

Ocean currents drive the worldwide colonization of the most widespread marine plant, eelgrass (*Zostera marina*)

Lei Yu¹, Marina Khachaturyan^{1, 2}, Michael Matschiner^{3, 4}, Adam Healey⁵, Diane Bauer⁶, Brenda Cameron⁷, Mathieu Cusson⁸, J. Emmet Duffy⁹, F. Joel Fodrie¹⁰, Diana Gill¹, Jane Grimwood⁵, Masakazu Hori¹¹, Kevin Hovel¹², A. Randall Hughes¹³, Marlene Jahnke¹⁴, Jerry Jenkins⁵, Keykhosrow Keymanesh⁶, Claudia Kruschel¹⁵, Sujan Mamidi⁵, Per-Olav Moksnes¹⁶, Masahiro Nakaoka¹⁷, Christa Pennacchio⁶, Katrin Reiss¹⁸, Francesca Rossi¹⁹, Jennifer L. Ruesink²⁰, Stewart Schultz¹⁵, Sandra Talbot²¹, Richard Unsworth^{22, 23}, Tal Dagan², Jeremy Schmutz^{5, 6}, John J. Stachowicz^{7, 24}, Yves Van de Peer^{25, 26, 27}, Jeanine L. Olsen²⁸, Thorsten B. H. Reusch^{1*}

¹Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

²Institute of General Microbiology, Kiel University, Kiel, Germany

³Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland

⁴Natural History Museum, University of Oslo, Oslo, Norway

⁵HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.

⁶US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

⁷Department of Evolution and Ecology, University of California, Davis, CA, USA

⁸Department of Fundamental Science, University of Québec in Chicoutimi, Chicoutimi, QC, Canada

⁹Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA

¹⁰Institute of Marine Sciences (UNC-CH), Morehead City, NC, USA

¹¹Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan

¹²Department of Biology, San Diego State University, San Diego, CA, USA

¹³Marine Science Center, Northeastern University, Nahant, MA, USA

¹⁴Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden

¹⁵University of Zadar, Zadar, Croatia

¹⁶Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden

¹⁷Hokkaido University, Akkeshi, Hokkaido, Japan

¹⁸Nord University, Bodø, Norway

¹⁹MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Montpellier, France

²⁰Department of Biology, University of Washington, Seattle, WA, USA

²¹Far Northwestern College of Art and Science, Anchorage, AK, USA

²²Department of Biosciences, Swansea University, Swansea, Wales, UK

²³Project Seagrass, the Yard, Bridgend, Wales, UK

²⁴Center for Population Biology, University of California, Davis, CA, USA

²⁵Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB-UGent Center for Plant Systems Biology, Gent, Belgium

²⁶Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa

²⁷College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China

Yu *et al.* Worldwide colonization of eelgrass (*Zostera marina*)

²⁸Groningen Institute for Evolutionary Life Sciences, Groningen, AG, The Netherlands

*Corresponding author, treusch@geomar.de, phone +49-431-600-4550

Author contributions

J.J.S., J.S., J.L.O. and T.B.H.R. conceived and designed the study, M.K. analyzed the chloroplast data, L.Y., M.M. and A.H. conducted the phylogenetic analyses, A.H. identified the core genes, L.Y. calculated D-statistic with assistance from M.M., L.Y. conducted all other analyses; B.C. and D.G. assisted with sample acquisition and DNA extraction; J.G. K.K., C.P. conducted the DNA sequencing; J.G., J. J., S.M., J.S., T.D. and Y.V.D.P. assisted with the bioinformatic analyses; M.C., J.E.D., F.J.F., A.R.H., M.H., M.J., C.K., D.M.M., P.O.M., M.N., K.R., F.R., J.L.R., S.S., J.J.S., S.T., R.U., D.W. provided access to the sampling sites and performed the specimen sampling; L.Y., M.K., M.M. A.H., J.L.O., T.D. and T.B.H.R. discussed and interpreted the results; L.Y. J.L.O. and T.B.H.R. wrote the paper. All authors commented on earlier versions of the manuscript.

1 **Abstract**

2 Currents are unique drivers of oceanic phylogeography and so determine the distribution of
3 marine coastal species, along with past glaciations and sea level changes. Here, we
4 reconstruct the worldwide colonization history of eelgrass (*Zostera marina* L.), the most
5 widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific,
6 based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with
7 evidence for admixture along the East Pacific coast. Multiple west to east (trans-Pacific)
8 colonization events support the key role of the North Pacific Current. Time-calibrated nuclear
9 and chloroplast phylogenies yielded concordant estimates of the arrival of *Z. marina* in the
10 Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of
11 biodiversity and carbon sequestration, have only been present since ~208 Kya (thousand
12 years ago). Mediterranean populations were founded ~53 Kya while extant distributions
13 along western and eastern Atlantic shores coincide with the end of the Last Glacial Maximum
14 (~20 Kya). The recent colonization and 5- to 7-fold lower genomic diversity of Atlantic
15 compared to the Pacific populations raises concern and opportunity about how Atlantic
16 eelgrass might respond to rapidly warming coastal oceans.

17

18

19 **Keywords:** *Zostera marina*, eelgrass, coalescent, genetic diversity, historical contingency,
20 time-calibrated phylogeny, trans-oceanic dispersal

21

22 **Running title:** Worldwide colonization of eelgrass (*Zostera marina*)

23 Seagrasses are the only flowering plants that returned to the sea ~67 mya (million years ago),
24 comprising at least three independent lineages that descended from freshwater ancestors ~114
25 mya¹. Seagrasses are foundation species of entire ecosystems thriving in all shallow coastal
26 areas of the global ocean except Antarctica². By far the most geographically widespread
27 species is eelgrass (*Zostera marina*), occurring in Pacific and Atlantic areas of the northern
28 hemisphere from warm temperate to Arctic environments³, spanning 40° of latitude and a
29 range of ~18°C in average annual temperatures (Fig. 1a). Eelgrass is a unique foundation
30 species in that no other current seagrass can fill its ecological niche in the cold temperate to
31 Arctic northern hemisphere³ (Supplementary Note 1).

32 Given its very wide natural distribution range that exceeds most terrestrial plant species,
33 our goal was to reconstruct the major colonization pathways of eelgrass starting from its
34 putative origin of *Z. marina* in the West Pacific along the Japanese Archipelago^{4,5}. Currents
35 are unique to phylogeographic processes in the ocean and we hypothesized that major current
36 systems such as North Pacific and California Currents in the Pacific, and the Gulf Stream and
37 North Atlantic Drift in the Atlantic drove its worldwide colonization.

38 To put data into perspective with rates of colonization in terrestrial plant species, one
39 major goal was to provide time estimates of major colonization events. We asked specifically
40 how evolutionary contingency—specifically large-scale dispersal events—may have affected
41 the timing of arrival of eelgrass on East Pacific and North Atlantic coastlines⁶. To do so, we
42 took advantage of recent extensions of the multispecies coalescent (MSC) as applied at the
43 population level^{7,8}, making it possible to construct a time-calibrated phylogenetic tree from
44 SNP (single nucleotide polymorphism) data⁹. Our data set comprised 190 individuals from 16
45 worldwide locations that were subjected to comprehensive whole-genome resequencing
46 (nuclear and chloroplast).

47 Superimposed onto the general eastward colonization are Pleistocene cycles of glacial
48 and interglacial periods that resulted in frequent latitudinal expansions and contractions of
49 available habitat for both terrestrial and marine biota¹⁰. Such local extinctions and subsequent
50 recolonizations from refugial populations are expected to leave their genomic footprint in
51 extant marine populations¹¹⁻¹³ and may restrict their potential to rapidly adapt to current
52 environmental change^{14,15}. Hence, we were also interested in how glaciations—in particular
53 the Last Glacial Maximum (LGM; 20,000 yrs ago (Kya)¹⁶)—have affected population-wide
54 genomic diversity of *Z. marina*, and which glacial refugia permitted eelgrass to survive this
55 period.

56

57 **Results**

58 **Whole-genome resequencing and nuclear and chloroplast polymorphism**

59 Among 190 *Z. marina* specimen collected from 16 geographic locations (Fig. 1a,
60 Supplementary Table 1), full genome sequencing yielded an average read coverage of
61 53.73x. After quality filtering (Supplementary Data 1), single nucleotide polymorphisms
62 (SNPs) were mapped and called (Supplementary Fig. 1,2) based on a chromosomal level
63 assembly v.3.1¹⁷. In order to facilitate phylogenetic construction within a conserved set of
64 genes¹⁸, we first assessed the presence of a core gene set shared by all individuals. From a

65 total of 21,483 genes, we identified 18,717 core genes that were on average observed in 97%
66 of samples, containing 763,580 SNPs (Supplementary Note 3).

67 After exclusion of 37 samples owing to missing data, selfing or clonality, 153 were
68 left for further analyses (Supplementary Tables 2,3; Supplementary Fig. 3,4). We also
69 obtained a thinned synonymous data set retaining only sites with a physical distance of >3
70 kbp (11,705 SNPs, hereafter “ZM_Core_SNPs”) (Supplementary Fig. 1,2).

71 A complete chloroplast genome of 143,968 bp was reconstructed from the reference
72 sample¹⁹. Median chloroplast sequencing coverage for the samples of the worldwide data set
73 was 6273x. A total of 151 SNPs were detected along the whole chloroplast genome,
74 excluding 23S and 16S gene regions due to possible contamination in some samples and
75 ambiguous calling next to microsatellite regions (132,438 bp), comprising 54 haplotypes.
76

77 **Gradients of genetic diversity within and among ocean basins**

78 As measures of genetic diversity, we assessed nucleotide diversity (π) and genome-wide
79 heterozygosity (H_{obs}) (Fig. 1b,c). Consistent with the assumed Pacific origin of the species,
80 Pacific locations displayed a 5.5 (π)- to 6.6 (H_{obs})-fold higher genetic diversity compared to
81 the Atlantic (Supplementary Table 4). The highest π - and H_{obs} -values were observed in Japan
82 South (JS) followed by Japan North (JN), suggesting the origin of *Z. marina* in the Northwest
83 Pacific^{4,5}. Alaska Izembek (ALI) and Alaska Safety Lagoon (ASL) displayed approximately
84 a third (28% for π ; 34% for H_{obs}) of the diversity in the more southern Pacific sites (average
85 of San Diego SD, Bodega Bay BB, Washington State WAS). In the Atlantic, a comparable
86 loss of diversity along a south-north gradient was observed. Quebec (QU) displayed 42% (π)
87 and 47% (H_{obs}) of the diversity of North Carolina (NC) and Massachusetts (MA), while the
88 diversity values in Norway (NN) was 31% and 43% of averaged values of Sweden (SW) and
89 Wales (WN).
90

91 **Global population structure of *Z. marina***

92 To reveal the large-scale population genetic structure, we performed a Principal Component
93 Analysis (PCA) based on the most comprehensive SNP selection (Supplementary Fig. 1;
94 782,652 SNPs, Fig. 2a). Within-ocean genetic differentiation in the Pacific was as great as
95 the Pacific-Atlantic split, whereas there was much less variation within the Atlantic. Separate
96 PCAs for each ocean revealed additional structure (Fig. 2c,e), including the separation of the
97 Atlantic and Mediterranean Sea populations (PC1, 24.47%, Fig. 2e).

