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» ABSTRACT

18 Increasing levels of antibiotic resistance in many bacterial pathogen populations is a major threat
v to public health. Resistance to an antibiotic provides a fitness benefit when the bacteria is exposed
2 to this antibiotic, but resistance also often comes at a cost to the resistant pathogen relative to
a1 susceptible counterparts. We lack a good understanding of these benefits and costs of resistance for
» many bacterial pathogens and antibiotics, but estimating them could lead to better use of antibiotics
;3 in a way that reduces or prevents the spread of resistance. Here, we propose a new model for the
2 joint epidemiology of susceptible and resistant variants, which includes explicit parameters for the cost
» and benefit of resistance. We show how Bayesian inference can be performed under this model using
s phylogenetic data from susceptible and resistant lineages and that by combining data from both we are
27 able to disentangle and estimate the resistance cost and benefit parameters separately. We applied our
s inferential methodology to several simulated datasets to demonstrate good scalability and accuracy.
2 We analysed a dataset of Neisseria gonorrhoeae genomes collected between 2000 and 2013 in the USA.
s We found that two unrelated lineages resistant to fluoroquinolones shared similar epidemic dynamics
a1 and resistance parameters. Fluoroquinolones were abandoned for the treatment of gonorrhoea due to
» increasing levels of resistance, but our results suggest that they could be used to treat a minority of
13 around 10% of cases without causing resistance to grow again.
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« INTRODUCTION

35 The levels of antimicrobial resistance of many pathogens have risen worryingly over the past few
s decades. In a report on the threat posed by antibiotic resistance published by the CDC (Centres
w for Disease Control and Protection), three microorganisms including N. gonorrhoeae are classified as
1 posing an urgent threat level, and twelve more represent a serious threat to public health [I]. A
3 review on antimicrobial resistance estimated that resistance claims at least 700,000 lives per year
o worldwide and that the death toll could go up to 10 million per year by 2050 if current trends
a are allowed to continue [2], and a recent study estimated that there were almost 5 million deaths
» associated with resistance in 2019 [3]. Few new antimicrobials have been developed and deployed
i since the 1970s, whereas resistance to new drugs often emerges soon after initial introduction [4],
« so that several pathogens are dangerously close to becoming completely untreatable. Effectively
s tackling antimicrobial resistance requires greater understanding of epidemiological and evolutionary
«» factors leading to emergence of resistance and the spread of resistance through pathogen populations.
« Achieving this goal requires development of mathematical models of antimicrobial resistance and robust
s statistical analysis of epidemiological models with informative observations. This modelling approach
w0 to resistance was initiated in the late 1990s [5l [] and has led to the development of many models,
so appropriate for different organisms, mode of spread, study scale and context [7].

s1  Resistance brings a clear fitness benefit to pathogens acquiring it in the presence of antimicrobials.
s2 The net value of this fitness benefit therefore increases with the frequency with which the specific
53 antimicrobial is employed, either against the pathogen itself or more generally in the case of a pathogen
s« that can be carried asymptomatically. However, resistance also typically comes with a fitness cost to the
s pathogen [§]. The simplest demonstration of this effect is when discontinued use of an antimicrobial
ss leads to reductions in resistance rates. The fitness costs and benefits of resistance remain poorly
s»  understood for many pathogens and antimicrobials [9]. A better quantification of resistance benefits
ss and costs is required to provide a solid basis for evaluating the potential effectiveness of public health
so intervention measures proposed to exploit fitness costs in the hope of stopping or even reversing the
o spread of resistance [9]. For example, the numbers of gonorrhoea cases sensitive and resistant to
&1 cefixime in England over a decade was recently analysed to quantify the cost and benefit associated
2 with resistance to this antibiotic [I0]. These estimates were used to predict that cefixime could
s be reintroduced to treat a minority (~ 25%) of gonorrhoea cases without causing an increase in
e cefixime resistance levels, which would reduce the risk of emergence of resistance to the currently used
s antibiotics. Moreover, the extent of the fitness cost of resistance can vary by genomic background [I1],
s such that the effect of interventions that seek to capitalize on the fitness costs of resistance may be
e lineage dependent. Therefore, it is necessary to estimate fitness costs at the per lineage level. The aim
e of this study is to quantify the contribution that changes in prescription policy have on the population
e dynamics of particular resistant lineages. This is in contrast to studies that are interested in the overall
w0 ecology of resistance or the eventual fate of a resistant phenotypes, see for example [12].

