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ABSTRACT

Sharing data across multiple institutions for genome-wide association studies (GWAS) would enable
discovery of novel genetic variants linked to health and disease. However, existing regulations on
genomic data sharing and the sheer size of the data limit the scope of such collaborations. Although
cryptographic tools for secure computation promise to enable collaborative studies with formal privacy
guarantees, existing approaches either are computationally impractical or support only simplified analysis
pipelines. Here, we introduce secure and federated genome-wide association studies (SF-GWAS), a
novel combination of secure computation frameworks that empowers efficient and accurate GWAS
in a federated manner, i.e., on private data locally-held by multiple entities, while provably ensuring
end-to-end data confidentiality. Another key advance is that we designed SF-GWAS to support the
two most widely-used GWAS pipelines—those based on principal component analysis (PCA) or linear
mixed models (LMMs). We ran SF-GWAS on five real GWAS datasets, including a large UK Biobank
cohort of 410K individuals, thereby demonstrating the largest secure genetics collaboration to date.
SF-GWAS achieves an order-of-magnitude runtime improvement over the prior art for PCA-based GWAS
and newly allows secure LMM-based association tests, for which its runtime scales at a near-constant
rate in cohort size. Our work realizes the power of secure, collaborative, and accurate GWAS at
unprecedented scale and should be applicable to a broad range of analyses. Our open-source software

is at: https://github.com/hhcho/sfgwas.
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Main

Genome-wide association studies (GWAS) are an essential tool for identifying genetic determinants of
complex biological traits. Recent collaborative studies have demonstrated the power of jointly analyzing
multiple datasets in detecting a greater number of associations than possible using any single dataset'2.
However, such collaborations are still rare and typically restricted to limited types of analyses that do not
require the sharing of sensitive individual-level data (e.g., based on summary statistics). These limitations
are largely due to institutional policies and regulations that prevent sharing of sensitive genetic data’.

Secure computation techniques from modern cryptography offer promising strategies to address safety
concerns in collaborative data sharing®=°. For example, these techniques allow a group of collaborators to
jointly analyze their collective data by exchanging encrypted information, while guaranteeing each party’s
data is private from others. Although recent work has illustrated the potential of secure computation
for collaborative GWAS’~!0, existing methods are prohibitively slow for large datasets or implement a
simplified analysis pipeline, such as one that does not correct for confounding due to population structure,
which is essential for accurate GWAS'!-12. These issues severely limit the utility of existing methods in
practice.

We introduce SF-GWAS, a secure and federated algorithm for multi-site GWAS, which overcomes
these challenges to enable provably secure genetics collaborations at unprecedented scale (Fig. 1). SF-
GWAS builds upon the following two key conceptual advances. First is our “federated” framework for
secure computation, whereby each genomic dataset input is kept at the respective source site to minimize
both computational and network communication burden. We enable this strategy using a novel combination
of two cryptographic frameworks—namely, secure multiparty computation (MPC) and homomorphic
encryption (HE). HE refers to data encryption schemes that allow computation to be performed directly
on encrypted data, whereas MPC refers to a class of interactive protocols that allow multiple parties to
perform computation on private data that is split among them with ensured data confidentiality. Our
framework uses both techniques to obtain practical performance for our methods: each party uses HE
to perform efficient local computation by utilizing the plaintext (unencrypted) input data and sharing
only encrypted intermediate results with other parties to cooperatively carry out global computations.
At the same time, the parties employ efficient MPC routines for complex operations (e.g., division and
comparison) to mitigate the computational cost of HE on encrypted data and to enhance the accuracy of

operations over a wider range of data values. Importantly, prior work based on a multiparty extension of
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HE?, including multiparty HE (MHE), did not utilize any computational MPC operations, which as our
results show are critical for robust accuracy of our methods across datasets of varying sizes.

Secondly, SF-GWAS introduces efficient algorithmic design to support the federated execution of end-
to-end GWAS pipelines. The SF-GWAS workflow includes, prior to association tests, quality control and
112

two essential strategies to correct for population structure in the coho

(PCA) or linear mixed models (LMMs). Both PCA and LMMs involve highly complex linear algebra

principal component analysis

computations, which thus far have limited the development of privacy-preserving algorithms that can scale
to modern large-scale genomic datasets. Leveraging a range of novel algorithmic design strategies, we
developed practical, secure and federated algorithms for both PCA- and LMM-based GWAS workflows,
which also illustrates that our techniques are applicable to a broad range of analysis tasks. SF-GWAS
achieves an order-of-magnitude improvement in runtime compared to the state-of-the-art approach for
PCA-based GWAS’ while also providing significantly stronger privacy guarantees. SF-GWAS introduces,
to our knowledge, the first practical algorithm for secure LMM-based GWAS (Supplementary Fig. 1). We
provide the algorithmic details of SF-GWAS in Methods and Supplementary Notes 1-6.