98 We then used STRUCTURE²⁰, a Bayesian clustering approach, on 2,353 SNPs (20%)
99 randomly selected from the ZM_Core_SNPs. The optimal number of genetic clusters was
100 determined using the Delta-K method²¹ (Fig. 2b,d,f), with additional K-values explored in
101 Supplementary Fig. 5-7. In the global analysis, (Fig. 2b), two clusters representing Atlantic
102 and Pacific locations were identified. JN contained admixture components with the Atlantic,
103 consistent with a West-East colonization via northern Japan through the North Pacific
104 Current and then north towards the Bering Sea. An analysis restricted to Pacific sites (K=3)
105 supported a role of JN as dispersal hub, with admixture components from JS and Alaska,
106 suggesting that this site has been a gateway between both locations (Fig. 2c). WAS and BB,
107 located centrally along the east Pacific coastline, were admixed between both Alaskan sites
108 and SD. WAS displayed about equal northern and southern components, while BB was

109 dominated by the adjacent southern SD genetic component. In the Atlantic (Fig. 2f), a less
110 pronounced population structure was present, consistent with the PCA results (Fig. 2e). The
111 optimal number of genetic clusters was K=2, separating the northern Atlantic and the
112 Mediterranean, yet analyses with K=4 revealed a connection between Portugal (PO) closest
113 to the Strait of Gibraltar and the East Atlantic (NC, Supplementary Fig. 7).

114

115 **Population structure of cpDNA**

116 A haplotype network (Fig. 2g) revealed three markedly divergent clades. In the Pacific, WAS
117 displayed haplotypes similar to those of Alaska (ALI/ASL) and JN, while BB displayed
118 haplotypes of a divergent clade that also comprises all haplotypes from SD. ASL and JN
119 share the same dominant haplotype, suggesting JN to be a hub between West and East Pacific
120 respectively Alaska. In JS, two divergent private haplotypes (separated by nine mutations
121 from other haplotypes) suggest long-term persistence of eelgrass at that location.

122 On the Atlantic side, only four to six mutations separate the Northeast Atlantic and
123 Mediterranean haplotypes, consistent with a much younger separation. The central haplotype
124 is shared by both MA and NC, with nine private NC haplotypes. A single mutation separates
125 both MA and QU; and MA and WN. Also extending from the central haplotype were SW and
126 NN. Together with the diversity measures (Fig. 1b,c), this pattern suggests long-term
127 residency of eelgrass on the North American east coast and transport to the Northeast
128 Atlantic via the North Atlantic Drift.

129

130 **Reticulated topology of *Z. marina* phylogeography**

131 To further explore the degree of admixture and secondary contact, we constructed a split
132 network²² using all ZM_Core_SNPs. Pacific populations were connected in a web-like
133 fashion (Fig. 3a). WAS and BB were involved in alternative network edges (Fig. 3b), either
134 clustering with SD or with both JS and JN. The topology places WAS and BB in an
135 admixture zone with a northern Alaska component (ALI and ASL), and a more divergent
136 southern component from SD, in line with the STRUCTURE results (Fig. 2c). In the Atlantic
137 (Fig. 3c), edges among locations were shorter than those on the Pacific side, indicating a
138 more recent divergence among Atlantic populations. A bifurcating topology connected the
139 older Mediterranean populations, while both Northeast and Northwest Atlantic were
140 connected by unresolved, web-like edges, indicating a mixture of incomplete lineage sorting
141 and probable, recent gene flow.

142 We used Patterson's D-statistic²³ to further test for admixture²⁴ (Supplementary Fig.
143 9). For the Pacific side, the pairs WAS/SD, BB/ALI, BB/ASL and to a lesser extent JN/ALI,
144 showed the highest D-values (D=0.67; P<0.001), suggesting past admixture. For the Atlantic
145 side, the pattern of admixture was less complex than in the Pacific, indicating recent or
146 ongoing connection between Atlantic and Mediterranean Sea. This result is consistent with
147 the admixture signal detected by STRUCTURE (SW, Fig. 2f), and with one Atlantic (SW)
148 cpDNA haplotype that clusters with the Mediterranean ones (Fig. 2g).

149

150 **Time-calibrated multi-species coalescent (MSC) analysis and estimated times of major 151 colonization events**

152 Application of the multi-species coalescent⁹ (Fig. 4) assumes that populations diverge under a
153 bifurcating model. Hence, locations that showed strong admixture (BB and WAS;
154 Supplementary Fig. 9) were excluded from constructing a time-calibrated tree, leaving 14
155 populations. We further verified the dating of major events by additional exclusion of
156 population involved in admixture (leaving seven populations), and found that time estimates
157 for major divergence events were largely similar (Supplementary Fig. 10). Hence, we focused
158 on the more comprehensive larger data set comprising 14 populations (Supplementary Fig.
159 11).

160 As direct fossil evidence is unavailable within the genus *Zostera*, the divergence time
161 between *Z. marina* and *Z. japonica* was estimated based on a calibration point that takes
162 advantage of a whole-genome duplication event previously identified and dated to ~67 mya¹⁹.
163 The resulting clock rate for 4-fold degenerative transversions (4DTv) of paralogous gene
164 sequences yielded a divergence time estimate of 9.86-12.67 mya between *Z. marina* and *Z.*
165 *japonica* (Supplementary Note 2). We then repeated the analysis based on 13,732 SNP sites
166 polymorphic within our target species (Supplementary Fig. 2) after setting a new *Z. marina*-
167 specific calibration point.

168 Assuming JS as representative of the species origin⁴, we found direct evidence for
169 two trans-Pacific dispersal events and indirect evidence for a third one (Fig. 4). The first
170 trans-Pacific dispersal event at ~354 Kya (95% highest posterior density HPD: 422-288 Kya)
171 founded populations close to San Diego (SD) that remained isolated, but engaged in
172 admixture to the north. Because dispersal from the West Pacific to the Atlantic requires
173 stepping stones in the Northeast Pacific / Beringia, we infer a second trans-Pacific dispersal
174 event from JN to the Northeast Pacific somewhat before *Z. marina* reached the Atlantic
175 through the Canadian Arctic ~209 Kya (95% HPD: 249-169 Kya). This estimate is
176 surprisingly recent given that the Bering Strait opened as early as 4.8-5.5 mya ago²⁵. The
177 current Alaskan population (ASL) showed a strong signal of a recent 3rd trans-Pacific
178 dispersal event from Japan that happened ~55.9 Kya (95% HPD: 67.4-55.5 Kya), indicating
179 (partial) replacement of *Z. marina* in Alaska with the new, extant populations. Further
180 support comes from JN showing the smallest pairwise F_{ST} with all Atlantic populations
181 (Supplementary Table 5). Moreover, JN was the only Pacific population that displayed a
182 shared genetic component with the Atlantic (Fig. 2b).

183 In the Atlantic, divergence time estimates were much more recent than in the Pacific.
184 The Mediterranean Sea clade emerged ~52.7 Kya (95% HPD: 63.7-42.5 Kya). The
185 Northwest and Northeast Atlantic also diverged very recently at ~19.8 Kya (95% HPD: 24.1-
186 15.8 Kya), and shared a common ancestor during the LGM, indicating that they were
187 partially derived from the same glacial refugium in the Northwest Atlantic (likely at or near
188 NC). Some admixture found in the Swedish (SW) population stemming from the
189 Mediterranean gene pool (Fig. 2f,g) likely explains a higher genetic diversity at that location
190 (Fig. 1b,c).

191 In a second coalescent approach⁸, we used alignments of 617 core genes across all
192 samples (Supplementary Note 2). Based on the same initial calibration as under the multi-
193 species coalescent, the tree topology was examined using ASTRAL while the time estimation
194 was performed with StarBEAST2 (ref²⁶). This approach resulted in more recent divergence

195 time estimates for the deeper nodes, while the more recent estimates were nearly identical
196 (Supplementary Note 3, Supplementary Fig. 12,13).

197 Finally, we used the mutational steps among chloroplast (cpDNA) haplotypes as an
198 alternative dating method. SD and BB along the Pacific East coast showed very different
199 haplotypes, separated by about 30 mutations from the other Pacific and the Atlantic clades.
200 Assuming a synonymous cpDNA mutation rate of $2*10^{-9}$ per site per year, this genetic
201 distance corresponds to a divergence time of 392 Kya (Supplementary Note 4), comparable
202 to the estimate of 354 Kya in the coalescent analysis. Conversely, few mutations (4-7)
203 distinguished major Atlantic haplotypes from the Mediterranean Sea, consistent with recent
204 divergence estimate based on nuclear genomes (Fig. 4).

205

206 Demographic history and post LGM recolonization

207 We used the Multiple Sequentially Markovian Coalescent (MSMC)²⁷ to infer past effective
208 population size N_e (Fig. 5). Almost all eelgrass populations revealed a recent expansion
209 1,000-100 generations ago, while the magnitude of N_e -value minima at about 10,000 to 1,000
210 generations varied. Given a range of plausible generation times of 3-5 yrs under a mix of
211 clonal and sexual reproduction, is likely that the minimum N_e displayed by several locations
212 coincides with the LGM. In general, low N_e -values were related to a high degree of clonality
213 at sites in northern (NN) and southern Europe (PO) (Supplementary Table 3). Within the
214 Pacific Ocean, the southernmost population (SD), showed no drop in N_e , while all others
215 showed bottlenecks that became more pronounced from south to north
216 (BB>WAS>ALI/ASL). As for the Atlantic side, the Northwest Atlantic populations NC/MA
217 and the southern European populations PO/CZ (and to a lesser extent FR) showed little
218 evidence for bottlenecks, suggesting that these localities represented refugia during the LGM.
219 The opposite applied to QU in the Northwest and NN and SW in the Northeast Atlantic,
220 where we see a pronounced minimal N_e at about 3,000-1,000 generations ago.

221 For the Atlantic, we determined the most likely post-LGM recolonization through
222 approximate Bayesian computations (ABC) (Supplementary Fig. 14) and found that areas
223 around NC were the most likely glacial refugia for both the West and Northeast Atlantic
224 locations.

225

226 Discussion

227 In the current period of rapid climate change, the analysis of past climatic shifts and their
228 legacy effects on genetic structure and diversity of extant populations is paramount^{14,15,28}. *Z.*
229 *marina* has a circumglobal distribution that provided us with the unique opportunity to
230 reconstruct the natural expansion of a marine plant throughout the northern hemisphere
231 starting from the species origin in the West Pacific during a period of strong recurrent climate
232 changes (Fig. 6a,b).

233 The presence of eelgrass in the Atlantic is surprisingly recent, dating to only ~208
234 Kya (95% HPD: 249-169 Kya). As no other seagrass species is able to fill this ecological
235 niche or form dense meadows in boreal to Arctic regions (>50 °N, Supplementary Note 1),
236 historical contingency⁶ has played a previously underappreciated role for the establishment of
237 this unique and productive ecosystem. The recency of the arrival of eelgrass on both sides of

238 the Atlantic may also explain why relatively few animals are endemic to eelgrass beds nor
239 have evolved to consume its plant tissue directly, while most of the biomass produced ends
240 up either in the sediment as blue carbon, or is exported into the detritus based food chain²⁹.
241 The first dated population-level phylogeny in any seagrass species might also explain why
242 there seems to be little niche differentiation among eelgrass-associated epifauna in the
243 Atlantic compared to the Pacific³⁰. Our study demonstrates how macro-ecology, here the
244 presence of an entire ecosystem, may be strongly determined by the colonization history,
245 specifically the timeframe in which eelgrass reached the North Atlantic⁶, and not by suitable
246 environmental conditions.

247 We identified the North Pacific Current that began to intensify ~one million years
248 ago³¹ as major dispersal gateway. San Diego (SD) was colonized by the earliest detectable
249 colonization event roughly 400 Kya (Fig. 6a, event "1"), and has retained old genetic
250 variation since then, probably owing to rarity of genetic exchange southward across the Point
251 Conception biogeographic boundary³² and a weak and variable Davidson Current.
252 Subsequent trans-Pacific events eventually resulted in an admixture zone in intermediate
253 WAS and BB situated among the ancient SD clade and the younger Alaskan ones (ASL/ASI,
254 Fig. 6a, event "6").

