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Abstract

In this study, we introduce PIGEON—a novel statistical framework for quantifying and
estimating polygenic gene-environment interaction (GxXE) using a variance component
analytical approach. Based on PIGEON, we outline the main objectives in GXE studies,
demonstrate the flaws in existing GxE approaches, and introduce an innovative
estimation procedure which only requires summary statistics as input. We demonstrate
the statistical superiority of PIGEON through extensive theoretical and empirical analyses
and showcase its performance in multiple analytic settings, including a quasi-
experimental GxE study of health outcomes, gene-by-sex interaction for 530 traits, and
gene-by-treatment interaction in a randomized clinical trial. Our results show that
PIGEON provides an innovative solution to many long-standing challenges in GxE
inference and may fundamentally reshape analytical strategies in future GxE studies.
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Introduction

The environment is often ignored or treated as a nuisance in human complex trait genetics
research. However, in epidemiology, social sciences, medicine, and many other related
disciplines, there is a great interest in quantifying the effect heterogeneity of an exposure
(e.g., a treatment, a policy change, a natural experiment), and, more specifically, its
interaction with genetics, as a means of identifying subgroups that may maximally shift in
response to environmental instruments’S. This is broadly referred to as gene-
environment interaction (GxE)®. While this concept seems intuitive, GXE has not been
consistently defined in the literature, especially for complex traits due to their polygenic
nature’. Perhaps more importantly, many existing complex trait GxE methods lack a solid
statistical foundation. It is often unclear how to compare different GXE approaches or even
whether they can be compared, since they may be estimating entirely different
parameters. We will illustrate this issue throughout the current paper. These issues have
held back a broader consensus of findings in the GxE field, for which we propose a
solution in this study. Here, we aim to achieve two main goals. First, we introduce a unified
statistical framework to model polygenic GxE effects for complex traits, which allows us
to define the parameters of interest and compare existing GXE approaches. Second, we
introduce an innovative approach to estimating GxE interactions using genome-wide
summary data.

The evolution of GXE methodology mirrors method development in genome-wide
association studies (GWAS). Early GxE studies were primarily based on a candidate
gene approach® which suffered from low replicability®. High-throughput genotype data
made it possible to perform GxE scans for millions of single nucleotide polymorphisms
(SNPs)'°, a design often referred to as genome-wide interaction study (GWIS). Although
GWIS improves the replicability and robustness of interaction findings, it introduces an
extreme burden of multiple testing which severely limits its statistical power''. Therefore,
a two-step approach is sometimes employed to first filter SNPs (e.g., based on GWAS
associations) and then only test GXE using selected SNPs'%-16,

However, it is now well established that most human complex traits are highly polygenic’.
As a result, modern GWAS analyses have generally focused less on individual SNPs, but
instead employ tools that embrace polygenicity, including genome-wide heritability
estimation’”-® and enrichment analysis'®20, genetic correlation analysis which quantifies
shared genetics across multiple traits?'?2, and polygenic scores (PGS) which estimate
genetic predisposition by aggregating effects of many SNPs?225, GxE studies are going
through a similar transition, focusing more on how the polygenic basis of a trait varies
across environments?629, For example, some studies estimate the phenotypic variance
explained by many SNPXE interaction terms using similar methods from heritability
estimation?8-31, Other studies perform stratified GWAS in different environments and then
test differential heritability and/or imperfect genetic correlation between the
environments?627:32 Further, PGSxXE studies have gained popularity in the GxE
literature333-35, |t is a two-step approach that first summarizes each individual’s genetic
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predisposition into a PGS, and then tests the interaction between PGS and the
environment?-36-38_ Although all these approaches are referred to as GxE in the literature,
the relationship between these approaches is poorly understood. For example, it is
unclear whether PGSxE and differential heritability analysis aim to estimate the same
parameter (as we explain below, they do not). Existing methods are also plagued by
technical challenges including statistical biases, computational burden, and constraints in
the data. We will provide detailed discussions of these issues in the following sections.

In this paper, we introduce a statistical framework named polygenic gene-environment
interaction (PIGEON) for quantifying and estimating polygenic GxE. Using this framework,
we demonstrate the relation and differences between existing GXE methods. We also
equip PIGEON with an estimation method only requiring GWIS and GWAS summary
statistics as inputs. Our method provides unbiased estimates, is robust to sample overlap
and heteroskedasticity, and allows for hypothesis-free scans for PGSXE across many
PGS. We demonstrate PIGEON’s superior performance over existing methods through
extensive theoretical analysis, simulation studies, and real data applications. In this study,
we pursue three main applications, all of which leverage genome-wide data and
exogenous environmental exposures, to showcase the broad applications of PIGEON.
We validated our approach by replicating a quasi-experimental PGS-by-education
interaction (PGSxEdu) study for health-related outcomes in the UK Biobank (UKB)'. We
then used PIGEON to build a catalog of polygenic gene-by-sex interactions (GxSex) for
530 traits in UKB. We further applied PIGEON to investigate the effect heterogeneity of
smoking cessation treatment in a randomized clinical trial.

Results

Two main objectives in polygenic GxE inference

The PIGEON model is illustrated in Figure 1. It is built on a linear mixed model that
captures both the additive effects and GxE effects for many SNPs.

M M
Y= z GijBg; + Eiffg + z GijEiBi; + €i0 + €nE;
j=1 =1

Here,Y; is the standardized phenotype with a mean of 0 and variance of 1 for the i-th
individual, G;; is the j-th standardized SNP, E; is the standardized environment, ¢, is the
noise term, and ¢;;E quantifies the heteroskedasticity due to residual-environment
interaction (i.e., varying residual variance across environments)30-3%, Polygenic additive
effects and interaction effects (i.e., ﬁGj and ﬂ,}.) are modeled as random variables. Details

on this model and its more generalized forms are presented in Methods and
Supplementary Note 1.

PIGEON defines two main objectives in polygenic GxE inference using a variance
component analysis framework. First, the overall GXE contribution is quantified by the
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Model

Two main
objectives

variance of interaction effects (i.e., Var(B;,)) and the proportion of the phenotypic
variance attributed to it. This is conceptually similar to SNP heritability?® but focuses on
interaction effects rather than additive effects. Hypothesis testing on this quantity provides
evidence for the existence of GxE. Its magnitude quantifies the degree of GxE for the trait
of interest.

Figure 1. PIGEON workflow. (a) Two main objectives in polygenic GxE inference based on the PIGEON
model (b) Estimating polygenic GXE using GWIS and GWAS summary statistics.

However, a non-zero GXE variance component alone does not provide much mechanistic
insight. Therefore, we propose another key objective in polygenic GXE analysis—
estimating covariant GxE, defined as the covariance between SNP additive effects and
SNPxXE interaction effects (i.e., Cov (B, ,8,].)). We note that additive effects and interaction

effects can be obtained from the same trait or two different traits (Methods). Here,
covariant GXE provides crucial insights into the whole-genome interaction mechanisms
by correlating SNPs’ effects on complex traits with their tendency to interact with the
environment. This is analogous to genetic correlation analysis in the GWAS literature
where researchers use existing GWAS to help interpret genetic associations obtained in
a new GWAS.

