

1 **Title: Genomic and machine learning-based screening of aquaculture associated introgression into**
2 **at-risk wild North American Atlantic salmon (*Salmo salar*) populations.**

3

4 **Authors:**

5 Cameron M. Nugent^{*1}, Tony Kess¹, Matthew K. Brachmann¹, Barbara L. Langille¹, Melissa K. Holborn²,
6 Samantha V. Beck^{1³⁴}, Nicole Smith¹, Steven J. Duffy¹, Sarah J. Lehnert¹, Brendan F. Wringe², Paul
7 Bentzen³, Ian R. Bradbury¹

8 *Corresponding author: Cameron.Nugent@dfo-mpo.gc.ca

9 ¹ Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada

10 ² Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

11 ³Biology Department, Dalhousie University, Halifax, Canada

12 ⁴Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands,
13 Inverness, Scotland

14

15 Keywords: Aquaculture, Atlantic salmon, Admixture, Management, Machine Learning

16 Running Header: Atlantic salmon introgression detection

17 **Abstract**

18 The negative genetic impacts of gene flow from domestic to wild populations can be dependent on the
19 degree of domestication and exacerbated by the magnitude of pre-existing genetic differences between
20 wild populations and the domestication source. Recent evidence of European ancestry within North
21 American aquaculture Atlantic salmon (*Salmo salar*) has elevated the potential impact of escaped farmed
22 salmon on often at-risk wild North American salmon populations. Here we compare the ability of single
23 nucleotide polymorphism (SNP) and microsatellite (SSR) marker panels of different sizes (7-SSR, 100-
24 SSR, and 220K-SNP) to detect introgression of European genetic information into North American wild
25 and aquaculture populations. Linear regression comparing admixture predictions for a set of individuals
26 common to the three data sets showed that the 100-SSR panel and 7-SSR panels replicated the full 220K-
27 SNP-based admixture estimates with low accuracy (r^2 of 0.64 and 0.49 respectively). Additional tests
28 explored the effects of individual sample size and marker number, which revealed that ~300 randomly
29 selected SNPs could replicate the 220K-SNP admixture predictions with greater than 95% fidelity. We
30 designed a custom SNP panel (301-SNP) for European admixture detection in future monitoring work
31 and then developed and tested a Python package, SalmonEuAdmix
32 (<https://github.com/CNuge/SalmonEuAdmix>), that uses a deep neural network to make *de novo* estimates
33 of individuals' European admixture proportion without the need to conduct complete admixture analysis
34 utilizing baseline samples. The results demonstrate the mobilization of targeted SNP panels and machine
35 learning in support of at-risk species conservation and management.

36

37 **Introduction**

38 Losses of biodiversity and accelerating rates of species extinction have now been documented across the
39 globe (Barnosky *et al.* 2011). Attempts to stem this tide of inter- and intraspecific loss requires a robust
40 understanding of causal factors involved, which is often lacking. Wild populations of Atlantic salmon
41 (*Salmo salar*) in Atlantic Canada are highly valued for their ecological, cultural, and commercial
42 importance (DFO 2019). Across the North Atlantic, more than 60% of salmon populations show evidence
43 of decline in recent decades (Lehnert *et al.* 2019). Within Canadian waters, large population declines have
44 been observed, with abundance estimated to have fallen by 50% in the last half century; the largest
45 declines have been seen in populations of the Bay of Fundy, Southern Nova Scotia, and Southern
46 Newfoundland (COSEWIC 2010; DFO 2019). The causes of decline are largely unknown, but
47 possibilities include climate change (e.g., Nicola *et al.* 2018; Lehnert *et al.* 2019), fishery exploitation
48 (e.g., Bradbury *et al.* 2015; Dadswell *et al.* 2021), predation (e.g., Daniels *et al.* 2018; Strøm *et al.* 2019),
49 and interactions with salmon aquaculture (e.g., Glover *et al.* 2017; Wringe *et al.* 2018; Bradbury *et al.*
50 2020). Ultimately, the resolution of these causal factors will be key to the prevention of further extirpation
51 and the success of any recovery or restoration efforts.

52 Interbreeding of Atlantic salmon aquaculture escapees with wild salmon has been identified as a
53 significant threat to the species' persistence and stability in the wild (Forseth *et al.* 2017). Both
54 hybridization and subsequent introgression have been observed in wild populations across the North
55 Atlantic (e.g., Karlsson *et al.* 2016; Wringe *et al.* 2018; Gilbey *et al.* 2021) and have been shown to
56 reduce population viability through maladaptive genetic changes to wild stocks (Sylvester *et al.* 2019;
57 Bolstad *et al.* 2017, 2021). Evidence of profound genomic differences (e.g., Lehnert *et al.* 2019, 2020) as
58 well as behavioral, and physiological differences (e.g., Islam *et al.* 2021) between European and North
59 American salmon support the hypothesis that the negative effects of European escapees in North America
60 likely exceed those of North American individuals (Bradbury *et al.* 2022). As a result, restrictions on the
61 use of European salmon in North America have been in place since the late 1990s (Baum *et al.* 1998;

62 Porter *et al.* 1998; DFO 2016). Nonetheless, mounting evidence suggests the continued presence of
63 Atlantic salmon with European ancestry in: North American aquaculture salmon, escapees, and wild
64 salmon collected near aquaculture facilities over the last two decades (O'Reilly *et al.* 2006; Porter *et al.*
65 1998; Liu *et al.* 2017; Bradbury *et al.* 2020). The continued presence of European ancestry in North
66 American aquaculture fish represents a significant elevation of both the potential threat and uncertainty
67 associated with the impacts to already at-risk North American populations experiencing introgression
68 from farm escapees (DFO 2016).

69 To date, the quantification of European ancestry in Atlantic salmon has been accomplished using
70 small panels of microsatellite loci (King *et al.* 2001, O'Reilly *et al.* 2006) or large genomic panels (*e.g.*,
71 Liu *et al.* 2017; Bradbury *et al.* 2022). Accurate ancestry estimation requires extensive genome coverage
72 but genotyping large numbers of individuals for thousands of markers can be cost prohibitive (Pucket
73 2017). In applied contexts, where the number of individuals may be large, a balance is therefore required
74 to ensure that the genome is sufficiently sampled to allow for accurate admixture estimation, while
75 keeping study costs reasonable. Studies characterizing the ability of different marker panels to accurately
76 estimate admixture have repeatedly shown that larger panels, commonly comprised of hundreds or
77 thousands of single nucleotide polymorphisms (SNPs), vastly outperform smaller panels of microsatellite
78 markers (simple sequence repeats; SSRs) (Gärke *et al.* 2011; Camacho-Sánchez *et al.* 2019; Szatmári *et*
79 *al.* 2021). The use of differing numbers of SSR and SNPs for differentiation of domestic chicken (*Gallus*
80 *gallus*) breeds revealed that 70 SNP markers provided comparable performance to 29 SSR markers, while
81 the use of 250 or more SNPs provided sufficient genomic coverage for accurate admixture estimation
82 (Gärke *et al.* 2011). Similarly, repeated genetic clustering analyses for two amphibian species on the
83 Iberian Peninsula showed that on data sets of similar sizes and spatial structures, tens of thousands of
84 SNP markers outperformed panels of 18 and 14 microsatellites (Camacho-Sánchez *et al.* 2020).
85 Ultimately, a comparison across marker types and a targeted screening tool for quantifying European
86 introgression or individuals of European ancestry in Atlantic salmon is required and could provide the

87 information necessary to mitigate some of the negative effects of aquaculture escapees on North
88 American wild salmon populations.

89 Here we build on previous work identifying the presence of European introgression in farmed,
90 escaped farmed, and wild Atlantic salmon throughout Atlantic Canada (e.g., Bradbury *et al.* 2022) and
91 develop targeted genomic and machine learning tools to facilitate routine screening in support of
92 conservation and management efforts. The goals of this study were to quantify the ability of panels of
93 varying marker types (SSR and SNP), marker numbers, and panel designs to detect European
94 introgression into North American farmed and wild Atlantic salmon, as well as to subsequently apply this
95 information in the design of efficient tools for future *de novo* introgression detection. Specifically, we: 1)
96 analyzed European admixture using three marker panels (7-SSR, 100-SSR, and 220K-SNP) on three
97 different, but overlapping sets of thousands of Atlantic salmon; 2) used a common set of individuals to
98 quantify the accuracy of European introgression detection by different panels relative to the complete
99 genome-wide SNP marker panel (220K-SNP array); 3) isolated the effects of marker number, individual
100 sample size, and the origins of individuals on admixture detection through down sampling and repeated
101 admixture estimation; 4) designed, tested, and implemented a machine learning-based Python package
102 with a Command Line Interface (CLI), SalmonEuAdmix, a diagnostic tool capable of accurately
103 estimating European admixture proportions based solely on the genotype data of new samples for a set of
104 301-SNP markers, without the need for additional complete admixture analyses. The software
105 SalmonEuAdmix is free and publicly available on GitHub (<https://github.com/CNuge/SalmonEuAdmix>)
106 and the Python package index (<https://pypi.org/project/SalmonEuAdmix/>). The results demonstrate the
107 power of targeted amplicons and machine learning algorithms to streamline ancestry estimation in support
108 of the conservation of at-risk wildlife species.

109

110 **Materials and Methods**

111 *Sample information & Genotyping*

112 To compare the ability of different marker panels to detect European introgression into North American
113 aquaculture and wild individuals, three data sets were utilized as the basis of the comparisons (Table 1).
114 The first data set (220K-SNP) was a series of 7739 samples (Table 1) that were genotyped using a 220K
115 bi-allelic SNP Affymetrix Axiom array developed for Atlantic salmon as described in Barson *et al.*
116 (2015). Most of the samples utilized were from previously published sources (Lehnert *et al.* 2020;
117 Bradbury *et al.* 2022), and all samples were subjected to the extraction, genotyping, and bioinformatics
118 procedures described therein. The second data set (100-SSR) was a series of 3733 samples (Table 1) from
119 a previously published source (Bradbury *et al.* 2018) that were genotyped using a panel of 100
120 microsatellite markers. This data set included wild and aquaculture fish from North America, but unlike
121 the 220K SNP array data set it had European individuals exclusively derived from Norwegian aquaculture
122 facilities (Table 1). The third data set (7-SSR) utilized was a series of 1516 individuals (Table 1)
123 genotyped using a panel of seven microsatellite markers initially described in King *et al.* (2001). The
124 samples genotyped for the 7-SSR panel were composed of wild and aquaculture samples from North
125 America, as well as 269 triploid aquaculture individuals of European origin. Prior to genetic admixture
126 analysis, the genotypes of the triploid individuals were down sampled. For each marker in each triploid
127 individual, 2 of 3 alleles were randomly retained so as to create synthetic diploid samples suitable for use
128 in subsequent admixture analysis. The three datasets had no overlap in genetic markers, but did have
129 individual samples in common. A series of 370 individuals (211 North American aquaculture and 159
130 North American aquaculture escapees) were common to all three data sets and were used as a common
131 test set for comparison of admixture detection across the different data sets.

