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Abstract 17 

The negative genetic impacts of gene flow from domestic to wild populations can be dependent on the 18 

degree of domestication and exacerbated by the magnitude of pre-existing genetic differences between 19 

wild populations and the domestication source.  Recent evidence of European ancestry within North 20 

American aquaculture Atlantic salmon (Salmo salar) has elevated the potential impact of escaped farmed 21 

salmon on often at-risk wild North American salmon populations.  Here we compare the ability of single 22 

nucleotide polymorphism (SNP) and microsatellite (SSR) marker panels of different sizes (7-SSR, 100-23 

SSR, and 220K-SNP) to detect introgression of European genetic information into North American wild 24 

and aquaculture populations. Linear regression comparing admixture predictions for a set of individuals 25 

common to the three data sets showed that the 100-SSR panel and 7-SSR panels replicated the full 220K-26 

SNP-based admixture estimates with low accuracy (r2 of 0.64 and 0.49 respectively). Additional tests 27 

explored the effects of individual sample size and marker number, which revealed that ~300 randomly 28 

selected SNPs could replicate the 220K-SNP admixture predictions with greater than 95% fidelity. We 29 

designed a custom SNP panel (301-SNP) for European admixture detection in future monitoring work 30 

and then developed and tested a Python package, SalmonEuAdmix 31 

(https://github.com/CNuge/SalmonEuAdmix), that uses a deep neural network to make de novo estimates 32 

of individuals’ European admixture proportion without the need to conduct complete admixture analysis 33 

utilizing baseline samples. The results demonstrate the mobilization of targeted SNP panels and machine 34 

learning in support of at-risk species conservation and management.  35 

  36 
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Introduction  37 

Losses of biodiversity and accelerating rates of species extinction have now been documented across the 38 

globe (Barnosky et al. 2011). Attempts to stem this tide of inter- and intraspecific loss requires a robust 39 

understanding of causal factors involved, which is often lacking. Wild populations of Atlantic salmon 40 

(Salmo salar) in Atlantic Canada are highly valued for their ecological, cultural, and commercial 41 

importance (DFO 2019). Across the North Atlantic, more than 60% of salmon populations show evidence 42 

of decline in recent decades (Lehnert et al. 2019). Within Canadian waters, large population declines have 43 

been observed, with abundance estimated to have fallen by 50% in the last half century; the largest 44 

declines have been seen in populations of the Bay of Fundy, Southern Nova Scotia, and Southern 45 

Newfoundland (COSEWIC 2010; DFO 2019). The causes of decline are largely unknown, but 46 

possibilities include climate change (e.g., Nicola et al. 2018; Lehnert et al. 2019), fishery exploitation 47 

(e.g., Bradbury et al. 2015; Dadswell et al. 2021), predation (e.g., Daniels et al. 2018; Strøm et al. 2019), 48 

and interactions with salmon aquaculture (e.g., Glover et al. 2017; Wringe et al. 2018; Bradbury et al. 49 

2020). Ultimately, the resolution of these causal factors will be key to the prevention of further extirpation 50 

and the success of any recovery or restoration efforts.  51 

Interbreeding of Atlantic salmon aquaculture escapees with wild salmon has been identified as a 52 

significant threat to the species’ persistence and stability in the wild (Forseth et al. 2017). Both 53 

hybridization and subsequent introgression have been observed in wild populations across the North 54 

Atlantic (e.g., Karlsson et al. 2016; Wringe et al. 2018; Gilbey et al. 2021) and have been shown to 55 

reduce population viability through maladaptive genetic changes to wild stocks (Sylvester et al. 2019; 56 

Bolstad et al. 2017, 2021). Evidence of profound genomic differences (e.g., Lehnert et al. 2019, 2020) as 57 

well as behavioral, and physiological differences (e.g., Islam et al. 2021) between European and North 58 

American salmon support the hypothesis that the negative effects of European escapees in North America 59 

likely exceed those of North American individuals (Bradbury et al. 2022). As a result, restrictions on the 60 

use of European salmon in North America have been in place since the late 1990s (Baum et al. 1998; 61 
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Porter et al. 1998; DFO 2016). Nonetheless, mounting evidence suggests the continued presence of 62 

Atlantic salmon with European ancestry in: North American aquaculture salmon, escapees, and wild 63 

salmon collected near aquaculture facilities over the last two decades (O'Reilly et al. 2006; Porter et al. 64 

1998; Liu et al. 2017; Bradbury et al. 2020). The continued presence of European ancestry in North 65 

