

# 1 **SapBase (Sapindaceae Genomic DataBase): a** 2 **central portal for functional and comparative** 3 **genomics of Sapindaceae species**

4

5 Jiawei Li<sup>1,2,3#</sup>, Chengjie Chen<sup>1,2,3#</sup>, Zaohai Zeng<sup>1,2,3</sup>, Fengqi Wu<sup>1,2,3</sup>, Junting Feng<sup>1,2,3</sup>, Bo Liu<sup>1,2,3</sup>,  
6 Yingxiao Mai<sup>1,2,3</sup>, Xinyi Chu<sup>1</sup>, Wanchun Wei<sup>1,2,3</sup>, Xin Li<sup>3</sup>, Yanyang Liang<sup>1,2,3</sup>, YuanLong Liu<sup>1,2,3</sup>, Jing  
7 Xu<sup>1,2,3</sup>, Rui Xia<sup>1,2,3\*</sup>

8

9 <sup>1</sup>*State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of*  
10 *Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China*

11 <sup>2</sup>*Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou,*  
12 *Guangdong, 510640, China*

13 <sup>3</sup>*Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of*  
14 *Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510640, China*

15

16 \*Correspondence: [rxia@scau.edu.cn](mailto:rxia@scau.edu.cn) (Rui Xia)

17

18 Sapindaceae is a family of flowering plants, also known as the soapberry family, comprising 141  
19 genera and about 1900 species (Pedro et al., 2010). Most of them are distributed in tropical and  
20 subtropical regions, including trees, shrubs, also woody or herbaceous vines. Some are dioecious,  
21 while others are monoecious. Many Sapindaceae species possess great economic value; some furnish  
22 delicious fruits, like lychee (*Litchi chinensis*), longan (*Dimocarpus longan*), rambutan (*Nephelium*  
23 *lappaceum*); and ackee (*Blighia sapida*) - the national fruit of Jamaica; some produce abundance  
24 secondary metabolites, like saponin from soapberry (*Sapindus mukorossi*), and seed oil from  
25 yellowhorn (*Xanthoceras sorbifolium*); some yield valuable timber including maple (*Acer spp.*) and  
26 buckeye (*Aesculus glabra*); and some are of great herbal medicinal value, like balloon-vine

27 (*Cardiospermum halicacabum*).

28

29 In the last decade, with the rocketing of next generation sequencing (NGS) and genomic technologies,  
30 the full genome sequences of several Sapindaceae plants have been resolved (Lin et al., 2017; Liang et  
31 al., 2019; Yang et al., 2019; Zhang et al., 2021; Hu et al., 2022; Xue et al., 2022). Among them, our  
32 recent publication of the lychee genome attracted broad attention (Edger, 2022; Hu et al., 2022; Lyu,  
33 2022). Now the post-genome era arrives for Sapindaceae, however, there is no public genomic  
34 database available for any Sapindaceae species, let alone an integrative database for the whole  
35 Sapindaceae family. A unified data platform is in urgent need to collect, manage and share relevant  
36 data resources. Therefore, we integrated our home-brew NGS data with all publicly available data for  
37 seven Sapindaceae plants and constructed the **Sapinaceae Genomic DataBase**, named SapBase  
38 ([www.sapindaceae.com](http://www.sapindaceae.com)), in order to provide genomic resources and an online powerful analytic  
39 platform for scientific research on Sapinaceae species and comparative studies with other plants.

40

## 41 **Data Source**

42 Currently, SapBase hosts genomic resources for seven Sapindaceae species (Fig. 1A), including 16  
43 full genome sequences, 411 sets of resequencing genomic data (411 sets, 4.82 TB), 919 RNAseq data  
44 (10.3 TB) from 49 projects, and 501 sRNA loci from the sRNAanno database (Chen et al., 2021). In  
45 total, there are 514,422 genes (893,747 transcripts), with 501,479 of them having functional  
46 annotations. 4,577 functional domains are annotated from 392,123 genes. SapBase also predicts  
47 79,862,416 interaction relations between 145,248 proteins. 89,025 synteny blocks between every two  
48 Sapindace species were identified covering 134,016 genes. Besides, 486 gene co-expression modules  
49 were singled out by the integrative analyses of these omics data. All these data are accessible at  
50 SapBase via the four major function categories (Fig. 1B): **BROWSE** for data and result browsing;  
51 **SEARCH** for comprehensive and efficient information retrieval; **ANALYSES** providing various data  
52 processing, analysis and visualization functions, and **DOWNLOAD** responsible for data deposit and  
53 download.