132 *Detection of European introgression through admixture analysis*

133 For the 220K-SNP data set the data quality control (QC) filtering steps described in Bradbury *et al.* 2022
134 were replicated. We then conducted a principal component analysis (PCA) of the 220K-SNP marker
135 genotypes using the program *pcadapt* (Luu *et al.* 2016) to quantify the population structure of the samples
136 and ensure that the patterns described in Bradbury *et al.* (2022) were replicated in the present study. The
137 program *Admixture* (*version 1.3.0*; Alexander *et al.* 2009) was then used with the parameter $k = 2$ to
138 calculate per individual admixture values; these results were visualized in R and admixture populations
139 were retained for subsequent comparative analyses. For both the 100-SSR and 7-SSR panels the program
140 *Structure* (*version 2.3.4*; Pritchard *et al.* 2000) was used to calculate admixture proportions for each
141 individual (with the parameters: $k = 2$, *burn in* = 50000 *iterations*, *repetitions* = 500000). This change in
142 admixture calculation method was required because unlike *Admixture*, *Structure* can accommodate
143 microsatellite data with three or more alleles per locus, while yielding similar results (Alexander *et al.*
144 2009).

145 *Comparison of admixture estimates across marker panels*

146 The admixture proportion predictions made using the complete 220K-SNP marker panel (~186K markers
147 post filtering) were assumed to be the most accurate measure of European introgression due to having the
148 most comprehensive marker coverage and largest baseline sample sets of wild and farmed North
149 American and European individuals. To assess the relative performance of the 220K-SNP and the two
150 SSR marker panels, the per-individual estimated admixture proportion values (Q1 and Q2 estimates) for
151 the set of 370 individuals common to all the data sets were considered. For both the SSR marker panels, a
152 linear regression was performed with the European admixture proportion predicted by the complete
153 220K-SNP marker set used as the response variable and the European admixture proportion of the given
154 SSR set used as the predictor. The regression coefficient (r^2) was considered to be the measure of how
155 well the complete ground truth admixture proportions were replicated by the predictor data set and the per
156 individual predictions were visualized via scatterplots in R. Prediction accuracies were also examined
157 from the perspective of a classification problem. Ground truth and predicted admixture values were

158 converted to binary classifications, using a threshold of 0.1 to classify whether an individual was of pure
159 North American origin (<0.1) or displayed significant European ancestry (≥ 0.1); these classification data
160 were then used to generate confusion matrices and calculate prediction accuracy scores and error rates.

161 The use of three overlapping but non-equivalent sets of individuals for admixture prediction by
162 the different marker panels provided a confound that prevented the regression coefficients and admixture
163 proportions from being compared in a completely equivalent fashion, as the sample number and marker
164 number did not vary independently. To better understand and quantify the effects of marker number and
165 sample number independently, we conducted several additional admixture prediction analyses aimed at
166 trying to isolate these variables. To provide evidence of the role of marker number and coverage on the
167 detection of European introgression, random down sampling was conducted to produce smaller panels
168 from the 220K-SNP data set. Random genome-wide subsets of 500, 400, 300, 200, and 100 SNPs were
169 chosen from the complete set of SNPs that passed the filtering steps. For each of the samples, the
170 admixture analysis was then repeated and the results for the 370 common test individuals were compared
171 to the 220K-SNPmarker set predictions via linear regression to quantify admixture prediction accuracy.
172 Finally, we isolated the effect of sample size by repeating the admixture proportion prediction analysis
173 using the full set of markers from the 220K-SNP panel, but down sampling to produce a sample set with
174 smaller numbers of individuals from the North American and European baseline populations. Two
175 smaller sample sizes were extracted from the full data set and individuals were selected to as closely as
176 possible mirror the compositions of the individuals genotyped with the 100-SSR and 7-SSR panels (Table
177 1). Both subsets included the 370 common test individuals to allow for direct comparison to the other
178 analyses and the remaining subset were randomly selected from the complete set of available individuals
179 on a within-category basis (categories listed in Table 1). The larger subset (mirroring the 100-SSR data
180 set) was composed of 3485 individuals, including 2733 wild North American samples, 177 North
181 American wild caught individuals of aquaculture or wild-aquaculture mixed origin, and 205 Norwegian
182 aquaculture samples. The smaller 1441 sample set consisted of the 370 common individuals as well as

183 614 North American wild, 252 North American wild caught individuals of aquaculture or wild-
184 aquaculture mixed origin, and 205 European aquaculture samples. The most significant change to these
185 two down sampled data sets relative to the full 220K sample set was the complete exclusion of the 806
186 wild European samples. Admixture calculations and regression analyses comparing these per sample
187 admixture predictions to the complete data set were then performed.

188 The interaction of reduced markers and individual sets was then examined through additional
189 admixture analysis runs using the 3485 and 1441 individual sets and the following marker sets: the 500
190 random SNP panel and the 100 random SNP panel. These admixture analyses were conducted to see if the
191 effects of marker number and sample number on admixture prediction accuracy were additive, and to
192 better understand the influences of these variables on admixture prediction. The admixture predictions for
193 the 370 common individuals were compared to the results from previous tests, to give an indication of the
194 performance difference when the marker and individual numbers are both reduced.

195 *Design and testing of SNP marker panel*

196 Following the comparative study of the marker panels and assessment of the relative importance of
197 marker number and sample size, a sub-panel of SNPs was designed with the goal of producing a
198 standardized set of markers for future per-individual admixture estimation with good genome coverage
199 and strong lab-based performance metrics. The panel, of 301 SNP markers was selected from the
200 complete set of 220K array SNPs based on several criteria: i) markers had to pass all the QC filtering
201 steps in the 220K-SNP admixture analysis, ii) markers were selected so as to guarantee that all 29
202 chromosomes of the Atlantic salmon genome were represented, iii) markers were selected that had
203 associated DNA sequences that analysis with PrimerServer (Zhu *et al.* 2017) predicted to have specific
204 amplicon targets, iv) markers were selected that had high F_{ST} in comparison of North American and
205 European ancestry individuals. The panel was subset from the complete data set using *Plink* (version
206 1.90) (Purcell *et al.* 2007) and used to conduct an additional admixture analysis. The results were
207 compared to the admixture proportions predicted using the 220K-SNP panel via a linear regression.

208 Classification-based comparison of predictions to the 220K-SNP panel predictions was also conducted,
209 with predicted admixture proportions converted to binary classifications using a threshold of 0.1 (pure
210 North American origin <0.1, European ancestry introgression >=0.1).

211 *Machine learning model and Software design*

212 After describing the ability of the various marker panels to detect European introgression, we aimed to
213 design a software tool in the Python programming language to allow an end user to obtain an admixture
214 prediction based on the 301-SNP panel without the need to re-run a complete admixture pipeline for each
215 new set of samples, thereby increasing the feasibility of admixture detection for ongoing salmon
216 conservation efforts. The software would reduce the data processing and computational overhead needed
217 to estimate the European admixture proportion for a new sample or set of samples. To accomplish this,
218 we trained and tested a series of supervised machine learning models to predict European admixture
219 proportion (y) based on the SNP genotypes of a new individual for the markers in the selected panel (X).

220 To interface with the machine learning models, the genotype data for the complete set of 7636
221 individuals was numerically encoded in dosage format. Data processing code
222 (<https://github.com/CNuge/SalmonEuAdmix>) was developed to read in a genotype file (in *Plink*'s PED
223 format), impute missing genotypes with the mode genotype from the 220K-SNP data set, and numerically
224 encode the genotypes (AA = 0, AB = 1, BB = 2, where A is the major allele in the baseline data and B is
225 the minor allele). The set of 370 common individuals used in previous analyses were withheld to serve as
226 a final validation set. Of the remaining individuals, 80% of the remaining individuals were randomly
227 selected to form the training set for the machine learning models and 20% were withheld to serve as a test
228 set spanning all the available data classes. The 370 common individuals assessed performance only on
229 North American aquaculture and wild fish, while the test set additionally included individuals of complete
230 European origin. To eliminate potential bias and ensure that the 370 individuals in the final validation
231 data were completely withheld prior to final model assessment, an additional admixture run was
232 conducted using the 301-SNP markers and the 370 validation individuals removed. The European

233 admixture proportions obtained from this admixture run were used as the response variables (y) in model
234 training.

235 Within Python, the three machine learning models: a random forest (RF), a support vector
236 machine (SVM), and a deep neural network (DNN), were fit to the training data and used to make
237 predictions on the withheld test and validation data. The RF model was implemented using the
238 *sklearn.ensemble.RandomForestRegressor* function of the package *Scikit-learn* (Version 0.24.2,
239 Pedregosa *et al.* 2011) using an *n_estimators* parameter of 1000 and defaults for all other parameters. The
240 support vector machine (SVM) was implemented using the *sklearn.svm.SVR* function of *Scikit-learn*
241 using a C value of 1.0, and an epsilon value of 0.2, and defaults for all other parameters (Version 0.24.2,
242 Pedregosa *et al.* 2011). The DNN was a custom architecture designed using the package *Tensorflow*
243 (Version 2.8.0, Abadi *et al.* 2016) that featured an input layer shape of 301 (matching the SNP panel size)
244 three hidden layers of 1026, 342, and 114 densely connected neurons using the rectified linear activation
245 (relu) function activation and 0.2 dropout frequency, and a single neuron output layer using a linear
246 activation function. Training of the DNN used the Adam optimization algorithm, 20 training epochs, and
247 mean absolute error as the loss metric. Code for the DNN model architecture can be found within the
248 *SalmonEuAdmix* package
249 (<https://github.com/CNuge/SalmonEuAdmix/blob/master/SalmonEuAdmix/model.py>).

250 The models were all trained with a 1 x 301 predictor tensor containing the dosage encoded
251 genotypes, and the European admixture proportions obtained from admixture analysis using the 301-SNP
252 panel set as the response variable. The response variables were scaled using a *StandardScaler* (*Scikit-*
253 *learn* Version 0.24.2, Pedregosa *et al.* 2011) that was trained on the training data and applied to each of
254 the train, test, and validation response variable sets. Predicted values were compared to the ground truth
255 admixture proportions (Figure 1, Figure S1) obtained using the 220K-SNP data set. For each model, the
256 root mean squared error was calculated and the predictions were saved to a tab separated output file.
257 These data were then loaded into R where linear regressions were performed to compare the models'

258 predicted admixture proportions to the original values. Comparison of the results from the three different
259 models was then used to select the optimally performing model. The final models were saved and the
260 software package SalmonEuAdmix (<https://github.com/CNuge/SalmonEuAdmix>) was created to allow
261 for efficient model reuse via a CLI.

