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Abstract

The negative genetic impacts of gene flow from domestic to wild populations can be dependent on the
degree of domestication and exacerbated by the magnitude of pre-existing genetic differences between
wild populations and the domestication source. Recent evidence of European ancestry within North
American aquaculture Atlantic salmon (Salmo salar) has elevated the potential impact of escaped farmed
salmon on often at-risk wild North American salmon populations. Here we compare the ability of single
nucleotide polymorphism (SNP) and microsatellite (SSR) marker panels of different sizes (7-SSR, 100-
SSR, and 220K-SNP) to detect introgression of European genetic information into North American wild
and aquaculture populations. Linear regression comparing admixture predictions for a set of individuals
common to the three data sets showed that the 100-SSR panel and 7-SSR panels replicated the full 220K-
SNP-based admixture estimates with low accuracy (r? of 0.64 and 0.49 respectively). Additional tests
explored the effects of individual sample size and marker number, which revealed that ~300 randomly
selected SNPs could replicate the 220K-SNP admixture predictions with greater than 95% fidelity. We
designed a custom SNP panel (301-SNP) for European admixture detection in future monitoring work
and then developed and tested a Python package, SalmonEuAdmix

(https://github.com/CNuge/SalmonEuAdmix), that uses a deep neural network to make de novo estimates

of individuals’ European admixture proportion without the need to conduct complete admixture analysis
utilizing baseline samples. The results demonstrate the mobilization of targeted SNP panels and machine

learning in support of at-risk species conservation and management.
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Introduction

Losses of biodiversity and accelerating rates of species extinction have now been documented across the
globe (Barnosky et al. 2011). Attempts to stem this tide of inter- and intraspecific loss requires a robust
understanding of causal factors involved, which is often lacking. Wild populations of Atlantic salmon
(Salmo salar) in Atlantic Canada are highly valued for their ecological, cultural, and commercial
importance (DFO 2019). Across the North Atlantic, more than 60% of salmon populations show evidence
of decline in recent decades (Lehnert et al. 2019). Within Canadian waters, large population declines have
been observed, with abundance estimated to have fallen by 50% in the last half century; the largest
declines have been seen in populations of the Bay of Fundy, Southern Nova Scotia, and Southern
Newfoundland (COSEWIC 2010; DFO 2019). The causes of decline are largely unknown, but
possibilities include climate change (e.g., Nicola et al. 2018; Lehnert et al. 2019), fishery exploitation
(e.g., Bradbury et al. 2015; Dadswell et al. 2021), predation (e.g., Daniels et al. 2018; Strgm et al. 2019),
and interactions with salmon aquaculture (e.g., Glover et al. 2017; Wringe et al. 2018; Bradbury et al.
2020). Ultimately, the resolution of these causal factors will be key to the prevention of further extirpation

and the success of any recovery or restoration efforts.

Interbreeding of Atlantic salmon aquaculture escapees with wild salmon has been identified as a
significant threat to the species’ persistence and stability in the wild (Forseth et al. 2017). Both
hybridization and subsequent introgression have been observed in wild populations across the North
Atlantic (e.g., Karlsson et al. 2016; Wringe et al. 2018; Gilbey et al. 2021) and have been shown to
reduce population viability through maladaptive genetic changes to wild stocks (Sylvester et al. 2019;
Bolstad et al. 2017, 2021). Evidence of profound genomic differences (e.g., Lehnert et al. 2019, 2020) as
well as behavioral, and physiological differences (e.g., Islam et al. 2021) between European and North
American salmon support the hypothesis that the negative effects of European escapees in North America
likely exceed those of North American individuals (Bradbury et al. 2022). As a result, restrictions on the

use of European salmon in North America have been in place since the late 1990s (Baum et al. 1998;
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Porter et al. 1998; DFO 2016). Nonetheless, mounting evidence suggests the continued presence of
Atlantic salmon with European ancestry in: North American aquaculture salmon, escapees, and wild
salmon collected near aquaculture facilities over the last two decades (O'Reilly et al. 2006; Porter et al.
1998; Liu et al. 2017; Bradbury et al. 2020). The continued presence of European ancestry in North
American aquaculture fish represents a significant elevation of both the potential threat and uncertainty
associated with the impacts to already at-risk North American populations experiencing introgression

from farm escapees (DFO 2016).

To date, the quantification of European ancestry in Atlantic salmon has been accomplished using
small panels of microsatellite loci (King et al. 2001, O’Reilly et al. 2006) or large genomic panels (e.g.,
Liu et al. 2017; Bradbury et al. 2022). Accurate ancestry estimation requires extensive genome coverage
but genotyping large numbers of individuals for thousands of markers can be cost prohibitive (Pucket
2017). In applied contexts, where the number of individuals may be large, a balance is therefore required
to ensure that the genome is sufficiently sampled to allow for accurate admixture estimation, while
keeping study costs reasonable. Studies characterizing the ability of different marker panels to accurately
estimate admixture have repeatedly shown that larger panels, commonly comprised of hundreds or
thousands of single nucleotide polymorphisms (SNPs), vastly outperform smaller panels of microsatellite
markers (simple sequence repeats; SSRs) (Gérke et al. 2011; Camacho-Sanchez et al. 2019; Szatmari et
al. 2021). The use of differing numbers of SSR and SNPs for differentiation of domestic chicken (Gallus
gallus) breeds revealed that 70 SNP markers provided comparable performance to 29 SSR markers, while
the use of 250 or more SNPs provided sufficient genomic coverage for accurate admixture estimation
(Gérke et al. 2011). Similarly, repeated genetic clustering analyses for two amphibian species on the
Iberian Peninsula showed that on data sets of similar sizes and spatial structures, tens of thousands of
SNP markers outperformed panels of 18 and 14 microsatellites (Camacho-Sanchez et al. 2020).
Ultimately, a comparison across marker types and a targeted screening tool for quantifying European

introgression or individuals of European ancestry in Atlantic salmon is required and could provide the
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87  information necessary to mitigate some of the negative effects of aquaculture escapees on North

88  American wild salmon populations.

89 Here we build on previous work identifying the presence of European introgression in farmed,

90 escaped farmed, and wild Atlantic salmon throughout Atlantic Canada (e.g., Bradbury et al. 2022) and