255 The second trans-Pacific dispersal (Fig. 6a, event "2") actually paved the way for an
256 inter-oceanic dispersal, the colonization of the Atlantic through the Arctic Ocean, possibly
257 via the stepping stone of an Arctic "ghost" population. The latter was replaced with more
258 recent immigrant genotypes from northern Japan in a third detected dispersal from West to
259 East Pacific (Fig. 6a, event "3"). Although the Bering Strait may have opened as early as 5.5-
260 4.8 mya²⁵, we were only able to detect a single colonization event into the Atlantic, in
261 contrast to other amphi-Arctic and boreal marine invertebrates³³ and seaweeds³⁴. Genomic
262 variation characteristic of extant Alaskan populations was not detected in any North-Atlantic
263 populations, in line with earlier microsatellite data³⁵, suggesting that the Atlantic was only
264 colonized once. While we cannot rule out an earlier colonization, this would require that they
265 became extinct without leaving any trace extant in nuclear genomes or cpDNA haplotypes,
266 which we consider unlikely.

267 The Pacific-Atlantic genetic divide was recently identified as a "Pleistocene legacy"
268 based on a marker-based genotyping study¹⁵. Here, we demonstrate the presence of two
269 deeply divergent clades in the Pacific that share a complex pattern of secondary contact on
270 the East Pacific side (Supplementary Note 5). In contrast, a clear genetic separation between
271 West and East Atlantic populations is not evident suggesting recent population contractions
272 and expansions driven by the LGM, with the North Atlantic Drift driving repeated west-east
273 colonization events (Fig. 6b).

274 While our phylogeny (Fig. 4) would also be consistent with a scenario in which the
275 deep branching SD population would represent the origin of *Z. marina*, we consider this very
276 unlikely given the prevailing ocean currents (Fig. 6a), the patterns of genetic diversity (Fig.
277 1b,c) and our current understanding of the emergence of the genus *Zostera* (~15 mya),
278 including the species *Z. marina* some 5-1.62 mya⁴ in the Northwest Pacific. Other *Zostera*
279 species have also been seeded to other parts of the globe by multiple dispersal events from
280 the genus-origin close to Japan⁴. Thus, considering all evidence jointly, we conclude that

281 Japan, and not the East Pacific (SD), is the most likely geographic origin of eelgrass and the
282 source of multiple dispersal events with ocean currents.

283 Two major LGM refugia were detected in the Atlantic, of which one near North
284 Carolina (NC) apparently served as source population for the entire Northwest and Northeast
285 Atlantic (Fig. 6b, event "5"), as in other marine species^{11,36} including seaweeds³⁷.
286 Additionally, the Mediterranean Sea was a refugium itself. We may have missed a role of
287 Brittany to be a refugium, as has been reported for seaweeds and invertebrates^{37,38}, as it was
288 not sampled.

289 Along with demographic modeling we identify population contraction and subsequent
290 latitudinal expansion along three coastlines following the LGM (26-19 Kya). These are
291 common patterns of many terrestrial¹⁰ and intertidal species^{13,39}, with the Northeast
292 Atlantic/North Sea coastline and Beringia being most drastically affected. Interestingly, for *Z.*
293 *marina*, the Atlantic region was not more severely influenced by the last glaciations and sea
294 level changes than the East Pacific (Fig. 5; 6b), relative to its much lower baseline diversity
295 (Supplementary Table 4), while we are lacking the sample location to examine this for the
296 West Pacific. This ultimately resulted in dramatic differences in genome-wide diversity. The
297 5- to 7-fold lower overall genetic diversity in the Atlantic adds to marked LGM effects and
298 resulted in >30-fold differences among populations with the highest (JS) vs. lowest (NN)
299 diversity, with currently unknown consequences for the adaptive potential and genetic rescue
300 of eelgrass in the anthropocene.

301 The relatively low number of extant seagrass species (ca. 65 species in six families⁴⁰)
302 has been attributed to frequent intermediate extinctions⁵. Our data suggest a second plausible
303 process, namely multiple long-distance genetic exchange among ocean basins that may have
304 impeded allopatric speciation (see also⁴¹). Our range-wide sampling has allowed an overview
305 of evolutionary history in this lineage of seagrass and opens the door for exploration of
306 functional studies across ocean basins and coasts. Future work will explore the pan-genome
307 of *Z. marina* with the consideration of how the high diversity and robustness of Pacific
308 populations may contribute to management and rescue of populations along rapidly warming
309 Atlantic coastlines.

310

311 **Online Methods**

312

313 **Study species and sampling design**

314 Our study species eelgrass (*Zostera marina* L.) is the most widespread seagrass species of the
315 temperate to Arctic northern hemisphere. It is being developed as model for studying
316 seagrass evolution and genomics (e.g.,^{15,17,19,42}). *Z. marina* is a foundation species of shallow
317 water ecosystems¹⁵ with a number of critical ecological functions including enhancing the
318 recruitment of fish and crustaceans⁴³, improvement of water quality⁴⁴ and the sequestration of
319 "blue carbon"⁴⁵.

320 Eelgrass features a mix of clonal (=vegetative) and sexual reproduction, with varying
321 proportions across sites³⁹. Hence, in most populations, except for the most extreme cases of
322 mono-clonality⁴⁶, replicated modular units (leaf shoots= ramets) stemming from a sexually

323 produced individual (=genet or clone) are intermingled to form the seagrass meadow. This
324 also implies that generation times are difficult to estimate or average across populations.

325 We conducted a range-wide sampling collection of 190 *Z. marina* specimen from 16
326 geographic populations (Fig. 1a; Supplementary Table 1). The chosen locations were a subset
327 of the *Zostera* Experimental Network (ZEN) sites that were previously analyzed using
328 microsatellite markers¹⁵. Although a sampling distance of >2 m was maintained to reduce the
329 likelihood of collecting the same clone twice this was not always successful (cf.
330 Supplementary Table 3 which also provides estimates of local clonal diversity). Plant tissue
331 was selected from the basal meristematic part of the shoot after peeling away the leaf sheath
332 to minimize epiphytes (bacteria and diatoms), frozen in liquid nitrogen and stored at -80 °C
333 until DNA extraction.

334

335 **DNA extraction, whole-genome resequencing and quality check**

336 Genomic DNA was extracted using the Macherey-Nagel NucleoSpin plant II kit following
337 the manufacturer's instructions. Hundred-200 mg fresh weight of basal leaf tissue, containing
338 the meristematic region was ground in liquid N₂. DNA concentrations were in the range of
339 50-200 ng/uL. Quality control was performed following JGI guidelines
340 (<https://jgi.doe.gov/wp-content/uploads/2013/11/Genomic-DNA-Sample-QC.pdf>). Plate-
341 based DNA library preparation for Illumina sequencing was performed on the PerkinElmer
342 Sciclone NGS robotic liquid handling system using Kapa Biosystems library preparation kit.
343 Two hundred ng of sample DNA were sheared to a length of around 600 bp using a Covaris
344 LE220 focused-ultrasonicator. Selected fragments were end-repaired, A-tailed, and ligated
345 with sequencing adaptors containing a unique molecular index barcode. Libraries were
346 quantified using KAPA Biosystems' next-generation sequencing library qPCR-kit on a Roche
347 LightCycler 480 real-time PCR instrument. Quantified libraries were then pooled together
348 and prepared for sequencing on the Illumina HiSeq2500 sequencer using TruSeq SBS
349 sequencing kits (v4) following a 2x150 bp indexed run recipe to a targeted depth of
350 approximately 40x coverage. The quality of the raw reads was assessed by FastQC
351 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and visualized by MultiQC⁴⁷.
352 BBduk (<https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/>) was
353 used to remove adapters and for quality filtering, discarding sequence reads (i) with more
354 than one "N" (maxns=1); (ii) shorter than 50 bp after trimming (minlength=50); (iii) with
355 average quality <10 after trimming (maq=10). FastQC and MultiQC were used for second
356 round of quality check for the clean reads. Sequencing coverage was calculated for each
357 sample (Supplementary Data 1).

358

359 **Identifying core and variable genes**

360 In order to analyze genetic loci present throughout the global distribution range of eelgrass,
361 we focused on identifying core genes that would be present in genomes of all individuals. To
362 do so, each of the 190 ramets were *de novo* assembled using HipMer (k=51)⁴⁸. To categorize,
363 extract, and compare core and variable (shell and cloud) genes, primary transcript sequences
364 (21,483 gene models) from the *Z. marina* reference (V3.1) ref¹⁷ were aligned using BLAT
365 using default parameters⁴⁹ to each *de novo* assembly. Genes were considered present if the
366 transcript aligned with either (i) >60% identity and >60% coverage from a single alignment,

367 or (ii) >85% identity and > 85% coverage split across three or fewer scaffolds. Individual
368 presence-absence-variation (PAV) calls were combined into a matrix to classify genes into
369 core, cloud, and shell categories based on their observation across the population. The total
370 number of genes considered was 20,100. Because identical genotypes and fragmented, low-
371 quality assemblies can bias and skew PAV analyses, only 141 single representatives of clones
372 and ramets with greater than 17,500 genes were kept to ensure that only unique and high-
373 quality assemblies were retained. Genes were classified using discriminant analysis of
374 principal components (DAPC)⁵⁰ into cloud, shell, and core gene clusters based on their
375 frequency. Core genes were the largest category, with 18,717 genes that were on average
376 observed in 97% of ramets.

377

378 **SNP mapping, calling and filtering**

379 The quality-filtered reads were mapped against the chromosome-level *Z. marina* reference
380 genome V3.1 using BWA MEM⁵¹. The alignments were converted to BAM format and
381 sorted using Samtools⁵¹. The MarkDuplicates module in GATK4⁵² was used to identify and
382 tag duplicate reads in the BAM files. Mapping rate for each genotype was calculated using
383 Samtools (Supplementary Data 2). HaplotypeCaller (GATK4) was used to generate a GVCF
384 format file for each sample, and all the GVCF files were combined by CombineGVCFs
385 (GATK4). GenotypeGVCFs (GATK4) was used to call genetic variants.

386 BCFtools⁵³ was used to remove SNPs within 20 base pairs of an indel or other variant
387 type (Supplementary Fig. 1) as these variant types may cause erroneous SNPs calls.

388 VariantsToTable (GATK4) was used to extract INFO annotations. SNPs meeting one or more
389 than one of the following criteria were marked by VariantFiltration (GATK4): MQ < 40.0;
390 FS > 60.0; QD < 10.0; MQRandSum > 2.5 or MQRandSum < -2.5; ReadPosRandSum < -2.5;
391 ReadPosRandSum > 2.5; SOR > 3.0; DP > 10804.0 (2 * average DP). Those SNPs were
392 excluded by SelectVariants (GATK4). A total of 3,975,407 SNPs were retained. VCFtools⁵⁴
393 was used to convert individual genotypes to missing data when GQ < 30 or DP < 10.
394 Individual homozygous reference calls with one or more than one reads supporting the
395 variant allele, and individual homozygous variant calls with ≥ 1 read supporting the reference
396 were set as missing data. Only bi-allelic SNPs were kept (3,892,668 SNPs). To avoid the
397 reference-related biases owing to the Pacific-Atlantic genomic divergence, we focused on the
398 18,717 core genes that were on average observed in 97% of ramets. Bedtools⁵⁵ was used to
399 find overlap between the SNPs and the core genes, and only those SNPs were kept
400 (ZM_HQ_SNPs, 763,580 SNPs). Genotypes that were outside our custom quality criteria
401 were represented as missing data.