To demonstrate the significant computational benefits of our secure and federated approach to collabora-
tive GWAS, we compared SF-GWAS with the prior state-of-the-art method for secure PCA-based GWAS’,
referred to as S-GWAS. We used both methods to analyze the three real datasets from the S-GWAS
publication: a lung cancer dataset (n=9,178), a bladder cancer dataset (n=13,060), and an age-related
macular degeneration (AMD) dataset (n=22,683). Each dataset was randomly split into two subsets, which
we distributed to different machines to emulate a joint study of two cohorts that could not be combined. For
all three datasets, we observed a significant reduction in both runtime and communication for SF-GWAS
compared to S-GWAS based on the same computing environment (Fig. 2; Methods). SF-GWAS runtimes
were consistently an order of magnitude smaller than S-GWAS (e.g., 4.6 hours vs. 64.3 hours for AMD
data, representing a 14x reduction). Total communication cost was three to four times lower for SF-GWAS
(e.g., 173.7 GB vs. S-GWAS’ 666.6 GB for AMD data), largely due to the requirement of S-GWAS
to share the entire encrypted dataset among the parties (Fig. 2), which SF-GWAS circumvents with the
federated approach. The output of SF-GWAS closely matched a direct analysis of the pooled plaintext
data as expected (Supplementary Fig. 2). We also note that SF-GWAS ensures a 128-bit security level,
considerably higher than the 30-bit security provided by S-GWAS (Supplementary Note 7).

To further illustrate the scalability of SF-GWAS, we evaluated it on two biobank-scale datasets: the
eMERGE consortium and UK Biobank (UKB). The available portion of the eMERGE dataset included
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31,293 individuals and 38 million imputed SNPs, which we split across seven centers according to the
data providing organization of each sample, and considering each center-specific dataset as local and
private. Note that this dataset is more than a hundred times larger than the largest dataset analyzed in the
S-GWAS publication (the AMD dataset), which included 509K array genotypes. For UKB, we divided
the largest cohort in UKB of European descent (n=275,812, after removing related individuals) into six
datasets of varying sizes (n=21K to 67K) corresponding to different geographic regions from which the
individual samples were collected (Methods). Each sample in UKB included 93 million imputed SNPs,
representing another 20-fold increase in overall dataset size compared to eMERGE (and 2000x larger
than the S-GWAS AMD data). S-GWAS could not be evaluated on either dataset due to its infeasible
runtime requirement, estimated to be several months for eMERGE and several years for UKB. For both
datasets, we ran the PCA-based pipeline of SF-GWAS to identify genetic associations for body mass index
(BMI), over a network of seven virtual machines for eMERGE and six for UKB (plus an auxiliary machine
for facilitating the computation; Methods), each holding a private dataset corresponding to a single data
center.

Consistent with our previous results, the association statistics computed by SF-GWAS closely matched
a plaintext analysis based on the PLINK software'® on each of the pooled datasets (Fig. 3 and Supplemen-
tary Fig. 3; Methods). In addition, we observed that a meta-analysis of summary statistics from individual
centers can result in considerable discrepancies compared to the pooled analysis (Supplementary Fig. 4),
especially on the eMERGE dataset, likely due to heterogeneity of study populations and moderate sample
sizes. Since the computational steps of SF-GWAS closely emulate a centralized analysis based on a pooled
dataset, this ensures that SF-GWAS results are virtually equivalent to what the collaborators would obtain
if the datasets could be directly combined for a joint analysis. This equivalence holds regardless of how
the data is split, e.g., even when the data distribution is heterogeneous among the parties—a challenging
setting for collaborative analyses based only on summary statistics'4~1©.

The total runtime of SF-GWAS on eMERGE was 17.5 hrs, including 2.8 hrs for quality control filtering
(QC), 8 hrs for PCA, and 6.7 hrs for association tests. For UKB, the runtime was 5.3 days in total,
including 4.5 hrs for QC, 44 hrs for PCA, and 77.8 hrs for association tests. These runtimes are the first
that are practically feasible and represent a major improvement over the prior art. A concurrent work for
multi-site GWAS!” reported a runtime of 5 hours for 160K SNPs and 16K samples, which extrapolates to
more than four months for the UKB dataset, while providing considerably weaker security guarantees than

SF-GWAS and addressing only the PCA-based workflow. Since the runtime of SF-GWAS’ PCA-based
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pipeline scales linearly with the number of individuals and genetic variants, the expected runtime can
be readily estimated in practice for different dataset sizes based on our results (Supplementary Fig. 5;
Supplementary Note 8). We also expect SF-GWAS to remain practical for international collaborations
with higher network communication delays (e.g., between the U.S. and the UK; Supplementary Fig. 6).