Together, these two objectives lay out the foundation for (1) quantifying the evidence for
polygenic GXE interaction and (2) interpreting the mechanisms underlying these
interactions. In the next section, we demonstrate that existing GXE approaches, i.e., GXE
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variance estimation, differential heritability analysis between environments, genetic
correlation analysis between environments, and PGSxE analysis can all be linked to
these two objectives, which allows us to understand the connection and distinction
between these approaches.

Comparing polygenic GXE methods in the PIGEON framework

Next, we consolidate and compare several GXE methods under the PIGEON framework
and demonstrate the advantages of variance-covariance component analysis for
polygenic GXE. We present the statistical details and technical discussions in Methods
and Supplementary Note 2. For illustration, we assume G-E independence (i.e., the
environment has zero heritability), but later we will relax this assumption and investigate
how the correlation between genes and environments affect polygenic GxE inference.
Table 1 provides a summary of the comparison between PIGEON and other approaches.

Table 1. Summary of the theoretical results of PIGEON and other approaches for polygenic GxE inference

Objectives Methods Proposition Implications
PIGEON GxE variance components: o7 0? > 0 indicates the presence of GXE
Difference in heritability between two environments:
\/o2o?
€0 o < P . P
Differential W {(1 —2p)\/oFo2 +2v/p(1 — p)(rary/0&02 — rep.a\/ 0702, )] + Testing the equality of heritability may have
heritability Component from the product of residuals and GxE variance false positive results for the presence of GxE due to
analysis \Jo&o? heteroskedasticity. (i.e., when ¢? = 0 and o2 # 0)
Detect the W [(2p — 1)y 0402, +2v/p(1 = p)(rer \V 0102 — T 0(210-620)} '
presence Component from the product of heteroscedasticity and heritability
of polygenic Differential Difference in genetic variance between two environments:
. 3 - Testing the equality of genetic variance may have
GxE genetic variance Vo? [(1—2p)y/o? +2rqr\/p(1 —p)o
) false negative results for the presence of GxE
analysis It can still be 0 even if o7 # 0
. . Testing genetic correlation =1 between two environments: . . .
Genetic correlation o Testing genetic correlation = 1 may have
. Hy:rg =1« Hy: olo? (ré,fl) =0 .
analysis —_ false negative results for the presence of GxE .
It can still be 0 if o7 > 0 and rgr = +1
, Estimating oracle PGSxE is equivalent to estimatin
PIGEON Oracle PGSxE coefficients: 2GL € q &
oG covariant GXE without calculating the oracle PGS.
Bias of empirical PGSxE due to noisy PGS: (i) Oracle PGSxE represents the upper bound and
Provide the : : -
. rats p { (Emp>] pcr Vod (\/rfé + Megt/Ng — \/aé> infinite sample (in GWAS) limit of the empirical PGSxE
interpretation & = — - :
P 1 o2 V02 + Meir/Ne (ii) Empirical PGSxE is biased but does not have
of polygenic i ~
G I]; e Empirical PGSxE Oracle PGSxE Bias due to noisy PGS false positives due to noisy PGS.
X

Bias of empirical PGSxE due to noisy PGS and sample overlap:
Empirical PGSxE is biased and

, . MegNs |20, ¢ 2 3
P [dgﬁmp,()l,p)} B [(}ﬁﬁ‘mp)} (1+ %‘fﬁj) N e\fi ]sr[ /720., . X[ﬁbl;?( )] H
NiNg (0 + Mot/ Ne) has false positives results due to sample overlap.

Bias and false positives due to sample overlap

Model: Y; = Z/‘il GijBa; + EifE + Zl\il Gi;Eifrj + €io + €1 E;, where Y;, G5, and E; are all standardized; Notation: GxE variance =M Var(Br;),
residual variance U?ﬂ = Var(e;), heritability 02 = M Var(8g;), covariant GXE pg; = M Cov(B1;, Bgj), rar = par/\/o20%, expectation of the binary environment p,
quantity related to phenotypic variance W, heteroskedasticity variance rrfl = Var(e;1 ), genetic correlation ry, effective number of independent SNPs Mg, PGSxE sample size N,

GWAS sample size N, Number of overlapped sample between GWAS and PGSxE sample N, pey,c;, = Cov(€o, €i1), Teg,e; = Peger/ v/ 02,02, skewness of E p1x(3)



To perform statistical inference on the presence of GxE, we can test the null hypothesis
that no SNPs have interactions with the environment, i.e., Hy: ;; = 0 for all j. However,
the high dimensionality in GWAS data creates a challenge. In PIGEON, the same null
hypothesis can be specified as having a zero GxE variance, i.e., Hy: 6 = 0, which only
requires estimating one parameter28-3'. Here, ¢/ is the total variance of SNPXE effects in
the genome, i.e., o = MVar(B;;). Several commonly-used approaches provide flawed

estimates of this quantity. For example, heritability could vary across discrete
environments just because of heteroscedasticity (i.e., difference in the non-genetic
variance components) in the absence of GxE, leading to false positive results (Table 1).
Notably, comparing genetic variance instead of heritability>” does not solve the issue
either — genetic variance may be the same across environments in the presence of GxE,
leading to false negative results (Table 1). Similarly, genetic correlation analysis between
environments has its limitations. A perfect genetic correlation can be achieved when the
SNP additive effects are proportional between environments (Table 1; also known as
“amplification” in the GxE literature?), leading to false negative results. Even testing both
genetic variance and perfect genetic correlation between environments may fail to identify
GxE (Supplementary Note 2). Therefore, heritability, genetic variance, and genetic
correlation analyses fail to properly estimate polygenic GxE effects. Some of these
approaches also suffer from technical issues such as an inability to handle quantitative
environmental exposures. To assess the presence or absence of polygenic GxE,
researchers should estimate the GxE variance component.

In PGSxE analysis, we are interested in quantifying the interaction between the
environment and each individual’s true PGS (i.e., PGS computed from each SNP’s true
effect size). We refer to this as oracle PGSxE analysis. We show that estimating oracle
PGSXE is equivalent to estimating covariant GXE (Supplementary Note 2). This finding
has several major implications. It shows that oracle PGSXE coefficient can be estimated
without calculating PGS. Instead, we could equivalently estimate the covariance between
polygenic additive and interaction effects. It also suggests that although PGSxE analysis
and several other approaches we have discussed above (e.g., differential heritability) are
all believed to estimate “GxE”, they in fact quantify two different objectives in GxE
discussed above. A null PGSxE, which could simply result from uncorrelated SNP
additive and SNPXE interaction effects, does not imply the absence of GxE. In addition,
we refer to the PGSXE analysis based on scores estimated from GWAS as empirical
PGSxE. This analytical strategy is substantially affected by the imprecision in PGS
estimation due to limited sample sizes in GWAS*'. Ignoring the uncertainty in empirical
PGS will lead to interaction estimates that are biased towards zero (Table 1 and
Supplementary Note 3). Oracle PGSXE represents the upper bound and infinite sample
(in GWAS) limit of the empirical PGSXE (Methods), analogous to the heritability being
the upper bound of PGS predictive R-squared in the GWAS literature®?. It is also important
to note that empirical PGSXE analysis requires no overlap between the GWAS used to
construct PGS and the sample for PGSxE analysis. Under sample overlap, PGS will
overfit and cause biased interaction estimates and false findings in empirical PGSxE



analysis (Table 1). Therefore, estimating covariant GXE through variance component
analysis is a superior alternative to replace the commonly used PGSXE analysis.