91  develop targeted genomic and machine learning tools to facilitate routine screening in support of

92  conservation and management efforts. The goals of this study were to quantify the ability of panels of

93  varying marker types (SSR and SNP), marker numbers, and panel designs to detect European

94  introgression into North American farmed and wild Atlantic salmon, as well as to subsequently apply this

95 information in the design of efficient tools for future de novo introgression detection. Specifically, we: 1)

96 analyzed European admixture using three marker panels (7-SSR, 100-SSR, and 220K-SNP) on three

97  different, but overlapping sets of thousands of Atlantic salmon; 2) used a common set of individuals to

98  quantify the accuracy of European introgression detection by different panels relative to the complete

99  genome-wide SNP marker panel (220K-SNP array); 3) isolated the effects of marker number, individual
100  sample size, and the origins of individuals on admixture detection through down sampling and repeated
101  admixture estimation; 4) designed, tested, and implemented a machine learning-based Python package
102  with a Command Line Interface (CLI), SalmonEuAdmix, a diagnostic tool capable of accurately
103  estimating European admixture proportions based solely on the genotype data of new samples for a set of
104  301-SNP markers, without the need for additional complete admixture analyses. The software

105  SalmonEuAdmix is free and publicly available on GitHub (https://github.com/CNuge/SalmonEuAdmix)

106  and the Python package index (https://pypi.org/project/SalmonEuAdmix/). The results demonstrate the
107  power of targeted amplicons and machine learning algorithms to streamline ancestry estimation in support

108  of the conservation of at-risk wildlife species.

109


https://github.com/CNuge/SalmonEuAdmix
https://pypi.org/project/SalmonEuAdmix/
https://doi.org/10.1101/2022.11.23.517511
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517511; this version posted November 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

110 Materials and Methods

111  Sample information & Genotyping

112  To compare the ability of different marker panels to detect European introgression into North American
113 aquaculture and wild individuals, three data sets were utilized as the basis of the comparisons (Table 1).
114  The first data set (220K-SNP) was a series of 7739 samples (Table 1) that were genotyped using a 220K
115  bi-allelic SNP Affymetrix Axiom array developed for Atlantic salmon as described in Barson et al.

116  (2015). Most of the samples utilized were from previously published sources (Lehnert et al. 2020;

117  Bradbury et al. 2022), and all samples were subjected to the extraction, genotyping, and bioinformatics
118  procedures described therein. The second data set (100-SSR) was a series of 3733 samples (Table 1) from
119  apreviously published source (Bradbury et al. 2018) that were genotyped using a panel of 100

120  microsatellite markers. This data set included wild and aquaculture fish from North America, but unlike
121 the 220K SNP array data set it had European individuals exclusively derived from Norwegian aquaculture
122 facilities (Table 1). The third data set (7-SSR) utilized was a series of 1516 individuals (Table 1)

123 genotyped using a panel of seven microsatellite markers initially described in King et al. (2001). The

124  samples genotyped for the 7-SSR panel were composed of wild and aquaculture samples from North

125  America, as well as 269 triploid aquaculture individuals of European origin. Prior to genetic admixture
126  analysis, the genotypes of the triploid individuals were down sampled. For each marker in each triploid
127  individual, 2 of 3 alleles were randomly retained so as to create synthetic diploid samples suitable for use
128  in subsequent admixture analysis. The three datasets had no overlap in genetic markers, but did have

129  individual samples in common. A series of 370 individuals (211 North American aquaculture and 159
130  North American aquaculture escapees) were common to all three data sets and were used as a common

131  test set for comparison of admixture detection across the different data sets.

132 Detection of European introgression through admixture analysis
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133 For the 220K-SNP data set the data quality control (QC) filtering steps described in Bradbury et al. 2022
134 were replicated. We then conducted a principal component analysis (PCA) of the 220K-SNP marker

135  genotypes using the program pcadapt (Luu et al. 2016) to quantify the population structure of the samples
136  and ensure that the patterns described in Bradbury et al. (2022) were replicated in the present study. The
137  program Admixture (version 1.3.0; Alexander et al. 2009) was then used with the parameter k = 2 to

138  calculate per individual admixture values; these results were visualized in R and admixture populations
139  were retained for subsequent comparative analyses. For both the 100-SSR and 7-SSR panels the program
140  Structure (version 2.3.4; Pritchard et al. 2000) was used to calculate admixture proportions for each

141  individual (with the parameters: k = 2, burn in = 50000 iterations, repetitions = 500000). This change in
142 admixture calculation method was required because unlike Admixture, Structure can accommodate

143 microsatellite data with three or more alleles per locus, while yielding similar results (Alexander et al.

144 2009).
145  Comparison of admixture estimates across marker panels

146 The admixture proportion predictions made using the complete 220K-SNP marker panel (~186K markers
147  post filtering) were assumed to be the most accurate measure of European introgression due to having the
148  most comprehensive marker coverage and largest baseline sample sets of wild and farmed North

149  American and European individuals. To assess the relative performance of the 220K-SNP and the two
150  SSR marker panels, the per-individual estimated admixture proportion values (Q1 and Q2 estimates) for
151  the set of 370 individuals common to all the data sets were considered. For both the SSR marker panels, a
152 linear regression was performed with the European admixture proportion predicted by the complete

153  220K-SNP marker set used as the response variable and the European admixture proportion of the given
154  SSR set used as the predictor. The regression coefficient (r?) was considered to be the measure of how
155  well the complete ground truth admixture proportions were replicated by the predictor data set and the per
156 individual predictions were visualized via scatterplots in R. Prediction accuracies were also examined

157  from the perspective of a classification problem. Ground truth and predicted admixture values were
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158  converted to binary classifications, using a threshold of 0.1 to classify whether an individual was of pure
159  North American origin (<0.1) or displayed significant European ancestry (>0.1); these classification data

160  were then used to generate confusion matrices and calculate prediction accuracy scores and error rates.