The novel LMM-based workflow of SFE-GWAS builds upon the plaintext algorithm of REGENIE'3,
a recently developed method for LMM association tests (Supplementary Fig. 1). We make the key
observation that the scalable design of REGENIE, based on stacked ridge regressions, together with our
federated computational framework, newly allows the design of a practical secure protocol for collaborative
LMM analysis. Our algorithm emulates REGENIE in the federated setting while keeping each of the
input datasets provably confidential. We devise secure and federated solutions for both ridge regression
and linear systems of equations through distributed and iterative optimization techniques that we newly
leverage to ensure our algorithm scales to large datasets (Methods; Supplementary Note 6).

We evaluated our LMM-based workflow on the largest dataset of 409,548 individuals of European
descent from UKB including related individuals. We analogously split the data across six geographic
centers with the size of individual cohorts varying from 30K to 102K and analyzed associations with BMI
(Methods). SF-GWAS produced association statistics accurately matching those of REGENIE, where
the latter was directly run on a pooled dataset without any encryption (Fig. 3 and Supplementary Fig. 3).
We also validated the accuracy of our LMM algorithm on the lung cancer GWAS dataset from the S-
GWAS publication (Supplementary Fig. 7). Owing to our key algorithmic optimizations, the LMM-based
SF-GWAS exhibits near-constant scaling of runtime in the size of local cohorts (Supplementary Fig. 8
and Supplementary Note 6) and maintains runtimes on the order of days for the large datasets including
hundreds of thousands of individuals, realizing a practical runtime of 6 days for the UKB dataset in our
experiment (Supplementary Note 8).

Collaborative analysis performed using SF-GWAS identified genetic variants with statistically signifi-
cant association with BMI that are concordant with prior GWAS results. Comparing with the published
summary statistics from the Pan-UK Biobank project!”

5 x 1078) identified by SF-GWAS on eMERGE coincided with previously reported associations. When

, we observed that 71 out of 73 significant loci (p <

we analyzed each center’s dataset independently, only one out of seven centers resulted in non-zero (two)
significant loci, illustrating the benefit of collaboration in agreement with the goal of consortium-based
projects like eMERGE. Similarly for UKB, 1,778 out of 2,200 significant loci for LMM-based SF-GWAS,

and 21,544 out of 24,357 for our PCA-based analysis on a larger set of imputed genotypes, were previously
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reported to be significant, indicating a large overlap despite differences in the analysis setting. In contrast,
independently analyzing each center’s private dataset led to 2,600 significant loci across all centers,
considerably fewer than SF-GWAS (24,357). Moreover, given eMERGE as a study cohort and UKB as
a larger validation cohort, meta-analyses of seven center-specific GWAS based on the eMERGE data
resulted in fewer loci that are validated in UKB than SF-GWAS, illustrating the potential of the joint
analysis enabled by SF-GWAS to increase statistical power (Supplementary Fig. 9).

In summary, our work demonstrates a secure federated approach to multi-site GWAS, leading to the
first scalable algorithms for conducting collaborative studies without the need to share private data. We
demonstrated the practical performance of our methods on five datasets of varying sizes, including a large
biobank dataset with 410K individuals. We expect our computational techniques and the open-source
software library, including a modular implementation of both PCA and LMM workflows, to accelerate the
development of collaborative methods for other essential analysis tasks in genomics. Our work provides
the tools needed to broaden cross-institutional collaboration involving sensitive genomic data, which is

key to future progress in biomedicine.

Methods

Review of secure multiparty computation (MPC)

MPC techniques enable multiple entities to securely and interactively perform computation on private
inputs (Supplementary Note 1). Standard MPC frameworks?’ leverage (additive) secret sharing, where
each private value is split into random (encrypted) shares, which are in turn distributed to different
computing parties. While the shares collectively encode the private value, any subset of shares provably
does not leak any private information. Computing parties then collaborate and use the secret shares to
evaluate a function on the private input without revealing information about the private input to any entity
involved. For example, the secure addition of two secretly shared numbers x and y can be executed by
having each party add their individual shares for x and y. The new shares constitute a sharing of x +y,
which is the desired computation result. More sophisticated functions (e.g., multiplication, division, square
root, and sign) can be similarly defined over the secret shares, but require the two parties to interact by
exchanging a sequence of numbers, which also do not reveal private information. These secure routines
can be composed to perform arbitrary operations on private input data held by multiple entities. However,

the communication cost of MPC can introduce a bottleneck in applications involving complex tasks. In
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addition, secret sharing requires that the entire input data be shared with all computing parties.