Estimating GxE using GWIS and GWAS summary statistics

Next, we introduce PIGEON linkage disequilibrium (LD) score regression (PIGEON-
LDSC) to estimate GxE variance and covariant GXE using only summary statistics from
GWAS and GWIS (Figure 1b)?'. For the GxE variance component estimation, PIGEON-
LDSC regresses the squared SNPxE Z-scores from GWIS summary statistics on LD
scores, and estimates the GxE variance parameter from the regression slope3!. To
estimate covariant GXxE, PIGEON-LDSC uses summary statistics from both GWAS and
GWIS, and regresses the product of GWAS and GWIS Z-scores on LD scores. Oracle
PGSXE effect size can be subsequently obtained from normalizing covariant GxE by trait
heritability (Methods).

a PIGEON design b Current PGSxE design
GWAS summary statistics GWAS summary statistics
SNP | A1 | A2 | Z o SNP | A1 | A2 | Zg
rs8 T C 4.42 LifpiLs rs8 T C 2.42 GWAS h
cohort
GWAS cohort : : : : Oracle PGSxE
rs47 | C T |-39 rs47 | C T |-288

(The upper bound
for empirical PGSXE)

PIGEON
Arbitrary LD score regression Calculate PGS
sample overlap in GXE cohort

No
sample overlap

GWIS summary statistics

SNP | A1 | A2 | Z Output
rs8 T (o} 3.42
: : : : Empirical PGSxE
GxE cohort Run PGSXE regression in GXE cohort
rs47 | C T |19 (Biased) individual-level samples
Rel it to the public

for replication and
downstream GxE analysis

Figure 2. Comparison of PIGEON and PGSxE analysis. (a) Estimating oracle PGSxE with PIGEON-
LDSC. (b) Conventional study design for PGSxE analysis.

Importantly, the sample overlap between GWAS and GWIS will only affect the intercept
of the regression but not the slope. Therefore, PIGEON-LDSC’s interaction effect
estimates are robust to sample overlap. Because of this, a key feature of our estimation
framework is the ability to implement hypothesis-free scans for PGSxE across many PGS.
That is, given an environmental exposure of interest, we can search through many
published GWAS to identify the PGS that modifies the exposure effect — we simply need
to estimate the genetic correlation between the GWIS summary data and publicly
available GWAS summary statistics for many traits. In addition, PIGEON is
computationally efficient, robust to the heteroskedasticity across environments, able to
quantify GxE interaction with dichotomized PGS, and can be used for binary outcomes.



We provide details on these features in the Supplementary Note 4-6. We also present
a comparison between PIGEON-LDSC and the empirical PGSxE approach in Figure 2.

Simulation results

We performed numerous simulations using genotype data from UKB“*® to demonstrate
the unbiasedness, power, and robustness of PIGEON inference results (Methods). We
included 40,000 independent samples and 734,046 SNPs in the analysis after quality
control (QC). Phenotypes were simulated under the polygenic GXE model with a binary
environment variable. Each simulation was repeated 100 times.
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Figure 3. Simulation results. (a) Statistical power and type-| error of PIGEON GxE variance component
estimation, differential heritability between environments, genetic correlation between environments. (b)
Statistical power and type-I errors of PIGEON’s oracle PGSxE estimation and empirical PGSxE analysis
based on clumping and PRS-CS scores. GWAS and GWIS have no sample overlap. (c) Same as b except
that GWAS and GWIS share 100% of the samples. (d) Point estimation for GXE variance components using
PIGEON (e) Point estimation for PGSxE coefficients when GWAS and GWIS have no sample overlap. (f)
Same as e but with 100% sample overlap.

We equally divided 40,000 samples into two sub-cohorts with 20,000 each. We performed
GWIS on the first sub-cohort and applied PIGEON-LDSC to estimate the GxE variance
component. We compared PIGEON with differential heritability and genetic correlation
analyses. PIGEON showed higher power than both approaches (Figure 3a and



Supplementary Figure 1) and provided unbiased estimates for GXE variance (Figure
3d and Supplementary Figure 1). We also compared PIGEON with GxEsum, another
approach designed to estimate GxE variance component3!, and demonstrate the bias in
its implementation (Supplementary Figure 2 and Supplementary Note 7).

Next, we evaluated the performance of bivariate PIGEON-LDSC in estimating covariant
GxE. We compared PIGEON with the empirical PGSxE approach based on two scores:
clumping PRS* and PRS-CS#. In the absence of sample overlap, where the GWAS and
GWIS were performed in different sub-cohorts, no methods showed inflated type-I error.
PIGEON showed similar power compared to PRS-CS PGSxE and slightly higher power
than clumping PGS (Figure 3b). Importantly, PIGEON provided unbiased estimates for
the oracle PGSxE, while both clumping and PRS-CS PGSXE results were severely biased
(Figure 3e). When GWAS and GWIS were generated in the same sub-cohort with a full
sample overlap, PGSxE approaches showed severe type-l error inflation and biased
estimates while PIGEON estimates remained unbiased with well-controlled type-I error
(Figure 3c and f). Altering the sample size ratio between GWIS and GWAS reached the
same conclusions in simulations (Supplementary Figure 3). We also employed an
approach to correct for measurement error in PGSxE analysis*®. Measurement error
correction led to both inflated type-I error and lower statistical power, showing inferior
performance compared to PIGEON (Supplementary Note 7 and Supplementary Figure
4). These simulation results are consistent with our theoretical analysis and demonstrate
the superiority of PIGEON over commonly used GxE approaches.

PGS-by-education interaction for health outcomes

To further compare PIGEON and the PGSxE approach, we replicated the analysis in
Barcellos et al.! to study whether genetics moderate the effect of an education reform on
later life health-related outcomes. We focused on their most significant PGSXE findings
for the dichotomous summary health index (Methods), but also replicated their null
results as negative controls. We performed PIGEON and PGSxE to quantify the
interaction between the effect of education reform, and genetic predisposition for body
mass index (BMI)4” and educational attainment (EA)*8. We used the same BMI and EA
GWAS as Barcellos et al., which excluded UKB samples to avoid PGS overfitting.

Our results are summarized in Table 2. PIGEON showed similar P-values, but
substantially elevated interaction effect estimates by 19.7%-55% compared to PGSxE
analysis. This is consistent with our observation in simulations — empirical PGSxE
analysis underestimates interaction effects due to measurement error in the constructed
PGS measure. Both PIGEON and PGSxE found null results for the continuous health
index. We also repeated the PIGEON analysis using two recently-published, larger
GWAS for BMI*® and EA%C which included UKB samples. We obtained highly consistent
results in this analysis, demonstrating PIGEON’s robustness to sample overlap. Further,
we applied PIGEON to perform a hypothesis-free search for novel PGSxEdu interactions



using GWAS summary statistics for 30 complex traits (Supplementary Tables 1-2). We
found a significant interaction between the education reform and the genetic risk for
smoking initiation®', suggesting that education is more effective in improving health for
people with a higher genetic risk for smoking. We also validated this finding using the
empirical PGSXE approach after removing UKB samples from the smoking initiation
GWASS' (Supplementary Table 3).