402

403 **Excluding duplicate genotypes, genotypes originating from selfing, and those with high 404 missing rate**

405 Based on the extended data set ZM_HQ_SNPs (763,580 SNPs; Supplementary Fig. 1),
406 possible parent-descendant pairs under selfing (Supplementary Table 2) as well as
407 clonemates were detected based on the shared heterozygosity (SH)(ref⁵⁶). To ensure that all
408 genotypes assessed originated by random mating, ten ramets showing evidence for selfing
409 were excluded. Seventeen multiple sampled clonemates were also excluded (Supplementary
410 Table 3, Supplementary Fig. 3). Based on ZM_HQ_SNPs (763,580 SNPs), we calculated the

411 sample-wise missing rate using a custom Python3 script and plotted results as a histogram
412 (Supplementary Fig. 4). Missing rates were mostly <15%, except for ten ramets (ALI01,
413 ALI02, ALI03, ALI04, ALI05, ALI06, ALI10, ALI16, QU03, and SD08) that were also
414 excluded.

415

416 **Chloroplast haplotypes**

417 For the chloroplast analysis, 28 samples were excluded owing to evidence for selfing and
418 membership to the same clone, while lack of coverage was not an issue. Chloroplast genome
419 was de novo assembled by NOVOPlasty⁵⁷. The chloroplast genome of *Z. marina* was
420 represented by a circular molecule of 143,968 bp with a classic quadripartite structure: two
421 identical inverted repeats (IRa and IRb) of 24,127 bp each, large single-copy region (LSC) of
422 83,312 bp, and small single-copy region (SSC) of 12,402 bp. All regions were equally taken
423 into SNP calling analysis except for 9,818 bp encoding 23S and 16S RNAs due to supposed
424 bacteria contamination in some samples. The raw Illumina reads of each individual were
425 aligned by BWA MEM to the assembled chloroplast genome. The alignments were converted
426 to BAM format and then sorted using Samtools⁵¹. Genomic sites were called as variable
427 positions when frequency of variant reads >50% (Supplementary Fig. 8) and the total
428 coverage of the position >30% of the median coverage (174 variable positions). Then 11
429 positions likely related to microsatellites and 12 positions reflecting minute inversions caused
430 by hairpin structures⁵⁸ were removed from the final set of variable positions for the haplotype
431 reconstruction (151 SNPs).

432

433 **Putatively neutral and non-linked SNPs**

434 Among a total of 153 unique samples that were retained for analyses, SnpEff
435 (<http://pcingola.github.io/SnpEff/>) was used to annotate each SNP. To obtain putatively
436 neutral SNPs, we kept only SNPs annotated as “synonymous_variant” (ZM_Neutral_SNPs,
437 144,773 SNPs). For the SNPs in ZM_Neutral_SNPs (144,773 SNPs), only SNPs without any
438 missing data were kept. To obtain putatively non-linked SNPs, we thinned sites using
439 Vcftools to achieve a minimum pairwise distance (physical distance in the reference genome)
440 of 3,000 bp to obtain our core data set, hereafter ZM_Core_SNPs, corresponding to 11,705
441 SNPs.

442

443 **Genetic population structure based on nuclear and chloroplast polymorphism**

444 We used R-packages to run a global principal component (PCA) analysis based on
445 ZM_HQ_SNPs, (=763,580 SNPs). The package vcfR⁵⁹ was used to load the VCF format file,
446 and function glPca in adegenet package to conduct PCA analyses, followed by visualization
447 through the ggplot2 package. We used Bayesian clustering implemented in STRUCTURE to
448 study population structure and potential admixture²⁰. To reduce the run time, we randomly
449 selected 2,353 SNPs from ZM_Core_SNPs (20%) to run STRUCTURE (Length of burn-in
450 period 3×10^5 ; number of MCMC runs 2×10^6). Ten runs were performed for K-values 1-10.
451 StructureSelector⁶⁰ was used to decide the optimal K based on Delta-K method²¹, and to
452 combine and visualize the STRUCTURE results of 10 independent runs for each K-value in
453 this and the subsequent analyses.

454 In order to detect nested population structure, the global run was complemented with
455 analyses of populations from the Atlantic and Pacific side, respectively. Pacific data were
456 extracted from ZM_Neutral_SNPs (144,773 SNPs), excluding monomorphic sites and those
457 with missing data. To obtain putatively independent SNPs, we thinned sites using Vcftools,
458 so that no two sites were within 3,000 bp distance (physical distance in the reference
459 genome) from one another (ZM_Pacific_SNPs, 12,514 SNPs). Those 12,514 SNPs were used
460 in the PCA, while a set of randomly selected 6,168 SNPs was used in STRUCTURE to
461 reduce run times (Length of burn-in period 3×10^5 ; number of MCMC runs 2×10^6) as
462 described above and with possible K-values between 1 and 7.

463 Polymorphism data for Atlantic and Mediterranean eelgrass were extracted from
464 ZM_Neutral_SNPs (144,773 SNPs). To obtain putatively independent SNPs, we thinned sites
465 using Vcftools according to the above criteria. The resulting 8,552 SNPs were then used to
466 run another separate PCA and STRUCTURE using the parameters above. For STRUCTURE
467 analysis, K was set from 1 to 5. For each K, we repeated 10 times independently
468 (Supplementary Fig. 6,7).

469 For the cpDNA data, the population structure was explored using a haplotype
470 network, constructed via the Median Joining Network method⁶¹ with epsilon 0 and 1
471 implemented by PopART⁶², based on 151 polymorphic sites.

472

473 **Analysis of reticulate evolution using split network**

474 To assess reticulate evolutionary processes, we used SplitsTree4²² to construct a split
475 network, which is a combinatorial generalization of phylogenetic trees and is designed to
476 represent incompatibilities. A custom Python3 script was used to generate a fasta format file
477 containing concatenated DNA sequences for all ramets based on ZM_Core_SNPs. For a
478 heterozygous genotype, one allele was randomly selected to represent the site. The fasta
479 format file was converted to nexus format file using MEGAX⁶³, which was fed to
480 SplitsTree4. NeighborNet method was used to construct the split network.

481

482 **Genetic diversity**

483 Vcftools was used to calculate nucleotide diversity (π) for each population at all synonymous
484 sites using each of the six chromosomes as replicates for 44,685 SNPs without any missing
485 data (Supplementary Fig. 1). Genomic heterozygosity for a given genotype H_{OBS} (as number
486 of heterozygous sites) / (total number of sites with available genotype calls) was calculated
487 using a custom Python3 script based on all synonymous SNPs (144,773).

488

489 **Pairwise population differentiation using F_{ST}**

490 We used the function stamppFst in the StAMPP-R package⁶⁴ to calculate pairwise F_{ST} based
491 on ZM_Core_SNPs (Supplementary Table 4). P-values were generated by 1,000 bootstraps
492 across loci.

493

494 **D-statistics**

495 Patterson's D provides a simple and powerful test for the deviation from a strict bifurcating
496 evolutionary history. The test is applied to three populations P1, P2, and P3 plus an outgroup
497 O, with P1 and P2 being sister populations. If P3 shares more derived alleles with P2 than

498 with P1, Patterson's D will be positive. We used Dsuite²⁴ to calculate D-values for
499 populations within the Pacific and Atlantic side, respectively (Supplementary Fig. 9),
500 respectively. D was calculated for trios of *Z. marina* populations based on the SNP core
501 dataset (ZMZJ_D_SNPs) (Supplementary Fig. 2), using *Z. japonica* as outgroup. The Ruby
502 script plot_d.rb
503 (https://github.com/mmatschiner/tutorials/blob/master/analysis_of_introgression_with_snp_d
504 ata/src/plot_d.rb) was used to plot a heatmap that jointly visualizes both the D-value and the
505 associated p value for each comparison of P2 and P3. The color of the corresponding
506 heatmap cell indicates the most significant D value across all possible populations in position
507 P1. Red colors indicate higher D values, and more saturated colors indicate greater
508 significance.
509

510 Phylogenetic tree with estimated divergence time

511 To estimate the divergence time among major groups, we used the multi-species coalescent
512 in combination with a strict molecular clock model⁹. We used the software SNAPP⁷ with an
513 input file prepared by script “snapp_prep.rb” (https://github.com/mmatschiner/snapp_prep).
514 Two specimen were randomly selected from each of the included populations, and genotype
515 information was extracted from ZMZJ_Neutral_SNPs (Supplementary Fig. 1,2).
516 Monomorphic sites were excluded. Only SNPs without any missing data were kept. To obtain
517 putatively independent SNPs, we thinned sites using Vcftools, so that no two included SNPs
518 were within 3,000 bp (physical distance in the reference genome) from one another (6,169
519 SNPs). The estimated divergence time between *Z. japonica* and *Z. marina* was used as
520 calibration point, which was implemented as a lognormal prior distribution (Supplementary
521 Note 2, mean = 11.154 mya, SD = 0.07).

522 A large proportion of the 6,169 SNPs above represented the genetic differences
523 between *Z. japonica* and *Z. marina*, and were monomorphic in *Z. marina*. To obtain a better
524 estimation among *Z. marina* populations, we performed a second, *Z. marina*-specific SNAPP
525 analysis via subsampling from the ZM_Neutral_SNPs (144,773 SNPs) data set, excluding
526 monomorphic sites and missing data. We thinned sites again using Vcftools, so that all sites
527 were \geq 3,000 bp distance from one another (13,732 SNPs). The crown divergence for all *Z.*
528 *marina* populations, estimated in the first SNAPP analysis, was used as calibration point, and
529 implemented as a lognormal prior distribution (mean = 0.3564 Mya, SD = 0.1).

530 As the multi-species coalescent model does not account for genetic exchange, the
531 SNAPP analysis was repeated after removing certain populations based on admixture
532 assessments via STRUCTURE (Fig. 2), SplitsTree (Fig. 3) and D statistics (Supplementary
533 Fig. 9). This produced two reduced data sets: The first included seven populations from
534 which for the Pacific side, WAS, BB, and ALI were excluded, while for the Atlantic side,
535 NC, SW, and CZ were selected to be representatives for the Northwest Atlantic, Northeast
536 Atlantic, and the Mediterranean Sea, respectively (Supplementary Fig. 11). Here, we focus on
537 a more complete set with 14 populations where only two Pacific locations WAS and BB
538 (involved in admixture with SD) were excluded. This was legitimate as time estimates for
539 major divergence events were very similar (compare Fig. 4. to Supplementary Fig. 11).

