical and empirical analyses. For 

real data applications, we focused on three examples. We replicated and extended the 

PGSxEdu analysis for health-related outcomes in UKB, identified an atlas of polygenic 

GxSex results for 530 complex traits, and quantified genetically-moderated treatment 

effects in a randomized clinical trial. These detailed analyses involving diverse exposures 

and outcomes showcased the effectiveness of PIGEON and provided a glimpse of the 

broad issues that could be tackled using this analytical framework. 

 

Our work presents several major advances that will impact future GxE studies. The first 

contribution is to use linear mixed model and variance-covariance estimation to quantify 

GxE for complex traits. This allows us to clearly define the target parameters and compare 

different approaches in polygenic GxE inference. We note that although GxE variance 

component has been introduced before in the literature28-31, the covariance between 

SNPxE effects and additive genetic effects (i.e., covariant GxE) has not been previously 

studied. Therefore, it is particularly interesting to discover the equivalence between 

covariant GxE and oracle PGSxE. This finding allowed us to quantitatively understand 

the limitations in existing PGSxE approaches and design better statistical estimators. 

Since the variance component-based analytical framework has been widely used in 

GWAS applications57-59, many advanced GWAS techniques based on this framework 

may be employed in future interaction studies to further facilitate our understanding of 

polygenic GxE.  

 

The second major innovation in this study is to introduce the PIGEON-LDSC estimation 

approach. We have demonstrated several statistical features that make this approach a 

superior choice for polygenic GxE inference. Among these, perhaps the most important 

feature is its robustness to sample overlap. In current GxE practice, if the cohorts for 

GWAS and GxE share samples, PGS cannot be produced and PGSxE analysis is 

considered impossible. With PIGEON, it is now possible to produce unbiased estimates 

for covariant GxE and oracle PGSxE under arbitrary sample overlap. Another related but 

perhaps more subtle feature of PIGEON is that it enables hypothesis-free scans for 

PGSxE. In the current literature, most PGSxE studies are hypothesis-driven. Given an 

outcome and an environmental exposure of interest, researchers often hypothesize that 

a particular PGS moderates the exposure effect and then test PGSxE to see if this is 

supported by data1,36-38. An issue that is not discussed enough in this type of application 

is how to choose the PGS. With several exceptions1,60, most studies use the same 

outcome in GxE to define PGS38,61-63. The covariant GxE perspective in PIGEON sheds 

important light on this issue. We show that PGSxE analysis is essentially testing genetic 

correlation between the SNPxE effects in GWIS and some GWAS additive effects. Under 

this perspective, there is no reason to constrain GWAS and GWIS to have the same 

outcome. Instead, a better strategy is to perform GWIS and then test its genetic 



correlation with many published GWAS to gain insights into the mechanism underlying 

GxE. This is also where sample overlap robustness is shown to be a key feature of the 

framework. With PIGEON, we can assess PGSxE without concerns about whether the 

GWAS and GWIS were performed on the same samples or completely different ones. 

We studied many traits using this type of approach in this paper. For example, we 

investigated the GxSex GWIS results on BMI and found a significant correlation with 

anorexia GWAS. We believe this will motivate future GxE studies. 

 

Third, we examined the long-standing issue regarding the impact of rGE on GxE inference. 

In many areas of GxE applications, it is of great interest to ensure the exogeneity of the 

exposure. When GxE analysis is performed on observational data, some studies go to 

great lengths to leverage instrumental variables1,2 or other approaches, while other 

studies ignore the potential correlation between genes and environment60,63. The 

PIGEON framework allowed us to quantitatively assess the impact of rGE. We showed 

that a much weaker condition than G-E independence, i.e., a zero correlation between 

SNP additive effects on the environment and SNPxE effects on the outcome, is sufficient 

for obtaining unbiased estimates and well-controlled false positive rates in polygenic GxE 

inference. This demonstrates that rGE does not always lead to bias in GxE analysis64. 