## 54 **Search Strategy**

55 As a multifunctional resource hub, SapBase provides a set of search strategies. Starting from a simple  
56 gene identifier, users can obtain its functional annotation, gene structure annotation, domain  
57 annotation, and sequences. BLAST, the most commonly used sequence search engine, has been  
58 integrated into SapBase for quick nucleic acid or protein sequence comparison among species of  
59 interest. A practical ID Convert function is provided for mapping genes from Sapindaceae species to  
60 their best homologs in most-researched plant species, such as *Arabidopsis*, rice, tomato, etc. To  
61 maximize the search capacity of SapBase, we designed a sophisticated “Meta Search” module, which  
62 provides a “Google-like” search function. Users are allowed to search using any related information,  
63 such as gene identifiers, gene function descriptions and even DNA/protein sequences, and SapBase  
64 will automatically identify the input content, carry out data search, and return the best matching  
65 results.

## 66 **Data Analysis**

67 Aside from a datahub, we also aim to develop SapBase as a powerful analytic platform. Currently, a  
68 great variety of analysis functions are available in SapBase (Fig.1B). Spatiotemporal Expression  
69 shown in eFP (electronic Fluorescent Pictograph) is a feature function designed to intuitively visualize  
70 gene expression in customized pictographic representations of plants. We have constructed eFP  
71 profiles for all the seven plants (Fig. 1C). There are two other entries in the Gene Expression module:  
72 Multiple Experiment Comparison and Co-expression. The former accommodates transcriptional  
73 expression profiles generated from all publicly available RNAseq datasets of Sapindaceae plants (Fig.  
74 1D), which can be used for quick assessment of the expression changes of ideal genes under different  
75 experimental conditions. The Co-expression function, based on the expression profiles, is  
76 implemented to integrate all co-expression gene networks, where users can easily obtain the  
77 co-expressed and interconnected counterparts by simply entering the identifier of a gene of interest.

78

79 SapBase also provides functions for comparative genomic analyses. Synteny Analysis can be used to

80 quickly explore the evolution and diversification of large syntenic gene blocks (Fig. 1E), and  
81 Homology Find function allows users to quickly obtain the optimal homologous gene set for the genes  
82 of interest. In addition, a pack of other functions is incorporated in the SapBase, from various  
83 integrative data analysis pipelines like Gene Function Enrichment, Gene Pathway Analysis, and  
84 Protein Interaction Network, to out-of-the-box tools, including Gene Location Viewer, small RNA  
85 Target Prediction, PCR Primer Design, etc.

86

## 87 **Others**

88 SapBase provides entries for downloading all Sapindaceae genomic data and resources, including raw  
89 sequencing data, genome sequences, gene annotations, and expression matrices. Users can use the  
90 “Bulk Data Fetch” to grab sequences for a large number of genes or chromosome regions in a batch  
91 mode. A well-curated list of state-of-the-art software, related genomic databases, or web servers are  
92 also recommended on the RESOURCE page.

93

## 94 **Conclusion**

95 By collating publicly released genomes and omics data for seven Sapindaceae species, we have  
96 developed SapBase, which provides a one-stop-shop for all Sapindaceae genomic resources, ensuring  
97 a convenient and efficient access and usage of all these resources for daily research. As a long-term  
98 development project, SapBase will be continuously maintained and updated as a central datahub and  
99 analytic platform for researchers working on Sapindaceae or related areas.

## 100 **Acknowledgment**

101 We thank all members of XIALAB and the National Litchi and Longan Industrial Technology  
102 Consortium of China for their suggestions and testing of SapBase. We are also grateful for the effort  
103 other researchers have devoted to the genomic research of Sapindaceae plants.

104

105 **References**

106

**Chen, C., Li, J., Feng, J., Liu, B., Feng, L., Yu, X., Li, G., Zhai, J., Meyers, B. C., and Xia, R.** (2021). sRNAanno—a database repository of uniformly annotated small RNAs in plants. *Hortic. Res.* **8**:45.