540 541 Demographic analysis

542 The Multiple Sequentially Markovian Coalescent²⁷ was run for each genotype per population.
543 We here focus on time intervals where different replicate runs per population converged,
544 acknowledging that MSMC creates unreliable estimates in recent time⁶⁵. Owing to marked
545 differences in the degree of clonality and the relative amount of sexual vs. clonal
546 reproduction, the generation time of *Z. marina* varies across populations which prevented us
547 to represent the x-axis in absolute time.
548 We first generated one mappability mask file for each of the six main chromosomes using
549 SNPable (<http://lh3lh3.users.sourceforge.net/snpable.shtml>). Each file contained all regions
550 on the chromosome that permitted unique mapping of sequencing reads. We then generated
551 one mask file for all core genes along each of the six main chromosomes. We generated one
552 ramet-specific mask file based on the bam format file using bamCaller.py
553 (<https://github.com/stschiff/msmc-tools>), containing the chromosomal regions with sufficient
554 coverage of any genotype. The minDepth variable in bamCaller.py was set to 10. We also
555 generated a ramet-specific vcf file for each of the six main chromosomes based on
556 ZM_HQ_SNPs using a custom Python3 script.
557

558 **Recolonization scenarios after the LGM for the Atlantic**

559 DIYABC-RF⁶⁶ was used to run simulations under each scenario
560 to distinguish between alternative models of the recolonization history of *Z. marina* after the
561 LGM. Considering that the Mediterranean Sea had its own glacial refugium, the ABC-
562 modeling was conducted for only the Atlantic. We constructed three recolonization scenarios
563 (Supplementary Fig. 12) (i) NC and MA were glacial refugia in the Atlantic, first recolonized
564 QU as stepping stone and then the Northeast Atlantic. (ii) NC and MA represent the only
565 glacial refugia in the Atlantic. Both QU and Northeast Atlantic were directly recolonized by
566 the glacial refugia. (iii) NC and MA represent the southern glacial refugia for the Northwest
567 Atlantic only.
568

569 **Data and code availability**

570 Genome data have been deposited in Genbank (short read archive, Supplementary data 3).
571 Coding sequences of *Z. japonica* and *Z. marina* for the ASTRAL analysis can be found on
572 figshare (doi.org/10.6084/m9.figshare.21626327.v1). VCF files of the 11,705 core SNPs can
573 be accessed at doi.org/10.6084/m9.figshare.21629471.v1. Custom-made scripts were
574 deposited on GitHub (github.com/leiyu37/populationGenomics_ZM.git).
575
576

577 **Acknowledgements**

578 This study was supported by a PhD-scholarship from the China Scholarship Council (CSC) to
579 L.Y. (No. 201704910807), by a fellowship to M.K in the Helmholtz School for Marine Data
580 Science (MarDATA, grant no HIDSS-0005), and by a grant to Jonathan Eisen, J.J.S. and
581 J.L.O from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) Community
582 Sequencing Program (CSP 502951, 2016, Population and evolutionary genomics of host-
583 microbiome interactions in *Zostera marina* and other seagrasses). The work
584 (proposal: 10.46936/10.25585/60000773) conducted by the U.S. Department of Energy Joint
585 Genome Institute (<https://ror.org/04xm1d337>), a DOE Office of Science User Facility, is
586 supported by the Office of Science of the U.S. Department of Energy operated under

587 Contract No. DE-AC02-05CH11231. Field sampling was supported by the National Science
588 Foundation (OCE-1336206 to JED). We thank X. Zhang for providing the unpublished
589 reference genome of *Zostera japonica* to predict the coding sequences, Susanne Landis
590 (scienstration) for assisting with figures and illustrations and the many other members of the
591 *Zostera* Experimental Network (ZEN). We thank T. Bayer for discussions on bioinformatic
592 problems and Y. Li for assistance with the ABC-RF analysis.

593

594

595

596 **Sampling permits and compliance with the Convention on Biological Diversity**

597 All samples were obtained in compliance with national regulations for the sampling of
598 biological material, including the adherence to the regulations laid out in the national
599 guidelines to assure fair share of genomic information ("Nagoya"-protocol).

600

601 **Competing interests**

602 The authors declare no competing interests.

603

604 **Literature Cited**

605

- 606 1 Chen, L.-Y. *et al.* Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic
607 Environments. *Molecular Biology and Evolution* **39**, msac079, doi:10.1093/molbev/msac079 (2022).
- 608 2 Unsworth, R. K. F., Cullen-Unsworth, L. C., Jones, B. L. H. & Lilley, R. J. The planetary role of
609 seagrass conservation. *Science* **377**, 609-613, doi:10.1126/science.abq6923 (2022).
- 610 3 Green, E. P. & Short, F. T. *World Atlas of Seagrasses*. (Univ. of California Press, 2003).
- 611 4 Coyer, J. A. *et al.* Phylogeny and temporal divergence of the seagrass family Zosteraceae using one
612 nuclear and three chloroplast loci. *Systematics and Biodiversity* **11**, 271-284,
613 doi:10.1080/14772000.2013.821187 (2013).
- 614 5 Waycott, M., Biffin, E. & Les, D. H. in *Seagrasses of Australia: Structure, Ecology and Conservation*
615 (eds Anthony W. D. Larkum, Gary A. Kendrick, & Peter J. Ralph) 129-154 (Springer International
616 Publishing, 2018).
- 617 6 Marske, K. A., Rahbek, C. & Nogués-Bravo, D. Phylogeography: spanning the ecology-evolution
618 continuum. *Ecography* **36**, 1169-1181, doi:<https://doi.org/10.1111/j.1600-0587.2013.00244.x> (2013).
- 619 7 Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A. Inferring species
620 trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis.
621 *Molecular Biology and Evolution* **29**, 1917-1932, doi:10.1093/molbev/mss086 (2012).
- 622 8 Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree
623 reconstruction from partially resolved gene trees. *BMC Bioinformatics* **19**, 153, doi:10.1186/s12859-
624 018-2129-y (2018).
- 625 9 Stange, M., Sánchez-Villagra, M. R., Salzburger, W. & Matschiner, M. Bayesian Divergence-Time
626 Estimation with Genome-Wide Single-Nucleotide Polymorphism Data of Sea Catfishes (Ariidae)
627 Supports Miocene Closure of the Panamanian Isthmus. *Systematic Biology* **67**, 681-699,
628 doi:10.1093/sysbio/syy006 (2018).
- 629 10 Hewitt, G. The genetic legacy of the Quaternary ice ages. *Nature* **405**, 907-913, doi:10.1038/35016000
630 (2000).
- 631 11 Bringloe, T. T., Verbruggen, H. & Saunders, G. W. Unique biodiversity in Arctic marine forests is
632 shaped by diverse recolonization pathways and far northern glacial refugia. *Proceedings of the
633 National Academy of Sciences* **117**, 22590-22596, doi:10.1073/pnas.2002753117 (2020).
- 634 12 Neiva, J. *et al.* Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp
635 *Saccharina latissima*. *Scientific Reports* **8**, 1112, doi:10.1038/s41598-018-19620-7 (2018).
- 636 13 Marko, P. B. *et al.* The ‘Expansion–Contraction’ model of Pleistocene biogeography: rocky shores
637 suffer a sea change? *Molecular Ecology* **19**, 146-169, doi:<https://doi.org/10.1111/j.1365-294X.2009.04417.x> (2010).
- 638 14 Hewitt, G. M. & Nichols, R. A. in *Climate Change and Biodiversity* (eds T. E. Lovejoy & L. Hannah)
639 176-192 (Yale University Press, 2005).

641 15 Duffy, J. E. *et al.* A Pleistocene legacy structures variation in modern seagrass ecosystems.
642 *Proceedings of the National Academy of Sciences* **119**, e2121425119, doi:10.1073/pnas.2121425119
643 (2022).

644 16 Clark, P. U. *et al.* The Last Glacial Maximum. *Science* **325**, 710-714, doi:10.1126/science.1172873
645 (2009).

646 17 Ma, X. *et al.* Improved chromosome-level genome assembly and annotation of the seagrass, *Zostera*
647 *marina* (eelgrass) *F1000Research* **10**, 289 (2021).

648 18 Danilevicz, M. F., Tay Fernandez, C. G., Marsh, J. I., Bayer, P. E. & Edwards, D. Plant pangenomics:
649 approaches, applications and advancements. *Current Opinion in Plant Biology* **54**, 18-25,
650 doi:<https://doi.org/10.1016/j.pbi.2019.12.005> (2020).

651 19 Olsen, J. L. *et al.* The genome of the seagrass *Zostera marina* reveals angiosperm adaptation to the sea.
652 *Nature* **530**, 331–335, doi:10.1038/nature16548 (2016).

653 20 Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus
654 Genotype Data. *Genetics* **155**, 945-959 (2000).

655 21 Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the
656 software STRUCTURE: a simulation study. *Mol Ecol* **14**, 2611–2620 (2005).

657 22 Huson, D. H. & Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. *Molecular*
658 *Biology and Evolution* **23**, 254-267, doi:10.1093/molbev/msj030 (2006).

659 23 Patterson, N. *et al.* Ancient Admixture in Human History. *Genetics* **192**, 1065-1093,
660 doi:10.1534/genetics.112.145037 (2012).

661 24 Malinsky, M., Matschiner, M. & Svardal, H. Dsuite - Fast D-statistics and related admixture evidence
662 from VCF files. *Molecular Ecology Resources* **21**, 584-595, doi:<https://doi.org/10.1111/1755-0998.13265> (2021).

663 25 Marinovich, L. & Gladenkov, A. Y. Evidence for an early opening of the Bering Strait. *Nature* **397**,
664 149-151, doi:10.1038/16446 (1999).

665 26 Ogilvie, H. A., Bouckaert, R. R. & Drummond, A. J. StarBEAST2 Brings Faster Species Tree
666 Inference and Accurate Estimates of Substitution Rates. *Molecular Biology and Evolution* **34**, 2101-
667 2114, doi:10.1093/molbev/msx126 (2017).

668 27 Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple
669 genome sequences. *Nature Genetics* **46**, 919-925, doi:10.1038/ng.3015 (2014).

670 28 Cortés, A. J., López-Hernández, F. & Osorio-Rodríguez, D. Predicting Thermal Adaptation by Looking
671 Into Populations' Genomic Past. *Frontiers in Genetics* **11**, 564515 (2020).

672 29 Hemminga, M. A. & Duarte, C. M. *Seagrass Ecology*. (Cambridge University Press, 2000).

673 30 Gross, C. P. *et al.* The biogeography of community assembly: latitude and predation drive variation in
674 community trait distribution in a guild of epifaunal crustaceans. *Proceedings of the Royal Society B:
675 Biological Sciences* **289**, 20211762, doi:10.1098/rspb.2021.1762 (2022).

676 31 Gallagher, S. J. *et al.* The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-
677 proxy approach. *Progress in Earth and Planetary Science* **2**, 17, doi:10.1186/s40645-015-0045-6
678 (2015).

679 32 Burton, R. S. Intraspecific phylogeography across the Point Conception biogeographic boundary.
680 *Evolution* **52**, 734-745, doi:<https://doi.org/10.1111/j.1558-5646.1998.tb03698.x> (1998).

681 33 Laakkonen, H. M., Hardman, M., Strelkov, P. & Väinölä, R. Cycles of trans-Arctic dispersal and
682 vicariance, and diversification of the amphi-boreal marine fauna. *Journal of Evolutionary Biology* **34**,
683 73-96, doi:<https://doi.org/10.1111/jeb.13674> (2021).

684 34 Coyer, J. A., Hoarau, G., Van Schaik, J., Luijckx, P. & Olsen, J. L. Trans-Pacific and trans-Arctic
685 pathways of the intertidal macroalga *Fucus distichus* L. reveal multiple glacial refugia and
686 colonizations from the North Pacific to the North Atlantic. *Journal of Biogeography* **38**, 756-771,
687 doi:<https://doi.org/10.1111/j.1365-2699.2010.02437.x> (2011).