Even when this condition is violated, we proposed a strategy within the PIGEON 

framework to correct for biases introduced by rGE. 

 

Finally, we once again reimagine how future GxE studies may unfold. The incredible 

success of complex trait genetics that the field has achieved in the past 15 years is largely 

credited to GWAS meta-analysis conducted by big genetics consortia, sharing of 

summary association statistics, and statistical analysis only requiring summary data as 

input65-67. The GxE field, however, largely remains in the early GWAS era. GxE analysis 

is almost always performed in a small cohort with individual-level genetic, exposure, and 

outcome data. PIGEON is a clear demonstration that modern statistical genetics that 

embrace the “omnigenicity” of human traits and rely on summary data alone can also 

apply to GxE research. Based on this, we make a bold prediction – the future success of 

complex trait GxE research resides in sharing and meta-analyzing GWIS summary 

statistics68, and future GxE method development should focus on techniques that only 

rely on summary-level data.  

 

Our study is not without limitations. First, we followed a model widely used in the GWAS 

literature and assumed equal contribution of each standardized SNP for both additive and 

GxE variance components. A future direction is to incorporate more flexible assumptions 

on the SNPxE effect size distribution, e.g., allele frequency-dependent models such as 

LDAK69, into the PIGEON framework. Second, we employed a LDSC-type inference 

procedure to estimate the variance-covariance components in polygenic GxE analysis. 

Some recent methods have demonstrated improved efficiency in heritability and genetic 

correlation estimation compared to LDSC59,70,71. Whether similar techniques can be 

incorporated in PIGEON is an interesting open problem warranting future investigation. 

Third, although we explored diverse types of exposure data in this study, we did not 



investigate whether PIGEON can be used to study gene-gene interactions72. Quantifying 

how the effects of certain focal genes and variants can be modified by the polygenic 

genetic background is a topic that is conceptually similar to polygenic GxE73. Generalizing 

PIGEON to GxG applications will be an interesting future direction. Fourth, any effort to 

produce a universally applicable PGS implicitly assumes genetic effects to be identical 

across the environments which fundamentally contradicts the main question in GxE46. In 

fact, some PGS have notoriously low “portability” between different environments74 and it 

remains an open question how this issue will affect PGSxE inference results. We are not 

aware of any current solution to this problem under the empirical PGSxE design, but we 

derived the necessary conditions for the lack of PGS portability to lead to biases in GxE 

inference and proposed new analysis strategies to de-bias the estimates 

(Supplementary Note 9). An important future direction is to validate these results in 

empirical studies. 

 

Taken together, PIGEON is a general and powerful framework that may reshape how we 

perform complex trait GxE studies in the future. We showcased its performance and 

demonstrated its superiority over existing methods through numerous examples targeting 

diverse types of GxE problems. We believe PIGEON offers an innovative solution to many 

GxE challenges. If the field could follow the success of GWAS and make GWIS summary 

statistics accessible, it will provide tremendous opportunities to study the relation between 

genes and environments and provide insights into polygenic GxE for many human 

complex traits. 

 

 

Methods 
 

PIGEON model 

 

PIGEON is built on a linear mixed model assuming the trait outcome to be influenced by 

polygenic SNP additive effects, environment effect, polygenic SNPxE effects, residual, 

and residual-environment interaction (RxE): �! =	$�!"�#! + �!�$ +$�!"�!�%! + �!& + �!'�! .(

")'

(

")'

 

 

Here, �! is the standardized phenotype with a mean of 0 and variance of 1 for the i-th 
individual, �!" is the j-th standardized SNP, �! is the standardized environment, �!& is the 

noise term, and �!'� quantifies the heteroskedasticity due to RxE30,39. Here, we assume 

the environment to have zero heritability, but implications of rGE are discussed in 

Supplementary Note 8. We treat �$  as fixed and �#! , �%" , �!&, 	�!'	as random. We model 

all these random variables as independent except for (�#! , �%") and (�!&, �!'). We assume 

that 9�#! , �%": and (�!&, �!') have mean zero and covariance matrix below: 



��� ;<�#!�%" => = 1� <�#* �#%�#% �%* = ; 	Var 9E�!&�!'F: = < �+"* �+",+#�+",+# �+#* =, 
where �#* and �%* are the variance explained by SNP additive and SNPxE effects, �#% 
denotes the covariant GxE, �+"* and �+#*  are the variance of residual and RxE, and  �+",+# 
denotes their covariance. Technical discussion of PIGEON model can be found in 

Supplementary Note 1. 