Review of homomorphic encryption (HE)

HE is a form of encryption that allows for direct computations over encrypted data, without having to
decrypt them. Initially developed for limited types/rounds of operations, HE is now widely applicable
to many analysis tasks due to the recent introduction of fully HE (FHE) schemes, which include a
bootstrapping routine to allow an arbitrary number of operations to be performed, and the development

I encodes a

of efficient techniques for common scientific operations. For instance, the CKKS scheme?
vector of continuous values in a single ciphertext and is well-suited for calculations where a small amount
of noise can be tolerated. Like other HE schemes, CKKS performs both additions and multiplications
simultaneously on the encrypted values within a ciphertext (single instruction, multiple data [SIMD]
property), which improves the overall scalability of the scheme. While HE uniquely enables a single party
to perform computation on the encrypted data without interaction, the computational cost and flexibility
of HE remain more limited than MPC for general tasks. Also, for multi-site collaboration, one needs to

transfer all of the encrypted data to a single machine for joint analysis, which can be challenging for large

datasets.

Our approach: combine HE and MPC to enable practical, secure federated computation

To address the performance limitations of HE and MPC, we take a novel federated approach to secure
computation leveraging both HE and MPC, where the input datasets are kept locally at the respective
source sites and only small intermediate data are securely exchanged among the parties using cryptographic
techniques to carry out a global computation. For the HE component, we build upon a multiparty HE
(MHE) scheme (related to threshold HE) based on CKKS, which extends the CKKS scheme to the setting
with multiple data providers by secret-sharing the decryption key and constructing a shared encryption key
(Supplementary Note 2). Under our scheme, any party can encrypt the data and perform HE computations
locally, but decryption can be performed only if all parties cooperate. Our approach allows each party to
perform local computations involving the unencrypted input dataset and a small amount of encrypted data,
whereas certain global computations are performed by sharing intermediate results among the parties,
encrypted under the shared encryption key. At the end of the protocol, all parties collaborate to decrypt
the final results. By keeping each input dataset local, we minimize the communication and enable local
plaintext computation, which are significantly more efficient than corresponding ciphertext computation.

We also leverage the fact that an efficient interactive protocol for bootstrapping exists in MHE?? to reduce
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the overall computational burden of HE.

Improving upon existing works on MHE®?3-23 we switch between the MHE and secret sharing
representations of intermediate data, which enables efficient state-of-the-art MPC routines to be used
in conjunction with MHE operations to carry out the global computations (Supplementary Note 3). We
convert between the two schemes to perform key operations under the most efficient scheme for each
of the computational steps of the GWAS pipeline. For example, we perform large-scale matrix and
vector operations using MHE to exploit its SIMD (single instruction, multiple data) property, but evaluate
non-polynomial functions (division, square root, and comparison) with compact bit-wise MPC protocols,
which are more efficient and numerically stable than the MHE counterparts. Any operation involving the

local unencrypted data is performed using MHE to avoid secret sharing of the large input datasets.

Our algorithmic design strategies for enabling secure population structure correction
Our federated framework for secure computation allows us to develop efficient and provably secure
algorithms for collaborative GWAS. In another key advance beyond prior work, we introduce practical
methods for two standard approaches to account for population structure, namely, principal component
analysis (PCA) and linear mixed models (LMMs). We adopt the following algorithmic design strategies
to obtain accurate and efficient performance in a secure setting. First, we closely adhere to the high-
level computational pipeline of the desired centralized algorithm to obtain accurate results, while using
optimized cryptographic routines to securely and jointly operate over private datasets held by multiple
parties. This is in contrast to other collaborative approaches that simplify or approximate the analysis to
address the lack of access to a pooled dataset (e.g., meta-analysis). Next, we restructure the algorithm
while maintaining its equivalence to the original computation to both maximize the use of low-cost
operations and minimize communication by leveraging local plaintext data. We switch between MPC
and MHE routines throughout the protocols to improve the efficiency and numerical robustness of secure
computation routines. We also optimize the vectorized encoding of data in encrypted representations for
efficient composition of linear algebra operations. We detail our algorithmic strategies and optimization
techniques in Supplementary Notes 4-6.