161 The use of three overlapping but non-equivalent sets of individuals for admixture prediction by
162  the different marker panels provided a confound that prevented the regression coefficients and admixture
163  proportions from being compared in a completely equivalent fashion, as the sample number and marker
164  number did not vary independently. To better understand and quantify the effects of marker number and
165  sample number independently, we conducted several additional admixture prediction analyses aimed at
166  trying to isolate these variables. To provide evidence of the role of marker number and coverage on the
167  detection of European introgression, random down sampling was conducted to produce smaller panels
168  from the 220K-SNP data set. Random genome-wide subsets of 500, 400, 300, 200, and 100 SNPs were
169  chosen from the complete set of SNPs that passed the filtering steps. For each of the samples, the

170  admixture analysis was then repeated and the results for the 370 common test individuals were compared
171  to the 220K-SNPmarker set predictions via linear regression to quantify admixture prediction accuracy.
172 Finally, we isolated the effect of sample size by repeating the admixture proportion prediction analysis
173 using the full set of markers from the 220K-SNP panel, but down sampling to produce a sample set with
174 smaller numbers of individuals from the North American and European baseline populations. Two

175  smaller sample sizes were extracted from the full data set and individuals were selected to as closely as
176  possible mirror the compositions of the individuals genotyped with the 100-SSR and 7-SSR panels (Table
177  1). Both subsets included the 370 common test individuals to allow for direct comparison to the other
178  analyses and the remaining subset were randomly selected from the complete set of available individuals
179  on a within-category basis (categories listed in Table 1). The larger subset (mirroring the 100-SSR data
180  set) was composed of 3485 individuals, including 2733 wild North American samples, 177 North

181  American wild caught individuals of aquaculture or wild-aquaculture mixed origin, and 205 Norwegian

182  aquaculture samples. The smaller 1441 sample set consisted of the 370 common individuals as well as


https://doi.org/10.1101/2022.11.23.517511
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517511; this version posted November 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

183 614 North American wild, 252 North American wild caught individuals of aquaculture or wild-

184  aquaculture mixed origin, and 205 European aquaculture samples. The most significant change to these
185  two down sampled data sets relative to the full 220K sample set was the complete exclusion of the 806
186  wild European samples. Admixture calculations and regression analyses comparing these per sample

187  admixture predictions to the complete data set were then performed.

188 The interaction of reduced markers and individual sets was then examined through additional

189  admixture analysis runs using the 3485 and 1441 individual sets and the following marker sets: the 500
190 random SNP panel and the 100 random SNP panel. These admixture analyses were conducted to see if the
191  effects of marker number and sample number on admixture prediction accuracy were additive, and to

192 better understand the influences of these variables on admixture prediction. The admixture predictions for
193  the 370 common individuals were compared to the results from previous tests, to give an indication of the

194  performance difference when the marker and individual numbers are both reduced.

195  Design and testing of SNP marker panel

196  Following the comparative study of the marker panels and assessment of the relative importance of
197  marker number and sample size, a sub-panel of SNPs was designed with the goal of producing a

198  standardized set of markers for future per-individual admixture estimation with good genome coverage
199  and strong lab-based performance metrics. The panel, of 301 SNP markers was selected from the

200  complete set of 220K array SNPs based on several criteria: i) markers had to pass all the QC filtering
201  steps in the 220K-SNP admixture analysis, ii) markers were selected so as to guarantee that all 29

202  chromosomes of the Atlantic salmon genome were represented, iii) markers were selected that had

203  associated DNA sequences that analysis with PrimerServer (Zhu et al. 2017) predicted to have specific
204  amplicon targets, iv) markers were selected that had high Fsrin comparison of North American and
205  European ancestry individuals. The panel was subset from the complete data set using Plink (version
206  1.90) (Purcell et al. 2007) and used to conduct an additional admixture analysis. The results were

207  compared to the admixture proportions predicted using the 220K-SNP panel via a linear regression.
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208  Classification-based comparison of predictions to the 220K-SNP panel predictions was also conducted,
209  with predicted admixture proportions converted to binary classifications using a threshold of 0.1 (pure

210  North American origin <0.1, European ancestry introgression >=0.1).

211 Machine learning model and Software design

212 After describing the ability of the various marker panels to detect European introgression, we aimed to
213 design a software tool in the Python programming language to allow an end user to obtain an admixture
214 prediction based on the 301-SNP panel without the need to re-run a complete admixture pipeline for each
215  new set of samples, thereby increasing the feasibility of admixture detection for ongoing salmon

216  conservation efforts. The software would reduce the data processing and computational overhead needed
217  to estimate the European admixture proportion for a new sample or set of samples. To accomplish this,
218  we trained and tested a series of supervised machine learning models to predict European admixture

219  proportion (y) based on the SNP genotypes of a new individual for the markers in the selected panel (X).

220 To interface with the machine learning models, the genotype data for the complete set of 7636
221 individuals was numerically encoded in dosage format. Data processing code

222 (https://github.com/CNuge/SalmonEuAdmix) was developed to read in a genotype file (in Plink’s PED
223 format), impute missing genotypes with the mode genotype from the 220K-SNP data set, and numerically
224 encode the genotypes (AA =0, AB =1, BB = 2, where A is the major allele in the baseline data and B is
225  the minor allele). The set of 370 common individuals used in previous analyses were withheld to serve as
226  afinal validation set. Of the remaining individuals, 80% of the remaining individuals were randomly

227  selected to form the training set for the machine learning models and 20% were withheld to serve as a test
228  set spanning all the available data classes. The 370 common individuals assessed performance only on
229  North American aquaculture and wild fish, while the test set additionally included individuals of complete
230  European origin. To eliminate potential bias and ensure that the 370 individuals in the final validation
231  data were completely withheld prior to final model assessment, an additional admixture run was

232 conducted using the 301-SNP markers and the 370 validation individuals removed. The European

10
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233 admixture proportions obtained from this admixture run were used as the response variables (y) in model

234 training.

235 Within Python, the three machine learning models: a random forest (RF), a support vector

236  machine (SVM), and a deep neural network (DNN), were fit to the training data and used to make

237  predictions on the withheld test and validation data. The RF model was implemented using the

238  sklearn.ensemble.RandomForestRegressor function of the package Scikit-learn (Version 0.24.2,

239  Pedregosa et al. 2011) using an n_estimators parameter of 1000 and defaults for all other parameters. The
240  support vector machine (SVM) was implemented using the sklearn.svm.SVR function of Scikit-learn

241  using a C value of 1.0, and an epsilon value of 0.2, and defaults for all other parameters (Version 0.24.2,
242  Pedregosa et al. 2011). The DNN was a custom architecture designed using the package Tensorflow

243  (Version 2.8.0, Abadi et al. 2016) that featured an input layer shape of 301 (matching the SNP panel size)
244 three hidden layers of 1026, 342, and 114 densely connected neurons using the rectified linear activation
245  (relu) function activation and 0.2 dropout frequency, and a single neuron output layer using a linear

246  activation function. Training of the DNN used the Adam optimization algorithm, 20 training epochs, and
247  mean absolute error as the loss metric. Code for the DNN model architecture can be found within the

248  SalmonEuAdmix package

249 (https://github.com/CNuge/SalmonEuAdmix/blob/master/SalmonEuAdmix/model.py).