 

 

Consolidation and comparison of commonly-applied GxE methods 

 

Next, we consolidate and compare several GxE methods under the PIGEON model. The 

detailed derivation and technical discussion can be found in Supplementary Note 2. To 

compare that can only be applied to the discrete environment (i.e., differential heritability, 

differential genetic variance, and testing for genetic correlation < 1), we first consider a 

special case of our PIGEON model where the raw environment is binary. In this case, we 

can rewrite the PIGEON model into a pair of environment-stratified models: �! =	$�!"(�#! + G1 2 �� 	�%") + G1 2 �� 	�$ + �!& +(

")'

G1 2 �� 	�'! , �����	�! =	G1 2 �� 	 
 �! =	$�!"(�#! 2G �1 2 �	�%") 2 G �1 2 �	�$ + �!& 2(

")'

G �1 2 �	�'! , �����	�! =	2G �1 2 �	 
where �! =	N'-.

.
	  and 2N .

'-.
	  represents the standardized Bernoulli random variable 

with probability � of being 1 and 1 2 � being 0. 

 

Heritability difference: We can show that the heritability difference between populations 

with �! =	N'-.

.
	 and �! =	2N .

'-.
	 is ���(3 �!"(�#! + N1 2 �� 	�%")	)(

")'��� ;�!P�! =	N1 2 �� 	> 2 ���(3 �!"(�#! 2N �1 2 �	�%")	)(
")'��� Q�!R�! =	2N �1 2 �	S 	

= N�/"* �%*� U(1 2 2�)N�%*�/"* + 2W�(1 2 �)(�#%N�#*�/"* 2 �+",+#N�%*�/#* )X + N�/#* �#*� <(2� 2 1)N�#* + 2W�(1 2 �)(�#%N�%*�/#* 2 �+",+#N�#*�/"* )=, 



where �#% = �#%/W�%*�#* , �+",+# = �+",+#/N�+"* �/#* and � = �(1 2 �) × ��� Q�!R�! =	N'-.

.
	S ×���(�!|�! =	N'-.

.
	) is a scaling factor related to the phenotypic variance. Therefore, the 

heritability could still differ between two environments due to heteroskedasticity (�/#* >0even without any GxE (�%* = 0). 

 

Genetic variance difference: The genetic variance difference between populations with �! =	N'-.

.
	 and �! =	2N .

'-.
	 can be denoted as 

���($�!"(�#! +G1 2 �� 	�%")	)(

")'

2 ���($�!"(�#! 2G �1 2 �	�%")	)(

")'

			= 	N�%* <(1 2 2�)N�%* + 2�#%N�(1 2 �)�#*=, 
 

where �%* is the GxE variance components. This shows that the genetic variance could 

be the same across different environments even if there exists GxE (�%* > 0). 
 

Genetic correlation = 1: It can be shown that genetic correlation = 1 between populations 

with �! =	N'-.

.
	 and �! =	2N .

'-.
	if and only if 

���¿¿
»3 �!"(�#! + N1 2 �� 	�%")(

")'��� ;�!P�! =	N1 2 �� 	> , 3 �!"(�#! 2N �1 2 �	�%")(
")'��� Q�!R�! 2	N �1 2 �	S 	£¿

¿
c3 �!"(�#! +N1 2 �� 	�%")(

")'��� ;�!P�! =	N1 2 �� 	> c3 �!"(�#! 2N �1 2 �	�%")(
")'��� Q�!R�! =	2N �1 2 �	S

= 1	 õ �%*�#*(�#%* 2 1) = 0, 
where �#% = �#%/W�%*�#*. Therefore, even if there are GxE (�%* > 0), the genetic correlation 

could be 1 between two environments if the SNP additive and SNPxE effects are perfectly 

correlated (i.e., �#% =	±1). 