n  Pathogen genomic data has great potential to help us understand the evolutionary and epidemiological
72 dynamics of infectious disease [I3]. An important advantage of this phylodynamic approach is that
7z analysis of genomic data is less sensitive to sampling biases, especially when using a coalescent
7« framework which describes the ancestry process conditional on sampling [14]. A few studies have used
s this approach to shed light on the fitness cost associated with antimicrobial resistance. For example, a
7 study showed the association between the growth rate of a methicillin-resistant Staphylococcus aureus
7 lineage and consumption of beta-lactams [I5]. Other studies quantified the relative transmission fitness
78 of resistance mutations in HIV [I6] and Mycobacterium tuberculosis [I7]. Here, we take a different
7 approach by modelling explicitly the phylodynamic trajectories of the sensitive and resistant lineages
s as a function of the fitness cost, which is constant, and the fitness benefit, which depends on the
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a1 antimicrobial consumption. Our method therefore requires three inputs: the amount of antimicrobial
&2 being used over time, genomic data from a sensitive lineage, and genomic data from a resistant lineage.
&s  From this we disentangle the fitness cost and benefit of resistance, thereby providing the parameters
s needed to predict phylodynamic trajectories and inform recommendations on how to use antimicrobials
s without worsening the resistance threat. Overall, the scenario we are interested in is that of overall
s resistance dynamics at a large population level. In such a scenario the bulk of incidence is going to be
ez caused by local transmission rather than imports. We do not intend for the methods presented in this
ss paper to be applicable to small population dominated by imports and complex, heterogeneous routes
s of transmission, such as within hospital setting of hospital acquired infections. For such a scenario, a
o different approach using Birth-Death type models would be more appropriate [16} [I7].

« METHODS

» Overall approach

s Pathogen phylogenetic data contains information about past population size dynamics of the pathogen
e under study [I3] [I8]. Under assumptions of the epidemic process being characterised well enough by
s a simple compartmental epidemic model, this information about population size dynamics can be
o translated into epidemic trajectories [19, [20]. These epidemic trajectories can be described using an
o7 epidemic model which accounts for the effects of a fitness cost and benefit of resistance to a specific
e antimicrobial. As the use of this antimicrobial changes through time, so will the net fitness of the
o particular lineage in consideration. This will in turn lead to changes in the behaviour of the epidemic
wo  trajectory. However, not all changes in the behaviour of the epidemic trajectory will be due to changes
w in the fitness of the resistant phenotype. Confounding factors, such as as depletion of susceptibles or
12 changes in host behaviour will also affect the epidemic trajectory. Under relatively mild assumptions
w3 detailed below changes in these confounding factors will affect other lineages equally. We can therefore
s use as “control” some data from a susceptible lineage, ideally closely related and with the same
s resistance profile to other antimicrobials used in significant amounts as primary treatment. Differences
ws  between the trajectories of the sensitive and resistant lineages can then be ascribed specifically to
w7 resistance, allowing us to estimate the associated fitness cost and benefit parameters.

ws Let us consider a pathogen causing infections at the level of a large population that are or were
s treated with a certain antimicrobial compound. We assume that at some point in the past one or
o several lineages with resistance to this antimicrobial compound have arisen. Our aim is to quantify
m  the fitness cost and benefit of the resistance to this antimicrobial for a given lineage as a function of
2 use of the antimicrobial of interest through time. To this end we need data that quantify the use over
us  time of the given antimicrobial to treat infections caused by this pathogen, as well as a reasonable
us  sample of sequenced case isolates from infections caused by the pathogen over time. Furthermore,
us  we need information that characterises the resistance profiles of the individual isolates, which can be
us obtained either by resistance screening in vitro, or predicted from the sequences in silico [21]. A dated
w7 phylogeny of these samples is estimated, for example using BEAST [22], BEAST2 [23] or BactDating
us [24]. This phylogeny is then used as the starting point for analysis [25], to identify which samples
o belong to resistant and susceptible lineages and to select related lineages for further study that are
120 wholly resistant or susceptible to the antimicrobial of interest, but otherwise similar in their resistance
1 profiles. Note that for simplicity resistance is treated as a binary trait, with samples being either
122 resistant or susceptible to antimicrobials, as is usually the case in resistance modelling studies [7].
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» Transmission model derivation

12« In order to estimate the fitness cost and benefit of antimicrobial resistance, a transmission model
s needs to be specified. We focus on estimating the fitness parameters of a particular lineage harbouring
126 a certain treatment resistant phenotype when previous infection does not confer immunity against
1z reinfection. Under the simplifying assumptions that the host population is unstructured and that past
s infections do not confer any immunity, the multi-lineage Susceptible-Infected-Susceptible (SIS) is a
19 reasonable model [26] 27]. This model is more commonly referred to as multi-strain SIS. Fluctuations
130 in the carriage levels of different lineages can also be due to external factors, such as changes in host
1w demography or behaviours. Left unaccounted, such fluctuations would bias estimates of the fitness cost
12 and benefit of resistance to a given antimicrobial. Therefore, we modify the model with time-varying
133 transmission rate B(¢) and population size N(t). This leads to an n-lineage model described by a
1 system of the following n-coupled ordinary differential equations (ODEs):

dI(t)  B(t)S(t) (1)