On top of enabling a significant performance improvement for PCA compared to prior work’, our
techniques allowed us to design the first practical protocol for secure and federated LMMs (Supplementary
Fig. 1; Supplementary Note 6). LMMs typically require operations involving the genetic relatedness matrix

(GRM), which scales with the number of individuals in the dataset and imposes a heavy computational
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burden for large cohorts even in a centralized analysis setting. Our new approach builds upon REGENIE'8,
a recently developed algorithm for LMM association tests based on a stacked ridge regression approach,
which directly models the ancestry-related confounding effect as the output of a genome-wide regression
model, thus circumventing the use of a GRM. This approach brings substantial scalability improvements
while providing accuracy comparable to other LMM methods such as BOLT-LMM?®, fastGWA?’, and
SAIGE?®. But unfortunately REGENIE cannot be directly used in a secure federated setting. Although
ridge regression can be efficiently performed in plaintext on a pooled dataset, implementing standard
algorithms (e.g., based on the closed-form solution) with secure computation techniques leads to im-
practical runtime requirements due to the complex matrix operations (e.g., inversion) that need to be
performed on large encrypted matrices. We overcome this challenge by comprehensively redesigning
REGENIE’s stacked regression procedure with novel, secure federated algorithms for ridge regression
based on conjugate gradient descent (CGD) and alternating direction method of multipliers (ADMM).
Although the inclusion of private covariate features renders a direct application of the latter approach?’
impractical in our setting, our reformulation of the ADMM algorithm (referred to as ADMM-Woodbury)
uses a matrix identity to enable plaintext precomputation of costly operations (e.g., large-matrix inversion)
at each computing node; thus, our approach maximizes efficient local computation and, as a result, obtains

near-constant scaling of runtime with respect to cohort size (Supplementary Fig. 9).

Our secure federated GWAS (SF-GWAS) pipeline

Our SF-GWAS algorithm implements the full GWAS pipeline, including quality control (QC), correction
for population structure (PCA and LMMs), and association tests. Collaborating parties first agree on
the phenotype, covariates, and a list of genetic variants to analyze, as well as study parameters, such as
filtering thresholds and other algorithmic parameters. They also agree on the security parameters and
generate the required cryptographic keys for HE and MPC, e.g., encryption keys and shared pseudorandom
number generators (Supplementary Notes 1 and 2). They then proceed with the interactive protocol to
securely perform the desired computation. For QC, the parties independently filter their subset of samples
based on public thresholds (e.g., for heterozygosity and missing genotype rate), then utilize MPC routines
to jointly and securely filter the variants based on global statistics (e.g., minor allele frequencies and
Hardy-Weinberg equilibrium). The variant filtering output is shared with all parties so that the rest of the
protocol can proceed with the reduced variant set.

For the PCA-based workflow, we implemented a secure federated algorithm for randomized PCA”3°

9/20


https://doi.org/10.1101/2022.11.30.518537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518537; this version posted December 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to compute the top principal components (PCs) over the entire dataset without constructing the pooled
matrix (Supplementary Note 5). The jointly computed PCs are kept encrypted for use in the following
steps. For association tests, we use both HE and MPC operations to compute the covariate-corrected
association statistics based on a linear model, which is equivalent to Cochran-Armitage trend statistics for
binary traits. This step includes: (i) a secure federated QR factorization for computing the joint orthogonal
basis of PC and the observed covariates; (ii) secure matrix multiplication based on HE to project the
genotypes onto the covariate subspace for correction and to compute genotype-phenotype covariances;
and (i11) MPC routines to inversely scale the statistics by the standard deviations of the genotypes and
the phenotype for normalization. Finally, the association statistics are collectively decrypted and shared
among the parties as the final output of the analysis.

For the LMM-based workflow, we implemented a secure federated version of REGENIE'® that is based
on stacked ridge regression models (Supplementary Note 6). After the QC step, the genetic variants are first
grouped into fixed-size blocks. For each block, a ridge regression model is jointly trained across the parties
using our ADMM-Woodbury algorithm to obtain encrypted phenotype predictions, which leverage only
the variants within the block while accounting for linkage disequilibrium. Subsequently, the block-wise
local predictions are provided as input features to a genome-wide ridge regression model for phenotype
prediction, jointly trained across the parties using our CGD algorithm. We adopt a cross-validation scheme
to determine an appropriate choice of variance parameter, representing the genomic heritability of the
target phenotype. Association tests are performed by calculating the correlation between each target
variant and the phenotype residuals excluding the contribution from the genome-wide regression model,
estimated without the chromosome including the tested variant. Analogous to the PCA-based workflow,
we efficiently compute the association statistics using optimized secure matrix multiplication routines

along with MPC routines for data normalization.