262

263 **Results**

264 *Detection of European introgression through admixture analysis*

265 Following SNP and individual data filtering based on the criteria laid out in Bradbury *et al.* 2022, the
266 220K-SNP marker panel used for European admixture detection consisted of 186292 SNPs and 7636
267 individuals. Similar to the results reported in Bradbury *et al.* 2022 (with minor differences resulting from
268 the increased sample size), the PCA revealed strong separation of samples of European and North
269 American origin along the first axis of variation (PC1 = 34.2% variance explained), and evidence of
270 individuals with mixed ancestry (Figure 1). The admixture analysis with the 220K-SNP panel separated
271 North American wild fish from Norwegian fish of wild or aquaculture origin with high fidelity, while
272 samples from the North American aquaculture and aquaculture escapee groups displayed evidence of
273 European introgression (Figure 1).

274 For the 100-SSR marker panel, a total of 3646 individuals were successfully genotyped and
275 passed all QC steps. The PCA showed the primary axis of variation was separating individuals of
276 European and North American ancestry (PC1 = 6.6%, PC2 = 1.4% variance explained; Figure S2). The
277 linear regression of the admixture proportions for the 370 commonly genotyped individuals revealed a
278 significant, but weak concordance of predicted admixture proportions with the 220K-SNP panel
279 predictions ($r^2=0.64$ (Figure 2A). For the 7-SSR marker panel, 1438 individuals were genotyped and
280 passed all QC steps. The PCA showed the primary axis of variation was separating individuals of
281 European and North American ancestry (PC1 = 6.5%, PC2 = 1.9% variance explained; Figure S2). The
282 linear regression of the 7-SSR admixture proportions for the 370 individuals showed lower concordance
283 with the 220K-SNP panel admixture proportions predictions ($r^2=0.49$). Inspection of the 7-SSR
284 admixture proportion predictions for the 370 individuals showed a high number of individuals predicted
285 to have less than 1% ($242/370 = 66\%$ of individuals) of European ancestry, while the 220K-SNP data set
286 reported only 151 individuals with European admixture proportions less than 1% suggesting reduced
287 ability to detect European admixture with the 7-SSR marker panel set. (Figure 2B).

288 *Separating marker and sample effects*

289 A series of additional admixture detection runs were conducted to isolate the effects of marker number
290 and individual number on the characterization of European admixture. First, we isolated the effect of
291 marker number by conducting random down sampling of SNPs while keeping the number of individuals
292 constant (n=7636). Linear models were used to obtain the regression coefficients for each of the random
293 marker subsamples (Table 2; Figure 3). The 500 random SNP marker panel performed better than either
294 SSR panel, reproducing the 220K-SNP admixture predictions with an r^2 of 0.97. The 400 and 300 random
295 marker panels also had regression coefficients of greater than 0.95, suggesting that these marker sets had
296 sufficient genome coverage to replicate the 220K-SNP admixture predictions with greater than 95%
297 accuracy. The 200 random SNP panel displayed a larger performance decline relative to the larger
298 random panels, with an r^2 of 0.91 and the 100-SSR panel displayed lower performance still, with r^2 of
299 0.83.

300 A second series of additional admixture analyses were run to isolate the effect of individual
301 sample size on the characterization of European Admixture. For these tests, the composition of the
302 number of individuals in the dataset was changed to resemble the number and type of individuals
303 genotyped with the 100-SSR and 7-SSR panels (the data were down sampled to 3485 and 1441 individual
304 sets respectively). Admixture analyses were run for these down sampled individual sets using: the 220K-
305 SNP marker panel, the 500 random SNP panel, and the 100 random SNP panel. For each panel, when the
306 number of individuals used in the admixture analysis was reduced there were no significant reductions
307 observed in the correlation of the admixture prediction values, and those obtained using the 220K-SNP
308 data set (Table 2; Figure 3). These results suggests that the number of markers had a larger impact on
309 admixture detection than the number of individuals used in the admixture analysis.

310 *Testing of SNP marker panels*

311 The PCA of the targeted 301-SNP panel produced genetic clustering patterns highly similar to the 220K-
312 SNP panel, with strong separation of European and North American origin samples along the primary
313 axis of variation (301-SNP: PC1 = 13.1%, PC2 = 5.2% variance explained; Figure S2). The admixture
314 analysis was repeated for the down sampled 7636 individuals using the 301-SNP panel and linear
315 regression comparing the per-individual predictions to the 220K-SNP per-individual admixture
316 predictions showed that the 301-SNP panel outperformed the SSR panels and the 500 random SNP
317 panels, with an r^2 value of 0.98 (Table 2; Figure 2C).

318 *Assessment of panel classification accuracy*

319 Classification-based comparison of the admixture predictions of the 301-SNP, 100-SSR, and 7-SSR
320 panels to the 220K-SNP panel predictions was conducted using a binary prediction threshold of 0.1 (pure
321 North American origin <0.1, European ancestry introgression ≥ 0.1). The 301-SNP panel had the lowest
322 mis-classification rate of the three panels, with a 4.8% error rate (Table 3A). The 301-SNP panel
323 displayed sensitivity to European admixture, with only 3 false negatives and 15 false positives. The 100-
324 SSR panel had a mis-classification rate of 9% (Table 3B), so although the per individual admixture values
325 may not as strongly correspond to the 220K-SNP panel predictions, the population level characterization
326 of the number of fish with European ancestry is similar (with 15 false positives and 18 false negatives).
327 For the 7-SSR panel there is a 13.2% mis-classification rate, that was directional in nature with 46 false
328 negatives and only 3 false positives (Table 3C).

329 *Machine learning model comparison*

330 Prior to training of the machine learning models we removed potential bias by producing blind admixture
331 values (withholding the 370 validation individuals at all stages and reconducting the 301-SNP admixture
332 analyses) for use as response variables in machine learning model training. A linear regression
333 demonstrated that the blind admixture proportions did not differ from the per-individual admixture
334 proportions ($r^2 > 0.99$, $p < 2e-16$).

335 Following model training (using the test set and blind admixture values), predictions were made
336 on the test and validation sets. The root mean squared error (RMSE) of predictions for the 301-SNP panel
337 models on the test set ($n = 1454$, 20% of individuals) were: 0.0417 for the DNN, 0.013 for the RF, and
338 0.035 for the SVM. For the 301-SNP panel model's predictions on the validation data the RMSE were:
339 0.018 for the DNN, 0.039 for the RF, and 0.035 for the SVM. The per-individual admixture predictions
340 produced by the three models were then compared to the ground truth admixture values obtained using
341 the full set of SNP markers and individuals (Figure 4). For both the test and validation data sets, the DNN
342 output admixture predictions that most closely resembled the ground truth predictions with regression
343 coefficients (r^2) of 0.99 and 0.95 for the test and validation data respectively. The SVR performance was
344 similar for both data sets (test $r^2 = 0.99$, validation $r^2 = 0.95$), and the RF model had comparable
345 performance to the other models on the test data ($r^2 = 0.99$), but inferior performance on the validation
346 data set ($r^2 = 0.81$), suggesting the RF had either overfit to the training data or that it was less effective at
347 characterizing intermediate admixture values that were more prevalent in the validation data. The strong
348 test set scores for of all models are likely due to the similarity of the training and test individuals, which
349 were subsets of the original full set of 7636 individuals and contained samples of similar origin (*i.e.*
350 individuals from same wild sampling locations or individuals derived from the same aquaculture stock)
351 and also due to the test set having individuals with less admixed genomes (full European or North
352 American origin). The validation individuals were completely withheld in the machine learning process
353 (not included in the additional admixture analysis used to create response values for model training) and
354 there was a higher proportion of intermediate admixture individuals compared to the test set which had
355 many individuals of pure North American or European origin, making these values a more robust
356 assessment of model performance.

357 Based on these results, the 301-SNP DNN model was selected for use in the SalmonEuAdmix
358 package because of its ability to yield predictions that most closely resembled the European admixture
359 proportions obtained through the complete admixture analysis for the previously unseen individuals. Due

360 to the unconstrained nature of the DNN (*e.g.* predictions could be <0.0 or >1.0) there were individuals in
361 the test set with predicted European ancestry proportions in excess of 1.0 (Figure 4). To account for this, a
362 default, but optional heuristic was included in the SalmonEuAdmix package which constrained admixture
363 predictions to a lower bound of 0.0 and an upper bound of 1.0.

364

365 **Discussion**

366 Targeted SNP panels and admixture detection algorithms are becoming common place in conservation
367 management activities revealing both population structure and hybridization (Camacho-Sanchez *et al.*
368 2019; May *et al.* 2020; Stronen *et al.* 2022). In Atlantic Salmon, the identification of introgression of
369 aquaculture salmon has become central to conservation efforts aimed at curbing salmon decline across the
370 North Atlantic (e.g., Forseth *et al.* 2017; Bradbury *et al.* 2020) and genomic tools have been successfully
371 applied to quantify hybridization and introgression (e.g., Karlsson *et al.* 2011; Pritchard *et al.* 2016;
372 Wringe *et al.* 2019). Here we extended previous observations of aquaculture associated European
373 introgression into North American salmon populations (O'Reilly *et al.* 2006; Bradbury *et al.* 2022) and
374 develop targeted genomic and machine learning tools to mobilize European ancestry detection to inform
375 conservation and management efforts. Our results suggest that accurate aquaculture associated European
376 admixture estimation is possible with subsets of loci and accuracy is dependent more on genome coverage
377 than number of baseline individuals considered. Iterative down sampling suggests that approximately 300
378 markers provided sufficient genomic coverage to closely replicate genome-wide admixture analysis in an
379 efficient and cost-effective manner and that accuracy declined below this panel size. Combining this
380 information with bioinformatics and lab-based metrics, we designed a panel of 301 SNPs, for use in
381 future analyses aimed at characterizing European admixture proportions in North American populations.
382 This panel, along with the deep neural network contained in the software package SalmonEuAdmix,
383 allow for rapid and accurate *de novo* admixture proportion estimates to be made as part of future Atlantic
384 salmon conservation and management efforts. The methods developed here serve as an example of how
385 admixture data for at-risk wildlife species can be used in conjunction with machine learning algorithms to
386 streamline ancestry estimation in support of conservation.