American aquaculture fish represents a significant elevation of both the potential threat and uncertainty 66 

associated with the impacts to already at-risk North American populations experiencing introgression 67 

from farm escapees (DFO 2016).  68 

To date, the quantification of European ancestry in Atlantic salmon has been accomplished using 69 

small panels of microsatellite loci (King et al. 2001, O’Reilly et al. 2006) or large genomic panels (e.g., 70 

Liu et al. 2017; Bradbury et al. 2022). Accurate ancestry estimation requires extensive genome coverage 71 

but genotyping large numbers of individuals for thousands of markers can be cost prohibitive (Pucket 72 

2017). In applied contexts, where the number of individuals may be large, a balance is therefore required 73 

to ensure that the genome is sufficiently sampled to allow for accurate admixture estimation, while 74 

keeping study costs reasonable. Studies characterizing the ability of different marker panels to accurately 75 

estimate admixture have repeatedly shown that larger panels, commonly comprised of hundreds or 76 

thousands of single nucleotide polymorphisms (SNPs), vastly outperform smaller panels of microsatellite 77 

markers (simple sequence repeats; SSRs) (Gärke et al. 2011; Camacho-Sanchez et al. 2019; Szatmári et 78 

al. 2021).  The use of differing numbers of SSR and SNPs for differentiation of domestic chicken (Gallus 79 

gallus) breeds revealed that 70 SNP markers provided comparable performance to 29 SSR markers, while 80 

the use of 250 or more SNPs provided sufficient genomic coverage for accurate admixture estimation 81 

(Gärke et al. 2011). Similarly, repeated genetic clustering analyses for two amphibian species on the 82 

Iberian Peninsula showed that on data sets of similar sizes and spatial structures, tens of thousands of 83 

SNP markers outperformed panels of 18 and 14 microsatellites (Camacho‐Sanchez et al. 2020). 84 

Ultimately, a comparison across marker types and a targeted screening tool for quantifying European 85 

introgression or individuals of European ancestry in Atlantic salmon is required and could provide the 86 
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information necessary to mitigate some of the negative effects of aquaculture escapees on North 87 

American wild salmon populations. 88 

Here we build on previous work identifying the presence of European introgression in farmed, 89 

escaped farmed, and wild Atlantic salmon throughout Atlantic Canada (e.g., Bradbury et al. 2022) and 90 

develop targeted genomic and machine learning tools to facilitate routine screening in support of 91 

conservation and management efforts. The goals of this study were to quantify the ability of panels of 92 

varying marker types (SSR and SNP), marker numbers, and panel designs to detect European 93 

introgression into North American farmed and wild Atlantic salmon, as well as to subsequently apply this 94 

information in the design of efficient tools for future de novo introgression detection. Specifically, we: 1) 95 

analyzed European admixture using three marker panels (7-SSR, 100-SSR, and 220K-SNP) on three 96 

different, but overlapping sets of thousands of Atlantic salmon; 2) used a common set of individuals to 97 

quantify the accuracy of European introgression detection by different panels relative to the complete 98 

genome-wide SNP marker panel (220K-SNP array); 3) isolated the effects of marker number, individual 99 

sample size, and the origins of individuals on admixture detection through down sampling and repeated 100 

admixture estimation; 4) designed, tested, and implemented a machine learning-based Python package 101 

with a Command Line Interface (CLI), SalmonEuAdmix, a diagnostic tool capable of accurately 102 

estimating European admixture proportions based solely on the genotype data of new samples for a set of 103 

301-SNP markers, without the need for additional complete admixture analyses. The software 104 

SalmonEuAdmix is free and publicly available on GitHub (https://github.com/CNuge/SalmonEuAdmix) 105 

and the Python package index (https://pypi.org/project/SalmonEuAdmix/). The results demonstrate the 106 

power of targeted amplicons and machine learning algorithms to streamline ancestry estimation in support 107 

of the conservation of at-risk wildlife species. 108 

  109 
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Materials and Methods 110 

Sample information & Genotyping 111 

To compare the ability of different marker panels to detect European introgression into North American 112 

aquaculture and wild individuals, three data sets were utilized as the basis of the comparisons (Table 1). 113 

The first data set (220K-SNP) was a series of 7739 samples (Table 1) that were genotyped using a 220K 114 

bi-allelic SNP Affymetrix Axiom array developed for Atlantic salmon as described in Barson et al. 115 

(2015).  Most of the samples utilized were from previously published sources (Lehnert et al. 2020; 116 