 

Oracle PGSxE: The oracle PGSxE regression can be denoted as �! > �#���! + �$�! + �%���!�! , 
where �! is the standardized phenotype, ���! = 3 �!"�"(

")'  is the oracle PGS based on 

each SNPs’ true effect �", �! denotes the standardized environment with no heritability, 

and �%  is the interaction coefficient to be estimated. Under the PIGEON model, we 

showed that normalizing covariant GxE by additive heritability yields oracle PGSxE 

effects 



�% = �#%�#* . 
In our analysis and in the implemented software, we estimated the oracle PGSxE 

coefficient �%(123) = �#%N�#*���(�!(567)) 
based on the standardized phenotype and PGS (i.e., �!  and ���!(123)), and raw scale 

environment �!(567)  for the regression �! 	~	�#(123)���!(123) + �$(123)�!(567) +�%(123)���!(123)�!(567)  to ensure the interpretation for the coefficient. We note that the 

equivalence of hypothesis testing for oracle PGSxE and covariant GxE is not affected by 

the scale and location transformation of phenotype, PGS, and environment 

(Supplementary Note 2). We further present similar results for oracle PGSxE by using 

PGS for traits other than the outcome trait in the regression in Supplementary Note 5.  

 

Empirical PGSxE without sample overlap: Next, we consider the current design for 

empirical PGSxE analysis. We denote the empirical PGSxE regression as �! >�#($8.)���k ! + �$($8.)�! + �%($8.)���k !�! , where ���k ! = ���! + �! is a noisy version of the 

oracle PGS, and �! represents the estimation error in empirical PGS with zero mean and ���(���! , �!) = 0. We first consider the case where the GWAS used to generate the PGS 

have no sample overlap with the empirical PGSxE cohort, represented by ���(�! , �!) = 0. 

Under the assumption described above and ���(�!) = �9::/�# 	described in Daetwyler 

et al.75, we have the expectation of the least squares estimator for the empirical PGSxE 

regression coefficient:  

� E�n%($8.)F = 	�#%�#* 	 £££
££1 2	W�#* ;N�#* +�9::/�# 2 W�#*>N�#* +�9:: �#d §§§

§§, 
where �9:: is the effective number of independent SNPs76, �#% is the covariant GxE, and �# is the GWAS sample size. This shows that the empirical PGSxE estimator is biased 

towards zero compared to the oracle PGSxE coefficient �% = ;$%
<$
& . The oracle PGSxE is 

the upper bound (|�%| > |� E�n%($8.)F |) and the infinity sample (GWAS sample size) limit of 

the empirical PGSxE ( lim
=$÷?@

� E�n%($8.)F = �% = ;$%
<$
& ). 

 

Empirical PGSxE with sample overlap: Next, we consider the case where the GWAS 

used to generate PGS have �A shared samples with the empirical PGSxE cohort with �% 	individuals, which can be quantified by ���(�! , �!) b 0. Then, we have the expectation 

of the least squares estimator for the empirical PGSxE coefficient � E�n%($8.,BC.)F = � E�n%($8.)F Q1 + 2�9::�A�%�#
S + �9::�Az2�/",/# + �$*�$(3)}�%�#~�#* +�9:: �#d � . 



Therefore, the sample overlap will lead to biases and false positive results for empirical 

PGSxE analysis due to the existence of the second term 
('((=)D*;*",*#?E,

&F,(G)H

=%=$I<$
&?('(( =$d K

.  