387 *Marker panel comparison*

388 This work provides a comprehensive comparative study of the ability of different marker panels to detect
389 European admixture within North American Atlantic salmon. The ability of the SNP array to accurately

390 estimate individual ancestry was demonstrated through consistent performance across a range of marker
391 panel sizes and baseline sample numbers. This is likely in part due to the high levels of differentiation
392 between the North American and European lineages, which are estimated to have been isolated from one
393 another for the past 600,000 years, with minimal secondary contact (Bourret *et al.* 2013; Moore *et al.*
394 2014; Rougemont & Bernatchez 2018; Lehnert *et al.* 2020; Bradbury *et al.* 2022). The inability to detect
395 low levels of admixture was a limitation of the SSR panels (*i.e.*, the 100-SSR and 7-SSR panels) as both
396 of these SSR panels displayed reduced ancestry prediction accuracy (*i.e.* lower regression coefficients)
397 compared to the 220K-SNP panel. These results for the 7-SSR panel are consistent with the hypothesis
398 that the reduced performance of the SSR panels is mostly likely due to poor coverage of the Atlantic
399 salmon genome. The Atlantic salmon genome has 27-29 chromosomes (Lien *et al.* 2016), so even if each
400 of the 7-SSR panel's markers were on separate chromosomes, any introgression on 22 of the 29
401 chromosomes (approximately 76% of the genome, or more depending on the size of the chromosomes
402 containing the SSR markers) would not be in physical linkage with a panel marker and admixture in these
403 regions would therefore go undetected. Scenarios with more European introgression, where
404 recombination has occurred and smaller European ancestry tracts are present across numerous
405 chromosomes, would go undetected by the 7-SSR panel unless by chance the admixture tracts span the
406 SSR locations and contained a European ancestry tract. This same reasoning supports the major
407 assumption we have made in the comparative study, which is that the 220K-SNP panel admixture
408 predictions serve as a 'ground truth' to which other predictions are compared. With 186292 polymorphic
409 SNP markers passing QC steps and being included in this panel, and the salmon genome being
410 approximately 2.96 Gbp in size, the 220K-SNP panel provides genome wide coverage of approximately
411 one SNP every 15.9 Kb of the Atlantic salmon genome, which is a level of genome-wide resolution
412 sufficient to detect even very low levels of admixture (Lehnert *et al.* 2019; Bradbury *et al.* 2022).

413 Interestingly, the 100-SSR panel offered better genomic coverage than the 7-SSR panel, having
414 specifically been designed to have representation of all chromosomes and therefore poor genomic

415 coverage may not be the sole cause of its reduced admixture detection (Bradbury *et al.* 2018). An
416 alternative hypothesis for the poorer performance of this panel relative to similarly sized SNP panels
417 could be the accumulation of homoplastic (*e.g.* same repeat number) alleles within the North American
418 and European lineages. Changes in microsatellite repeat number are a common mode of allelic evolution
419 and have been shown to lead to microsatellite alleles of the same size with different evolutionary histories
420 (Makova *et al.* 2000; Culver *et al.* 2001; Moodley *et al.* 2015). The estimated 600,000 YBP divergence
421 time (Rougemont & Bernatchez 2018) of the two Atlantic salmon lineages would afford sufficient time
422 for the accumulation of homoplastic microsatellite alleles and thereby contribute to the observed reduced
423 admixture detection in comparison to the 100 locus SNP panel (see below).

424 The classification-based comparison of predictions further highlighted the differences in
425 sensitivity to European admixture detection among the panels and demonstrated the potential impacts of
426 these differences on classification-based screening of populations. Although the 7-SSR panel has
427 previously been shown to have 100% correct continent of origin assignment (King *et al.* 2001), our work
428 demonstrates that its capacity to detect European introgression is much more limited. The 7-SSR panel
429 was shown to drastically under classify European introgression, which suggests that screening based on
430 this panel would fail to detect European admixture in the majority of cases. Conversely, the 301-SNP
431 panel possessed an error profile more suitable for applied conservation efforts aimed at screening for
432 European admixture. The 301-SNP panel was sensitive to European admixture, detecting over 95% of
433 true positives, while showing low levels of false positives as well. This is more suitable for screening in
434 applied conservation efforts, where the costs of false negatives (overlooking true admixture and its
435 associated negative effects) outweigh the costs of false positives (additional sampling or analytical efforts
436 of non-admixed populations).

437 Admittedly, the direct comparison of panel results was limited to a subset of individuals (n =
438 370). Although these represented only a small fraction of the complete data sets, the admixture
439 proportions of these individuals captured the level of ancestry variation in the total dataset and as such

440 were well suited to assess the sensitivity of the different panels across a range admixture levels. For
441 example, the 220K-SNP panel European admixture proportion predictions for these individuals ranged
442 from 0.0 - 0.587 with 136 individuals having values in the range of 0.01 - 0.1 (e.g., 1% - 10% European
443 Ancestry). These values reflect the range of admixture detected in broader analyses of aquaculture salmon
444 and escapees (Bradbury *et al.* 2022) and also represent low admixture proportions that panels with poor
445 genomic coverage would be more likely to fail to detect. If the common test set included more individuals
446 with high (or complete) European ancestry, then the SSR panels admixture predictions would have likely
447 more closely resembled the 220K-SNP panel predictions. Resolution of low to intermediate admixture
448 proportions is of interest in applied conservation efforts, so the 370 individual test set used in this work is
449 reflective of the context in which these findings will be applied and therefore likely very appropriate.

450 *Marker and sample number effects on admixture prediction*

451 The iterative down sampling of SNPs showed an approximately linear decline, until a sharper drop in
452 admixture prediction performance that was observed when only 200 markers were used; this is consistent
453 with the hypothesis that at this point genomic coverage was sparse enough that larger admixture tracts
454 went undetected. These results are similar to previous studies of admixture estimation using different
455 numbers of markers, which have shown several hundred SNPs to provide sufficient genomic coverage for
456 accurate estimation in a wide variety of species and contexts, while smaller panels (e.g. <100 markers)
457 can have reduced admixture estimation ability in many situations (Vähä & Primmer 2006; Gärke *et al.*
458 2011; Oliveira *et al.* 2015; Puckett & Eggert 2016; Fischer *et al.* 2017; Saint-Pé *et al.* 2019). The use of
459 approximately 300 SNPs in subsequent custom panel design and predictive admixture model construction
460 were therefore selected to strike a balance between genome coverage, admixture detection accuracy, and
461 marker parsimony. The results of this study have shown only fractional performance declines for the 301-
462 SNP panel relative to the 220K-SNP panel that was several orders of magnitude larger (when all other
463 variables are held equal). Compared to genotyping individuals with the complete 220K Atlantic salmon
464 SNP array (Barson *et al.* 2015), the 301 SNP genotypes required for admixture prediction with the 301-

465 SNP panel can be obtained more economically and efficiently using targeted genotyping methods such as
466 Genotyping-in-Thousands by sequencing (GT-seq) (Campbell *et al.* 2015).

467 The differences in the samples genotyped using the SSR and SNP marker panels complicated the
468 interpretation of the results. Here, we attempted to isolate and quantify this effect through a comparative
469 study of the admixture analyses and the use of down sampling to change the composition of individuals
470 considered therein. In addition to the by-individual down sampled admixture runs that did not reveal
471 significant effects of individual sample size on admixture predictions, comparing the difference in
472 performance between the 100-SSR marker set and the 100 random SNP set (in terms of replication of the
473 220K-SNP admixture predictions on the 370 common individuals) indirectly gives an indication of the
474 effect of the samples considered. The 100-SSR panel produced an r^2 of 0.64, while the 100 random SNP
475 panel produced an r^2 of 0.83 (Table S1). This 0.182 difference in performance is unexpected given the
476 information rich (*e.g.* multi-allelic) nature of microsatellite markers relative to bi-allelic SNPs and is
477 contrary to previous work that has shown an opposing relationship of performance differences between
478 similarly sized SNPs and SSRs sample sets utilized in admixture analyses (Gärke *et al.* 2011). As an
479 alternative to the previously discussed microsatellite homoplasy hypothesis, the difference in performance
480 may result from the bias introduced by the random SNPs being a subset of the 220K-SNP set used to
481 obtain the ground truth admixture values and matching sets of individuals being used in these analyses.
482 We attempted to quantify this bias through the down sampling of individuals to match the composition of
483 the 100-SSR and 7-SSR admixture analyses, but this did not lead to any significant decline in the r^2 of
484 predictions relative to the 220K-SNP set. Conservatively, the 0.18 r^2 difference between the 100 random
485 SNP and 100-SSR marker sets may therefore be considered an estimate of the bias in favour of the SNP
486 panel results, due to the SNP panels not being truly blind to the data in the 220K-SNP admixture
487 predictions that constituted our ground truth values. Nonetheless, even with this bias taken into account
488 (*e.g.* if we state that the hypothetical r^2 of the 100-SSR is near or slightly higher than the 100 random SNP
489 r^2 of 0.8292), based on the other results of this study the 301-SNP panel would still likely far exceed the

490 SSR panels' admixture detection ability if the samples analyzed with the different marker panels were
491 completely equivalent.

492 *SalmonEuAdmix and application of machine learning models*

493 Machine learning models have recently been leveraged to infer genetic ancestry and to allow for the
494 reconstruction of complex admixture histories in situations where traditionally employed methods can
495 encounter limitations (Villanea & Schraiber 2019; Fortes-Lima *et al.* 2021; Bilschak *et al.* 2021). Our
496 work represents a novel, alternative application of machine learning algorithms in ancestry estimation;
497 instead of trying to better resolve admixture estimates, we trained supervised machine learning algorithms
498 to replicate admixture proportion estimates which themselves were produced using an unsupervised
499 learning algorithm (Pritchard *et al.* 2000; Tarca *et al.* 2007; Alexander *et al.* 2009). The predictive models
500 learn the patterns relating genotypes to admixture proportions in the training data and make novel
501 admixture estimates based solely on the genotypes of new individuals. This shifts the bulk of the
502 analytical burden from the end user onto the algorithm designer, thereby transforming admixture
503 estimation from a complex bioinformatics analysis into a simplified screening test, which is ideal for use
504 in applied conservation efforts. This approach can be replicated within other species in order to take a
505 robust set of admixture predictions and produce a customized diagnostic tool for rapid and simplified
506 species-specific admixture estimation tool for use in applied conservation efforts (Oliveira *et al.* 2015;
507 Bilschak *et al.* 2021; Stronen *et al.* 2022).