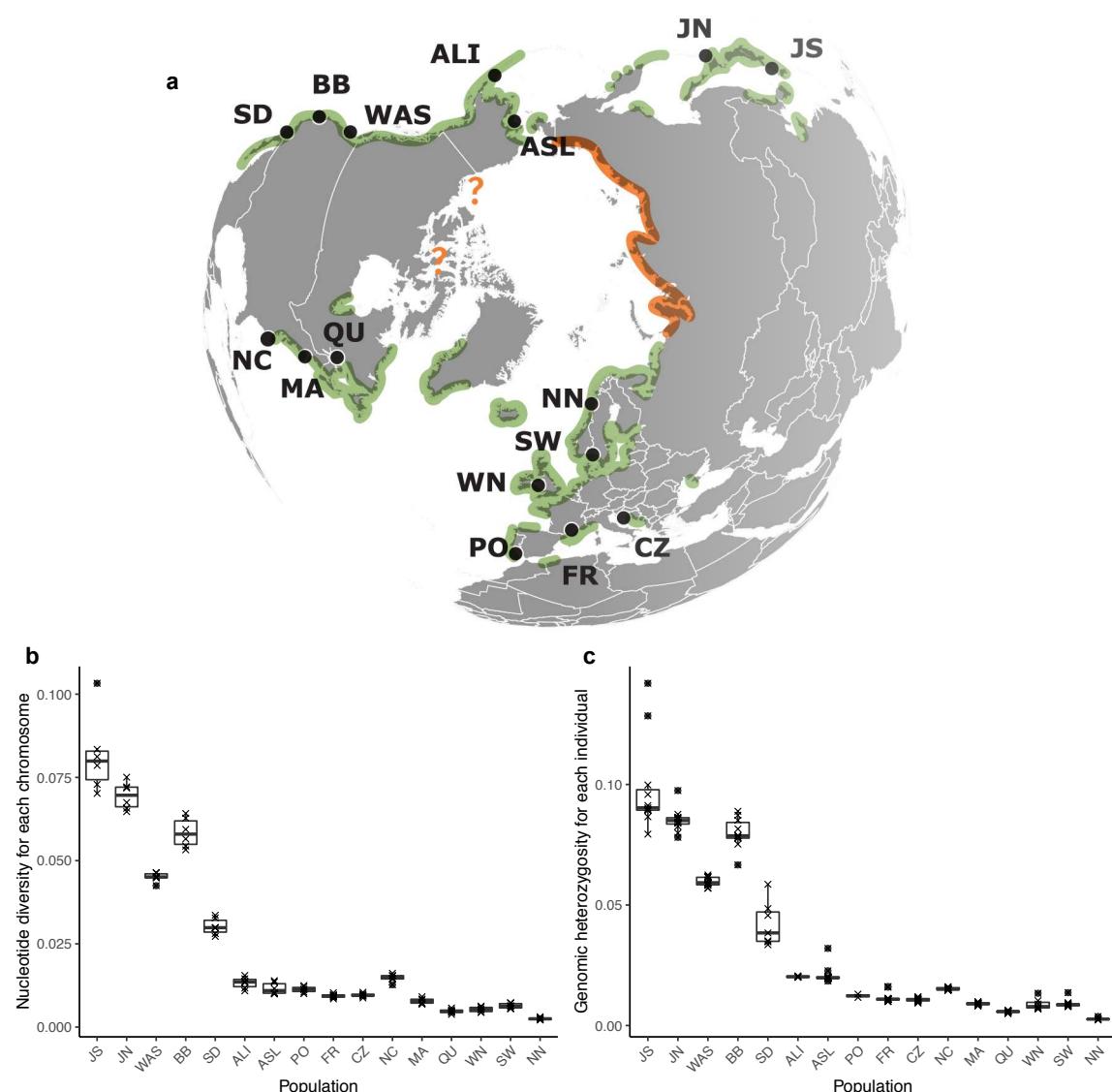
688 35 Talbot, S. L. *et al.* The Structure of Genetic Diversity in Eelgrass (*Zostera marina* L.) along the North
689 Pacific and Bering Sea Coasts of Alaska. *PLOS One* **11**, e0152701, doi:10.1371/journal.pone.0152701
690 (2016).

691 36 Maggs, C. A. *et al.* Evaluating signals of glacial refugia for North Atlantic benthic taxa *Ecology* **89**,
692 S108-S122, doi:<https://doi.org/10.1890/08-0257.1> (2008).

693 37 Li, J.-J., Hu, Z.-M. & Duan, D.-L. in *Seaweed Phylogeography: Adaptation and Evolution of Seaweeds*
694 *under Environmental Change* (eds Zi-Min Hu & Ceridwen Fraser) 309-330 (Springer Netherlands,
695 2016).

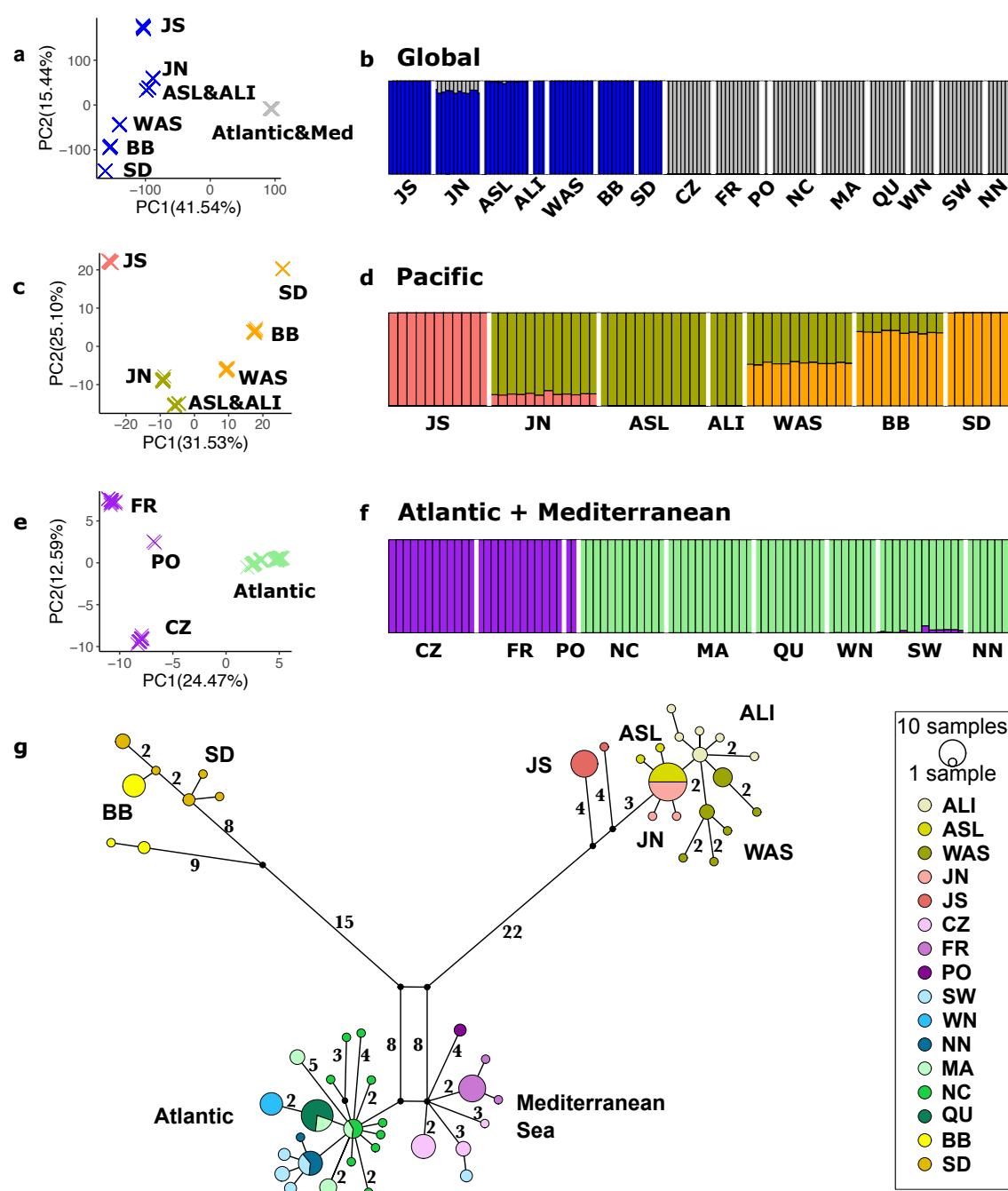
696 38 Jenkins, T., Castilho, R. & Stevens, J. Meta-analysis of northeast Atlantic marine taxa shows
697 contrasting phylogeographic patterns following post-LGM expansions. *PeerJ* **6**, e5684 (2018).

698 39 Olsen, J. L. *et al.* North Atlantic phylogeography and large-scale population differentiation of the
699 seagrass *Zostera marina* L. *Mol Ecol* **13**, 1923-1941 (2004).


700

701 40 Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (Springer Verlag, Berlin, 2006).
702 41 Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. *Annual Review in*
703 *Ecology and Systematics* **25**, 547-572 (1994).
704 42 Franssen, S. U. *et al.* Transcriptomic resilience to global warming in the seagrass *Zostera marina*, a
705 marine foundation species. *Proc Natl Acad Sci USA* **108**, 19276-19281 (2011).
706 43 Bertelli, C. M. & Unsworth, R. K. F. Protecting the hand that feeds us: Seagrass (*Zostera marina*)
707 serves as commercial juvenile fish habitat. *Marine Pollution Bulletin* **83**, 425-429,
708 doi:<https://doi.org/10.1016/j.marpolbul.2013.08.011> (2014).
709 44 Reusch, T. B. H. *et al.* Lower *Vibrio* spp. abundances in *Zostera marina* leaf canopies suggest a novel
710 ecosystem function for temperate seagrass beds *Marine Biology* **168**, 149 (2021).
711 45 Stevenson, A., Corcra, T. C. Ó., Hukriede, W., Schubert, P. & Reusch, T. B. H. Substantial seagrass
712 blue carbon pools in the southwestern Baltic Sea are spatially heterogeneous, mostly autochthonous,
713 and include historically terrestrial peatlands. *Front. Mar. Sci.* **9**, 949101 (2022).
714 46 Yu, L. *et al.* Somatic genetic drift and multilevel selection in a clonal seagrass. *Nature Ecology &*
715 *Evolution* **4**, 952–962, doi:10.1038/s41559-020-1196-4 (2020).
716 47 Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple
717 tools and samples in a single report. *Bioinformatics* **32**, 3047-3048, doi:10.1093/bioinformatics/btw354
718 (2016).
719 48 Georganas, E. *et al.* in *SC '15: Proceedings of the International Conference for High Performance*
720 *Computing, Networking, Storage and Analysis*. 1-11.
721 49 Kent, W. J. BLAT—The BLAST-Like Alignment Tool. *Genome Research* **12**, 656-664 (2002).
722 50 Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics* **24**,
723 1403-1405, doi:10.1093/bioinformatics/btn129 (2008).
724 51 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.
725 *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
726 52 Van der Auwera, G. A. & O'Connor, B. D. *Genomics in the cloud: using Docker, GATK, and WDL in*
727 *Terra*. (O'Reilly Media, 2020, 2020).
728 53 Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and
729 population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987-2993,
730 doi:10.1093/bioinformatics/btr509 (2011).
731 54 Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156-2158,
732 doi:10.1093/bioinformatics/btr330 (2011).
733 55 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
734 *Bioinformatics* **26**, 841-842, doi:10.1093/bioinformatics/btq033 (2010).
735 56 Yu, L., Stachowicz, J. J., DuBois, K. & Reusch, T. B. H. Using “identity by heterozygosity (IBH)” to
736 detect clonemates under prevalent clonal reproduction in multicellular diploids. *bioRxiv*,
737 2022.2002.2016.480681, doi:10.1101/2022.02.16.480681 (2022).
738 57 Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes
739 from whole genome data. *Nucleic Acids Research* **45**, e18-e18, doi:10.1093/nar/gkw955 (2017).
740 58 Petit, R. J. & Vendramin, G. G. in *Phylogeography of Southern European Refugia: Evolutionary*
741 *perspectives on the origins and conservation of European biodiversity* (eds Steven Weiss & Nuno
742 Ferrand) 23-97 (Springer Netherlands, 2007).
743 59 Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in
744 R. *Molecular Ecology Resources* **17**, 44-53, doi:<https://doi.org/10.1111/1755-0998.12549> (2017).
745 60 Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal
746 number of clusters using multiple methods. *Molecular Ecology Resources* **18**, 176-177,
747 doi:<https://doi.org/10.1111/1755-0998.12719> (2018).
748 61 Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies.
749 *Molecular Biology and Evolution* **16**, 37-48, doi:10.1093/oxfordjournals.molbev.a026036 (1999).
750 62 Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. *Methods in*
751 *Ecology and Evolution* **6**, 1110-1116, doi:<https://doi.org/10.1111/2041-210X.12410> (2015).
752 63 Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics
753 Analysis across Computing Platforms. *Molecular Biology and Evolution* **35**, 1547-1549,
754 doi:10.1093/molbev/msy096 (2018).
755 64 Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: an R package for calculation of genetic
756 differentiation and structure of mixed-ploidy level populations. *Molecular Ecology Resources* **13**, 946-
757 952, doi:<https://doi.org/10.1111/1755-0998.12129> (2013).
758 65 Schiffels, S. & Wang, K. in *Statistical population genomics* 147-166 (Humana, New York, NY,
759 2020).