 

 

PIGEON LD score regression 

 

To estimate the GxE variance component, we only need Z-scores for SNPxE effects in 

GWIS summary statistics. The expected value of the squared Z-score for the j-th SNPxE 
interaction effect �%" is  � E�%!* 	� 	3"] = �%�%*�*� 3" + z1 + (�$(4) 2 1)~�#* + �+#* �}/�*,		 
where �% denotes the GWIS sample size, �%* is the GxE variance component, � is the 

number of SNPs, � = 	N1 2 L,
&

L,
&?=%-*

 is a correction factor to account for the environmental 

effect on Z-score approximation in GWIS (Supplementary Note 4 and 10), �$* is the Z-
score of environmental effect, 3M  is the LD score, and �$(4)  is the kurtosis of the 

environment.  

 

To estimate covariant GxE, we only require the GWIS and GWAS summary statistics with 

arbitrary sample overlap. The expected value of the product of additive effect Z-scores 

and SNPxE effect Z-scores is � E�#!�%! 	� 	3"] = W�#�%�#%�� 3" +	 �1�W�#�%

(2�#% + �$*�$(3)) 
where �% and �# represents the GWIS and GWAS sample size, �#% is the covariant GxE, � is the number of SNPs, � = 	N1 2 L,

&

L,
&?=%-*

 is a correction factor described above, �$* is 

the Z-score of environment effects, 3M is the LD score, �1 is the number of overlapped 

samples between GWIS and GWAS analysis, �$(3) is the skewness of the environment. 

The oracle PGS can be obtained by normalizing the covariant GxE by heritability. We use 

block jackknife to calculate the standard error of the estimates and regression weights to 

account for heteroskedasticity of residual in PIGEON-LDSC77. The detailed derivation of 

PIGEON-LDSC can be found in the Supplementary Note 4. 

 

 

Simulation settings 

 

We conducted a series of simulations using imputed genotype data from UKB. We 

restricted the analysis to autosomal SNPs with imputation quality score > 0.9, minor allele 

frequency (MAF) g 0.05, missing call rate f 0.01, and Hardy-Weinberg equilibrium test 

p-value g  1.0e-6. We further extracted SNPs in the HapMap3 SNP list and 1000 

Genomes Project Phase III LD reference data for European ancestry78. 734,046 SNPs 

remained after QC. We randomly selected 40,000 independent samples with European 

 



ancestry and equally divided them into two sub-cohorts with 20,000 each. The simulations 

are repeated 100 times.  

 

We used the first sub-cohort for GxE variance component simulations. We evaluated the 

point estimates of PIGEON and compared the statistical power of PIGEON with 

differential heritability and genetic correlation < 1 analyses. We first generated the binary 

environment from a Bernoulli distribution with a probability of 0.5 being 1 and then 

standardized it to have a mean of zero and variance of 1. We then simulated the 

phenotype using standardized genotype �!"  and standardized environment �! 	 by 

PIGEON model where the SNP effect size and residual were simulated from a 

multivariate normal distribution <�#!�%" = > ���(E00F, '(	
<�#* �#%�#% �%* = , E�!&�!'F > ���(E00F, < �/"* �/",/#�/",/# �/#* =). 

Here, we set the GxE variance �%* value to be 0, 0.02, 0.04, 0.06, 0.08, and 0.1, heritability �#* = 0.5 , covariant GxE �#% = 	0.5 × W�#*�%* , residual variance �/"* = 	0.35 2	�%* , 

heteroskedasticity variance �/#* = 0, and the environmental effect �$ = :0.15  such that 

the variance of the phenotype is 1. We note that non-zero heteroskedasticity variance 

may lead to type-I error inflation in differential heritability analysis. Therefore, to ensure 

the fair comparison of statistical power between differential heritability and PIGEON, we 

did not consider a non-zero heteroskedasticity variance �/#*  in this simulation. Instead, we 

investigated its impact in our secondary simulations (Supplementary Note 11). We used 

PLINK79 to obtain the summary statistics from genome-wide SNPxE and environment-

stratified GWAS analyses. Then, these summary statistics were used as input for all 

approaches. Both differential heritability and genetic correlation < 1 analyses were 

implemented using LDSC21,77. The LD scores were estimated using the whole 40,000 

individuals.  We further reduced the GWIS sample size to 5,000 and replicate the analysis 

to mimic the unbalanced sample size between GWIS and GWAS in real applications. 