Dichotomous summary index (N = 172,664

GWAS summary statistics PIGEON Empirical PGSxE
Trait GWAS COL;‘:(""E';”S BETA SE P-value BETA SE P-value
BMI Locke et al. No -0.20 0.077 9.4e-3 -0.16 0.037 2.3e-5
EA Okbay et al., 2016 No 0.26 0.075 4.7e-4 0.12 0.065 0.07
BMI Yengo et al. Yes -0.25 0.065 1.4e-4 - - -
EA Okbay et al., 2022 Yes 0.20 0.064 1.4e-3 - - -
Continuous summary index (N = 172,664)
GWAS summary statistics PIGEON Empirical PGSxE
Trait GWAS COL;‘:(""E';”S BETA SE P-value BETA SE P-value
BMI Locke et al. No 0.033 0.072 0.65 0.024 0.041 0.56
EA Okbay et al., 2015 No -0.002 0.075 0.97 -0.043 0.076 0.57
BMI Yengo et al. Yes 0.023 0.064 0.72 - - -
EA Okbay et al., 2022 Yes -0.006 0.063 0.92 - - -

Table 2. PGS x education effects on summary health index in UKB. The upper and lower table show
the results for dichotomous and continuous summary indices, respectively. We compare the results of
PIGEON and empirical PGSxE. Dash (-) means that analysis could not be performed due to the sample
overlap between GWAS and GxE cohorts. Abbreviations are as follows: BMI, body mass index; EA,
educational attainment measured by years of education; SE, standard error.

Polygenic GxSex interaction for 530 complex traits

Next, we deployed PIGEON to create an atlas of polygenic GxSex interactions for 530
complex traits in UKB. We obtained GWIS summary statistics for 530 traits by
transforming the sex-stratified GWAS summary statistics traits released by Bernabeu et
al.?’” (Supplementary Table 4), and used them as input for PIGEON-LDSC (Methods).
We estimated the proportion of phenotypic variance attributed to GxSex and searched for
covariant GxSex (or equivalently, oracle PGSxSex interactions) on these traits using 30
GWAS (Supplementary Table 1). We also estimated additive effect genetic
correlations?! between 530 UKB traits and 30 GWAS to help interpret the sign of
polygenic GxSex interactions (Methods).
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Figure 4. A catalog of polygenic GxSex in UKB. (a) The number of significant polygenic GxSex (P<
0.05/530=9.43e-5 with Bonferroni correction) identified by three approaches: PIGEON variance component
estimation, differential heritability, and differential genetic correlation. (b) Heatmap on the left shows the
results for oracle PGSxE with males coded as 1 and females as 0. The right-hand side shows the genetic
covariance estimates between external GWAS and female-specific UKB GWAS to assist in interpreting the
sign of interactions. Only quantitative traits showing at least one significant interaction (P<
0.05/530/30=3.14e-6 with Bonferroni correction) are shown. The complete results for all traits and all PGS
are presented in Supplementary Table 5. (¢) Effect of BMI PGS on fat mass and lean mass traits. (d)
Effect of anorexia PGS on fat mass and lean mass traits. Significant interactions with larger PGS effects in
females are highlighted in pink. Those with larger effects in males are highlighted in blue. Interactions that
did not reach statistical significance are colored in grey.

PIGEON identified 64 traits with significant GxSex variance components (P < 9.4e-5 using
Bonferroni correction). As a comparison, analysis based on differential heritability and
genetic correlation between the sexes identified substantially fewer interactions (21 and
45, respectively; Figure 4a). Bivariate PIGEON-LDSC further detected 280 significant
PGSxSex effects (P < 3.0e-6 using Bonferroni correction) for a total of 87 traits (Figure
4b). For example, we found significant BMI PGS-Sex interactions for fat-free mass and
fat mass traits but with opposite directions. Here, fat-free mass assessed by
bioimpedance analysis is a component of total body mass and is commonly taken as an



approximation of skeletal muscle mass®2. BMI PGS showed larger effects on fat mass
traits in females than in males, but its effect on fat-free mass traits is stronger in males
than in females (Figure 4c).

We also identified a significant anorexia PGSxSex interaction on BMI (P = 5.0e-14;
Figure 4d), suggesting that the sex difference in BMI genetics is partly explained by the
genetics of anorexia — anorexia PGS is substantially more associated with lower BMI in
females than in males. We replicated this finding using an independent BMI GWIS cohort
from Locke et al.#” which does not contain the UKB sample (P = 1.0e-4). We also adjusted
for BMI PGSXE in the model to account for the correlation between anorexia and BMI
PGS (Methods). The anorexia PGSxSex signal remained significant (P=1.0e-7),
indicating an independent contribution of anorexia to the sex differences in BMI genetics.
In the context of the literature on anorexia nervosa, this finding aligns with a) strong
female bias in disorder presentation (9:1 ratio in females vs. males affected by anorexia®3,
and b) evidence that genetic correlations between fat percentage and anorexia differ
according to sex, with more robust genetic associations between (low) body fat
percentage and anorexia genetics in females as compared to males®*. Full result of
polygenic GxSex for 530 traits is provided in Supplementary Figure 5 and
Supplementary Tables 4-5.

Heterogenous effect of smoking cessation treatment on lung function

Finally, we investigated PIGEON’s application in genomic precision medicine. We applied
PIGEON to the Lung Health Study (LHS) to quantify the heterogenous treatment effect
due to individual genetic differences. LHS is a randomized clinical trial designed to test
the effectiveness of smoking intervention and bronchodilators in smokers with mild lung
function impairment®>. The main finding of the LHS was that aggressive smoking
interventions significantly reduced the age-related decline in expiratory volume in one
second (FEV1), but the effect of bronchodilator usage was not statistically significant®6.
Based on this, we considered FEV1 as the outcome and bronchodilator usage and
aggressive smoking intervention as two exposures in our analysis (Methods). We found
a significant interaction between smoking initiation PGS and bronchodilator usage — trial
participants with a high genetic risk for smoking initiation benefited from the use of
bronchodilator to reduce the decline in FEV1 (P = 6.0e-3). We verified our finding by
stratifying individuals using smoking initiation PGS and estimating the bronchodilator
effects on FEV1 in each subgroup (Figure 5). We found that the use of bronchodilator
significantly reduces the declines of FEV1 among individuals in the high smoking initiation
PGS group (BETA = 31.5, P = 6.7e-03), while no such effect was observed using all
samples (BETA = 13.6, P = 0.1) or in the low PGS group (BETA =-2.84, P = 0.80). In
contrast, the effect of smoking intervention on FEV1 was not moderated by any of the
genetic scores we tested.
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Figure 5. Heterogeneous treatment effect of bronchodilator on FEV1 across PGS groups. Individuals
were stratified into low and high PGS groups based on their PGS of smoking initiation with median as the
cutoff. The black rhombus indicates the treatment effect estimates in each group. Error bars show the 95%
confidence intervals.