Related work

Several works have proposed methods to securely perform collaborative GWAS over private datasets
using secure computation frameworks (HE or MPC)”-8:19 but are limited by runtimes or accuracy of
GWAS analysis without correction for population structure. As noted, MPC frameworks based on secret
sharing’ are costly with respect to communication between parties and require the entire dataset to be
encrypted and distributed among all parties. Although HE enables non-interactive computation over

encrypted data, joint analysis based on HE!? still requires the collaborating entities to centralize the
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encrypted data for a single party to analyze, which leads to impractical communication costs for large-
scale genetic datasets and significant computational overhead for performing complex analysis tasks. Prior
work applying multiparty HE (MHE) to GWAS?® addresses the limitations of centralized HE for only
association testing and none of the other essential components of GWAS, i.e., quality control filtering
and correction for population structure (PCA or LMMs). Algorithms for PCA and LMMs involve highly
sophisticated computational pipelines, presenting a major challenge for existing cryptographic tools for
secure computation in obtaining practical performance. Our work overcomes this challenge to realize
scalable and provably-secure algorithms for the full GWAS pipeline. In addition, this earlier work solely
relied on HE computations and did not consider jointly leveraging MPC protocols (as we do in our work)
to obtain robust accuracy across a wide range of datasets and improved efficiency for non-polynomial
operations. Secure hardware-based approaches to GWAS (e.g., based on Intel SGX) have also been
proposed’; however, existing methods are limited to association testing only (without PCA or LMMs) and
do not provide formal guarantees of privacy like HE or MPC, leading to known security risks?!=33.
Another line of work for collaborative GWAS is based on federated learning techniques, which
iteratively aggregate intermediate results among the parties to carry out global computations'®34. These
solutions are generally more accurate than meta-analysis as they more closely emulate a pooled analysis'®.
They also achieve efficient performance in general because the plaintext (unencrypted) data are locally
held and directly analyzed by each party. However, these methods require intermediate results to be shared
among the parties (or with a trusted third-party) in plaintext, which may lead to private data leakage>-3°.
Although differential privacy techniques can be employed to mitigate such leakage, existing methods do
not provide a practical solution for GWAS where releasing the statistics for a large number of variants
would require a significant amount of noise to be added for privacy>’. In SF-GWAS, the parties keep their
local data in plaintext and exchange only intermediate results that remain encrypted throughout the study;

our approach efficiently emulates a pooled analysis while ensuring a formal notion of privacy during the

entire process.

Benchmark datasets

We obtained the three datasets used in the original S-GWAS publication’ for comparison. These include a
lung cancer dataset (n=9,178; 612,794 SNPs), a bladder cancer dataset (n=13,060; 566,620 SNPs), and an
age-related macular degeneration (AMD) dataset (n=22,683; 508,740 SNPs). We followed the steps in

the prior work to prepare the data, then evenly and uniformly split each dataset between two parties to
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emulate a multi-site study.

For the eMERGE data, we obtained a cohort of 31,292 individuals split across seven study groups:
Geisinger Health System (n=3,089), Group Health (University of Washington; n=1,827), Marshfield Clinic
(Pennsylvania State University; n=4,736), Mayo Clinic (n=6,208), Icahn School of Medicine at Mount
Sinai (n=5,661), Northwestern University (n=4,424), and Vanderbilt University (n=5,347). We used a total
of 38,040,168 imputed biallelic SNPs for the analysis and chose body-mass index (BMI) as the target
phenotype. Four covariates were included in the analysis: membership to each study group, age (at time
of assessment), sex, and agez.

For the UK Biobank (UKB) data, we obtained a cohort of 409,547 individuals of European descent.
For use with the PCA-based GWAS pipeline, we also constructed a subset of 275,812 unrelated individuals
(King?® relatedness coefficient less than 0.062). This cohort represented 22 different health centers
across the United Kingdom. To simulate a federated study, we grouped the health centers into six study
groups based on geographic location: Scotland (n=29,825 in total; 20,970 unrelated), Northern England
(n=52,909; 31,263), Northwest England (n=101,786; 67,494), Central England (n=93,642; 61,158),
Southeast England (n=76,568; 58,351), and Wales (n=54,823; 36,576). We provide the list of centers in
each group in Supplementary Table 1. We used a total of 92,248,310 imputed biallelic SNPs for the PCA-
based pipeline, and a subset of 581,927 non-imputed genotyped SNPs for the stacked regression models in
the LMM-based pipeline, following the recommendation in the REGENIE software documentation®”. We
analyzed BMI as the target phenotype. Six covariates were included in the analysis: membership to each

study group, age (at time of assessment), sex, age * sex, age”, and age’* sex.

GWAS details
For the lung cancer, bladder cancer, and AMD datasets, we used the same quality control (QC) filters
as applied in the prior analysis of these datasets using S-GWAS’. For the eMERGE data, we used the
following QC parameters: genotype missing rate per SNP <0.1, minor allele frequency (MAF) >0.05, and
Hardy—Weinberg equilibrium chi-squared test statistic <23.928 (p-value >10~%). We used the same set of
filters for the UKB data, except for MAF >0.001 to reflect the larger size of the dataset.