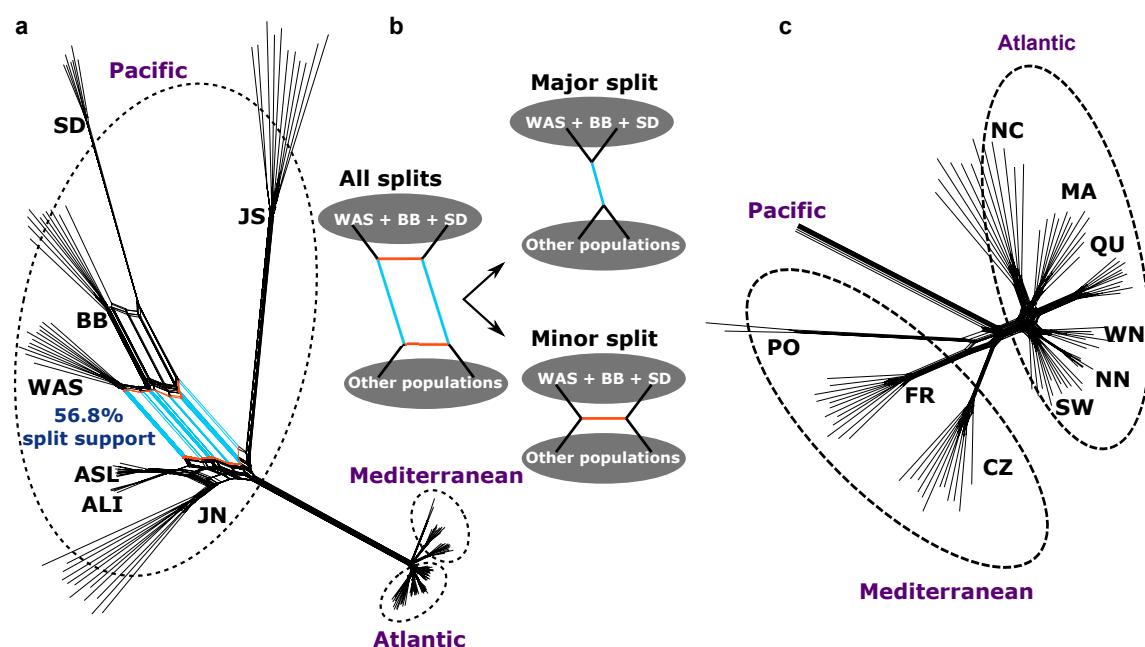
Yu *et al.* Worldwide colonization of eelgrass (*Zostera marina*)


760 66 Collin, F.-D. *et al.* Extending approximate Bayesian computation with supervised machine learning to
761 infer demographic history from genetic polymorphisms using DIYABC Random Forest. *Molecular*
762 *Ecology Resources* **21**, 2598-2613, doi:<https://doi.org/10.1111/1755-0998.13413> (2021).
763

764 **Figures and Figure Legends**

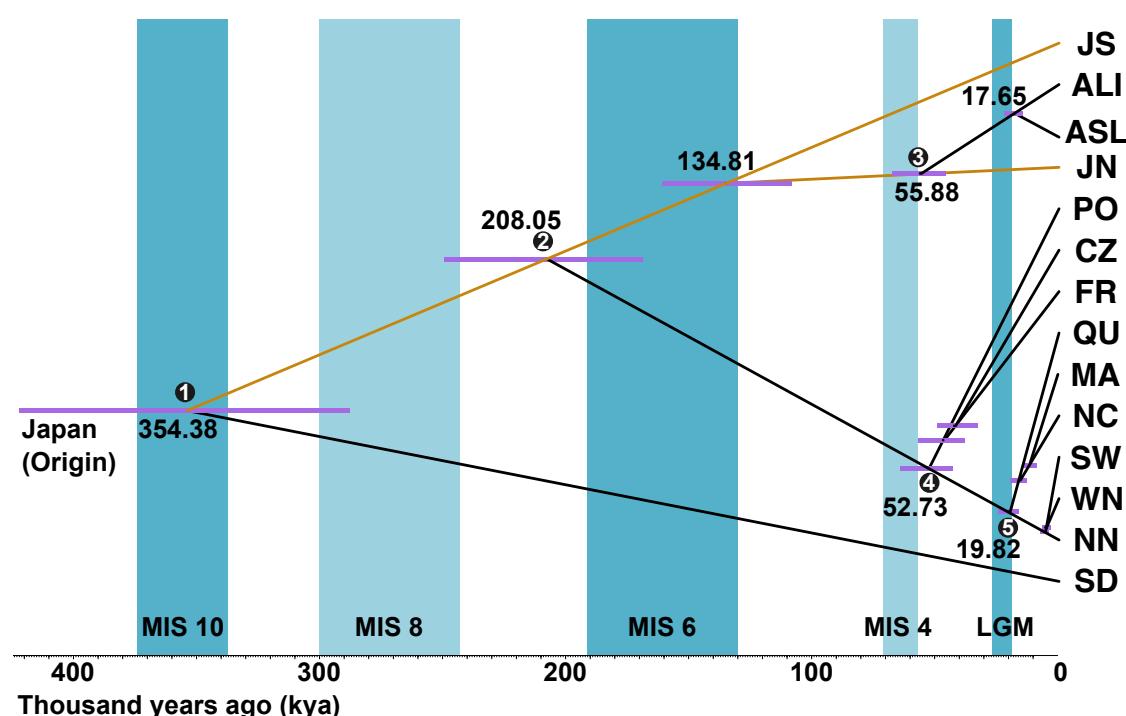
765
766 **Fig. 1 | Distribution and sampling sites for *Zostera marina* and their widely varying**
767 **genetic diversity. a**, Population abbreviations: San Diego, California (SD); Bodega Bay,
768 California (BB); Washington state (WAS); Alaska-Izembek (ALI); Alaska-Safety Lagoon
769 (ASL); Japan-North (JN); Japan-South (JS); North Carolina (NC); Massachusetts (MA);
770 Quebec (QU); Northern Norway (NN); Sweden (SW); Wales North (WN); Portugal (PO);
771 Mediterranean France (FR); Croatia (CZ). Green areas indicate presence of *Z. marina*. The
772 orange line along the Siberian coastline represents the absence of *Z. marina* based on cursory
773 surveys of Alismatales including *Z. marina* by Russian colleagues. The latter areas are
774 characterized by gravel coasts, river outflows and turbid waters. Question marks indicate
775 areas that have not been explored. Detailed location metadata can be found in Supplementary
776 Table 1. **b**, Genetic diversity: box-plots (25/75% percentile, median) of nucleotide diversity
777 (π), calculated for each of the six chromosomes based on the 44,865 SNP set (Supplementary
778 Fig. 1). Each data point indicates one chromosome. **c**, Box-plots of individual genome wide
779 heterozygosity H_{obs} based on the 144,773 SNP set (Supplementary Fig. 1), as (number of
780 heterozygous sites) / (total number of sites with genotype calls). Each data point corresponds
781 to a population sample (10-12 individuals). See statistical tests for differences in mean π or
782 H_{obs} in Supplementary Table 4.

783



784
785

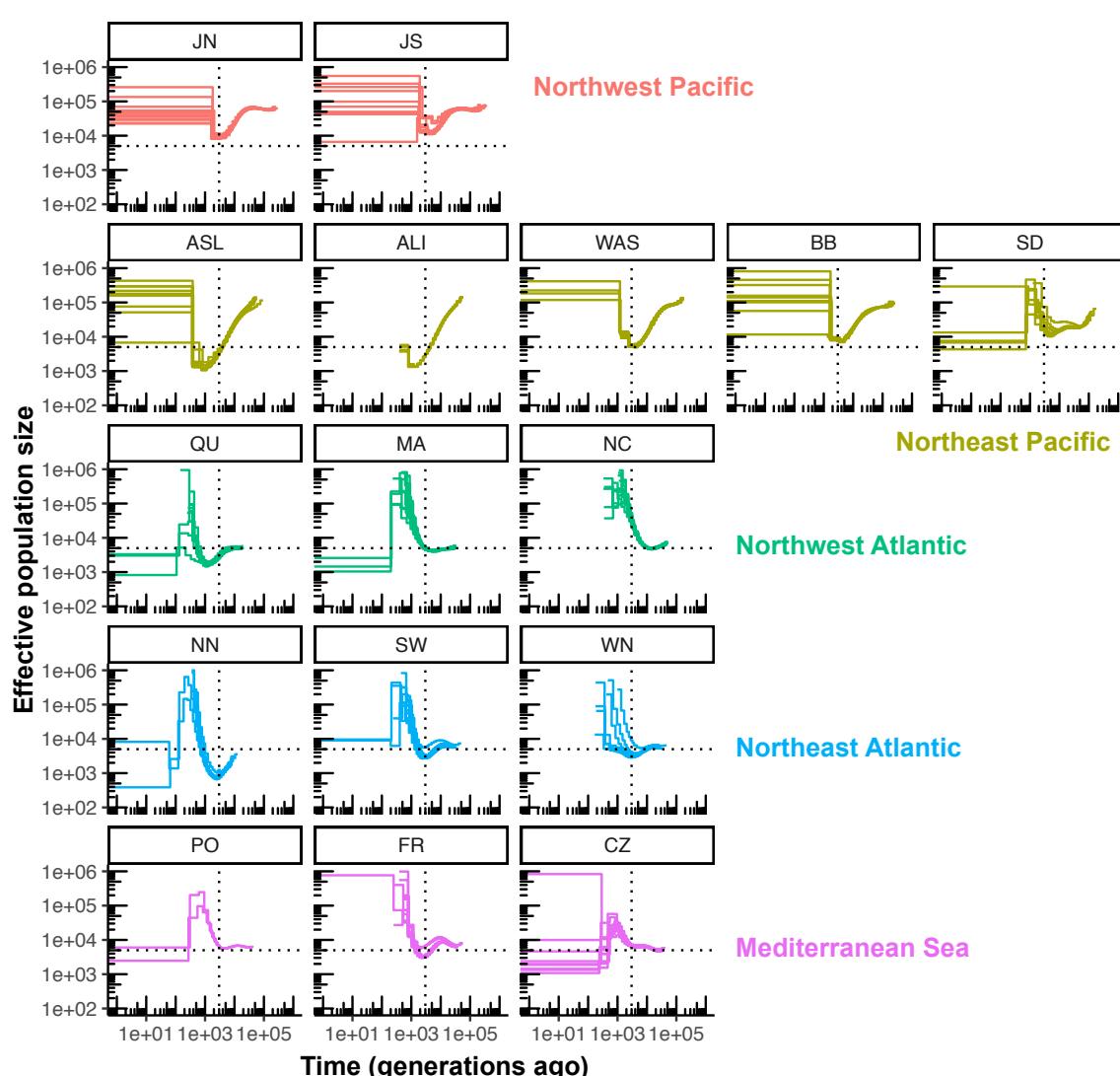
786 **Fig. 2 | Population structure based on nuclear and cpDNA SNPs among 16 eelgrass**
787 **populations.** **a,b**, Global genetic population structure. **a**, Global Principal Component
788 Analysis (PCA) based on 782,652 SNPs, here Atlantic and Mediterranean populations are
789 collapsed. Pacific and Atlantic Ocean were separated by PC1 that explained 41.75% of the
790 variation **b**, Global STRUCTURE analysis (no of clusters, $K = 2$; based on 2,353 SNPs).
791 Each individual is represented by a vertical bar partitioned into colors based on its affiliation
792 to a genetic cluster, as determined by delta-K method (see Methods) **c, d**, Genetic population
793 structure within the Pacific based on 12,514 SNPs. **d**,
794 STRUCTURE analysis within the Pacific ($K = 3$; 6,168 SNPs). **e, f**, Genetic population
795 structure for the Atlantic and the Mediterranean Sea based on 8,552 SNPs. **f**, STRUCTURE analysis for the Atlantic and the
796 Mediterranean Sea ($K = 2$; 8,552 SNPs). See Supplementary Fig. 5-7 for results assuming
797 higher numbers of clusters, and Supplementary Fig. 1 for further details on the SNP sets
798