Impact of gene-environment correlation on polygenic GxE inference

Finally, we investigate the impact of gene-environment correlation (rGE) on polygenic
GxE inference. Under the polygenic model, we quantify rGE by allowing the environment
to be heritable. Additionally, genetic effects on the environment can be correlated with
both the additive effects and SNPxE interaction effects on the trait outcome (Figure 6a).
Using this framework, we derived the bias in GxE variance component estimation
introduced by rGE (Supplementary Note 8). Notably, given rGE, estimates of GxE
variance component are unbiased under the null, suggesting that rGE will not lead to false
positive results. In addition, if the additive effects on the environment and SNPxE
interaction effect on the trait outcome are uncorrelated, GxE variance-covariance
estimation will be unbiased. Note that this is a much weaker condition compared to the
typical assumption that the environment is independent from genetics in the GxE literature.

If this weak condition is violated, we propose an approach to correct the bias in PIGEON
parameter estimates. We extended PIGEON LDSC to obtain the debiased estimates by
additionally incorporating the GWAS summary statistics for the environment (Figure 6b,
Supplementary Note 8). Simulation results support the validity of these derivations,
showing that rGE leads to biased estimates and potential false positives findings
(Supplementary Figures 6-7), and that PIGEON provides unbiased estimates and well-
controlled false positives for GXE variance, covariant GXE, and oracle PGSxE in the
presence of rGE (Figure 6c-f).



a Model to incorporate gene-environment correlation b PIGEON LD score regression
to correct for the bias led by rGE

M M GWIS summary statistics «
— Detect the presence of
Y, = Z Gij Bej + EiBe + Z GijEi iy + €io + €1 E; polygenic GxE
j=1 j=1
Incorporate . GxE variance
. GWAS summary statistics|
Covariance Covariance for the environment
Provide the interpretation
Mo of polygenic GxE
H H
Ei = Gijil/)Gji te Covariant GXE  Oracle PGSxE
= [S— GWAS summary statistics
T=% additive effects for the outcome traits
on environment
c GXxE variance GXE variance
0.20 100% - —
> 2
8 0.15 5 »
3 g 75% .
@ o
o 0.10 - B
= 50%
3 “1TEDN it
£ 0.05 =1 . &
£ i B s
k7]
W 0.00 - 25% )
Lo ¥ L L Do
-0.05
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
True GXE variance True GXE variance
e Oracle PGSXE f Oracle PGSxE
100% o
od o
» !
) 0.10
ks o 75%
15} —_—= =} »
W e S -
% 0.05 (\JI.)
- - 0,
g = 2 50%
3 1
E 0.00{ -== ; “ o
= 25%
(2]
w 4
L4
b e e m e e e e e e -
-0.05 0%
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
True covariant GXE True covariant GXE

Methods & Original & Debiased

Figure 6. Impact of rGE on polygenic GxE inference (a) To quantify rGE, we allow the environment to
have a polygenic genetic basis. The additive genetic effects on the environment can be correlated with both
the additive effects and GxE interaction effects on the trait outcome. (b) PIGEON-LDSC leverages GWAS
summary statistics for the environment to correct for the bias introduced by rGE. (¢ and d) Simulation results
for GXE variance estimation in the presence of rGE. (e and f) Simulation results for oracle PGSxE estimation
in the presence of rGE. “Original” means using the methods derived under G-E independence.

Discussion

We presented PIGEON, a unified statistical framework for quantifying and estimating
polygenic GxXE. Taking a page out of the playbook for polygenic estimation of heritability



and genetic correlation, we reimagined GxE analysis from a variance component
estimation perspective and demonstrated the limitations of existing GXE methods. We
also developed a new estimation approach that uses GWIS and GWAS summary data
alone as input. We demonstrated its statistical superiority (i.e., unbiasedness, robustness,
and computationally efficient) through extensive theoretical and empirical analyses. For
real data applications, we focused on three examples. We replicated and extended the
PGSxEdu analysis for health-related outcomes in UKB, identified an atlas of polygenic
GxSex results for 530 complex traits, and quantified genetically-moderated treatment
effects in a randomized clinical trial. These detailed analyses involving diverse exposures
and outcomes showcased the effectiveness of PIGEON and provided a glimpse of the
broad issues that could be tackled using this analytical framework.

Our work presents several major advances that will impact future GxE studies. The first
contribution is to use linear mixed model and variance-covariance estimation to quantify
GxE for complex traits. This allows us to clearly define the target parameters and compare
different approaches in polygenic GxE inference. We note that although GxE variance
component has been introduced before in the literature?®-3!, the covariance between
SNPXxE effects and additive genetic effects (i.e., covariant GXE) has not been previously
studied. Therefore, it is particularly interesting to discover the equivalence between
covariant GxE and oracle PGSxE. This finding allowed us to quantitatively understand
the limitations in existing PGSxE approaches and design better statistical estimators.
Since the variance component-based analytical framework has been widely used in
GWAS applications®-%°, many advanced GWAS techniques based on this framework
may be employed in future interaction studies to further facilitate our understanding of
polygenic GxE.

The second major innovation in this study is to introduce the PIGEON-LDSC estimation
approach. We have demonstrated several statistical features that make this approach a
superior choice for polygenic GXE inference. Among these, perhaps the most important
feature is its robustness to sample overlap. In current GXE practice, if the cohorts for
GWAS and GxE share samples, PGS cannot be produced and PGSxE analysis is
considered impossible. With PIGEON, it is now possible to produce unbiased estimates
for covariant GXE and oracle PGSxE under arbitrary sample overlap. Another related but
perhaps more subtle feature of PIGEON is that it enables hypothesis-free scans for
PGSxE. In the current literature, most PGSxE studies are hypothesis-driven. Given an
outcome and an environmental exposure of interest, researchers often hypothesize that
a particular PGS moderates the exposure effect and then test PGSxE to see if this is
supported by data'6-38, An issue that is not discussed enough in this type of application
is how to choose the PGS. With several exceptions!€, most studies use the same
outcome in GxE to define PGS3861-63, The covariant GXE perspective in PIGEON sheds
important light on this issue. We show that PGSxE analysis is essentially testing genetic
correlation between the SNPXE effects in GWIS and some GWAS additive effects. Under
this perspective, there is no reason to constrain GWAS and GWIS to have the same
outcome. Instead, a better strategy is to perform GWIS and then test its genetic



correlation with many published GWAS to gain insights into the mechanism underlying
GxE. This is also where sample overlap robustness is shown to be a key feature of the
framework. With PIGEON, we can assess PGSxE without concerns about whether the
GWAS and GWIS were performed on the same samples or completely different ones.
We studied many traits using this type of approach in this paper. For example, we
investigated the GxSex GWIS results on BMI and found a significant correlation with
anorexia GWAS. We believe this will motivate future GxE studies.

Third, we examined the long-standing issue regarding the impact of rGE on GxE inference.
In many areas of GXE applications, it is of great interest to ensure the exogeneity of the
exposure. When GxE analysis is performed on observational data, some studies go to
great lengths to leverage instrumental variables'? or other approaches, while other
studies ignore the potential correlation between genes and environment®?83. The
PIGEON framework allowed us to quantitatively assess the impact of rGE. We showed
that a much weaker condition than G-E independence, i.e., a zero correlation between
SNP additive effects on the environment and SNPxE effects on the outcome, is sufficient
for obtaining unbiased estimates and well-controlled false positive rates in polygenic GxE
inference. This demonstrates that rGE does not always lead to bias in GXE analysis®*.
Even when this condition is violated, we proposed a strategy within the PIGEON
framework to correct for biases introduced by rGE.