250 The models were all trained with a 1 x 301 predictor tensor containing the dosage encoded

251  genotypes, and the European admixture proportions obtained from admixture analysis using the 301-SNP
252  panel set as the response variable. The response variables were scaled using a StandardScaler (Scikit-
253  learn Version 0.24.2, Pedregosa et al. 2011) that was trained on the training data and applied to each of
254  the train, test, and validation response variable sets. Predicted values were compared to the ground truth
255  admixture proportions (Figure 1, Figure S1) obtained using the 220K-SNP data set. For each model, the
256  root mean squared error was calculated and the predictions were saved to a tab separated output file.

257  These data were then loaded into R where linear regressions were performed to compare the models’

11
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258  predicted admixture proportions to the original values. Comparison of the results from the three different

259  models was then used to select the optimally performing model. The final models were saved and the

260  software package SalmonEuAdmix (https://github.com/CNuge/SalmonEuAdmix) was created to allow

261 for efficient model reuse via a CLI.

262

12
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263 Results

264  Detection of European introgression through admixture analysis

265  Following SNP and individual data filtering based on the criteria laid out in Bradbury et al. 2022, the
266  220K-SNP marker panel used for European admixture detection consisted of 186292 SNPs and 7636
267 individuals. Similar to the results reported in Bradbury et al. 2022 (with minor differences resulting from
268  the increased sample size), the PCA revealed strong separation of samples of European and North

269  American origin along the first axis of variation (PC1 = 34.2% variance explained), and evidence of

270  individuals with mixed ancestry (Figure 1). The admixture analysis with the 220K-SNP panel separated
271 North American wild fish from Norwegian fish of wild or aquaculture origin with high fidelity, while
272 samples from the North American aquaculture and agquaculture escapee groups displayed evidence of

273 European introgression (Figure 1).

274 For the 100-SSR marker panel, a total of 3646 individuals were successfully genotyped and

275  passed all QC steps. The PCA showed the primary axis of variation was separating individuals of

276  European and North American ancestry (PC1 = 6.6%, PC2 = 1.4% variance explained; Figure S2). The
277  linear regression of the admixture proportions for the 370 commonly genotyped individuals revealed a
278  significant, but weak concordance of predicted admixture proportions with the 220K-SNP panel

279  predictions (r>=0.64 (Figure 2A). For the 7-SSR marker panel, 1438 individuals were genotyped and
280  passed all QC steps. The PCA showed the primary axis of variation was separating individuals of

281  European and North American ancestry (PC1 = 6.5%, PC2 = 1.9% variance explained; Figure S2). The
282 linear regression of the 7-SSR admixture proportions for the 370 individuals showed lower concordance
283  with the 220K-SNP panel admixture proportions predictions (r>=0.49). Inspection of the 7-SSR

284  admixture proportion predictions for the 370 individuals showed a high number of individuals predicted
285  to have less than 1% (242/370 = 66% of individuals) of European ancestry, while the 220K-SNP data set
286  reported only 151 individuals with European admixture proportions less than 1% suggesting reduced
287  ability to detect European admixture with the 7-SSR marker panel set. (Figure 2B).
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288  Separating marker and sample effects

289 A series of additional admixture detection runs were conducted to isolate the effects of marker number
290  and individual number on the characterization of European admixture. First, we isolated the effect of

291  marker number by conducting random down sampling of SNPs while keeping the number of individuals
292  constant (n=7636). Linear models were used to obtain the regression coefficients for each of the random
293  marker subsamples (Table 2; Figure 3). The 500 random SNP marker panel performed better than either
294  SSR panel, reproducing the 220K-SNP admixture predictions with an r? of 0.97. The 400 and 300 random
295  marker panels also had regression coefficients of greater than 0.95, suggesting that these marker sets had
296  sufficient genome coverage to replicate the 220K-SNP admixture predictions with greater than 95%

297  accuracy. The 200 random SNP panel displayed a larger performance decline relative to the larger

298  random panels, with an r?of 0.91 and the 100-SSR panel displayed lower performance still, with r? of

299  0.83.

300 A second series of additional admixture analyses were run to isolate the effect of individual

301  sample size on the characterization of European Admixture. For these tests, the composition of the

302  number of individuals in the dataset was changed to resemble the number and type of individuals

303  genotyped with the 100-SSR and 7-SSR panels (the data were down sampled to 3485 and 1441 individual
304  sets respectively). Admixture analyses were run for these down sampled individual sets using: the 220K-
305  SNP marker panel, the 500 random SNP panel, and the 100 random SNP panel. For each panel, when the
306  number of individuals used in the admixture analysis was reduced there were no significant reductions
307  observed in the correlation of the admixture prediction values, and those obtained using the 220K-SNP
308  dataset (Table 2; Figure 3). These results suggests that the number of markers had a larger impact on

309  admixture detection than the number of individuals used in the admixture analysis.