Bradbury et al. 2022), and all samples were subjected to the extraction, genotyping, and bioinformatics 117 

procedures described therein. The second data set (100-SSR) was a series of 3733 samples (Table 1) from 118 

a previously published source (Bradbury et al. 2018) that were genotyped using a panel of 100 119 

microsatellite markers. This data set included wild and aquaculture fish from North America, but unlike 120 

the 220K SNP array data set it had European individuals exclusively derived from Norwegian aquaculture 121 

facilities (Table 1).  The third data set (7-SSR) utilized was a series of 1516 individuals (Table 1) 122 

genotyped using a panel of seven microsatellite markers initially described in King et al. (2001). The 123 

samples genotyped for the 7-SSR panel were composed of wild and aquaculture samples from North 124 

America, as well as 269 triploid aquaculture individuals of European origin. Prior to genetic admixture 125 

analysis, the genotypes of the triploid individuals were down sampled. For each marker in each triploid 126 

individual, 2 of 3 alleles were randomly retained so as to create synthetic diploid samples suitable for use 127 

in subsequent admixture analysis. The three datasets had no overlap in genetic markers, but did have 128 

individual samples in common. A series of 370 individuals (211 North American aquaculture and 159 129 

North American aquaculture escapees) were common to all three data sets and were used as a common 130 

test set for comparison of admixture detection across the different data sets. 131 

Detection of European introgression through admixture analysis 132 
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For the 220K-SNP data set the data quality control (QC) filtering steps described in Bradbury et al. 2022 133 

were replicated. We then conducted a principal component analysis (PCA) of the 220K-SNP marker 134 

genotypes using the program pcadapt (Luu et al. 2016) to quantify the population structure of the samples 135 

and ensure that the patterns described in Bradbury et al. (2022) were replicated in the present study. The 136 

program Admixture (version 1.3.0; Alexander et al. 2009) was then used with the parameter k = 2 to 137 

calculate per individual admixture values; these results were visualized in R and admixture populations 138 

were retained for subsequent comparative analyses. For both the 100-SSR and 7-SSR panels the program 139 

Structure (version 2.3.4; Pritchard et al. 2000) was used to calculate admixture proportions for each 140 

individual (with the parameters: k = 2, burn in = 50000 iterations, repetitions = 500000). This change in 141 

admixture calculation method was required because unlike Admixture, Structure can accommodate 142 

microsatellite data with three or more alleles per locus, while yielding similar results (Alexander et al. 143 

2009). 144 

Comparison of admixture estimates across marker panels 145 

The admixture proportion predictions made using the complete 220K-SNP marker panel (~186K markers 146 

post filtering) were assumed to be the most accurate measure of European introgression due to having the 147 

most comprehensive marker coverage and largest baseline sample sets of wild and farmed North 148 

American and European individuals. To assess the relative performance of the 220K-SNP and the two 149 

SSR marker panels, the per-individual estimated admixture proportion values (Q1 and Q2 estimates) for 150 

the set of 370 individuals common to all the data sets were considered. For both the SSR marker panels, a 151 

linear regression was performed with the European admixture proportion predicted by the complete 152 

220K-SNP marker set used as the response variable and the European admixture proportion of the given 153 

SSR set used as the predictor. The regression coefficient (r2) was considered to be the measure of how 154 

well the complete ground truth admixture proportions were replicated by the predictor data set and the per 155 

individual predictions were visualized via scatterplots in R. Prediction accuracies were also examined 156 

from the perspective of a classification problem. Ground truth and predicted admixture values were 157 
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converted to binary classifications, using a threshold of 0.1 to classify whether an individual was of pure 158 

North American origin (<0.1) or displayed significant European ancestry (≥0.1); these classification data 159 

were then used to generate confusion matrices and calculate prediction accuracy scores and error rates. 160 

The use of three overlapping but non-equivalent sets of individuals for admixture prediction by 161 

the different marker panels provided a confound that prevented the regression coefficients and admixture 162 

proportions from being compared in a completely equivalent fashion, as the sample number and marker 163 

number did not vary independently. To better understand and quantify the effects of marker number and 164 

sample number independently, we conducted several additional admixture prediction analyses aimed at 165 

trying to isolate these variables. To provide evidence of the role of marker number and coverage on the 166 

detection of European introgression, random down sampling was conducted to produce smaller panels 167 

from the 220K-SNP data set. Random genome-wide subsets of 500, 400, 300, 200, and 100 SNPs were 168 

chosen from the complete set of SNPs that passed the filtering steps. For each of the samples, the 169 

admixture analysis was then repeated and the results for the 370 common test individuals were compared 170 

to the 220K-SNPmarker set predictions via linear regression to quantify admixture prediction accuracy. 171 