508 It is important to remember that this supervised learning approach to admixture estimation is
509 meant to complement, not replace, traditional unsupervised admixture estimation methods. As evidenced
510 by our assessment of panel classification accuracy, supervised models (such as the DNN used in
511 SalmonEuAdmix) can be developed that are sensitive to the presence of admixture, allowing for the
512 detection of cases of interest within applied contexts. However, the fine scale admixture proportions are
513 inferior to a complete admixture analysis run using a maximal amount of available genetic markers.
514 Within the intended application as an admixture screening tool, SalmonEuAdmix is likely to be robust,

515 being based on genetic data from thousands of Atlantic salmon that display a spectrum of admixture
516 proportions. The ability of SalmonEuAdmix's models to predict admixture of previously untested
517 populations is uncertain and may vary depending on the details of the population in question; however,
518 we expect it to be effective for sample from novel locations in Atlantic Canada given the wide-ranging set
519 of wild North American samples used in this study and the significant proportion of genomic variation
520 explained by North American and European divergence. Despite potential limitation of model
521 generalizability, the DNNs of SalmonEuAdmix are likely to outperform admixture analyses based on the
522 7-SSR or 100-SSR marker panels, as the 301-SNP panel provides greater genomic coverage and is
523 comprised of bi-allelic SNPs (providing a defined parameter space for variation, whereas SSR markers
524 may be found in novel variants within new populations). As more genotyped Atlantic salmon samples are
525 made available, we will monitor SalmonEuAdmix's performance in a growing number of contexts
526 through the comparison of model predictions to additional, complete admixture re-analyses. Should areas
527 of underperformance be identified, we will update the underlying model of SalmonEuAdmix and
528 document changes in order to ensure the package provides accurate European admixture proportion
529 predictions in the widest possible set of populations.

530 Conclusion

531 The use of aquaculture salmon with European ancestry in North America presents a continued threat to
532 declining North American Atlantic populations (Glover *et al.* 2017; Wringe *et al.* 2018; Bradbury *et al.*
533 2020, 2022). Extending previous studies which designed marker panels for aquaculture introgression
534 (King *et al.* 2001; Bradbury *et al.* 2018; Bradbury *et al.* 2022), here our results present a comparison of
535 different marker panel's ability to detect aquaculture associated European introgression and demonstrated
536 the greater accuracy and resolution of large SNP panels compared to commonly employed microsatellite-
537 based methods. With the aim of producing the genomic and analytical tools necessary for efficient
538 European admixture detection in future applied conservation efforts, we quantified accuracy differences
539 between SNP panels of various sizes and used this information to inform the design of an optimized SNP

540 panel, comprised of 301 markers, that provided highly similar admixture estimates to the 220K-SNP
541 panel using a more parsimonious data set. To further aid the application of these panels in Atlantic salmon
542 conservation and management efforts we developed the Python package SalmonEuAdmix
543 (<https://github.com/CNuge/SalmonEuAdmix>), which uses the panels and a corresponding deep neural
544 network to generate accurate estimates of European admixture proportions without the need for complete
545 admixture analysis pipelines. The panels and software we have designed and tested will aid in Atlantic
546 salmon conservation by providing the resources necessary to screen wild and aquaculture populations for
547 evidence of European admixture and thereby allow evidence-based management decisions to mitigate
548 negative impacts on wild populations throughout North America. The results also demonstrate how
549 machine learning algorithms can streamline ancestry estimation to support applied conservation efforts;
550 these techniques can be applied to other species at risk, allowing existing genetic information to be used
551 to train models that facilitate rapid admixture estimates to inform conservation efforts.

552

553 **Acknowledgements**

554 The authors would like to thank staff of Fisheries and Oceans Newfoundland and Labrador Salmonids
555 Section for assistance with sample collection. The acquisition of aquaculture salmon baseline samples
556 was facilitated by G. Perry, C. Hendry, DFO Aquaculture Section Newfoundland Region, and by industry
557 partners Cooke Aquaculture, Grieg NL Seafarms Ltd, and Northern Harvest Sea Farms. We also thank
558 CIGENE and RPC for SNP and microsatellite genotyping, and Ian Paterson and Beth Watson at the
559 Marine Gene Probe Lab, Dalhousie University assisted with laboratory analysis. Funding was provided
560 through the Program for Aquaculture Regulatory Research of Fisheries and Oceans Canada, the
561 Genomics Research and Development Initiative of Canada.

562

563 **Tables and Figures**

564

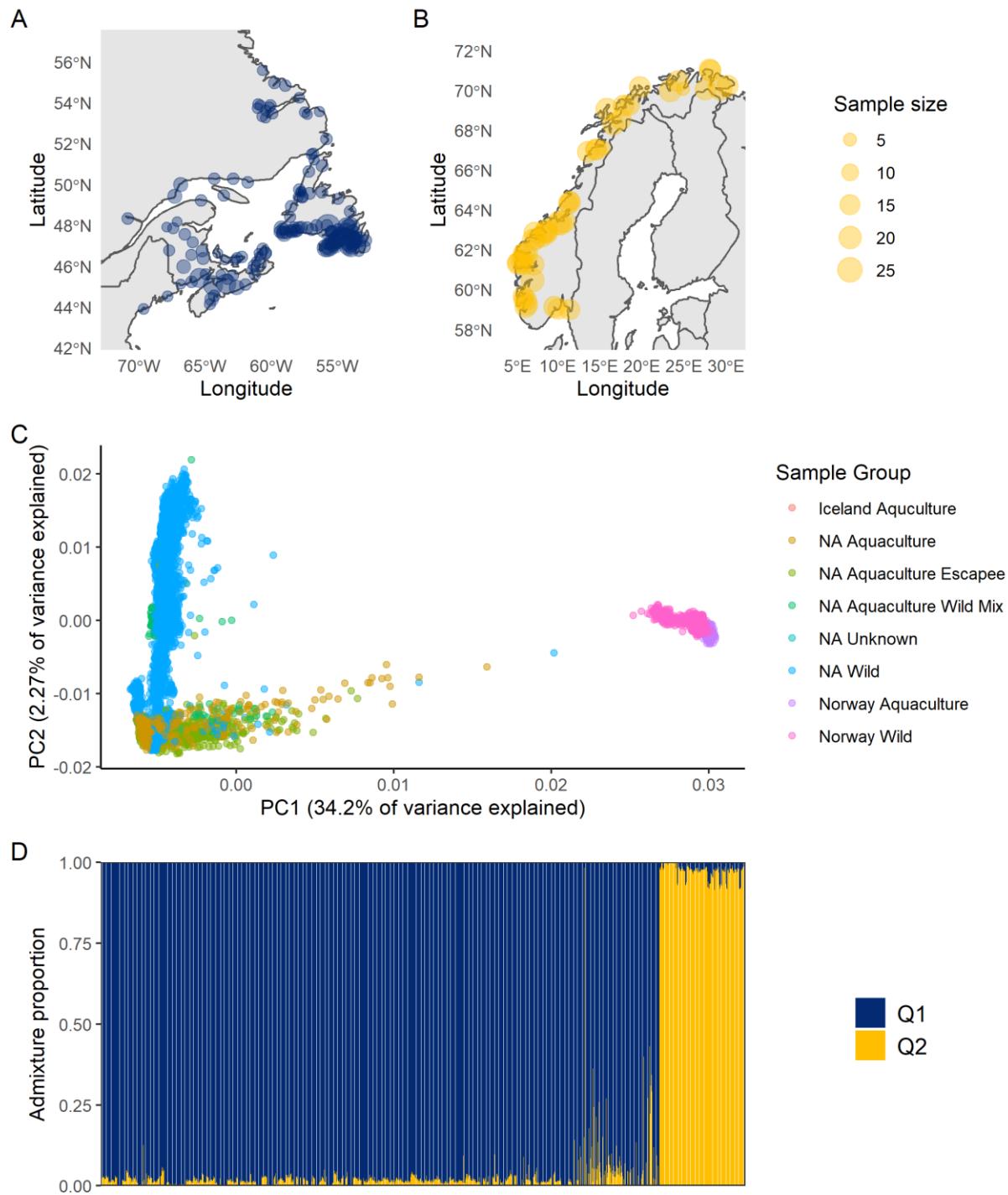
565 **Table 1.** Origin of the Atlantic salmon samples genotyped using the different marker panels and utilized
566 in the comparative admixture analyses. [†] The Unknown category were wild caught fish from New
567 Brunswick, Canada of unknown wild or aquaculture origin. [‡] These were triploid samples that were
568 genetically down sampled to create artificial diploids (2 of the 3 alleles were retained at random for each
569 marker) for use in admixture analysis.

Data Category	North American					Icelandic	European		Total
	Wild	Aquaculture	Aquaculture Escapee	Aquaculture Wild Mix	Unknown [†]		Aquaculture Norway	Norway wild	
220K- SNP panel	5570	440	496	195	27	18	187	806	7739
100- SSR panel	2733	201	296		44		187 + 272 [‡]		3733
7-SSR marker panel	614	195	385		44		269 [‡]		1516