 

Next, we compared PIGEON with the empirical PGSxE approach based on two PGS: 

clumping PRS and PRS-CS under zero and 100% sample overlap. We used the PIGEON 

model with SNP effect size and residual simulated from a multivariate normal distribution 

with heritability �#* = 0.5, GxE variance �%* = 0.1, covariant GxE �#% with values 0, 0.01, 

0.02, 0.03, 0.04, and 0.05ÿresidual variance �/"* = 0.15, heteroskedasticity variance �/#* = 0.1, covariant residual �/",/# = 0.05, and the environmental effect �$ = :0.15  using 

the same simulated environment described above. Summary statistics for GWAS and 

GWIS were generated in different and the same sub-cohort for zero and 100% sample 

overlap settings, respectively. We used GWAS summary statistics as input for PRSice-

244 with its default setting (--clump-kb=250, --clump-r2=0.1, and --clump-p=1) and PRS-

CS-auto45 to generate the clumping and PRS-CS scores, respectively. We aimed to 

estimate the oracle PGSxE effects based on the standardized phenotype, standardized 

PGS, and raw-scale environment. We used summary statistics for GWAS and GWIS as 

input for PIGEON. When there is no sample overlap, we restrict the intercept in PIGEON 

LDSC to 0 to reduce the standard error for the estimates. For empirical PGSxE, we fit a 



regression for �! 	~	�#(123)���k
!
(123) + �$(123)�!(567) + �%(123)���k

!
(123)�!(567),  where �!(567)  is 

the raw binary environment, �! and ���k
!
(123)

 are standardized to have a mean of 0 and a 

variance of 1. For each replicate, we recorded the estimates for �%(1!8)
 and corresponding 

p-values to test �&: �%(123) = 0 . The details for secondary simulations and additional 

analyses with the presence of rGE can be found in Supplementary Note 11. 

 

 

PGSxEdu interaction for health outcomes 

 

We replicated the analysis in Barcellos et al.1 to study whether genetics moderate the 

effect of education reform on health-related outcomes. Following Barcellos et al., we 

considered both continuous and dichotomous summary indices for health as outcomes. 

Details of constructing the summary indices were described before1. Briefly, the 

continuous summary index is a weighted average of body size, blood pressure, and lung 

function traits, and it is coded such that a higher number indicates worse health. The 

dichotomous threshold summary index is an indicator for whether the continuous 

summary index is above a threshold. We followed Barcellos et al. to restrict the samples 

to individuals with European ancestry and further removed the related individuals. 

172,664 individuals with phenotype data remained in the analysis after QC. We used the 

imputed genotype data provided by UKB throughout the analysis.  

 

We used same BMI and EA GWAS as input for PRS-CS45 to generate PGS and same 

model to perform PGSxE regression as Barcellos et al.1. We fine-tuned the PGS model 

using a validation set of 10,000 individuals randomly selected from remaining UKB 

samples. We used the month of birth rather than the date of birth to cluster the standard 

errors due to the limited data access1. For the PIGEON analysis, we generated GWIS 

summary statistics using the same PGSxE model except for changing PGS into SNPs. 

We then applied PIGEON-LDSC to estimate the oracle PGSxE using GWIS and the two 

GWAS described above. LD scores were calculated in the UKB EUR samples80. We also 

estimated the oracle PGSxE using two recently-published, larger GWAS for BMI49 and 

EA50 which included UKB samples. Further, we used PIGEON to perform a hypothesis-

free scan for PGSxEdu interactions using GWAS summary statistics for 30 complex traits 

(Supplementary Table 1).  