Finally, we once again reimagine how future GxE studies may unfold. The incredible
success of complex trait genetics that the field has achieved in the past 15 years is largely
credited to GWAS meta-analysis conducted by big genetics consortia, sharing of
summary association statistics, and statistical analysis only requiring summary data as
input®-67, The GxE field, however, largely remains in the early GWAS era. GxE analysis
is almost always performed in a small cohort with individual-level genetic, exposure, and
outcome data. PIGEON is a clear demonstration that modern statistical genetics that
embrace the “omnigenicity” of human traits and rely on summary data alone can also
apply to GXE research. Based on this, we make a bold prediction — the future success of
complex trait GXE research resides in sharing and meta-analyzing GWIS summary
statistics®®, and future GXxE method development should focus on techniques that only
rely on summary-level data.

Our study is not without limitations. First, we followed a model widely used in the GWAS
literature and assumed equal contribution of each standardized SNP for both additive and
GxE variance components. A future direction is to incorporate more flexible assumptions
on the SNPXE effect size distribution, e.g., allele frequency-dependent models such as
LDAK®9, into the PIGEON framework. Second, we employed a LDSC-type inference
procedure to estimate the variance-covariance components in polygenic GXE analysis.
Some recent methods have demonstrated improved efficiency in heritability and genetic
correlation estimation compared to LDSC®%70.71 Whether similar techniques can be
incorporated in PIGEON is an interesting open problem warranting future investigation.
Third, although we explored diverse types of exposure data in this study, we did not



investigate whether PIGEON can be used to study gene-gene interactions’?. Quantifying
how the effects of certain focal genes and variants can be modified by the polygenic
genetic background is a topic that is conceptually similar to polygenic GXE”3. Generalizing
PIGEON to GxG applications will be an interesting future direction. Fourth, any effort to
produce a universally applicable PGS implicitly assumes genetic effects to be identical
across the environments which fundamentally contradicts the main question in GxE?*®. In
fact, some PGS have notoriously low “portability” between different environments’* and it
remains an open question how this issue will affect PGSxE inference results. We are not
aware of any current solution to this problem under the empirical PGSxE design, but we
derived the necessary conditions for the lack of PGS portability to lead to biases in GxE
inference and proposed new analysis strategies to de-bias the estimates
(Supplementary Note 9). An important future direction is to validate these results in
empirical studies.

Taken together, PIGEON is a general and powerful framework that may reshape how we
perform complex trait GXE studies in the future. We showcased its performance and
demonstrated its superiority over existing methods through numerous examples targeting
diverse types of GXE problems. We believe PIGEON offers an innovative solution to many
GXxE challenges. If the field could follow the success of GWAS and make GWIS summary
statistics accessible, it will provide tremendous opportunities to study the relation between
genes and environments and provide insights into polygenic GxE for many human
complex traits.

Methods
PIGEON model

PIGEON is built on a linear mixed model assuming the trait outcome to be influenced by
polygenic SNP additive effects, environment effect, polygenic SNPxE effects, residual,
and residual-environment interaction (RxE):
M M
Y, = z GijBe, + Eifg + z GijEifr; + €10 + €nE;.
j=1 j=1

Here,Y; is the standardized phenotype with a mean of 0 and variance of 1 for the i-th
individual, G;; is the j-th standardized SNP, E; is the standardized environment, ¢, is the
noise term, and ¢;; E quantifies the heteroskedasticity due to RxE30-3%, Here, we assume
the environment to have zero heritability, but implications of rGE are discussed in
Supplementary Note 8. We treat 3, as fixed and ﬁcj, B1j, €io» €1 @s random. We model

all these random variables as independent except for (ﬁcj,ﬂ,j) and (€, €;1)- We assume

that (ﬁG].,,B,j) and (€;o, €;1) have mean zero and covariance matrix below:
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where ¢ and ¢/ are the variance explained by SNP additive and SNPXE effects, pg;
denotes the covariant GxE, o2 and o2 are the variance of residual and RxE, and p., .

denotes their covariance. Technical discussion of PIGEON model can be found in
Supplementary Note 1.

Consolidation and comparison of commonly-applied GXE methods

Next, we consolidate and compare several GXxE methods under the PIGEON model. The
detailed derivation and technical discussion can be found in Supplementary Note 2. To
compare that can only be applied to the discrete environment (i.e., differential heritability,
differential genetic variance, and testing for genetic correlation < 1), we first consider a
special case of our PIGEON model where the raw environment is binary. In this case, we
can rewrite the PIGEON model into a pair of environment-stratified models:

M
1-— p 1-— p 1-— p ] 1— p
Y= Gij(Bg; + |——Bij)+ |—Bet+€n+ €1ir givenE; = |——
/ p p p p
j=1
M
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where E; = /1%” and — /% represents the standardized Bernoulli random variable
with probability p of being 1 and 1 — p being 0.

Heritability difference: We can show that the heritability difference between populations

with E; = /1‘—” and E; = — /1% is

Var(E), Gy (Bs, + / ﬁ;,)) Var(S}e Gy (e, =~ 725 8))
Var(Y‘E = /1; > Var(y E = — L)

1-p
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where 15, = pg1/\ 070G s Tege, = Peger/ |02 024 and W = p(1 —p) x Var <Yi|Ei = /7”) X

Var(Y|E; = /I_Tp) is a scaling factor related to the phenotypic variance. Therefore, the

heritability could still differ between two environments due to heteroskedasticity (o >
Oeven without any GxE (a7 = 0).

Genetic variance difference: The genetic variance difference between populations with

E; = /1 P and E; = / can be denoted as
Var(Z Gy (B, + / 2Bi)) - Var(Z Gy (B, - /1% Bi))
= \[;l (1- ZP)\[;+ 215, /p(l - p)%l,

where o7 is the GXE variance components. This shows that the genetic variance could
be the same across different environments even if there exists GXE (o7 > 0).

Genetic correlation = 1: It can be shown that genetic correlation = 1 between populations

with E; = /1‘—” and E; = — /1% if and only if
Gy ey + (SRR B GuyBe, = [T )
5 &)
- |2~ F vV Ei— [+—
Var (Y ‘E D ) ar ( | I—p

S G, + [ 52 By (Sl GoyBo, — [T )
Var(Y‘Ei=J;> Var( |E— 1’%}9)

where 1;; = pg;/+ 0/ . Therefore, even if there are GXE (of > 0), the genetic correlation
could be 1 between two environments if the SNP additive and SNPXxE effects are perfectly
correlated (i.e., rg; = +1).