310  Testing of SNP marker panels
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311  The PCA of the targeted 301-SNP panel produced genetic clustering patterns highly similar to the 220K-
312  SNP panel, with strong separation of European and North American origin samples along the primary
313 axis of variation (301-SNP: PC1 = 13.1%, PC2 = 5.2% variance explained; Figure S2). The admixture
314  analysis was repeated for the down sampled 7636 individuals using the 301-SNP panel and linear

315  regression comparing the per-individual predictions to the 220K-SNP per-individual admixture

316  predictions showed that the 301-SNP panel outperformed the SSR panels and the 500 random SNP

317  panels, with and r? value of 0.98 (Table 2; Figure 2C).
318  Assessment of panel classification accuracy

319  Classification-based comparison of the admixture predictions of the 301-SNP, 100-SSR, and 7-SSR

320  panels to the 220K-SNP panel predictions was conducted using a binary prediction threshold of 0.1 (pure
321  North American origin <0.1, European ancestry introgression >0.1). The 301-SNP panel had the lowest
322 mis-classification rate of the three panels, with a 4.8% error rate (Table 3A). The 301-SNP panel

323  displayed sensitivity to European admixture, with only 3 false negatives and 15 false positives. The 100-
324  SSR panel had a mis-classification rate of 9% (Table 3B), so although the per individual admixture values
325  may not as strongly correspond to the 220K-SNP panel predictions, the population level characterization
326  of the number of fish with European ancestry is similar (with 15 false positives and 18 false negatives).
327  For the 7-SSR panel there is a 13.2% mis-classification rate, that was directional in nature with 46 false

328  negatives and only 3 false positives (Table 3C).
329  Machine learning model comparison

330  Prior to training of the machine learning models we removed potential bias by producing blind admixture
331  values (withholding the 370 validation individuals at all stages and reconducting the 301-SNP admixture
332 analyses) for use as response variables in machine learning model training. A linear regression

333  demonstrated that the blind admixture proportions did not differ from the per-individual admixture

334  proportions (r> > 0.99, p < 2e-16).
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335 Following model training (using the test set and blind admixture values), predictions were made
336  on the test and validation sets. The root mean squared error (RMSE) of predictions for the 301-SNP panel
337  models on the test set (n = 1454, 20% of individuals) were: 0.0417 for the DNN, 0.013 for the RF, and
338  0.035 for the SVM. For the 301-SNP panel model’s predictions on the validation data the RMSE were:
339  0.018 for the DNN, 0.039 for the RF, and 0.035 for the SVM. The per-individual admixture predictions
340  produced by the three models were then compared to the ground truth admixture values obtained using
341  the full set of SNP markers and individuals (Figure 4). For both the test and validation data sets, the DNN
342  output admixture predictions that most closely resembled the ground truth predictions with regression
343  coefficients (r?) of 0.99 and 0.95 for the test and validation data respectively. The SVR performance was
344  similar for both data sets (test r> = 0.99, validation r? = 0.95), and the RF model had comparable

345  performance to the other models on the test data (r?> = 0.99), but inferior performance on the validation
346  dataset (r? = 0.81), suggesting the RF had either overfit to the training data or that it was less effective at
347  characterizing intermediate admixture values that were more prevalent in the validation data. The strong
348  test set scores for of all models are likely due to the similarity of the training and test individuals, which
349  were subsets of the original full set of 7636 individuals and contained samples of similar origin (i.e.

350 individuals from same wild sampling locations or individuals derived from the same aquaculture stock)
351  and also due to the test set having individuals with less admixed genomes (full European or North

352  American origin). The validation individuals were completely withheld in the machine learning process
353  (notincluded in the additional admixture analysis used to create response values for model training) and
354  there was a higher proportion of intermediate admixture individuals compared to the test set which had
355  many individuals of pure North American or European origin, making these values a more robust

356  assessment of model performance.

357 Based on these results, the 301-SNP DNN model was selected for use in the SalmonEuAdmix
358  package because of its ability to yield predictions that most closely resembled the European admixture

359  proportions obtained through the complete admixture analysis for the previously unseen individuals. Due
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360  to the unconstrained nature of the DNN (e.g. predictions could be <0.0 or >1.0) there were individuals in
361 the test set with predicted European ancestry proportions in excess of 1.0 (Figure 4). To account for this, a
362  default, but optional heuristic was included in the SalmonEuAdmix package which constrained admixture

363  predictions to a lower bound of 0.0 and an upper bound of 1.0.

364
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365 Discussion

366  Targeted SNP panels and admixture detection algorithms are becoming common place in conservation
367  management activities revealing both population structure and hybridization (Camacho-Sanchez et al.
368  2019; May et al. 2020; Stronen et al. 2022). In Atlantic Salmon, the identification of introgression of
369  aquaculture salmon has become central to conservation efforts aimed at curbing salmon decline across the
370  North Atlantic (e.g., Forseth et al. 2017; Bradbury et al. 2020) and genomic tools have been successfully
371  applied to quantify hybridization and introgression (e.g., Karlsson et al. 2011; Pritchard et al. 2016;

372 Wringe et al. 2019). Here we extended previous observations of aquaculture associated European

373  introgression into North American salmon populations (O’Reilly et al. 2006; Bradbury et al. 2022) and
374  develop targeted genomic and machine learning tools to mobilize European ancestry detection to inform
375  conservation and management efforts. Our results suggest that accurate aquaculture associated European
376  admixture estimation is possible with subsets of loci and accuracy is dependent more on genome coverage
377  than number of baseline individuals considered. Iterative down sampling suggests that approximately 300
378  markers provided sufficient genomic coverage to closely replicate genome-wide admixture analysis in an
379  efficient and cost-effective manner and that accuracy declined below this panel size. Combining this

380 information with bioinformatics and lab-based metrics, we designed a panel of 301 SNPs, for use in

381  future analyses aimed at characterizing European admixture proportions in North American populations.
382  This panel, along with the deep neural network contained in the software package SalmonEuAdmix,

383  allow for rapid and accurate de novo admixture proportion estimates to be made as part of future Atlantic
384  salmon conservation and management efforts. The methods developed here serve as an example of how
385  admixture data for at-risk wildlife species can be used in conjunction with machine learning algorithms to

386  streamline ancestry estimation in support of conservation.