 

 

Polygenic GxSex interaction for 530 complex traits 

 

We estimated GxSex variance component and performed a hypothesis-free scan for 

oracle PGSxSex interactions using GWAS summary statistics for 30 complex traits 

(Supplementary Table 1). We transformed the sex-stratified GWAS summary statistics 

released by Bernabeu et al.27 into SNPxSex summary statistics by 



�%" = ��86O9," 2 ��:986O9,"N��~��86O9,"�* + ��~��:986O9,"�*	, 
where �%" is the SNPxSex interaction Z-score for the j-th SNP, and ��86O9," , ��(��86O9,")  
and ��:986O9," , ��(��:986O9,") are estimated SNP effects and their standard error in sex-

stratified GWAS summary statistics. We also estimated additive effect genetic 

correlations between 530 UKB traits and 30 GWAS to help interpret the sign of polygenic 

GxSex interactions using LDSC. We determined the significant findings by a Bonferroni-

corrected P-value cutoff 0.05/530 = 9.43e-5 for GxSex variance component and 

0.05/530/30 = 3.14e-6 for oracle PGSxSex. To rule out the possibility that the anorexia 

oracle PGSxSex signals is driven by the genetic overlap between BMI and anorexia, we 

introduced the conditional oracle PGSxE analysis in PIGEON, where we fit a multiple 

regression model conditioning on the BMI PGSxE effect (Supplementary Note 6).  

 

 

LHS data analysis 

 

A detailed description of LHS has been provided elsewhere55. We applied pre-imputation 

QC by keeping autosomal biallelic SNPs with MAF > 0.01 and Hardy-Weinberg 

equilibrium test p-value g 1.0e-6.  We phased and imputed the genotype data using the 

Haplotype Reference Consortium reference panel version r1.1 2016 available on the 

Michigan Imputation server81. We also performed post-imputation QC by removing the 

duplicated and strand-ambiguous SNPs as well as SNPs with MAF < 0.01 and imputation 

quality < 0.9. 12,030,369 SNPs remained after QC.  

 

LHS participants were assigned into three non-overlapping groups: SIA (smoking 

intervention and the inhaled bronchodilator ipratropium bromide), SIP (smoking 

intervention and an inhaled placebo), and UC (usual care who received no intervention). 

We considered the average change of the post-treatment FEV1 from the baseline as the 

outcome. We performed two separate analyses, one using bronchodilators and the other 

using smoking interventions as the treatment. We only included individuals with FEV1 

measurements at both baseline and all five annual follow-up visits in the analyses82. 

When considering the bronchodilator (ipratropium bromide) as the treatment, we 

excluded individuals in UC group, and coded the individuals in SIA group as 1 and SIP 

group as 0 (N=2,089). When considering the smoking interventions as the treatment, we 

excluded individuals in SIA group, and coded the individuals in SIP group as 1 and UC 

group as 0 (N=2,122).  We performed the genome-wide SNPxE analysis using PLINK 

with sex, age, age2, age×sex, age2×sex, 20 genetic principal components computed 

using flashPCA283, and interaction between the treatment and these variables as 

covariates84. Then, we estimated oracle PGSxE using the GWIS and 30 GWAS summary 

statistics using PIGEON. Since LHS has no sample overlap with any of these GWAS, we 

constrained the intercept to be 0 to improve estimation efficiency. We used PRS-CS-auto 

to calculate the smoking initiation PGS. We estimated the treatment effects using all 



samples or stratified samples in high/low PGS groups defined by the median of the 

smoking initiation PGS. 

 

 

URLs 

UK Biobank (http://www.ukbiobank.ac.uk/); 

Lung Health Study (https://clinicaltrials.gov/ct2/show/NCT00000568); 

PRS-CS (https://github.com/getian107/PRScs); 

PRSice-2 (https://github.com/choishingwan/PRSice); 

PLINK (https://www.cog-genomics.org/plink/2.0/); 

LDSC (https://github.com/bulik/ldsc) 

 

 

Data and code availability 

 

PIGEON software package is publicly available at https://github.com/qlu-lab/PIGEON 

The SNPxE summary statistics used in the paper are available at http://qlu-

lab.org/data.html 
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