For PCA-based GWAS, we adopt the standard approach of using a reduced set of SNPs with low
levels of linkage disequilibrium (LD) for the PCA step. SE-GWAS achieves this by imposing a minimum
pairwise distance threshold of 100 Kb after QC filtering, which we found to obtain similar results as

alternatives based on a direct calculation of LD (Supplementary Fig. 10). To establish parity between
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the plaintext, centralized analysis and our SE-GWAS approach, we use the same set of SNPs for PCA in
both analyses for our main results. Alternatively, SNP selection for PCA can be performed separately and
the agreed-upon list of SNPs may be provided as input to SF-GWAS. For lung cancer, bladder cancer,
AMD, and eMERGE datasets, we kept the top 5 principal components as covariates for the subsequent
analysis. For UKB, we kept the top 10 principal components. We assess the association between each
SNP and phenotype of interest based on a linear regression model including covariates (equivalently,
Cochran—Armitage trend test for binary phenotypes). SF-GWAS first constructs an orthogonal basis
(Q) for the subspace defined by the covariates (e.g., top principal components, age, sex, study group
memberships), then computes the Pearson correlation coefficient () between the genotype and phenotype
vectors where the covariate effects have been projected out using Q. The coefficient r for each SNP
is revealed to the collaborating entities. The corresponding x? statistic with one degree of freedom is
obtained as 7?(n —c)/(1 — r?), based on which a p-value can be calculated. n and ¢ denote the total
number of individuals and the number of covariates, respectively. Note that this mapping does not reveal
any additional information other than r.

For LMM-based GWAS, we follow REGENIE’s approach to first apply ridge regression to obtain the
best predictive model of the covariate-corrected phenotype within a given genomic block, accounting for
genotype correlations, and then perform a second regression to obtain genome-wide phenotype predictions
based on the block-wise predictors. The size of each genomic block is set to 8,192 in order to maximally
leverage the vectorized encryption scheme based on our cryptographic parameters. Following REGENIE,
we use a five-fold cross validation to select the best variance parameter to construct the final predictors.
For the association tests, we adopt the standard leave-one-chromosome-out (LOCO) scheme, leaving out
the chromosome including the tested variant to correct for the background genetic effect on the phenotype
without interfering with the signal being tested. We then obtain the ? statistic with one degree of freedom,
analogous to the PCA-based pipeline, using the residuals of the LOCO genome-wide predictors for each

variant.

Evaluation approaches

We evaluated SF-GWAS by simulating each party on a separate virtual machine (VM) with 16 virtual
CPUs (vCPUs) and 128 GB of memory (e2-highmem-16) on the Google Cloud Platform (GCP). For the
main results, we adopt the most-efficient local area network (LAN) setting by creating the VMs within the

same zone in GCP; we illustrate the reasonable additional cost of wide-area network (WAN) setting in
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Supplementary Fig. 6. For the UKB analysis, we used larger VM types to utilize more vCPUs in parallel
given the large size of the dataset. Specifically, we used n2-highmem-64 (64 vCPUs with 512 GB of RAM)
and n2-highmem-128 (128 vCPUs with 864 GB of RAM) depending on the size of the local dataset.

We measured the runtime and communication cost of SF-GWAS (the latter measured by the number
of bytes sent among the parties) on all datasets. We compared these metrics against the prior work
implementing the analogous PCA-based GWAS pipeline, S-GWAS’. We also evaluated SF-GWAS’s
scaling with respect to the number of samples, SNPs, and computing parties (Supplementary Fig. 5). For
the scaling experiment, we replicated the lung cancer dataset to produce a dataset of desired dimensions and
modified GWAS parameters as needed to ensure that the amount of data at each step grew proportionally
with the input dimensions, e.g., ensuring that the number of samples passing quality control doubles when
the original number of samples doubles.

To evaluate the accuracy of SF-GWAS, we compared its association statistics to those obtained from a
plaintext, centralized analysis where the individual datasets are combined to form a single consolidated
dataset for analysis. For the three S-GWAS datasets, we used a plaintext Python implementation of the
same procedure as SF-GWAS (using a standard PCA implementation in the scikit-learn package*’); and
for eMERGE and UKB datasets, we used the PLINK software (https://www.cog-genomics.org/plink/2.0/)
implementing the same pipeline for PCA-based GWAS. For LMM-based GWAS, we used the REGENIE
software (https://rgcgithub.github.io/regenie/) on the pooled dataset with the same parameters to obtain
the ground truth association results. For eMERGE and UKB, we additionally evaluated the accuracy of
meta-analysis approaches by performing a separate GWAS for each study group with the same study
parameters as the global analysis, and then combining the association statistics among different parties

using the meta-analysis methods implemented in PLINK.