Yu *et al.* Worldwide colonization of eelgrass (*Zostera marina*)

799 used. **g**, cpDNA haplotype network. Numbers represent mutation steps >1. Colors correspond
800 to the population. Split-colored circles indicate that a particular haplotype is shared between
801 populations, circle size is proportional to frequency.
802

803
804

805 **Fig. 3 | Conflicting phylogenetic signals in the nuclear genome. a**, Splits network based on
806 the core chromosomal SNP set (11,705 SNP, Supplementary Fig. 1). Each terminal branch
807 indicates one individual sample. Splits colored in cyan are particularly strongly supported
808 between a grouping of WAS, BB and SD and the rest of the Pacific. **b**, Main signals in the
809 observed network structure. The splits network structure indicates that the SNP dataset
810 supports alternative evolution histories, which are particularly strong with respect to BB,
811 WAS and SD. The major split depicted in **b** is supported by 56.8% of all splits. **c**, Splits
812 network reconstructed for Atlantic populations only.



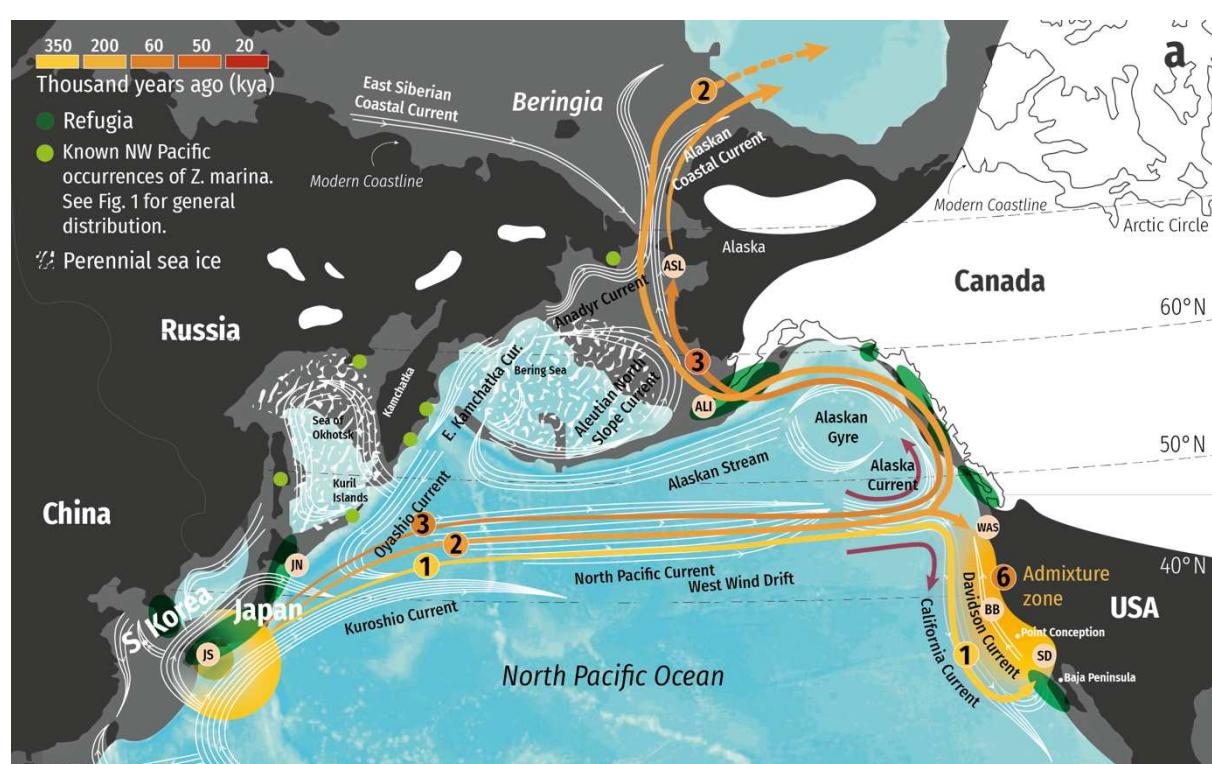
813
814

815 **Fig. 4 | Time-calibrated phylogenetic tree based on the multi-species coalescent (MSC)**
816 **allows dating of major colonization events. a,** Blue bars indicate glacial periods with
817 Marine Isotope Stages (MIS) alternating with warm to cool interglacial periods (white).
818 Intensity of blue color depicts the intensity of glaciations. The Last Glacial Maximum
819 (MIS2=LGM) is depicted at 26.5-19 kya. Estimated absolute divergence times of 7 nodes
820 with stable topology (Supplementary Fig. 11) along with 95% confidence intervals (highest
821 posterior densities, purple bars) are given. The two most strongly admixed populations WAS
822 and BB were excluded (See Fig. 2 and 3). The orange edge connects the hypothetical founder
823 in the Japan area with the extant JN and JS sites. Inferred colonization scenarios (numbered
824 black dots on the nodes) are presented in Fig. 6.

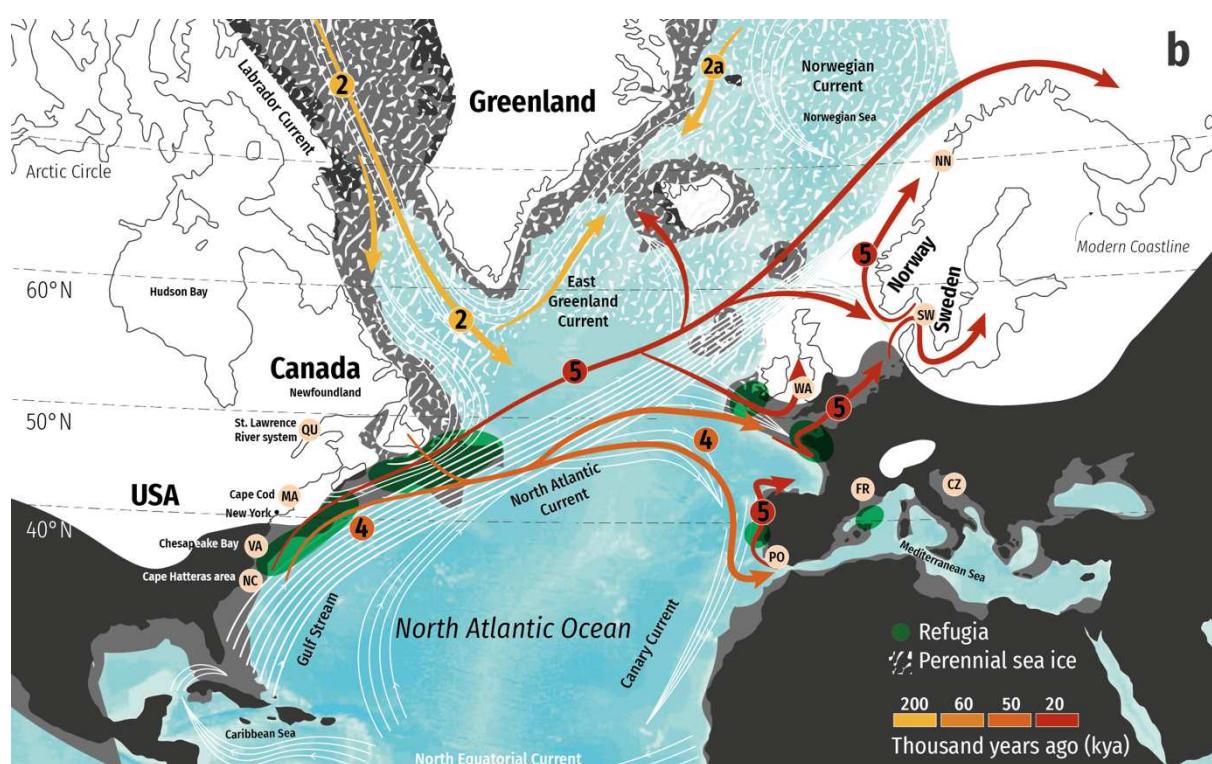
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

845

846


847

848


849 **Fig. 5 | Demographic history of worldwide eelgrass (*Zostera marina*) populations reveal**
850 **effects of the Last Glacial Maximum (LGM).** Historical effective population sizes (N_e)
851 were inferred by the multiple sequentially Markovian coalescent (MSMC). Replicate runs
852 were performed with all unique genotypes in each location, depicted as separate lines. The x-
853 axis depicts generations rather than absolute time as generation time for *Z. marina* varies
854 depending on the level of local clonality. N_e -values are capped at 1 million. Many northern
855 populations reveal a minimal N_e (thus likely a bottleneck) at ~3,000 generations ago (dashed
856 vertical lines), which probably reflects the impact of the LGM. Note that estimates younger
857 than 1,000 generations are considered unreliable and are hence not be interpreted. The dashed
858 horizontal lines at $N_e = 5,000$ are for orientation only.

859

860
861

862
863

864
865

Fig. 6 | Dispersal and colonization history across the Pacific and to the Atlantic. For both maps: present coastline (black), LGM sea level coastline (dark gray), glaciers (white), perennial sea ice (speckled white), and current pathways (as shown). Sampled locations (pink dots with labels following Fig. 1), hypothesized refugia (dark green ovals). Dispersal pathways and timing (yellow-orange-red gradient arrows) including the North Pacific Current

871 “gateway” (paired purple arrows). Numbers on current pathways correspond to phylogenetic
872 branch points (nodes) in Fig. 4. **a**, Pacific Ocean. *Z. marina* arose in the Japanese
873 Archipelago. Known occurrences in the Russian Arctic (light green dots). Hypothesized
874 dispersal events: (1) first trans-Pacific dispersal via the North Pacific Current, arriving at the
875 “gateway”, where it splits both south following the California Current, and north via the
876 Alaska Current; (2) Second inferred trans-Pacific dispersal, ultimately arriving in the
877 Atlantic, with an unknown, possibly extinct “ghost” population that was replaced by the
878 extant Alaska population; (3) Alaska was colonized recently via North Japan in a third trans-
879 Pacific event. SD ancestors may have later dispersed northwards (presumably via the
880 Davidson Current), forming sequential admixtures with BB and WAS (“admixture zone”,
881 event “6”). **b**, Atlantic Ocean. The dispersal into the Atlantic was likely propelled by the
882 southward Labrador current (2). (4) original foundation of the Mediterranean populations
883 (including Portugal) and further along the Atlantic coastlines with (5) post-LGM
884 recolonization of the East Atlantic via refugia close to NC (and hypothesized southern
885 European refugia), subsequent expansion northward as the ice retreated and shorelines
886 formed.