L2 = O —71(t) 11 (1)
dlL(t)  B()S(t)I2(t)
_ = 72(t)I2(1)
T N(t) W
dln(®) _ BOSOI) _ oyp o

at N(t)

15 Where I;(t) denotes the number of people infected with the j-th lineage at time ¢. J3(t) is the
136 transmission rate that varies with time due for example to changes that are not specific to any lineage,
7 for example host behaviour. N (t) is the host population size which may also change with time due to
s demographic factors. «;(t) is the recovery rate of the j-th lineage at time ¢. These may or may not
139 vary with time through their dependency on the antimicrobial usage which changes with time. Finally
uo  S(t) denotes the number of susceptible hosts

n

s = | N =3 L) @

j=1

w Typically this model could simply be reduced to a two lineage model, averaging over all lineages
12 that are phenotypically similar in their resistance profiles. However, this is undesirable, as some of the
3 lineages with the same resistance phenotype could differ in fitness due to different genomic background
s which would confound our estimates. Furthermore this sort of model would not be readily tractable
us in a genomic framework, because phylogenetic data is generally going to be informative about the
us dynamics of a particular lineage only. Note that this also means that the analysis produced is valid
w7 for the lineages being studied, and cannot be extrapolated to the overall dynamics of resistance for a
us  given pathogen.

1o We therefore need to focus on the resolution of individual lineages. We note that environmental effects
150 such as fluctuations in host population size or behaviour affect all lineages equally, if the population
151 is well mixed. We denote the combination of these effects as b(t) = 5(¢)S(t)/N(t). Conditional on the
152 knowledge trajectory of b(t) the ODEs in Equation |1 become uncoupled, and this allows us to reduce
153 the system to uncoupled equations corresponding to the lineage we will be focusing on. As such we
1sa - will treat b(t) as a random object that needs to be inferred. We further assume that for the susceptible
155 lineages the average recovery rate denoted v, does not change over time, whereas for the resistant
155 lineage it takes one of two values: vp = gr + v, if a given patient is treated with the antimicrobial
157 of interest, or 7y = qu + s otherwise. If we also consider the known proportion of registered cases
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158 treated with the antimicrobial of interest u(t), this fully determines the average recovery rate of the
159 resistant lineages as:

V() = u(t)yr + (1 —u(®)w (3)

1o We can now fully write down the equations of the model we will be using for the sensitive and resistant
11 lineages, respectively:

L)y, 1) - 7L (1)
dIdIEt) )
O ba)1,0) — futtyrr + (- )] (1)

12 In practice, we are interested in the difference in recovery rates between the susceptible and the resistant
163 lineage and sensitive lineage when every case gets treated with the antimicrobial of interest, and when
1« the antimicrobial of interest is not used at all. We denote these by

qr = YT — Vs
qu = YU — Vs

(5)

s The interpretation is therefore that gr captures the fitness benefit of resistance in the case gy < 0 and
166 qu captures the fitness cost of resistance in the case gy > 0.

17 This model can be applied to any number of resistant and sensitive lineages, simply by adding lineages
s associated terms to the likelihood and adding required parameters. This is straightforward as the
o individual lineages are independent conditional on b(t). but for simplicity the remainder of methods
o description focuses on the case of a single sensitive and a single resistant lineage, with the general case
1 being a straightforward extension.

= Link to phylogenies

w3 Having defined the epidemiological model, we can now link it to the phylogenetic process. Based on
we  [19] 28], the instantaneous coalescent rates for a single pair of lineages can be derived as

2b

(O gy 20
15(t)

s in the susceptible and resistant populations, respectively. The likelihood of a dated phylogeny g with

w1 leaves at times s; < ... < s, and n — 1 coalescent events at times ¢; < ... < ¢,—1 and A(t) lineages
w7 at time ¢ is therefore given by [29]:

As (t) = (6)

weho) =ew (- [ 114w = 21 )ao) 1_1 A ™

— 00

ws  Where A(t) = As(t) and A(t) = A.(¢) for the susceptible and resistant phylogenies, respectively.
1o However, in most cases, and indeed in our case, the integral in Equation|[7)is not analytically intractable.
180 Furthermore, the antibiotic use data is unlikely to span the entire phylogeny. Therefore, we define the
11 approximate likelihood for the phylogeny truncated to [tmin, fmax), Which is the intersection interval
12 spanned by the antibiotic use data and the phylogenies under study.
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183 As such we resort to the standard way of approximating coalescent likelihoods [30], partitioning the
180 interval [tmin, tmax] into a fine mesh i, =t <t < t3 < ... <ty = tmax such that t; —t;_1 < A; and
155 that all sampling and coalescent times between t,,;, and ty,.x are included in the mesh:

p@A@D=@m(—EXE—HJKA%45Am40]jlheﬁmm%MM@n ©)

i=2
185 We note that the approach of how we treat the relationship between the phylogenies and epidemic
wr is effectively a structured coalescent with no migration and time varying No(¢) determined by the
18 deterministic epidemic model. Approaches reminiscent of ours have been used to formally study the
1w expected age of a mutation in both presence or absence of selection [3T]. However in that case the
wo populations correspond to different alleles, and the N,(t) curves follow the proportion of population
1 with a given allele as determined by Wright-Fisher diffusion forwards in time. Migration between the
12 demes corresponding to individual alleles can also further be added corresponding to recombination
193 [32].

1w«  Bayesian inference

s We first re-scale time from the interval [tmin,tmax] to [—1,1]. Denoting the scale factor D =
196 (tmax — tmin)/2 associated with this re-scaling, we account for this in the model by defining ¥; = v, D.
17 The model consists of independent first-order linear homogeneous ODEs for each lineage with time-
s varying coefficients. The solutions at time ¢ subject to initial conditions I4(0) = Isp and  I,.(0) = I,
199 can be obtained in terms of the integral of the instantaneous rates up to time t:

L(t) = gﬁmp{xfwf>74h}

. (9)
I.(t) = Lgexp {/0 b(t) — [u(r)yr + (1 — u(T))’yU]dT}

20 As it stands, this model would not be well-suited for performing inference under, primarily due to the
201 difficulty in choosing a sensible prior on b(t), and a very complicated dependency structure between the
202 initial conditions and b(t). As such we re-parameterise the model by directly modelling the logarithm
23 of I5(t) as a Gaussian Process:

C(t) =log Is(t) — ps (10)
20 Where C(t) is an appropriately chosen zero mean Gaussian Process, and p is the susceptible intercept
25 which relates to the susceptible initial condition I,y as follows:

p1s = log Iy — C(0) (11)

26 We use this formulation principally to loosen the coupling between the intercept parameter and the
207 Gaussian Process in order to speed up sampling. From this we can compute b(t) and log I..(t) as

blt) = SO+, 12)

208 and

log I.(t) = C(t) + pr + /0 Ysdr — /0 u(T)yrdr — /0 (1 —u(r))ywdr
=C@+W+A%—Mﬁw—w%wwf (13)

=Ct)+ pr + (vs —y0)t — (v — W) /0 u(r)dr
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200 Once again we follow the same reasoning for the resistant trajectory intercept u,, relating it to I, as:
pir = log Ig — C(0) (14)

210 Note that %C (t) exists as long as the associated covariance kernel is sufficiently smooth such as in the
au case of the radial basis function (RBF) kernel [33] which we used. Evaluating a full-rank, Gaussian
a2 process with differentiable trajectories on the entirety of the mesh would be prohibitively expensive
23 due to the O(n3) computational complexity, where n is the number of grid points. Such a high
2e - computational cost would make the model infeasible. Instead, we work with a low-rank representation
zs  of C'(t) based on the framework introduced in [34]. This leads to the representation of the low-rank

26 projection of C(t), denoted by C(t)

o) = ism (@;p,a> s (Fre+ o) (15)
Lew = jzisRBF (@ " a> Ve (Fe+0)5 (16)

28 This reduces the evaluation complexity of the Gaussian process prior from O(n?) to O(nm). L and
210 M are approximation parameters that need to be specified a-priori, see [34] for details. In practice we
20 used the Hilbert Space Gaussian Process (HSGP) approximation with parameters L = 6.5 and m = 60.
21 These approximation parameters are appropriate for the 99% interval of the length-scale prior used
22 as per [34]. Where f; are independent and identically distributed random variables following the
23 standard Gaussian distribution, Sgrpr(+;-, ) is the appropriate spectral density for the RBF kernel, p
2 is the kernel length scale and « is the marginal standard deviation of the kernel [34].

a7 and

»s  Denote by 8 = (vs, v, v1, Iso, Iro, C(t)) the parameters of the pathogen dynamics model. We can now
»s factorise the model posterior 7(0, «, p, f1.m | &s, &), suppressing dependency on t where appropriate:

(0, p, frm | 8s:8r) <X 7(gs | As)m(gr | Ar)m(As | O)m(Ar | O)7(6, v, p, from) (17)