Data availability

The three datasets used for comparison with the prior work on Secure GWAS’ are available via NIH
dbGaP with accession numbers phs000716.v1.p1 (lung cancer), phs000346.v2.p2 (bladder cancer), and
phs001039.v1.p1 (AMD). The eMERGE consortium data is also available via dbGaP (phs000888.v1.p1).

Data access applications for the UK Biobank data can be submitted at: https://www.ukbiobank.ac.uk/.

Code availability

Our open-source software is available at: https://github.com/hhcho/sfgwas.
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Figure 1. Overview of SF-GWAS. (A) SF-GWAS addresses a common challenge faced by
collaborating researchers at different institutions who wish to conduct a joint study, but are unable to do so
due to data sharing limitations based on privacy concerns. (B) Modern cryptographic solutions for jointly
analyzing private datasets with formal privacy guarantees include homomorphic encryption (HE) and
secure multiparty computation (MPC). However, existing solutions for GWAS have limited scalability due
to the high costs of computation and communication incurred by these frameworks. (C) SF-GWAS is built
upon a novel combination of HE and MPC to enable secure and federated computation, where large
private datasets are locally kept by each data holder and only small intermediate data are encrypted and
shared among the collaborators to carry out complex global computations. SF-GWAS introduces practical,
secure, and federated algorithms to support two essential workflows for GWAS based on principal
component analysis (PCA) and linear mixed models (LMMs). The final result includes GWAS association
statistics, jointly computed over all private datasets while preserving data privacy. We further illustrate our
novel algorithm for secure and federated LMM-based association analysis in Supplementary Fig. 1.
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Figure 2. SF-GWAS is more computationally efficient than the prior art for secure collaborative
GWAS. We compare the runtime (A) and communciation cost (B) of SF-GWAS (PCA-based) with those
of Secure GWAS’ (S-GWAS). Unlike other existing cryptographic solutions for GWAS, these two
methods implement the full pipeline including quality control (QC) and principal component analysis
(PCA), both of which are standard steps of GWAS. We analyzed the three datasets evaluated in the
S-GWAS publication for lung cancer, bladder cancer, and age-related macular degeneration (AMD). Each
dataset is evenly split into two parts and distributed between two machines to simulate a collaborative
GWAS setting. In addition to the total costs (in black), we show the costs of individual steps, including the
initial setup and the three phases (QC, PCA, and association tests). The setup involves key generation and
network connection for both methods, and additionally encrypted data transfer (secret sharing) for
S-GWAS, which is not required by SF-GWAS due to its federated nature. For all datasets, SF-GWAS
reduces the overall runtime by an order of magnitude and reduces the communication by a factor of
around 3.5. We also note that SF-GWAS provides a 128-bit security level, considerably higher than the
30-bit security of S-GWAS (Supplementary Note 7). Plots showing the accuracy of SF-GWAS results are
provided in Supplementary Fig. 2.
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Figure 3. SF-GWAS accurately reproduces biobank-scale GWAS without data centralization. We
evaluated SF-GWAS on eMERGE (A) and UK Biobank (UKB) (B, C) datasets to demonstrate its applicability to
biobank-scale collaborative GWAS. Considering both the number of individuals and the number of variants
(Methods), eMERGE and UKB are respectively at least 100x and 2000x larger than the largest dataset in the prior
work on S-GWAS’. The total sample count and the sizes of individual datasets used in the federated setting are
shown (left); we split eMERGE data into seven groups according to the data providing organization, and for UKB,
we geographically grouped the original sample collection sites into six groups. Following standard practice, we
excluded individuals with a close relative in the dataset for PCA-based GWAS (B), whereas the full cohort was
considered for the LMM-based pipeline (C). We assessed the genetic associations of body mass index (BMI),
accounting for covariates (age, sex, and center) and principal components, where the latter are globally computed
over the entire dataset (securely performed in SF-GWAS). Manhattan plots visualizing the association strength of
individual variants across chromosomes 1-22 are shown for a centralized, unencrypted analysis using the PLINK or
REGENIE software (for PCA-based and LMM-based workflows, respectively) and a secure and federated analysis
using SF-GWAS. In all experiments, SF-GWAS accurately reproduces the corresponding centralized analysis
without requiring the collaborating entities to share private data. Scatter plots comparing the association statistics
are provided in Supplementary Fig. 3. 20/20
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