Cov

Oracle PGSxE: The oracle PGSXE regression can be denoted as

Y; ~ asPGS; + agE; + a;PGS;E;,
where Y, is the standardized phenotype, PGS; = Zﬁil G;jB; is the oracle PGS based on
each SNPs’ true effect ;, E; denotes the standardized environment with no heritability,
and a; is the interaction coefficient to be estimated. Under the PIGEON model, we
showed that normalizing covariant GXE by additive heritability yields oracle PGSxE
effects



Par

of

In our analysis and in the implemented software, we estimated the oracle PGSxE
coefficient

0{1=

(std) _ Pai

1
\[ olVar(E l.(mw))
based on the standardized phenotype and PGS (i.e., Y; and PGS(“‘”) and raw scale
envionment  EU™  for the regression Y, ~aS'PPGSE P + oS YET™) 4
(Std)PGS(Sm)E(mW) to ensure the interpretation for the coefficient. We note that the
equwalence of hypothe3|s testing for oracle PGSxE and covariant GxE is not affected by
the scale and location transformation of phenotype, PGS, and environment

(Supplementary Note 2). We further present similar results for oracle PGSxE by using
PGS for traits other than the outcome trait in the regression in Supplementary Note 5.

Empirical PGSxE without sample overlap: Next, we consider the current design for
empirical PGSxE analysis. We denote the empirical PGSxE regression as Y; ~

aE™ PGS, + aF™PE; + o E™ PGS E;, where PGS; = PGS; + s; is a noisy version of the
oracle PGS, and s; represents the estimation error in empirical PGS with zero mean and
Cov(PGS;, s;) = 0. We first consider the case where the GWAS used to generate the PGS
have no sample overlap with the empirical PGSXE cohort, represented by Cov(s;,Y;) =0
Under the assumption described above and Var(s;) = M,ss/N; described in Daetwyler
et al.”®, we have the expectation of the least squares estimator for the empirical PGSxE

regression coefficient:
NI (\/O'GZ + M,sr/Ng — w/%z)
E[a®m] = P9 |1 -
1 0.2

¢ \[UGZ + Mesr/Ng

where M, is the effective number of independent SNPs’®, p, is the covariant GxE, and
N, is the GWAS sample size. This shows that the empirical PGSxE estimator is biased
towards zero compared to the oracle PGSxE coefficient a; = 2%, The oracle PGSXE is

)

the upper bound (|a;| > |E & [ Em”)] |) and the infinity sample (GWAS sample size) limit of
the empirical PGSxE ( lim E[ Em”)] =a; = pGZ’
oG

G—)OO

Empirical PGSxE with sample overlap: Next, we consider the case where the GWAS
used to generate PGS have Ng shared samples with the empirical PGSXE cohort with
N; individuals, which can be quantified by Cov(s;,Y;) # 0. Then, we have the expectation
of the least squares estimator for the empirical PGSxE coefficient

E [&I(Emp,OVp)] —E [&I(Emp)] <1 n ZMeffNS) MeffNS [2p250:€1 + ﬁl%.uE(B)]
N;Ng NING(UG +Meff/NG)




Therefore, the sample overlap will lead to biases and false positive results for empirical
MesfNs[2peq e, +BERE(B)]

PGSxE analysis due to the existence of the second term >
NING(UG+Meff/NG)

PIGEON LD score regression

To estimate the GxXE variance component, we only need Z-scores for SNPxE effects in
GWIS summary statistics. The expected value of the squared Z-score for the j-th SNPxE
interaction effect z;; is

N,af

E [lej | 4] = mfj +[1+ (ue (@) — 1) (0 + 02)]/C?,
where N, denotes the GWIS sample size, ¢/ is the GXE variance component, M is the

2

Z . . .
number of SNPs, C = |1 — Z2+15 Sisa correction factor to account for the environmental
ETHNIT

effect on Z-score approximation in GWIS (Supplementary Note 4 and 10), ZZ is the Z-
score of environmental effect, #; is the LD score, and ug(4) is the kurtosis of the
environment.

To estimate covariant GxXE, we only require the GWIS and GWAS summary statistics with
arbitrary sample overlap. The expected value of the product of additive effect Z-scores
and SNPxE effect Z-scores is

NgN;pg; _ N

| = 2
E [ZGjZIj | ;] M i+ CIN.N, (2per + Beue(3))
where N; and N, represents the GWIS and GWAS sample size, pg; is the covariant GxE,

2

M is the number of SNPs, C = |1 — szs . is a correction factor described above, ZZ is
ETNIT

the Z-score of environment effects, #; is the LD score, N, is the number of overlapped
samples between GWIS and GWAS analysis, uz(3) is the skewness of the environment.
The oracle PGS can be obtained by normalizing the covariant GXE by heritability. We use
block jackknife to calculate the standard error of the estimates and regression weights to
account for heteroskedasticity of residual in PIGEON-LDSC?’. The detailed derivation of
PIGEON-LDSC can be found in the Supplementary Note 4.

Simulation settings

We conducted a series of simulations using imputed genotype data from UKB. We
restricted the analysis to autosomal SNPs with imputation quality score > 0.9, minor allele
frequency (MAF) > 0.05, missing call rate < 0.01, and Hardy-Weinberg equilibrium test
p-value > 1.0e-6. We further extracted SNPs in the HapMap3 SNP list and 1000
Genomes Project Phase Il LD reference data for European ancestry’®. 734,046 SNPs
remained after QC. We randomly selected 40,000 independent samples with European



ancestry and equally divided them into two sub-cohorts with 20,000 each. The simulations
are repeated 100 times.

We used the first sub-cohort for GXE variance component simulations. We evaluated the
point estimates of PIGEON and compared the statistical power of PIGEON with
differential heritability and genetic correlation < 1 analyses. We first generated the binary
environment from a Bernoulli distribution with a probability of 0.5 being 1 and then
standardized it to have a mean of zero and variance of 1. We then simulated the
phenotype using standardized genotype G;; and standardized environment E; by
PIGEON model where the SNP effect size and residual were simulated from a
multivariate normal distribution

ﬁGj 0] 1 O'GZ Pcr| [€io 0 0620 Peyeq

ﬁl]'l - MVN([O]’ M lpGl 0-12 l ' [eil] - MVN([O]’ lpeg,el 0621 l)

Here, we set the GXE variance o/ value to be 0, 0.02, 0.04, 0.06, 0.08, and 0.1, heritability
ot =05, covariant GXE pg = 0.5 x/oio/ , residual variance o2 = 0.35— o/ ,
heteroskedasticity variance o2, = 0, and the environmental effect 8; = v0.15 such that
the variance of the phenotype is 1. We note that non-zero heteroskedasticity variance
may lead to type-| error inflation in differential heritability analysis. Therefore, to ensure
the fair comparison of statistical power between differential heritability and PIGEON, we
did not consider a non-zero heteroskedasticity variance 0621 in this simulation. Instead, we
investigated its impact in our secondary simulations (Supplementary Note 11). We used
PLINK"® to obtain the summary statistics from genome-wide SNPxE and environment-
stratified GWAS analyses. Then, these summary statistics were used as input for all
approaches. Both differential heritability and genetic correlation < 1 analyses were
implemented using LDSC?'77. The LD scores were estimated using the whole 40,000
individuals. We further reduced the GWIS sample size to 5,000 and replicate the analysis
to mimic the unbalanced sample size between GWIS and GWAS in real applications.