**Edger, P. P.** (2022). The power of chromosome-scale, haplotype-resolved genomes. *Mol. Plant* **15**:393–395.

**Hu, G., Feng, J., Xiang, X., Wang, J., Salojärvi, J., Liu, C., Wu, Z., Zhang, J., Liang, X., Jiang, Z., et al.** (2022). Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. *Nat. Genet.* **54**:73–83.

**Liang, Q., Li, H., Li, S., Yuan, F., Sun, J., Duan, Q., Li, Q., Zhang, R., Sang, Y. L., Wang, N., et al.** (2019). The genome assembly and annotation of yellowhorn (*Xanthoceras sorbifolium* Bunge). *GigaScience* **8**:6.

**Lin, Y., Min, J., Lai, R., Wu, Z., Chen, Y., Yu, L., Cheng, C., Jin, Y., Tian, Q., Liu, Q., et al.** (2017). Genome-wide sequencing of longan (*Dimocarpus longan* Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. *GigaScience* **6**:5.

**Lyu, J.** (2022). Two domestication routes intersect. *Nat. Plants* **8**:96.

**Xue, T., Chen, D., Zhang, T., Chen, Y., Fan, H., Huang, Y., Zhong, Q., and Li, B.** (2022). Chromosome-scale assembly and population diversity analyses provide insights into the evolution of *Sapindus mukorossi*. *Hortic. Res.* **9**.

**Yang, J., Wariss, H. M., Tao, L., Zhang, R., Yun, Q., Hollingsworth, P., Dao, Z., Luo, G., Guo, H., Ma, Y., et al.** (2019). De novo genome assembly of the endangered *Acer yangbiense*, a plant species with extremely small populations endemic to Yunnan Province, China. *GigaScience* **8**:7.

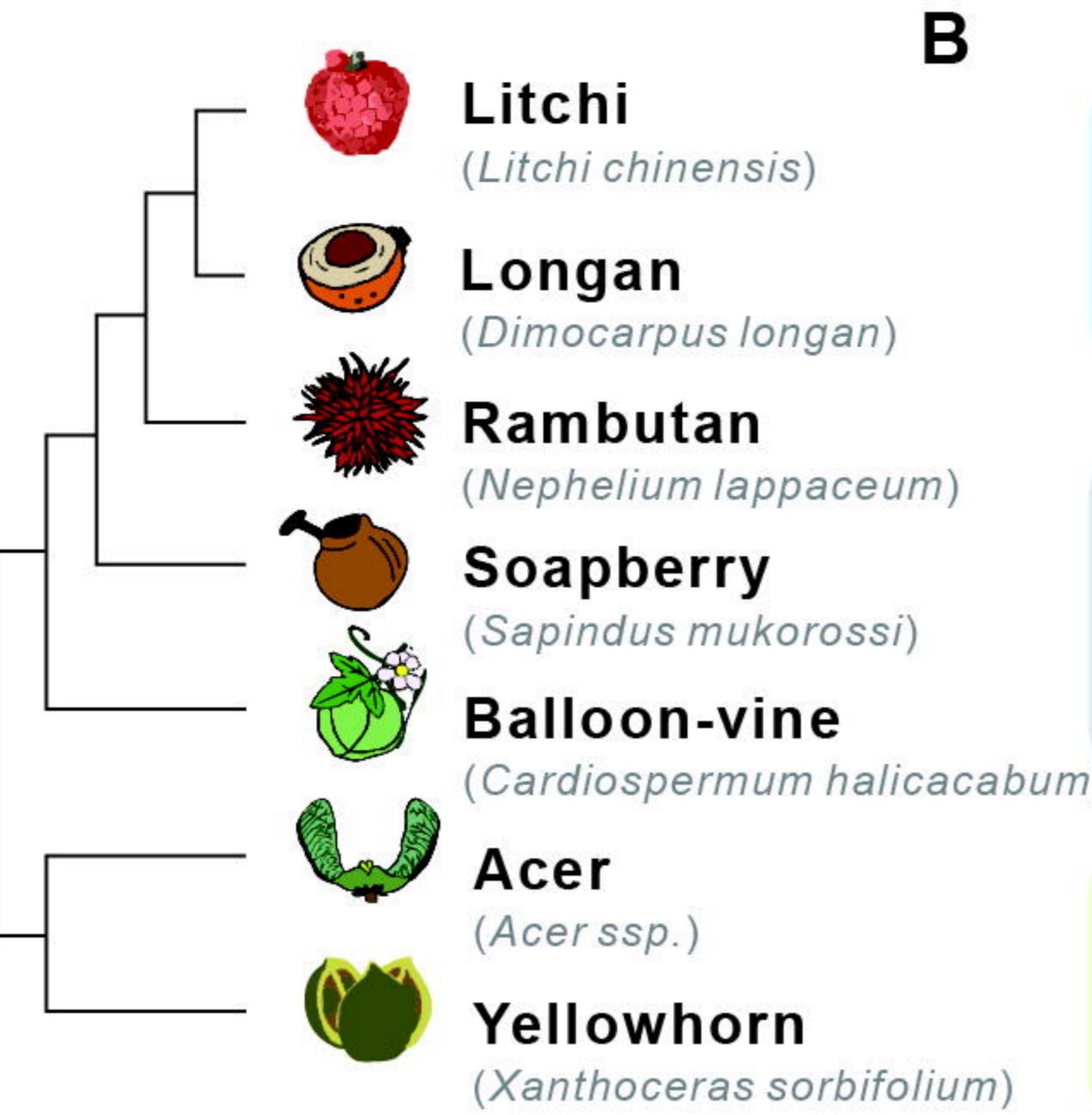
**Zhang, W., Lin, J., Li, J., Zheng, S., Zhang, X., Chen, S., Ma, X., Dong, F., Jia, H., Xu, X., et al.** (2021). Rambutan genome revealed gene networks for spine formation and aril development. *Plant J.* **108**:1037–1052.