570

571

572



573

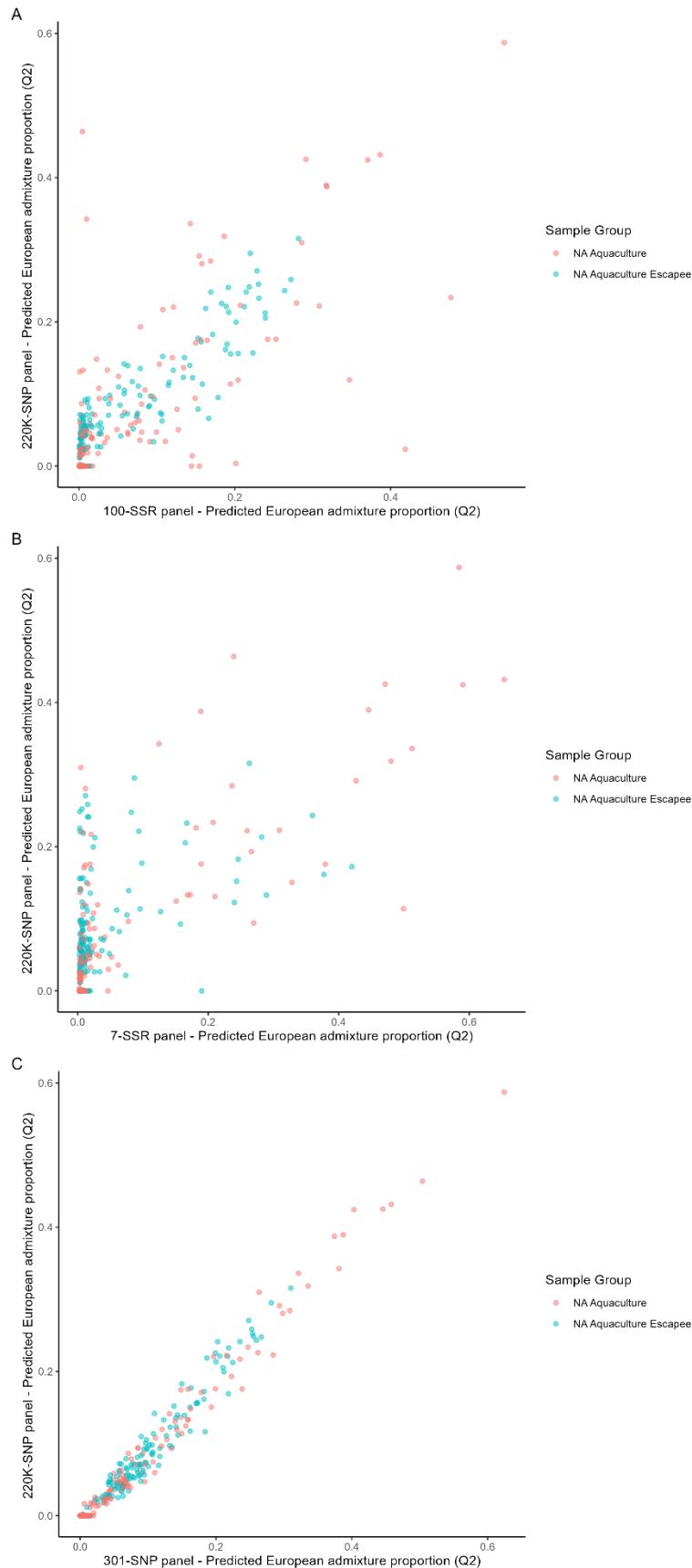
574

575 **Figure 1.** A) Map of the 148 sampling locations for the 5570 wild North American Atlantic salmon used
576 in the study. B) Map of the 50 sampling locations for the 806 wild European Atlantic salmon used in the
577 study. C) Scatter plot of Principal Components (PCs) of genetic variation for the 7636 Atlantic salmon
578 genotyped using the 220K-SNP panel. The 186292 SNPs that passed quality control and filtering steps
579 were the input for the PCA. The colour of the points indicates the category of origin for the samples

580 (Table 1). D) Per-individual European admixture proportion estimates (Q2-values) based on admixture
581 analysis of the 186292 SNPs passing quality control for the 7636 Atlantic salmon genotyped using the
582 220K-SNP panel. The samples are sorted by their data category of origin in the same left to right order as
583 presented in Table 1.

584

585



587 **Figure 2.** A) Scatter plot comparing the per-individual European admixture proportion predictions made
588 by the 100-SSR SNP panel (x-axis) to the European admixture proportion predictions made using the
589 220K-SNP panel for the 370 individuals common to the two data sets. The colour of the points indicates
590 the category of origin for the given sample. B) Scatter plot comparing the per-individual European
591 admixture proportion predictions made by the 7-SSR SNP panel (x-axis) to the European admixture
592 proportion predictions made using the 220K-SNP panel for the 370 individuals common to the two data
593 sets. The colour of the points indicates the category of origin for the given sample. C) Scatter plot
594 comparing the per-individual European admixture proportion predictions made by the 301-SNP panel (x-
595 axis) to the European admixture proportion predictions made using the 220K-SNP panel for the 370
596 individuals common to the different marker panel data sets. The colour of the points indicates the
597 category of origin for the given sample, Adjusted R-squared: 0.9754, p < 2.2e-16.

598

599

600

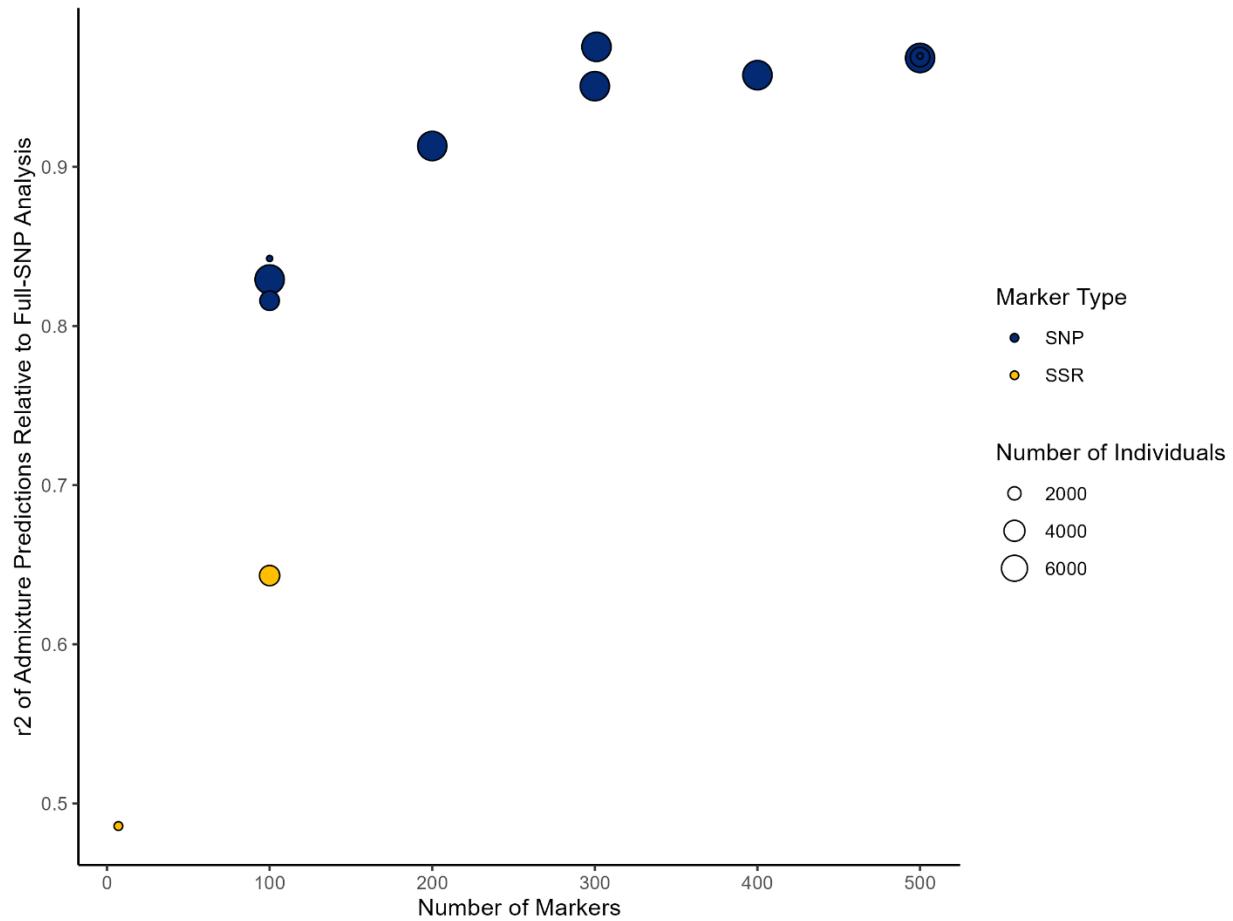
601 **Table 2.** Summary of regression results for the comparison of the predicted admixture proportions from
602 different marker panels to the admixture predictions made using the 220K-SNP data set for the common
603 set of 370 individuals.

Analysis purpose	Panel used for admixture prediction	Number of markers	Number of individuals	r^2 when compared to 220K-SNP panel admixture proportions
Panel comparison	100-SSR	100	3733	0.6432
	7-SSR	7	1516	0.4858
Quantifying marker number effect	500 random SNP	500	7636	0.9684
	400 random SNP	400		0.9576
	300 random SNP	300		0.9507
	200 random SNP	200		0.9131
	100 random SNP	100		0.8292
SNP sub-panel design	301-SNP	301	7636	0.9754
Quantifying sample number effect	220K-SNP – down sampled individuals	186292	3485	0.9982
			1441	0.9968
	500 random SNP – down sampled individuals	500	3485	0.969
			1441	0.9696
604	100 random SNP – down sampled individuals	100	3485	0.8159
			1441	0.8424

605

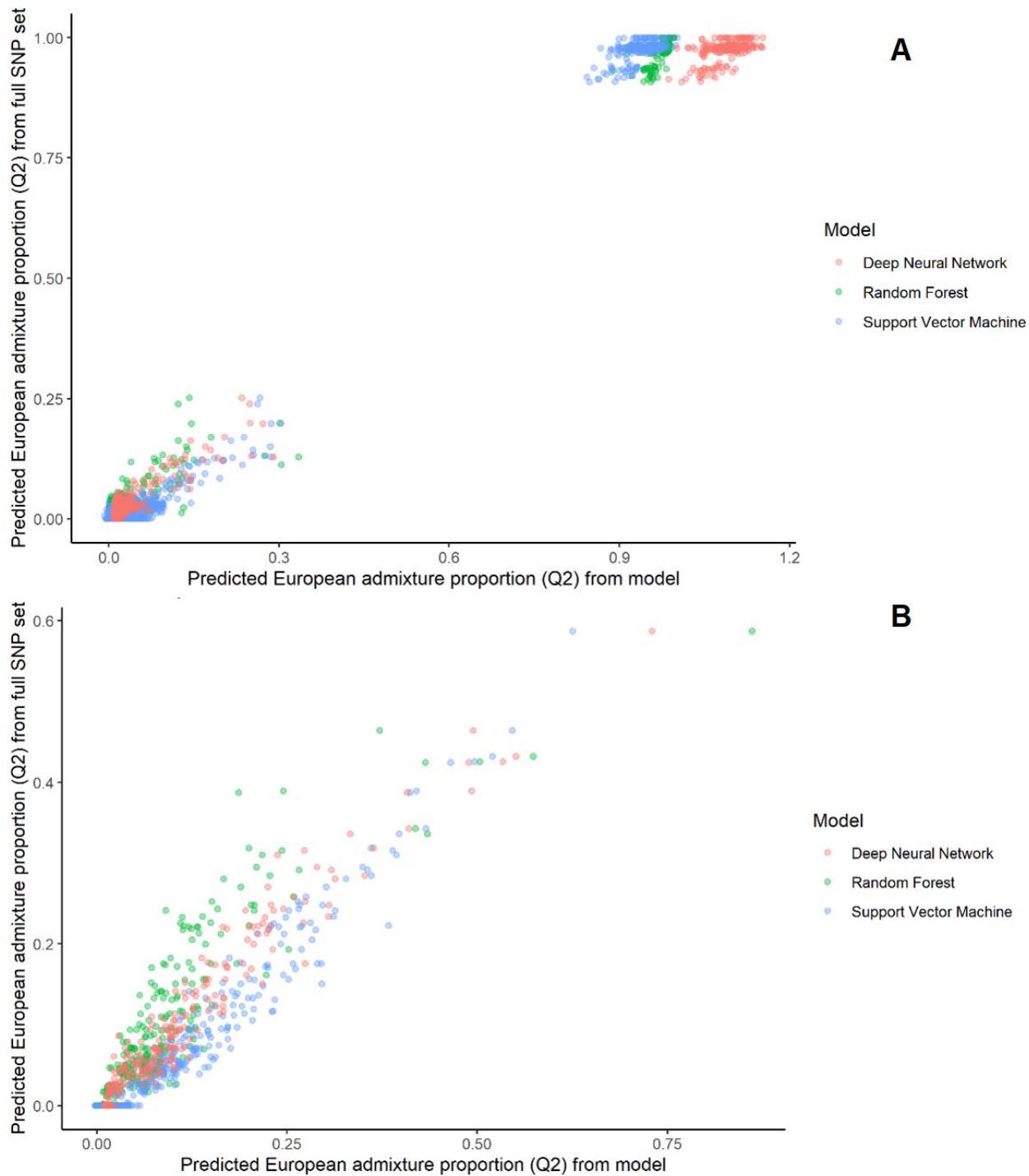
606

607



608

609 **Figure 3.** Scatter plot comparing the predicted admixture proportions from different marker types, marker
610 numbers, and individual sample sizes to the admixture predictions made using the 220K-SNP data set for
611 the common set of 370 individuals. Exact sample size, marker numbers, and r^2 coefficients are presented
612 in Table 2.