27 The first two terms are computed using the coalescent likelihood in Equation [7]] The third term is
28 given by combining Equations [6] [I0] and The fourth term is obtained by combining Equations [6]
220 and Finally, the last term is given by:

(0, . p, fr:m) = 7(C() | @, p, from)w(yr [ vs)m(y0 [ 75)7(vs) 7 (Lso)m(Lro) (@) m(p) 7 (fr:m) — (18)

20 where the first term is given by the Gaussian process (Equations [15] and and the remaining terms
an correspond to the prior distributions listed below.
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» Choice of prior and parameterisation

Parameter Symbol Prior
Susceptible lineage recovery rate Vs log-normal(log~y*, o)
Resistant lineage recovery rate if treated with focal antibiotic Y1 normal(~s,0.37*)1[z > 0]
Resistant lineage recovery rate if treated with other antibiotic YU normal(~ys,0.37*)1[z > 0]
Initial prevalence of sensitive lineage Iso log-normal(6,2)
Initial prevalence of resistant lineage Lo log-normal(6,2)

GP kernel marginal variance o gamma(4, 4)

GP kernel length scale P inverse-gamma(4.63,2.21)
Approximate GP functions Jim N(0,1)

Table 1: Summary of the parameters and priors used in the model.

23 The model is parameterised with the priors summarised in Table [1, The data is not expected to be
24 very informative about the value of 5. As such, we impose a fairly informative prior on this parameter,
235 centred around a guess v* which must be known and supplied a priori. o then governs how informative
26 the prior is. We typically use a value of ¢ = 0.3, which includes relative fluctuations of over 50% in its
27 95% interval. The higher the value of o, the more complicated the geometry and subsequently sampling
28 of the posterior becomes. 7 and ~yy represent the recovery rates for the resistant lineage when the
230 resistant lineage is treated with the focal antibiotic of interest, or another antibiotic, respectively. A
20  normal distribution centred at 75 and truncated to positive values only is a natural choice. We choose
21 its standard deviation to be 0.3v* as this puts > 99% of the weight within 27* thus making implausibly
22 large fluctuations unlikely. Such large fluctuations are hardly of interest here since they would lead to
23 a very rapid selective sweep or extinction. The recovery rates yr and vy are related to the absolute
24 changes in recovery and therefore fitness parameters using Equation [5l vy > 7, corresponds to faster
us recovery when the resistant lineage is treated with an antimicrobial it is sensitive to and therefore
as a cost of resistance. yp < 7 corresponds to slower recovery when the resistant lineage is treated
27 with the antimicrobial of interest and therefore a benefit of resistance. If instead a large proportion
2s  of posterior probability mass has 7y < s or v > 75, we conclude that the result is consistent with
29 either the cost or the benefit of resistance not being significantly present. The prior on p was chosen so
0 that approximately 1% of mass lies on values of p < 0.2 and approximately 1% of mass lies on p > 2.
1 The lower bound was chosen to avoid over-fitting, and the upper bound to suppress length scales that
2 exceed the range of data and thus cannot be informed about by the data.

»3  In practice, due to our choice of a sampling approach we need to parametrise vy and ~p on an
»4  unconstrained space, and ideally also weaken the dependency on ~5. To do so we introduce parameters
s Gu and Gr, and define vy and 7 to be a deterministic transformation of these

yu = log(1 + exp {Gu + logvs})

8 19
yr = log(1 + exp {gr + log7s}) 1)

6 The Jacobian adjustment to the likelihood associated with this transformation is proportional to

|det Jy| o< (1 + exp {—gr — logfys})_l(l +exp{—qu — log'ys})_1 (20)
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»  Computational implementation

s The posterior in Equation is a high dimensional distribution and we expect many parameters to
0 have a high degree of interdependency. In order to sample from this distribution, we use Dynamic
20 Hamiltonian Monte Carlo, a Hamiltonian Monte Carlo (HMC) sampler available in Stan [35]. HMC is a
s Markov chain Monte Carlo approach that due to possessing energy conserving properties is able to take
%2 large steps between individual states while maintaining a high acceptance rates. This makes it efficient
%3 at sampling from moderately high dimensional posterior distributions with differentiable likelihoods,
4 while requiring a much lower number of iterations. We implemented the model and inference method in
x5 a R package which is available at https://github.com/dhelekal/ResistPhy/. All results shown used
26 4 chains with 2000 iterations for warmup and 2000 iterations for sampling. For all model parameters
27 and all analysis the bulk effective sample size (bulk-ESS) was always greater than 500, and all R
2 statistics were lower than 1.05 [36], values that indicate no issues with mixing. We also checked that
x%0 there were no divergent transitions at least during the sampling phase.