107

108

109 Figure legend:

110 **Figure 1. Features of Sapinaceae Genomic DataBase (SapBase).** (A) List of current species with  
111 genomic data hosted in SapBase. (B) Structure of main functions in SapBase. Numbers in circles show  
112 denotes the species number or the number of other functions that cannot be shown here due to space  
113 limit. Functions highlighted in red are the three selected functions used for demonstration. (C) eFP  
114 (electronic Fluorescent Pictograph) used for gene expression presentation of six Sapinaceae species:  
115 Yellowhorn, Rambutan, Acer, Litchi, Longan and Soapberry. The former three are in their original  
116 form without displaying expression data while the latter three are in their heatmap form to show the  
117 expression of certain genes. Red color denotes a high expression level of gene expression while blue  
118 color corresponds to a low expression level. All eFP graphs in SapBase are interactive to view spatial  
119 expression of genes. (D) A representative screenshot from the Multiple Experiment Compare function.  
120 Expression levels of several genes are listed in a table and displayed in an interactive heatmap. (E) An  
121 exemplary result generated from the Synteny Analysis function, using the gene (“LITCHI001814”)  
122 as the input.


123

124

A

# SapBase

SAPINDACEAE GENOME DATA BASE



B

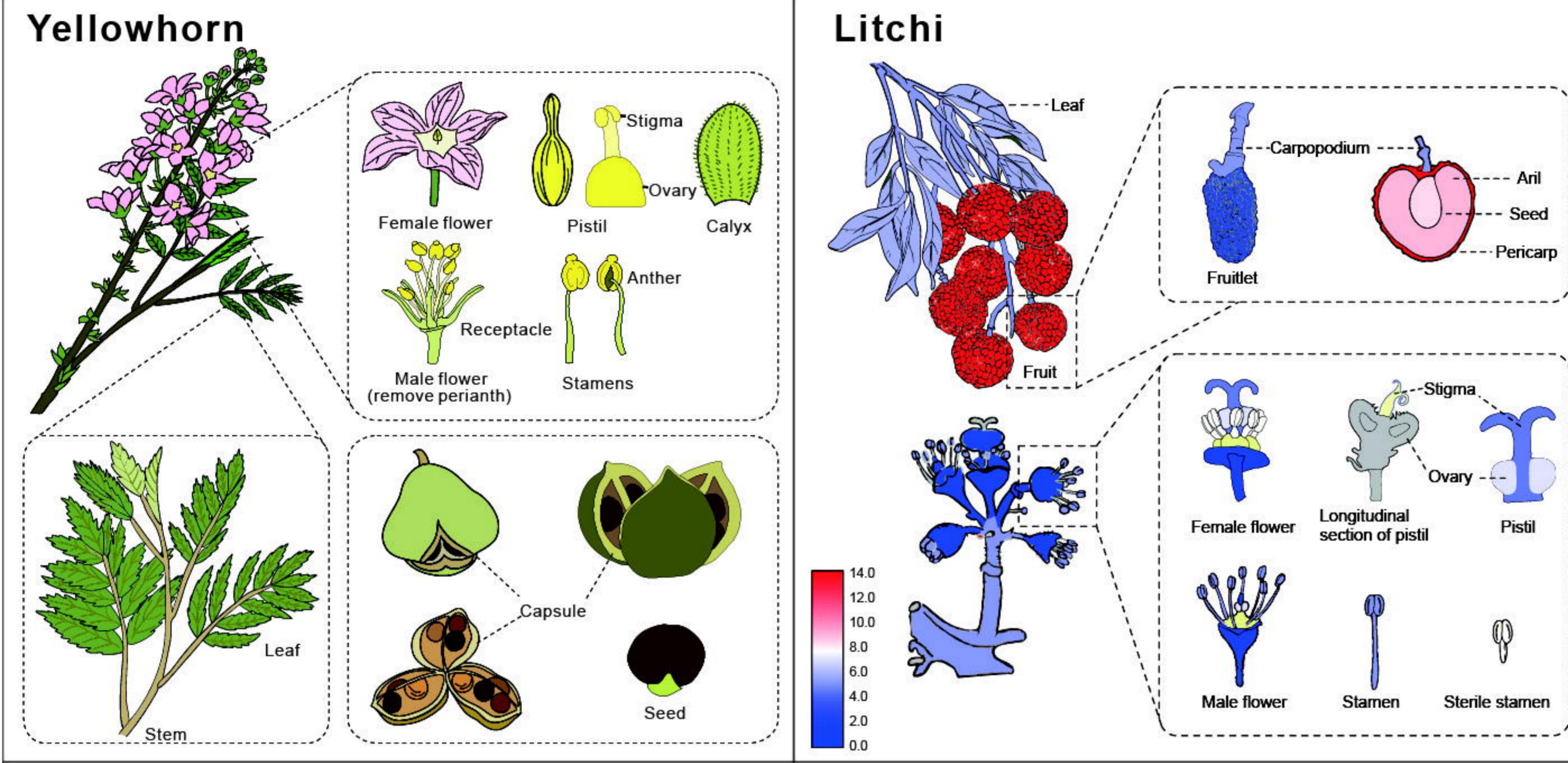
## BROWSE

- Species Info — 16
- Genome Browser
- Sapindaceae Phylogeny

## SEARCH

- Meta Search
- Gene Search
- Description Search
- Domain Search

## DOWNLOAD


- Genome
- Annotation
- Bulk Sequence Fetch

## ANALYSIS

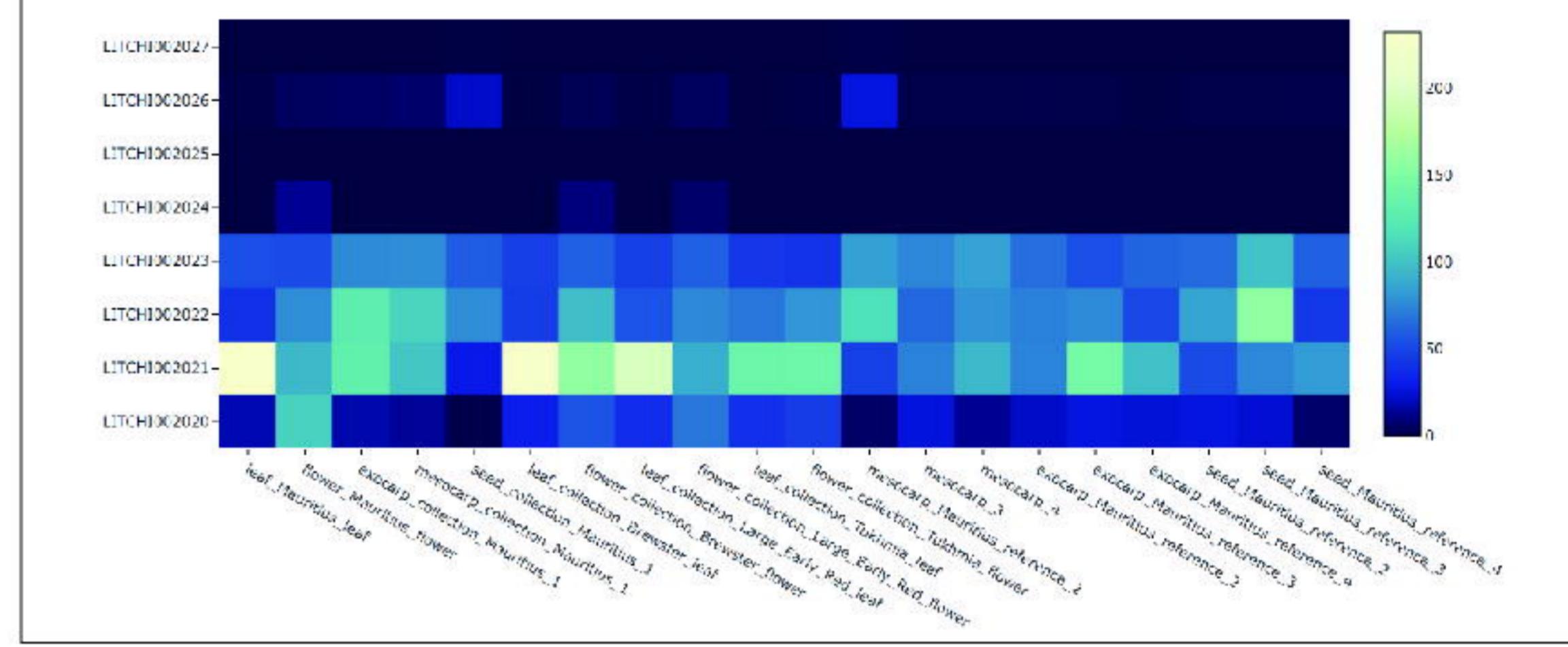
- BLAST / ID Convert
- Spatiotemporal Expression in eFP
- Multiple Experiment Compare
- Gene Co-Expression Network
- Functional Analysis
- Synteny Analysis
- Primer Design
- Gene Location Viewer
- sRNA Target Prediction
- Browse sRNA
- Protein Interaction Prediction
- Transcription Factors
- Pathway Analysis