Finally, we isolated the effect of sample size by repeating the admixture proportion prediction analysis 172 

using the full set of markers from the 220K-SNP panel, but down sampling to produce a sample set with 173 

smaller numbers of individuals from the North American and European baseline populations. Two 174 

smaller sample sizes were extracted from the full data set and individuals were selected to as closely as 175 

possible mirror the compositions of the individuals genotyped with the 100-SSR and 7-SSR panels (Table 176 

1). Both subsets included the 370 common test individuals to allow for direct comparison to the other 177 

analyses and the remaining subset were randomly selected from the complete set of available individuals 178 

on a within-category basis (categories listed in Table 1).  The larger subset (mirroring the 100-SSR data 179 

set) was composed of 3485 individuals, including 2733 wild North American samples, 177 North 180 

American wild caught individuals of aquaculture or wild-aquaculture mixed origin, and 205 Norwegian 181 

aquaculture samples. The smaller 1441 sample set consisted of the 370 common individuals as well as 182 
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614 North American wild, 252 North American wild caught individuals of aquaculture or wild-183 

aquaculture mixed origin, and 205 European aquaculture samples. The most significant change to these 184 

two down sampled data sets relative to the full 220K sample set was the complete exclusion of the 806 185 

wild European samples. Admixture calculations and regression analyses comparing these per sample 186 

admixture predictions to the complete data set were then performed. 187 

The interaction of reduced markers and individual sets was then examined through additional 188 

admixture analysis runs using the 3485 and 1441 individual sets and the following marker sets: the 500 189 

random SNP panel and the 100 random SNP panel. These admixture analyses were conducted to see if the 190 

effects of marker number and sample number on admixture prediction accuracy were additive, and to 191 

better understand the influences of these variables on admixture prediction. The admixture predictions for 192 

the 370 common individuals were compared to the results from previous tests, to give an indication of the 193 

performance difference when the marker and individual numbers are both reduced. 194 

Design and testing of SNP marker panel  195 

Following the comparative study of the marker panels and assessment of the relative importance of 196 

marker number and sample size, a sub-panel of SNPs was designed with the goal of producing a 197 

standardized set of markers for future per-individual admixture estimation with good genome coverage 198 

and strong lab-based performance metrics.  The panel, of 301 SNP markers was selected from the 199 

complete set of 220K array SNPs based on several criteria: i) markers had to pass all the QC filtering 200 

steps in the 220K-SNP admixture analysis, ii) markers were selected so as to guarantee that all 29 201 

chromosomes of the Atlantic salmon genome were represented, iii) markers were selected that had 202 

associated DNA sequences that analysis with PrimerServer (Zhu et al. 2017) predicted to have specific 203 

amplicon targets,  iv) markers were selected that had  high FST in comparison of North American and 204 

European ancestry individuals. The panel was subset from the complete data set using Plink (version 205 

1.90) (Purcell et al. 2007) and used to conduct an additional admixture analysis. The results were 206 

compared to the admixture proportions predicted using the 220K-SNP panel via a linear regression.  207 
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Classification-based comparison of predictions to the 220K-SNP panel predictions was also conducted, 208 

with predicted admixture proportions converted to binary classifications using a threshold of 0.1 (pure 209 

North American origin <0.1, European ancestry introgression >=0.1). 210 

Machine learning model and Software design 211 

After describing the ability of the various marker panels to detect European introgression, we aimed to 212 

design a software tool in the Python programming language to allow an end user to obtain an admixture 213 

prediction based on the 301-SNP panel without the need to re-run a complete admixture pipeline for each 214 

new set of samples, thereby increasing the feasibility of admixture detection for ongoing salmon 215 

conservation efforts.  The software would reduce the data processing and computational overhead needed 216 

to estimate the European admixture proportion for a new sample or set of samples. To accomplish this, 217 

we trained and tested a series of supervised machine learning models to predict European admixture 218 

proportion (y) based on the SNP genotypes of a new individual for the markers in the selected panel (X).   219 

To interface with the machine learning models, the genotype data for the complete set of 7636 220 

individuals was numerically encoded in dosage format. Data processing code 221 

(https://github.com/CNuge/SalmonEuAdmix) was developed to read in a genotype file (in Plink’s PED 222 

format), impute missing genotypes with the mode genotype from the 220K-SNP data set, and numerically 223 

encode the genotypes (AA = 0, AB = 1, BB = 2, where A is the major allele in the baseline data and B is 224 

the minor allele). The set of 370 common individuals used in previous analyses were withheld to serve as 225 

a final validation set. Of the remaining individuals, 80% of the remaining individuals were randomly 226 

selected to form the training set for the machine learning models and 20% were withheld to serve as a test 227 

set spanning all the available data classes. The 370 common individuals assessed performance only on 228 