w0 Use of simulated and real datasets

on For all simulations we use a stochastic, discrete state-space version of the multi-lineage SIS in Equation
272 The system is simulated using tau-leaping [37]. More specifically we consider a scenario with three
a3 lineages simulated over the course of 19 years. Two lineages are set to be susceptible and thus unaffected
o by antibiotic usage fluctuations and one is set to be resistant. The first lineage aims to represent the
s unobserved bulk of the population and thus is set to start at much higher prevalence. Conditional on
o the trajectories of the two lineages, we sample phylogenies under Kingman’s coalescent with varying
o effective population size N (t) following Equation@conditional on the trajectories [28]. The parameters
a3 for the simulation were selected as to consistently provide a reasonable range of plausible behaviours
20 so that resistant lineages would reach prevalence with orders of magnitude between 10% to 10%.

20 A total of 1102 genomes were collected between 2000 and 2013 by the CDC Gonococcal Isolate
s Surveillance (GISP) Project [38]. A maximum-likelihood phylogeny was computed using PhyML [39],
22 which was corrected for recombination using ClonalFrameML [40] and dated using BactDating [24].
23 This dated phylogeny is the same as previously used in an analysis of hidden population structure
2« [4I]. The distribution of primary antimicrobial drugs used to treat gonorrhoea among participants
s of the GISP project between 1988 and 2019 was obtained from the GISP reports available at
286 https://www.cdc.gov/std/statistics/archive.htm. Note that usage of ciprofloxacin and ofloxacin
27 were combined into a single fluoroquinolone category. All the data and code used in the simulated and
s real datasets analyses is available at https://github.com/dhelekal/ResistPhy/tree/main/run.

» RESULTS

» Detailed analysis of a single simulated dataset

2 To validate the performance of this model we first resort to simulation from a 3-lineages stochastic
202 SIS with population size N(t), transmission rate §(¢) and antimicrobial usage function w(t) varying
203 over the past 20 years, as illustrated in Figure The first two lineages are susceptible and thus
204 unaffected by fluctuations in antimicrobial usage, whereas the third lineage is resistant and therefore
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25 affected. The first lineage represents the bulk of the susceptible lineages and is thus left unobserved.
26 The remaining two lineages represent the observed lineages, susceptible and resistant, respectively.
207 The per-day recovery rate of the sensitive lineage was set to 7y, = 1/60, the fitness cost of resistance to
28 qu = 1.25 and the fitness benefit of resistance to gy = —2.7. From each of these two observed lineages,
20 a dated phylogeny with 200 leaves was simulated. The sampling dates were randomly assigned to
w0 one of the first six years, with the relative probability of a particular year being chosen proportional
sn to the total prevalence in that year. We performed inference on this simulated dataset; the traces
s2  are shown in Figure and the posterior distribution of the kernel parameters in Figure The
w3 prevalence and reproduction number R(t) of both the susceptible and resistant lineages are shown in
w  Figure 2] As expected, the inferred values followed the correct values used in the simulation. The
w05 inferred values of the susceptible lineage recovery rate s and the cost and benefit of resistance gy and
s qp were also found to be close to their correct values, as shown in Figure[3| The posterior distribution
a7 of 75 was almost identical to the prior, which was centered on the correct value 1/60, reflecting the
w8 fact that the data is uninformative about this parameter and stressing the importance of using an
w0 informative prior. There was a strong negative correlation between the inferred values of ¢y and qr,
a0 as expected since these two parameters play opposite roles in the overall fitness of the resistant lineage
s relative to the sensitive lineage. Nevertheless, we detected both the cost and the benefit associated
;12 with resistance, since the ranges of inferred values for gy and ¢r were respectively above and below
a3 one, contrary to their log-normal priors with mean one (Figure . Finally, we computed the posterior
as  predictive distribution [42] for the number of ancestral lineages through time A(t) and compared this
as  with the input phylogenetic data (Figure . The data and posterior predictive trajectories were
sis  similar, indicating a good fit of the model to the data as indeed would be expected here since the same
sz model was used for simulation and inference.
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Figure 1: Host population size function N (t), transmission rate over time 3(¢) and antibiotic usage
function wu(t) used in the simulated datasets.
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Figure 2: Posterior summary of dynamics for the sensitive (left) and resistant (right) lineages, showing
prevalence (top) and reproduction number (bottom). Bold solid red lines indicates simulated values.
Posterior median in bold dashed black line. Shaded bands indicate 95% posterior credible intervals.
Solid light lines represent posterior draws.
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Figure 3: Marginal and joint posterior distributions for the recovery rate of the sensitive lineage (ys),
fitness cost (¢p) and fitness benefit (gr) of resistance. Bold red solid lines indicate simulation values.
Bold blue dashed lines indicate prior density values.