4

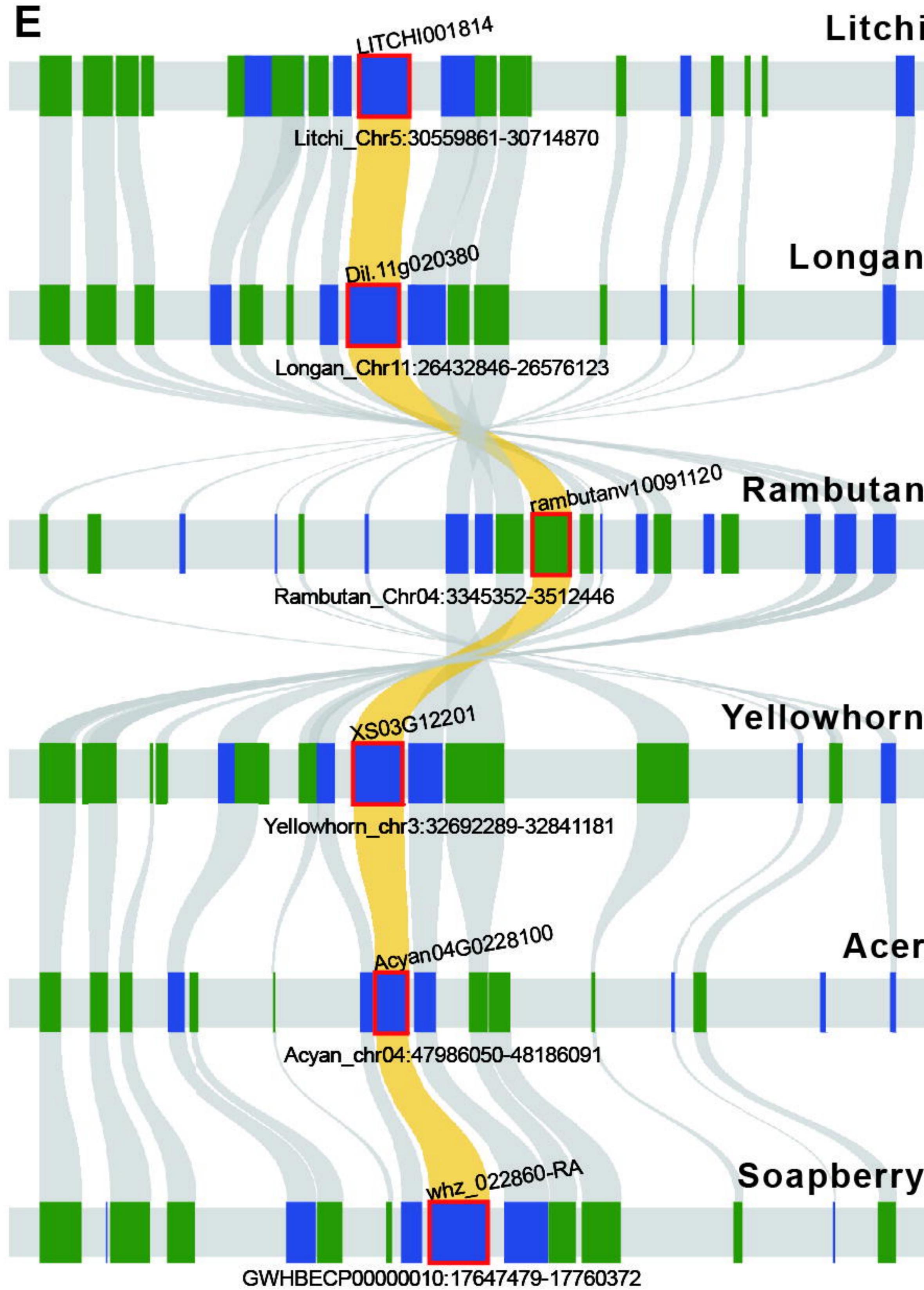
C



D


STUDY ID : SRP067945

Study: *Litchi chinensis* ssp. *Mauritius* transcriptome or Gene expressionAbstract: *Litchi chinensis* transcripts were sequenced and assembled for use as a reference in studies assessing genetic diversity of litchi germplasm collections. The reference sequence was built from transcripts of the cultivar 'Mauritius'.


Click here for bioproject details.

Click here for sample details.

| GeneID     | loc_Mauritius.fcf | flower_Mauritius.flower | exocarp_collection_Mauritius_I | mesocarp_collection_Mauritius_I | seed_collection_Mauritius_I | leaf_collection_Brewster_leaf | flower_collected |
|------------|-------------------|-------------------------|--------------------------------|---------------------------------|-----------------------------|-------------------------------|------------------|
| UT04002320 | 17.632976         | 07.623673               | 17.274255                      | 14.230159                       | 1.44387                     | 31.87911                      | 55               |
| UT04002321 | 232.29782         | 95.000311               | 31.204416                      | 11.176246                       | 25.705095                   | 23.099007                     | 151              |
| UT04002322 | 39.704836         | 77.251828               | 126.705769                     | 109.161709                      | 76.881186                   | 45.669796                     | 97               |
| UT04002323 | 53.10732          | 5.628059                | 75.532234                      | 76.64695                        | 93.3.7181                   | 16.165096                     | 60               |
| UT04002324 | C                 | 13.310559               | 0                              | 0                               | 0.0913                      | 0                             | 9                |
| UT04002325 | C                 | C                       | 0                              | 0                               | 0                           | 0                             | 0                |
| UT04002326 | 0.964308          | 4.744078                | 3.065318                       | 5.598203                        | 21.182331                   | 0.424311                      | 3.               |
| UT04002327 | C                 | C                       | 0.170317                       | 0                               | 0.626153                    | 0                             | 1                |



E