Next, we compared PIGEON with the empirical PGSxXE approach based on two PGS:
clumping PRS and PRS-CS under zero and 100% sample overlap. We used the PIGEON
model with SNP effect size and residual simulated from a multivariate normal distribution
with heritability 62 = 0.5, GXE variance o7 = 0.1, covariant GXE pg;; with values 0, 0.01,
0.02, 0.03, 0.04, and 0.05, residual variance o5 = 0.15, heteroskedasticity variance
o = 0.1, covariant residual p, ., = 0.05, and the environmental effect 8; = v0.15 using
the same simulated environment described above. Summary statistics for GWAS and
GWIS were generated in different and the same sub-cohort for zero and 100% sample
overlap settings, respectively. We used GWAS summary statistics as input for PRSice-
244 with its default setting (--clump-kb=250, --clump-r2=0.1, and --clump-p=1) and PRS-
CS-auto*® to generate the clumping and PRS-CS scores, respectively. We aimed to
estimate the oracle PGSxE effects based on the standardized phenotype, standardized
PGS, and raw-scale environment. We used summary statistics for GWAS and GWIS as
input for PIGEON. When there is no sample overlap, we restrict the intercept in PIGEON
LDSC to 0 to reduce the standard error for the estimates. For empirical PGSxE, we fit a



regression for Y; ~ aS*PGSE Y + aFPET™ + ¢SO PGS PET™), where ETY s
the raw binary environment, Y; and P’(TSi(Std) are standardized to have a mean of 0 and a

(sim)

variance of 1. For each replicate, we recorded the estimates for o, and corresponding

p-values to test Ho:a,(“d) = 0. The details for secondary simulations and additional

analyses with the presence of rGE can be found in Supplementary Note 11.

PGSxEdu interaction for health outcomes

We replicated the analysis in Barcellos et al.! to study whether genetics moderate the
effect of education reform on health-related outcomes. Following Barcellos et al., we
considered both continuous and dichotomous summary indices for health as outcomes.
Details of constructing the summary indices were described before!. Briefly, the
continuous summary index is a weighted average of body size, blood pressure, and lung
function traits, and it is coded such that a higher number indicates worse health. The
dichotomous threshold summary index is an indicator for whether the continuous
summary index is above a threshold. We followed Barcellos et al. to restrict the samples
to individuals with European ancestry and further removed the related individuals.
172,664 individuals with phenotype data remained in the analysis after QC. We used the
imputed genotype data provided by UKB throughout the analysis.

We used same BMI and EA GWAS as input for PRS-CS* to generate PGS and same
model to perform PGSXE regression as Barcellos et al.’. We fine-tuned the PGS model
using a validation set of 10,000 individuals randomly selected from remaining UKB
samples. We used the month of birth rather than the date of birth to cluster the standard
errors due to the limited data access'. For the PIGEON analysis, we generated GWIS
summary statistics using the same PGSxXE model except for changing PGS into SNPs.
We then applied PIGEON-LDSC to estimate the oracle PGSxE using GWIS and the two
GWAS described above. LD scores were calculated in the UKB EUR samples®’. We also
estimated the oracle PGSxE using two recently-published, larger GWAS for BMI*® and
EAS5C which included UKB samples. Further, we used PIGEON to perform a hypothesis-
free scan for PGSxEdu interactions using GWAS summary statistics for 30 complex traits
(Supplementary Table 1).

Polygenic GxSex interaction for 530 complex traits

We estimated GxSex variance component and performed a hypothesis-free scan for
oracle PGSxSex interactions using GWAS summary statistics for 30 complex traits
(Supplementary Table 1). We transformed the sex-stratified GWAS summary statistics
released by Bernabeu et al.?” into SNPxSex summary statistics by



lgmale,j - ﬁfemale,j
ZI .=

J
\/SE(Bmale,j)z + SE(Bfemale,j)z

where Z,; is the SNPxSex interaction Z-score for the j-th SNP, and fase., SE (Bmate,j)
and fremaie,j» SE (Bremate,;) @re estimated SNP effects and their standard error in sex-
stratified GWAS summary statistics. We also estimated additive effect genetic
correlations between 530 UKB traits and 30 GWAS to help interpret the sign of polygenic
GxSex interactions using LDSC. We determined the significant findings by a Bonferroni-
corrected P-value cutoff 0.05/530 = 9.43e-5 for GxSex variance component and
0.05/530/30 = 3.14e-6 for oracle PGSxSex. To rule out the possibility that the anorexia
oracle PGSxSex signals is driven by the genetic overlap between BMI and anorexia, we
introduced the conditional oracle PGSxE analysis in PIGEON, where we fit a multiple
regression model conditioning on the BMI PGSxE effect (Supplementary Note 6).

LHS data analysis

A detailed description of LHS has been provided elsewhere®®. We applied pre-imputation
QC by keeping autosomal biallelic SNPs with MAF > 0.01 and Hardy-Weinberg
equilibrium test p-value > 1.0e-6. We phased and imputed the genotype data using the
Haplotype Reference Consortium reference panel version r1.1 2016 available on the
Michigan Imputation server®'. We also performed post-imputation QC by removing the
duplicated and strand-ambiguous SNPs as well as SNPs with MAF < 0.01 and imputation
quality < 0.9. 12,030,369 SNPs remained after QC.

LHS participants were assigned into three non-overlapping groups: SIA (smoking
intervention and the inhaled bronchodilator ipratropium bromide), SIP (smoking
intervention and an inhaled placebo), and UC (usual care who received no intervention).
We considered the average change of the post-treatment FEV1 from the baseline as the
outcome. We performed two separate analyses, one using bronchodilators and the other
using smoking interventions as the treatment. We only included individuals with FEV1
measurements at both baseline and all five annual follow-up visits in the analyses®.
When considering the bronchodilator (ipratropium bromide) as the treatment, we
excluded individuals in UC group, and coded the individuals in SIA group as 1 and SIP
group as 0 (N=2,089). When considering the smoking interventions as the treatment, we
excluded individuals in SIA group, and coded the individuals in SIP group as 1 and UC
group as 0 (N=2,122). We performed the genome-wide SNPxE analysis using PLINK
with sex, age, age?, agexsex, age’xsex, 20 genetic principal components computed
using flashPCA283, and interaction between the treatment and these variables as
covariates®*. Then, we estimated oracle PGSxE using the GWIS and 30 GWAS summary
statistics using PIGEON. Since LHS has no sample overlap with any of these GWAS, we
constrained the intercept to be 0 to improve estimation efficiency. We used PRS-CS-auto
to calculate the smoking initiation PGS. We estimated the treatment effects using all



samples or stratified samples in high/low PGS groups defined by the median of the
smoking initiation PGS.

URLs

UK Biobank (http://www.ukbiobank.ac.uk/);

Lung Health Study (https://clinicaltrials.gov/ct2/show/NCT00000568);
PRS-CS (https://github.com/getian107/PRScs);

PRSice-2 (https://github.com/choishingwan/PRSice);

PLINK (https://www.cog-genomics.org/plink/2.0/);

LDSC (https://github.com/bulik/Idsc)

Data and code availability

PIGEON software package is publicly available at https://github.com/qglu-lab/PIGEON
The SNPxE summary statistics used in the paper are available at http:/glu-
lab.org/data.html
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