387  Marker panel comparison

388  This work provides a comprehensive comparative study of the ability of different marker panels to detect

389  European admixture within North American Atlantic salmon. The ability of the SNP array to accurately
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estimate individual ancestry was demonstrated through consistent performance across a range of marker
panel sizes and baseline sample numbers. This is likely in part due to the high levels of differentiation
between the North American and European lineages, which are estimated to have been isolated from one
another for the past 600,000 years, with minimal secondary contact (Bourret et al. 2013; Moore et al.
2014; Rougemont & Bernatchez 2018; Lehnert et al. 2020; Bradbury et al. 2022). The inability to detect
low levels of admixture was a limitation of the SSR panels (i.e., the 100-SSR and 7-SSR panels) as both
of these SSR panels displayed reduced ancestry prediction accuracy (i.e. lower regression coefficients)
compared to the 220K-SNP panel. These results for the 7-SSR panel are consistent with the hypothesis
that the reduced performance of the SSR panels is mostly likely due to poor coverage of the Atlantic
salmon genome. The Atlantic salmon genome has 27-29 chromosomes (Lien et al. 2016), so even if each
of the 7-SSR panel’s markers were on separate chromosomes, any introgression on 22 of the 29
chromosomes (approximately 76% of the genome, or more depending on the size of the chromosomes
containing the SSR markers) would not be in physical linkage with a panel marker and admixture in these
regions would therefore go undetected. Scenarios with more European introgression, where
recombination has occurred and smaller European ancestry tracts are present across numerous
chromosomes, would go undetected by the 7-SSR panel unless by chance the admixture tracts span the
SSR locations and contained a European ancestry tract. This same reasoning supports the major
assumption we have made in the comparative study, which is that the 220K-SNP panel admixture
predictions serve as a ‘ground truth’ to which other predictions are compared. With 186292 polymorphic
SNP markers passing QC steps and being included in this panel, and the salmon genome being
approximately 2.96 Gbp in size, the 220K-SNP panel provides genome wide coverage of approximately
one SNP every 15.9 Kb of the Atlantic salmon genome, which is a level of genome-wide resolution

sufficient to detect even very low levels of admixture (Lehnert et al. 2019; Bradbury et al. 2022).

Interestingly, the 100-SSR panel offered better genomic coverage than the 7-SSR panel, having

specifically been designed to have representation of all chromosomes and therefore poor genomic
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415  coverage may not be the sole cause of its reduced admixture detection (Bradbury et al. 2018). An

416  alternative hypothesis for the poorer performance of this panel relative to similarly sized SNP panels

417  could be the accumulation of homoplastic (e.g. same repeat number) alleles within the North American
418  and European lineages. Changes in microsatellite repeat number are a common mode of allelic evolution
419  and have been shown to lead to microsatellite alleles of the same size with different evolutionary histories
420  (Makova et al. 2000; Culver et al. 2001; Moodley et al. 2015). The estimated 600,000 YBP divergence
421  time (Rougemont & Bernatchez 2018) of the two Atlantic salmon lineages would afford sufficient time
422  for the accumulation of homoplastic microsatellite alleles and thereby contribute to the observed reduced

423  admixture detection in comparison to the 100 locus SNP panel (see below).

424 The classification-based comparison of predictions further highlighted the differences in

425  sensitivity to European admixture detection among the panels and demonstrated the potential impacts of
426  these differences on classification-based screening of populations. Although the 7-SSR panel has

427  previously been shown to have 100% correct continent of origin assignment (King et al. 2001), our work
428  demonstrates that its capacity to detect European introgression is much more limited. The 7-SSR panel
429  was shown to drastically under classify European introgression, which suggests that screening based on
430 this panel would fail to detect European admixture in the majority of cases. Conversely, the 301-SNP
431  panel possessed an error profile more suitable for applied conservation efforts aimed at screening for
432  European admixture. The 301-SNP panel was sensitive to European admixture, detecting over 95% of
433  true positives, while showing low levels of false positives as well. This is more suitable for screening in
434  applied conservation efforts, where the costs of false negatives (overlooking true admixture and its

435  associated negative effects) outweigh the costs of false positives (additional sampling or analytical efforts

436  of non-admixed populations).

437 Admittedly, the direct comparison of panel results was limited to a subset of individuals (n =
438  370). Although these represented only a small fraction of the complete data sets, the admixture

439  proportions of these individuals captured the level of ancestry variation in the total dataset and as such
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440  were well suited to assess the sensitivity of the different panels across a range admixture levels. For

441  example, the 220K-SNP panel European admixture proportion predictions for these individuals ranged
442  from 0.0 - 0.587 with 136 individuals having values in the range of 0.01 - 0.1 (e.g., 1% - 10% European
443  Ancestry). These values reflect the range of admixture detected in broader analyses of aquaculture salmon
444  and escapees (Bradbury et al. 2022) and also represent low admixture proportions that panels with poor
445  genomic coverage would be more likely to fail to detect. If the common test set included more individuals
446  with high (or complete) European ancestry, then the SSR panels admixture predictions would have likely
447  more closely resembled the 220K-SNP panel predictions. Resolution of low to intermediate admixture
448  proportions is of interest in applied conservation efforts, so the 370 individual test set used in this work is

449  reflective of the context in which these findings will be applied and therefore likely very appropriate.

450  Marker and sample number effects on admixture prediction

451  The iterative down sampling of SNPs showed an approximately linear decline, until a sharper drop in
452  admixture prediction performance that was observed when only 200 markers were used; this is consistent
453  with the hypothesis that at this point genomic coverage was sparse enough that larger admixture tracts
454  went undetected. These results are similar to previous studies of admixture estimation using different

455  numbers of markers, which have shown several hundred SNPs to provide sufficient genomic coverage for
456  accurate estimation in a wide variety of species and contexts, while smaller panels (e.g. <100 markers)
457  can have reduced admixture estimation ability in many situations (Vaha & Primmer 2006; Garke et al.
458 2011, Oliveira et al. 2015; Puckett & Eggert 2016; Fischer et al. 2017; Saint-Pé et al. 2019). The use of
459  approximately 300 SNPs in subsequent custom panel design and predictive admixture model construction
460  were therefore selected to strike a balance between genome coverage, admixture detection accuracy, and
461  marker parsimony. The results of this study have shown only fractional performance declines for the 301-
462  SNP panel relative to the 220K-SNP panel that was several orders of magnitude larger (when all other
463  variables are held equal). Compared to genotyping individuals with the complete 220K Atlantic salmon

464  SNP array (Barson et al. 2015), the 301 SNP genotypes required for admixture prediction with the 301-
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465  SNP panel can be obtained more economically and efficiently using targeted genotyping methods such as

466  Genotyping-in-Thousands by sequencing (GT-seq) (Campbell et al. 2015).

467 The differences in the samples genotyped using the SSR and SNP marker panels complicated the
468 interpretation of the results. Here, we attempted to isolate and quantify this effect through a comparative
469  study of the admixture analyses and the use of down sampling to change the composition of individuals
470  considered therein. In addition to the by-individual down sampled admixture runs that did not reveal