25 Benchmark using multiple simulated datasets

a9 We repeated the same application of our inference method to data simulated in the same conditions
a0 as described above and illustrated in Figure [I] except the values of the fitness cost and benefit of
s resistance were varied. A total of 50 simulated datasets were generated and analysed, with the fitness
a2 cost qu increasing linearly from 1 to 1.2, and the fitness benefit ¢p decreasing linearly from 1 to 0.5.
23 The prevalence of the susceptible and resistant lineages in these simulations are shown in Figure
24 The results of inference are illustrated in Figure [4] and show that in almost all cases the posterior 95%
»s  credible intervals covered the correct values of the fitness cost and benefit of resistance used in the
26 simulations.
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Figure 4: Inferred parameters versus correct values. A total of 50 simulated datasets were generated,
with decreasing values of ¢r and increasing values of qy as shown by the dotted lines in grey and
blue, respectively. For each simulated dataset we applied our inference method. The grey and blue
dots show the mean inferred values of g7 and qp, respectively, with vertical bars representing the 95%
credible intervals for both parameters.

»»  Application to fluoroquinolone resistant N. gonorrhoeae in USA

2 We demonstrate the use of our model and inferential framework by estimating the cost and benefit
29 of fluoroquinolone resistance in N. gonorrhoeae. Based on the 1102 genomes collected between 2000
s and 2013 by the CDC Gonococcal Isolate Surveillance Project [38], a recombination-corrected tree
s was constructed using ClonalFrameML [40] and dated using BactDating [24]. As there are two major
s fluoroquinolone resistant lineages present in this phylogeny [38], we decided to do a comparative study.
sz The two fluoroquinolone resistant lineages and one fluoroquinolone susceptible lineage were selected
14 based on similar resistance profiles against other relevant antibiotics. By inspecting the antibiotic usage
15 data and the resistance profiles for the the three lineages (Figure [5) we can see that the resistance
s profiles match for antimicrobials that were in use as primary treatment at significant levels after 1995.
s As such this is the year we set as the analysis start date (tmin = 1995) and the end date is the date
1s  when the last genomes were collected (tmax = 2013). Note that a subclade within the susceptible
139 lineage that displayed a de novo gain of resistance to cefixime has been removed. The prior mean for
s the per-day recovery rate for the susceptible lineage was set to v* = 1/90 based on previous gonorrhoea

s modelling studies [10] 43}, 44].
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35 ancestral lineages through time A(t) were simulated and found to be very similar to the ones implied
36 by the phylogenetic data (Figure .
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Figure 6: Posterior epidemic dynamics for both fluoroquinolone resistant lineages of N. gonorrhoeae.
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Figure 7: Marginal and joint posterior distribution for the cost (¢y) and benefit (gr) of both
fluoroquinolone resistant lineages of N. gonorrhoeae.

7 Under the assumption of perfect competition between lineages, if we want to ensure to that a resistant
s lineage cannot establish, and its proportion decays sufficiently fast, we fix a decay factor ¢ > 0 and aim
0 to ensure that the growth rate of the resistant lineage is ¢ units lower than that of the sensitive lineage,
w0 that is r4(t) — r.(t) > ¢. Note that r(¢) is the growth rate through time, not R(t), the time varying
sr  reproduction number. We choose to work with growth rates as these are less sensitive to susceptible
32 recovery rate mispecification. Given that the lineages have the same transmission rate function b(t),
33 this condition is equivalent to v5(t) — 7.(t) > ¢, and using the definition of 7,.(¢) from Equation
s this is equivalent to u(t)gr + (1 — u(t))gu > ¢. We use this to estimate posterior probabilities the
s differences in growth rates between the susceptible lineage and each of both resistant lineages exceed
ss6 ¢ as shown in Figure[8] In order to be 95% certain that the resistant lineages remain at a lower fitness
sz than the susceptible lineage, fluoroquinolone should not be prescribed to more than ~ 20% and ~ 15%
s of infected individuals, for resistant lineages 1 and 2, respectively.
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Posterior Probability of r¢(t) - r,(t) > ¢ given usage level
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Figure 8: Posterior probabilities of R, (t)/Rs(t) < C given usage u(t) in the x-axis and value of C in
the y-axis, for both fluoroquinolone resistant lineages of N. gonorrhoeae.