613

614 **Figure 4.** Scatter plots comparing the per-individual European admixture proportion predictions made by
615 the three machine learning models (x-axis) to the original admixture proportion predictions made using
616 the 301-SNP panel (y-axis) for: A) the 1454 randomly selected individuals in the test data set (r^2 of
617 regressions: Random Forest = 0.9973, SVM = 0.9948, DNN = 0.9980), and B) the validation set of 370
618 individuals common to the different marker panel data sets. (r^2 of regressions: Random Forest = 0.8134,
619 SVM = 0.9458, DNN = 0.9486).

620

621 **Table 3.** Confusion matrices comparing the number of samples with predicted European admixture
622 proportions greater than or less than 0.1 for: A) the 220K-SNP panel and the 301-SNP panel, B) the
623 220K-SNP panel and the 100-SSR panel, and C) the 220K-SNP panel and the 7-SSR panel.

624 A)

		301-SNP panel classification	
		Predicted low European ancestry (Q2 < 0.1)	Predicted high European ancestry (Q2 >= 0.1)
220K-SNP panel classification	Predicted low European ancestry (Q2 < 0.1)	272	15
	Predicted high European ancestry (Q2 >= 0.1)	3	80

625

626 B)

		100-SSR panel classification	
		Predicted low European ancestry (Q2 < 0.1)	Predicted high European ancestry (Q2 >= 0.1)
220K-SNP panel classification	Predicted low European ancestry (Q2 < 0.1)	272	15
	significant European ancestry (Q2 >= 0.1)	18	65

627

628 C)

		7-SSR panel classification	
		Predicted low European ancestry (Q2 < 0.1)	Predicted high European ancestry (Q2 >= 0.1)
220K-SNP panel classification	Predicted low European ancestry (Q2 < 0.1)	304	4
	Predicted high European ancestry (Q2 >= 0.1)	47	38

629

630

631

632 **References**

633 Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in
634 unrelated individuals. *Genome Research*, 19, 1655-1664.

635 Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., ... & Ferrer, E. A.
636 (2011). Has the Earth's sixth mass extinction already arrived?. *Nature*, 471(7336), 51-57.

637 Barson, N. J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G. H., Fiske, P., ... & Primmer, C. R.
638 (2015). Sex-dependent dominance at a single locus maintains variation in age at maturity in
639 salmon. *Nature*, 528(7582), 405-408.

640 Baum, E. T. (1998). History and description of the Atlantic salmon aquaculture industry in Maine.
641 Canadian Stock Assessment Secretariat Research Document 98/152 Revised. Fisheries and
642 Oceans Canada, Ottawa, Ont.

643 Blischak, P. D., Barker, M. S., & Gutenkunst, R. N. (2021). Chromosome-scale inference of hybrid
644 speciation and admixture with convolutional neural networks. *Molecular Ecology Resources*,
645 21(8), 2676-2688.

646 Bolstad, G. H., Hindar, K., Robertsen, G., Jonsson, B., Sægrov, H., Diserud, O. H., ... & Karlsson, S.
647 (2017). Gene flow from domesticated escapes alters the life history of wild Atlantic salmon.
648 *Nature Ecology & Evolution*, 1(5), 1-5.

649 Bolstad, G. H., Karlsson, S., Hagen, I. J., Fiske, P., Urdal, K., Sægrov, H., ... & Hindar, K. (2021).
650 Introgression from farmed escapees affects the full life cycle of wild Atlantic salmon. *Science*
651 Advances, 7(52), eabj3397.

652 Bourret, V., Kent, M. P., Primmer, C. R., Vasemägi, A., Karlsson, S., Hindar, K., ... & Lien, S. (2013).
653 SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence
654 across the natural range of Atlantic salmon (*Salmo salar*). *Molecular Ecology*, 22(3), 532-551.

655 Bradbury, I. R., Wringe, B. F., Watson, B., Paterson, I., Horne, J., Beiko, R., ... & Bentzen, P. (2018).
656 Genotyping-by-sequencing of genome-wide microsatellite loci reveals fine-scale harvest
657 composition in a coastal Atlantic salmon fishery. *Evolutionary Applications*, 11(6), 918-930.

658 Bradbury, I. R., Burgetz, I., Coulson, M. W., Verspoor, E., Gilbey, J., Lehnert, S. J., ... & McGinnity, P.
659 (2020). Beyond hybridization: the genetic impacts of nonreproductive ecological interactions of
660 salmon aquaculture on wild populations. *Aquaculture Environment Interactions*, 12, 429-445.

661 Bradbury, I. R., Lehnert, S. J., Kess, T., Van Wyngaarden, M., Duffy, S., Messmer, A., ... & Bentzen, P.
662 (2022). Genomic evidence of recent European introgression into North American farmed and
663 wild Atlantic Salmon. *Evolutionary Applications*. doi: 10.1111/eva.13454

664 Camacho-Sánchez, M., Velo-Antón, G., Hanson, J. O., Veríssimo, A., Martínez-Solano, I., Marques, A.,
665 ... & Carvalho, S. B. (2020). Comparative assessment of range-wide patterns of genetic diversity
666 and structure with SNPs and microsatellites: A case study with Iberian amphibians. *Ecology and*
667 *evolution*, 10(19), 10353-10363.

668 Campbell, N. R., Harmon, S. A., & Narum, S. R. (2015). Genotyping-in-Thousands by sequencing (GT-
669 seq): A cost effective SNP genotyping method based on custom amplicon sequencing. *Molecular*
670 *ecology resources*, 15(4), 855-867.

671 COSEWIC (2010). COSEWIC Assessment and Status Report on the Atlantic Salmon (*Salmo salar*) in
672 Canada. https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/cosewic/sr_Atlantic_Salmon_2011a_e.pdf

674 Culver, M., Menotti-Raymond, M. A., & O'Brien, S. J. (2001). Patterns of size homoplasy at 10
675 microsatellite loci in pumas (*Puma concolor*). *Molecular Biology and Evolution*, 18(6), 1151-
676 1156.

677 Daniels, J., Chaput, G., & Carr, J. (2018). Estimating consumption rate of Atlantic salmon smolts (*Salmo*
678 *salar*) by striped bass (*Morone saxatilis*) in the Miramichi River estuary using acoustic telemetry.
679 *Canadian Journal of Fisheries and Aquatic Sciences*, 75(11), 1811-1822.

680 DFO (2016). Risks and benefits of juvenile to adult captive-reared supplementation activities to fitness of
681 wild Atlantic salmon (*Salmo salar*). https://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2016/2016_017-eng.html

683 DFO (2019). Wild Atlantic salmon conservation: Implementation plan 2019 to 2021. <https://www.dfo-mpo.gc.ca/reports-rapports/regis/wildsalmon-conservation-saumonsauvage-eng.htm>

685 Fischer, M. C., Rellstab, C., Leuzinger, M., Roumet, M., Gugerli, F., Shimizu, K. K., ... & Widmer, A.
686 (2017). Estimating genomic diversity and population differentiation—an empirical comparison of
687 microsatellite and SNP variation in *Arabidopsis halleri*. *BMC Genomics*, 18(1), 1-15.

688 Forseth, T., Barlaup, B. T., Finstad, B., Fiske, P., Gjøsæter, H., Falkegård, M., ... & Wennevik, V. (2017).
689 The major threats to Atlantic salmon in Norway. *ICES Journal of Marine Science*, 74(6), 1496-
690 1513.

691 Fortes-Lima, C. A., Laurent, R., Thouzeau, V., Toupanc, B., & Verdu, P. (2021). Complex genetic
692 admixture histories reconstructed with Approximate Bayesian Computation. *Molecular Ecology
693 Resources*, 21(4), 1098-1117.

694 Gärke, C., Ytournel, F., Bed'Hom, B., Gut, I., Lathrop, M., Weigend, S., & Simianer, H. (2012).
695 Comparison of SNPs and microsatellites for assessing the genetic structure of chicken
696 populations. *Animal Genetics*, 43(4), 419-428.

697 Gilbey, J., Sampayo, J., Cauwelier, E., Malcolm, I., Millidine, K., Jackson, F., & Morris, D. J. (2021). A
698 national assessment of the influence of farmed salmon escapes on the genetic integrity of wild
699 Scottish Atlantic salmon populations. *Scottish Marine and Freshwater Science*, 12(12).

700 Glover, K. A., Solberg, M. F., McGinnity, P., Hindar, K., Verspoor, E., Coulson, M. W., ... & Svåsand, T.
701 (2017). Half a century of genetic interaction between farmed and wild Atlantic salmon: status of
702 knowledge and unanswered questions. *Fish and Fisheries*, 18(5), 890-927.

703 Islam, S. S., Wringe, B. F., Bøe, K., Bradbury, I. R., & Fleming, I. A. (2021). Early-life fitness trait
704 variation among divergent European and North American farmed and Newfoundland wild
705 Atlantic salmon populations. *Aquaculture Environment Interactions*, 13, 323-337.

706 Karlsson, S., Moen, T., Lien, S., Glover, K. A., & Hindar, K. (2011). Generic genetic differences between
707 farmed and wild Atlantic salmon identified from a 7K SNP-chip. *Molecular ecology resources*,
708 11, 247-253.

709 Karlsson, S., Diserud, O. H., Fiske, P., Hindar, K., & Handling editor: W. Stewart Grant. (2016).
710 Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations.
711 *ICES Journal of Marine Science*, 73(10), 2488-2498.