471  significant effects of individual sample size on admixture predictions, comparing the difference in

472  performance between the 100-SSR marker set and the 100 random SNP set (in terms of replication of the
473  220K-SNP admixture predictions on the 370 common individuals) indirectly gives an indication of the
474  effect of the samples considered. The 100-SSR panel produced an r? of 0.64, while the 100 random SNP
475  panel produced an r? of 0.83 (Table S1). This 0.182 difference in performance is unexpected given the
476  information rich (e.g. multi-allelic) nature of microsatellite markers relative to bi-allelic SNPs and is

477  contrary to previous work that has shown an opposing relationship of performance differences between
478  similarly sized SNPs and SSRs sample sets utilized in admixture analyses (Garke et al. 2011). As an

479  alternative to the previously discussed microsatellite homoplasy hypothesis, the difference in performance
480  may result from the bias introduced by the random SNPs being a subset of the 220K-SNP set used to

481  obtain the ground truth admixture values and matching sets of individuals being used in these analyses.
482  We attempted to quantify this bias through the down sampling of individuals to match the composition of
483  the 100-SSR and 7-SSR admixture analyses, but this did not lead to any significant declined in the r? of
484  predictions relative to the 220K-SNP set. Conservatively, the 0.18 r? difference between the 100 random
485  SNP and 100-SSR marker sets may therefore be considered an estimate of the bias in favour of the SNP
486  panel results, due to the SNP panels not being truly blind to the data in the 220K-SNP admixture

487 predictions that constituted our ground truth values. Nonetheless, even with this bias taken into account
488  (e.g. if we state that the hypothetical r? of the 100-SSR is near or slightly higher than the 100 random SNP

489  r?of 0.8292), based on the other results of this study the 301-SNP panel would still likely far exceed the
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490  SSR panels’ admixture detection ability if the samples analyzed with the different marker panels were

491  completely equivalent.

492  SalmonEuAdmix and application of machine learning models

493  Machine learning models have recently been leveraged to infer genetic ancestry and to allow for the

494  reconstruction of complex admixture histories in situations where traditionally employed methods can
495  encounter limitations (Villanea & Schraiber 2019; Fortes-Lima et al. 2021; Bilschak et al. 2021). Our
496  work represents a novel, alternative application of machine learning algorithms in ancestry estimation;
497  instead of trying to better resolve admixture estimates, we trained supervised machine learning algorithms
498  to replicate admixture proportion estimates which themselves were produced using an unsupervised

499 learning algorithm (Pritchard et al. 2000; Tarca et al. 2007; Alexander et al. 2009). The predictive models
500 learn the patterns relating genotypes to admixture proportions in the training data and make novel

501  admixture estimates based solely on the genotypes of new individuals. This shifts the bulk of the

502  analytical burden from the end user onto the algorithm designer, thereby transforming admixture

503  estimation from a complex bioinformatics analysis into a simplified screening test, which is ideal for use
504  inapplied conservation efforts. This approach can be replicated within other species in order to take a
505  robust set of admixture predictions and produce a customized diagnostic tool for rapid and simplified

506  species-specific admixture estimation tool for use in applied conservation efforts (Oliveira et al. 2015;

507 Bilschak et al. 2021; Stronen et al. 2022).

508 It is important to remember that this supervised learning approach to admixture estimation is
509  meant to complement, not replace, traditional unsupervised admixture estimation methods. As evidenced
510 Dby our assessment of panel classification accuracy, supervised models (such as the DNN used in

511  SalmonEuAdmix) can be developed that are sensitive to the presence of admixture, allowing for the

512  detection of cases of interest within applied contexts. However, the fine scale admixture proportions are
513 inferior to a complete admixture analysis run using a maximal amount of available genetic markers.

514  Within the intended application as an admixture screening tool, SalmonEuAdmix is likely to be robust,
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515  being based on genetic data from thousands of Atlantic salmon that display a spectrum of admixture

516  proportions. The ability of SalmonEuAdmix’s models to predict admixture of previously untested

517  populations is uncertain and may vary depending on the details of the population in question; however,
518  we expect it to be effective for sample from novel locations in Atlantic Canada given the wide-ranging set
519  of wild North American samples used in this study and the significant proportion of genomic variation
520  explained by North American and European divergence. Despite potential limitation of model

521  generalizability, the DNNs of SalmonEuAdmix are likely to outperform admixture analyses based on the
522  7-SSR or 100-SSR marker panels, as the 301-SNP panel provides greater genomic coverage and is

523  comprised of bi-allelic SNPs (providing a defined parameter space for variation, whereas SSR markers
524  may be found in novel variants within new populations). As more genotyped Atlantic salmon samples are
525  made available, we will monitor SalmonEuAdmix’s performance in a growing number of contexts

526  through the comparison of model predictions to additional, complete admixture re-analyses. Should areas
527  of underperformance be identified, we will update the underlying model of SalmonEuAdmix and

528  document changes in order to ensure the package provides accurate European admixture proportion

529  predictions in the widest possible set of populations.

530 Conclusion

531  The use of aquaculture salmon with European ancestry in North America presents a continued threat to
532  declining North American Atlantic populations (Glover et al. 2017; Wringe et al. 2018; Bradbury et al.
533 2020, 2022). Extending previous studies which designed marker panels for aquaculture introgression

534  (King et al. 2001; Bradbury et al. 2018; Bradbury et al. 2022), here our results present a comparison of
535  different marker panel’s ability to detect aquaculture associated European introgression and demonstrated
536  the greater accuracy and resolution of large SNP panels compared to commonly employed microsatellite-
537  Dbased methods. With the aim of producing the genomic and analytical tools necessary for efficient

538  European admixture detection in future applied conservation efforts, we quantified accuracy differences

539  Dbetween SNP panels of various sizes and used this information to inform the design of an optimized SNP
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panel, comprised of 301 markers, that provided highly similar admixture estimates to the 220K-SNP
panel using a more parsimonious data set. To further aid the application of these panels in Atlantic salmon
conservation and management efforts we developed the Python package SalmonEuAdmix