» DISCUSSION

s A bacterial pathogen lineage that is resistant to a given antibiotic incurs both a fitness cost and a fitness
s benefit compared to similar susceptible lineages [8]. When the antibiotic is used extensively, the benefit
sz is likely to be greater than the cost. In that case, a resistant lineage has a selective advantage over
a3 susceptible lineages, and therefore grows at a faster rate. Conversely, if the antibiotic is used rarely
s or not at all, the benefit is likely to become smaller than the cost, which will lead to the resistant
w5 lineage decreasing in frequency. Estimating these parameters is therefore of primary importance to
s determine how antibiotics should be prescribed without causing an increase in resistance [9]. Here, we
s7 have shown how genome sequencing data coupled with data on antibiotic prescriptions can be used for
s this purpose, following on previous work that demonstrated the link between epidemic dynamics and
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s phylogenetics [13], [19] 20, 28]. By comparing the phylodynamic trajectories of susceptible and resistant
0 lineages, and relating them with a known function of antibiotic use, we show that it is possible to
s estimate separately the parameters corresponding to the fitness cost and benefit of resistance. In
s particular, we reanalysed a large published collection of N. gonorrhoeae genomes [38]. We were able
3 to infer these parameters for two lineages of N. gonorrhoeae resistant to fluoroquinolones, and found
s« similar estimates of cost and benefit in both (Figure . We were able to use this knowledge to make
35 recommendations on antibiotic stewardship of fluoroquinolones (Figure .

s Dated phylogenies for both susceptible and resistant lineages are needed as input into our method.
sr Several software tools can be used to produce this either from a sequence alignment, for example
s BEAST [22] and BEAST2 [23], or from an undated phylogeny, for example treedater [45] and
10 BactDating [24]. Building such a dated phylogeny requires either the population to be measurably
w0 evolving over the sampling period [46, [47], or a previous estimate of the molecular clock rate [48].
s Another input required by our method is the antibiotic usage function over a relevant timeframe and
s geographical location. This may not always be available in all historical contexts, but efforts are
w3 increasingly being made to capture this data [49]. Finally, our method requires an informative prior
s« of the recovery rate for the susceptible lineage (see Table , since this is typically not identifiable
35 from the data, as in many similar compartmental epidemic models [50]. This prior needs to be chosen
w6 carefully depending on the infectious disease under study and based on the existing scientific literature.

37 Our inferential methodology is based on a well-defined and relatively simple epidemic model (Equation
308 which means making a number of assumptions the validity of which was considered before performing
30 our analysis. Our model assumes multiple-lineage pathogen dynamics driven by person-to-person
a0 transmission in a well mixed host population in the absence of any significant population structure, so
a1 that there is perfect competition between lineages. It also assumes that individuals become infectious
w2 as soon as they are infected, that their infectiousness remains constant until they recover, after which
w3 they become susceptible again without any immunity being gained. This list of relatively strong
ss  assumptions may seem to preclude application to any real infectious disease, but they are necessary
a5 to obtain a model under which inference can be performed. Furthermore, violation of some of these
w05 assumptions does not necessarily invalidate the results of inference. For example, if infection causes
w7 immunity, this will effectively reduce the number S(t) of susceptible individuals (Equation, but this
w8 number is not assumed to be constant in our model. In fact both the size N(t) of the host population
w0 and the number S(t) of susceptible individuals are integrated out as part of our parameterisation
a0 in terms of the function b(t) (cf Equation [4), so the inference is robust as long as the immunity
an  conferred applies to all lineages under study. Likewise the assumption of an unstructured population
a2 may seem problematic, including in our application to N. gonorrhoeae throughout the USA, but for
sz anything other than small local outbreaks the genomes available for analysis are sparsely sampled from
se  the whole infected population [5I]. In these conditions, any effect of the host population structure
a5 on phylodynamics is likely to be insignificant as long as an effective rather than actual number of
a6 infections is considered [52, [53].

a7 The compatibility of our model with the phylogenetic data under analysis can be tested using posterior
ss  predictive distribution checks (Figures and . If these tests fail, or if the model assumptions are
a0 thought to be inappropriate, a solution may be to resort to other methods that postprocess a dated
w20 phylogeny [25] but make less assumptions, at the cost of not inferring directly the parameters of
21 resistance. Alternative approaches includes non-parametric methods that detect differences in the
w2 branching patterns in different lineages [41], 54] as well as methods parameterised in terms of the
w23 pathogen population size growth rather than underlying epidemiological drivers [15] [55]. However, our
22 model-based approach is both general and flexible, so that we expect it to be applicable in many settings
w5 using our software implementation which is available at https://github.com/dhelekal/ResistPhy/.
26 We believe that this methodology, applied to the increasingly large genomic databases on many
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a7 bacterial pathogens, will help quantify the exact link between antibiotic usage and resistance and
w8 therefore provide a much-needed evidence basis for the design of future antibiotic prescription strategies
o [9, 56, [57].
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