712 King, T. L., Kalinowski, S. T., Schill, W. B., Spidle, A. P., & Lubinski, B. A. (2001). Population structure
713 of Atlantic salmon (*Salmo salar L.*): a range-wide perspective from microsatellite DNA variation.
714 *Molecular Ecology*, 10(4), 807-821.

715 Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., ... & Davidson, W. S. (2016).
716 The Atlantic salmon genome provides insights into rediploidization. *Nature*, 533(7602), 200-205.

717 Liu, L., Ang, K. P., Elliott, J. A., Kent, M. P., Lien, S., MacDonald, D., & Boulding, E. G. (2017). A
718 genome scan for selection signatures comparing farmed Atlantic salmon with two wild
719 populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait
720 loci for production traits. *Evolutionary Applications*, 10(3), 276-296.

721 Luu, K., Bazin, E., & Blum, M. G. B. (2016). pcadapt: an R package to perform genome scans for
722 selection based on principal component analysis. *bioRxiv*. doi:10.1101/056135

723 Lehnert, S. J., Bentzen, P., Kess, T., Lien, S., Horne, J. B., Clément, M., & Bradbury, I. R. (2019).
724 Chromosome polymorphisms track trans-Atlantic divergence and secondary contact in Atlantic
725 salmon. *Molecular Ecology*, 28(8), 2074-2087.

726 Lehnert, S. J., Kess, T., Bentzen, P., Clément, M., & Bradbury, I. R. (2020). Divergent and linked
727 selection shape patterns of genomic differentiation between European and North American
728 Atlantic salmon (*Salmo salar*). *Molecular Ecology*, 29(12), 2160-2175. doi:
729 doi.org/10.1111/mec.15480

730 Macqueen, D. J., Primmer, C. R., Houston, R. D., Nowak, B. F., Bernatchez, L., Bergseth, S., ... &
731 Yáñez, J. M. (2017). Functional Annotation of All Salmonid Genomes (FAASG): an international
732 initiative supporting future salmonid research, conservation and aquaculture. *BMC Genomics*,
733 18(1), 1-9.

734 Makova, K. D., Nekrutenko, A., & Baker, R. J. (2000). Evolution of microsatellite alleles in four species
735 of mice (genus *Apodemus*). *Journal of Molecular Evolution*, 51(2), 166-172.

736 May, S. A., McKinney, G. J., Hilborn, R., Hauser, L., & Naish, K. A. (2020). Power of a dual-use SNP
737 panel for pedigree reconstruction and population assignment. *Ecology and Evolution*, 10(17),
738 9522-9531.

739 Moodley, Y., Masello, J. F., Cole, T. L., Calderon, L., Munimanda, G. K., Thali, M. R., ... & Quillfeldt,
740 P. (2015). Evolutionary factors affecting the cross-species utility of newly developed
741 microsatellite markers in seabirds. *Molecular Ecology Resources*, 15(5), 1046-1058.

742 Moore, J. S., Bourret, V., Dionne, M., Bradbury, I., O'Reilly, P., Kent, M., ... & Bernatchez, L. (2014).
743 Conservation genomics of anadromous Atlantic salmon across its North American range: outlier
744 loci identify the same patterns of population structure as neutral loci. *Molecular Ecology*, 23(23),
745 5680-5697.

746 Nicola, G. G., Elvira, B., Jonsson, B., Ayllón, D., & Almodóvar, A. (2018). Local and global climatic
747 drivers of Atlantic salmon decline in southern Europe. *Fisheries Research*, 198, 78-85.

748 Oliveira, R., Randi, E., Mattucci, F., Kurushima, J. D., Lyons, L. A., & Alves, P. C. (2015). Toward a
749 genome-wide approach for detecting hybrids: informative SNPs to detect introgression between
750 domestic cats and European wildcats (*Felis silvestris*). *Heredity*, 115(3), 195-205.

751 O'Reilly, P. T., Carr, J. W., Whoriskey, F. G., & Verspoor, E. (2006). Detection of European ancestry in
752 escaped farmed Atlantic salmon, *Salmo salar* l., in the Magaguadavic River and Chamcook
753 Stream, New Brunswick, Canada. *ICES Journal of Marine Science*, 63(7), 1256-1262.

754 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E.
755 (2011). Scikit-learn: Machine learning in Python. *The Journal of Machine Learning Research*, 12,
756 2825-2830.

757 Porter, R., Carey, T., Harris, D., & Coombs, K. (1998). A review of existing conventions, regulations, and
758 policies pertaining to the control and minimization of negative impacts from aquaculture on wild
759 salmonid stocks. Canadian Stock Assessment Secretariat Research Document, 98/164, 19

760 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus
761 genotype data. *Genetics*, 155(2), 945-959.

762 Pritchard, V. L., Erkinaro, J., Kent, M. P., Niemelä, E., Orell, P., Lien, S., & Primmer, C. R. (2016).
763 Single nucleotide polymorphisms to discriminate different classes of hybrid between wild
764 Atlantic salmon and aquaculture escapees. *Evolutionary applications*, 9(8), 1017-1031.

765 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... & Sham, P. C. (2007).
766 PLINK: a tool set for whole-genome association and population-based linkage analyses. *The*
767 *American Journal of Human Genetics*, 81(3), 559-575.

768 Puckett, E. E., & Eggert, L. S. (2016). Comparison of SNP and microsatellite genotyping panels for
769 spatial assignment of individuals to natal range: A case study using the American black bear
770 (*Ursus americanus*). *Biological Conservation*, 193, 86-93.

771 Puckett, E. E. (2017). Variability in total project and per sample genotyping costs under varying study
772 designs including with microsatellites or SNPs to answer conservation genetic questions.
773 *Conservation Genetics Resources*, 9(2), 289-304. Supple, M. A., & Shapiro, B. (2018).
774 Conservation of biodiversity in the genomics era. *Genome Biology*, 19(1), 1-12.

775 Rougemont, Q., & Bernatchez, L. (2018). The demographic history of Atlantic salmon (*Salmo salar*)
776 across its distribution range reconstructed from approximate Bayesian computations. *Evolution*,
777 72(6), 1261-1277.

778 Saint-Pe, K., Leitwein, M., Tissot, L., Poulet, N., Guinand, B., Berrebi, P., ... & Blanchet, S. (2019).
779 Development of a large SNPs resource and a low-density SNP array for brown trout (*Salmo*
780 *trutta*) population genetics. *BMC Genomics*, 20(1), 1-13.

781 Strøm, J. F., Rikardsen, A. H., Campana, S. E., Righton, D., Carr, J., Aarestrup, K., ... & Thorstad, E. B.
782 (2019). Ocean predation and mortality of adult Atlantic salmon. *Scientific reports*, 9(1), 1-11.

783 Stronen, A. V., Mattucci, F., Fabbri, E., Galaverni, M., Cocchiararo, B., Nowak, C., ... & Caniglia, R.
784 (2022). A reduced SNP panel to trace gene flow across southern European wolf populations and
785 detect hybridization with other *Canis* taxa. *Scientific Reports*, 12(1), 1-14.

786 Szatmári, L., Cserkész, T., Laczkó, L., Lanszki, J., Pertoldi, C., Abramov, A. V., ... & Sramkó, G. (2021).
787 A comparison of microsatellites and genome-wide SNPs for the detection of admixture brings the
788 first molecular evidence for hybridization between *Mustela eversmannii* and *M. putorius*
789 (Mustelidae, Carnivora). *Evolutionary Applications*, 14(9), 2286-2304.

790 Tarca, A. L., Carey, V. J., Chen, X. W., Romero, R., & Drăghici, S. (2007). Machine learning and its
791 applications to biology. *PLoS Computational Biology*, 3(6), e116.

792 Vähä, J. P., & Primmer, C. R. (2006). Efficiency of model-based Bayesian methods for detecting hybrid
793 individuals under different hybridization scenarios and with different numbers of loci. *Molecular*
794 *Ecology*, 15(1), 63-72.

795 Villanea, F. A., & Schraiber, J. G. (2019). Multiple episodes of interbreeding between Neanderthal and
796 modern humans. *Nature Ecology & Evolution*, 3(1), 39-44.

797 Wringe, B. F., Jeffery, N. W., Stanley, R. R., Hamilton, L. C., Anderson, E. C., Fleming, I. A., ... &
798 Bradbury, I. R. (2018). Extensive hybridization following a large escape of domesticated Atlantic
799 salmon in the Northwest Atlantic. *Communications Biology*, 1(1), 1-9.

800 Wringe, B. F., Anderson, E. C., Jeffery, N. W., Stanley, R. R., & Bradbury, I. R. (2019). Development
801 and evaluation of SNP panels for the detection of hybridization between wild and escaped
802 Atlantic salmon (*Salmo salar*) in the western Atlantic. *Canadian Journal of Fisheries and Aquatic
803 Sciences*, 76(5), 695-704.

804 Yano, A., Nicol, B., Jouanno, E., Quillet, E., Fostier, A., Guyomard, R., & Guiguen, Y. (2013). The
805 sexually dimorphic on the Y-chromosome gene (*sdy*) is a conserved male-specific Y-
806 chromosome sequence in many salmonids. *Evolutionary Applications*, 6(3), 486-496.

807 Zhu, T., Liang, C., Meng, Z., Li, Y., Wu, Y., Guo, S., & Zhang, R. (2017). PrimerServer: a high-
808 throughput primer design and specificity-checking platform. *bioRxiv*, 181941.

809 Zueva, K. J., Lumme, J., Veselov, A. E., Primmer, C. R., & Pritchard, V. L. (2021). Population genomics
810 reveals repeated signals of adaptive divergence in the Atlantic salmon of north-eastern Europe.
811 *Journal of Evolutionary Biology*, 34(6), 866-878.

812

813

814 **Conflict of Interest Statement**

815 We declare we have no competing interests.

816

817 **Data Accessibility Statement**

818 Software described are free and publicly available (<https://github.com/CNuge/SalmonEuAdmix>). Data
819 used in these analyses were generated in previous studies (Bradbury *et al.* 2018; Lehnert *et al.* 2019;
820 Bradbury *et al.* 2022).

821

822 **Author Contributions**

823 The study was designed by IRB, TK, CMN. Analysis design was done by CMN, TK, MKB, BLL, SJL,
824 IRB. Data processing, statistical analyses, and data visualizations were conducted by CMN, TK, and SJL.
825 Initial manuscript preparation was done by CMN. Python package design and programming was done by
826 CMN. Testing of the Python package was done by CMN, MH, MKB, BLL, SVB. All authors contributed
827 to the revisions of the manuscript.

828

829 **SUPPLEMENTARY INFORMATION**

830 **Supplementary File 1** ('S1-Supplementary_Tables_and_Figures.docx') Supplementary tables and figures
831 for the manuscript.

832

833