(https://github.com/CNuge/SalmonEuAdmix), which uses the panels and a corresponding deep neural

network to generate accurate estimates of European admixture proportions without the need for complete
admixture analysis pipelines. The panels and software we have designed and tested will aid in Atlantic
salmon conservation by providing the resources necessary to screen wild and aquaculture populations for
evidence of European admixture and thereby allow evidence-based management decisions to mitigate
negative impacts on wild populations throughout North America. The results also demonstrate how
machine learning algorithms can streamline ancestry estimation to support applied conservation efforts;
these techniques can be applied to other species at risk, allowing existing genetic information to be used

to train models that facilitate rapid admixture estimates to inform conservation efforts.
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Tables and Figures

Table 1. Origin of the Atlantic salmon samples genotyped using the different marker panels and utilized
in the comparative admixture analyses. * The Unknown category were wild caught fish from New

Brunswick, Canada of unknown wild or aquaculture origin. * These were triploid samples that were

genetically down sampled to create artificial diploids (2 of the 3 alleles were retained at random for each
marker) for use in admixture analysis.
North American Icelandic European
Data . Aguaculture | Aquaculture + | Aquaculture | Aquaculture | Norway
Category Wild | Aquaculture Escapee Wild Mix Unknown Iceland Norway wild Total
220K-
SNP 5570 440 496 195 27 18 187 806 | 7739
panel
100-
SSR 2733 201 296 44 187 + 272% 3733
panel
7-SSR
marker | 614 195 385 44 269¢ 1516
panel
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Figure 1. A) Map of the 148 sampling locations for the 5570 wild North American Atlantic salmon used
in the study. B) Map of the 50 sampling locations for the 806 wild European Atlantic salmon used in the
study. C) Scatter plot of Principal Components (PCs) of genetic variation for the 7636 Atlantic salmon
genotyped using the 220K-SNP panel. The 186292 SNPs that passed quality control and filtering steps
were the input for the PCA. The colour of the points indicates the category of origin for the samples
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580 (Table 1). D) Per-individual European admixture proportion estimates (Q2-values) based on admixture
581  analysis of the 186292 SNPs passing quality control for the 7636 Atlantic salmon genotyped using the
582  220K-SNP panel. The samples are sorted by their data category of origin in the same left to right order as
583  presented in Table 1.

584
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587  Figure 2. A) Scatter plot comparing the per-individual European admixture proportion predictions made
588 by the 100-SSR SNP panel (x-axis) to the European admixture proportion predictions made using the
589  220K-SNP panel for the 370 individuals common to the two data sets. The colour of the points indicates
590 the category of origin for the given sample. B) Scatter plot comparing the per-individual European

591  admixture proportion predictions made by the 7-SSR SNP panel (x-axis) to the European admixture

592  proportion predictions made using the 220K-SNP panel for the 370 individuals common to the two data
593  sets. The colour of the points indicates the category of origin for the given sample. C) Scatter plot

594  comparing the per-individual European admixture proportion predictions made by the 301-SNP panel (x-
595  axis) to the European admixture proportion predictions made using the 220K-SNP panel for the 370

596 individuals common to the different marker panel data sets. The colour of the points indicates the

597  category of origin for the given sample, Adjusted R-squared: 0.9754, p < 2.2e-16.

598
599
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600

601  Table 2. Summary of regression results for the comparison of the predicted admixture proportions from
602  different marker panels to the admixture predictions made using the 220K-SNP data set for the common
603  set of 370 individuals.

. Number r? when compared to
Analysis purpose Panel used dfor'admlxture of N gmpsr Olf 220K—SNPppaneI
prediction markers | " V'U4S | admixture proportions

Panel comparison 100-SSR 100 3733 0.6432

7-SSR 7 1516 0.4858

500 random SNP 500 0.9684

e 400 random SNP 400 0.9576

Q“ﬁﬂ%fg’é?%f’peirtker 300 random SNP 300 7636 0.9507

200 random SNP 200 0.9131

100 random SNP 100 0.8292

SNP sub-panel design 301-SNP 301 7636 0.9754

220K-SNP 3485 0.9982

o 186292

— down sampled individuals 1441 0.9968

Quantifying sample 500 random SNP — down 500 3485 0.969

number effect sampled individuals 1441 0.9696

100 random SNP — down 100 3485 0.8159

sampled individuals 1441 0.8424
604
605
606
607
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608

609  Figure 3. Scatter plot comparing the predicted admixture proportions from different marker types, marker
610  numbers, and individual sample sizes to the admixture predictions made using the 220K-SNP data set for
611  the common set of 370 individuals. Exact sample size, marker numbers, and r? coefficients are presented
612  in Table 2.
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614  Figure 4. Scatter plots comparing the per-individual European admixture proportion predictions made by
615  the three machine learning models (x-axis) to the original admixture proportion predictions made using
616  the 301-SNP panel (y-axis) for: A) the 1454 randomly selected individuals in the test data set (r? of

617 regressions: Random Forest = 0.9973, SVM = 0.9948, DNN = 0.9980), and B) the validation set of 370
618 individuals common to the different marker panel data sets. (r? of regressions: Random Forest = 0.8134,
619  SVM =0.9458, DNN = 0.9486).
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620

621  Table 3. Confusion matrices comparing the number of samples with predicted European admixture
622  proportions greater than or less than 0.1 for: A) the 220K-SNP panel and the 301-SNP panel, B) the
623  220K-SNP panel and the 100-SSR panel, and C) the 220K-SNP panel and the 7-SSR panel.

624 A)
301-SNP panel classification
Predicted low European Predicted high
ancestry (Q2 <0.1) European ancestry (Q2
>=0.1)
220K-SNP panel Predicted low 272 15
classification European ancestry (Q2
<0.1)
Predicted high 3 80
European ancestry (Q2
>=0.1)
625
626 B)
100-SSR panel classification
Predicted low European Predicted high
ancestry (Q2 <0.1) European ancestry (Q2
>=0.1)
220K-SNP panel Predicted low 272 15
classification European ancestry (Q2
<0.1)
significant European 18 65
ancestry (Q2 >=0.1)
627
628 C)
7-SSR panel classification
Predicted low European Predicted high
ancestry (Q2 <0.1) European ancestry (Q2
>=0.1)
220K-SNP panel Predicted low 304 4
classification European ancestry (Q2
<0.1)
Predicted high 47 38
European ancestry (Q2
>=0.1)
629
630
631
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