North American aquaculture and wild fish, while the test set additionally included individuals of complete 229 

European origin. To eliminate potential bias and ensure that the 370 individuals in the final validation 230 

data were completely withheld prior to final model assessment, an additional admixture run was 231 

conducted using the 301-SNP markers and the 370 validation individuals removed. The European 232 
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admixture proportions obtained from this admixture run were used as the response variables (y) in model 233 

training.  234 

Within Python, the three machine learning models: a random forest (RF), a support vector 235 

machine (SVM), and a deep neural network (DNN), were fit to the training data and used to make 236 

predictions on the withheld test and validation data. The RF model was implemented using the 237 

sklearn.ensemble.RandomForestRegressor function of the package Scikit-learn (Version 0.24.2, 238 

Pedregosa et al. 2011) using an n_estimators parameter of 1000 and defaults for all other parameters. The 239 

support vector machine (SVM) was implemented using the sklearn.svm.SVR function of Scikit-learn 240 

using a C value of 1.0, and an epsilon value of 0.2, and defaults for all other parameters (Version 0.24.2, 241 

Pedregosa et al. 2011). The DNN was a custom architecture designed using the package Tensorflow 242 

(Version 2.8.0, Abadi et al. 2016) that featured an input layer shape of 301 (matching the SNP panel size) 243 

three hidden layers of 1026, 342, and 114 densely connected neurons using the rectified linear activation 244 

(relu) function activation and 0.2 dropout frequency, and a single neuron output layer using a linear 245 

activation function. Training of the DNN used the Adam optimization algorithm, 20 training epochs, and 246 

mean absolute error as the loss metric. Code for the DNN model architecture can be found within the 247 

SalmonEuAdmix package 248 

(https://github.com/CNuge/SalmonEuAdmix/blob/master/SalmonEuAdmix/model.py). 249 

 The models were all trained with a 1 x 301 predictor tensor containing the dosage encoded 250 

genotypes, and the European admixture proportions obtained from admixture analysis using the 301-SNP 251 

panel set as the response variable. The response variables were scaled using a StandardScaler (Scikit-252 

learn Version 0.24.2, Pedregosa et al. 2011) that was trained on the training data and applied to each of 253 

the train, test, and validation response variable sets. Predicted values were compared to the ground truth 254 

admixture proportions (Figure 1, Figure S1) obtained using the 220K-SNP data set. For each model, the 255 

root mean squared error was calculated and the predictions were saved to a tab separated output file. 256 

These data were then loaded into R where linear regressions were performed to compare the models’ 257 
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predicted admixture proportions to the original values. Comparison of the results from the three different 258 

models was then used to select the optimally performing model. The final models were saved and the 259 

software package SalmonEuAdmix (https://github.com/CNuge/SalmonEuAdmix) was created to allow 260 

for efficient model reuse via a CLI. 261 

  262 
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Results 263 

Detection of European introgression through admixture analysis 264 

Following SNP and individual data filtering based on the criteria laid out in Bradbury et al. 2022, the 265 

220K-SNP marker panel used for European admixture detection consisted of 186292 SNPs and 7636 266 

individuals. Similar to the results reported in Bradbury et al. 2022 (with minor differences resulting from 267 

the increased sample size), the PCA revealed strong separation of samples of European and North 268 

American origin along the first axis of variation (PC1 = 34.2% variance explained), and evidence of 269 

individuals with mixed ancestry (Figure 1). The admixture analysis with the 220K-SNP panel separated 270 

North American wild fish from Norwegian fish of wild or aquaculture origin with high fidelity, while 271 

samples from the North American aquaculture and aquaculture escapee groups displayed evidence of 272 

European introgression (Figure 1).  273 

For the 100-SSR marker panel, a total of 3646 individuals were successfully genotyped and 274 

passed all QC steps. The PCA showed the primary axis of variation was separating individuals of 275 

European and North American ancestry (PC1 = 6.6%, PC2 = 1.4% variance explained; Figure S2). The 276 

linear regression of the admixture proportions for the 370 commonly genotyped individuals revealed a 277 

significant, but weak concordance of predicted admixture proportions with the 220K-SNP panel 278 

predictions (r2=0.64 (Figure 2A). For the 7-SSR marker panel, 1438 individuals were genotyped and 279 

passed all QC steps. The PCA showed the primary axis of variation was separating individuals of 280 

European and North American ancestry (PC1 = 6.5%, PC2 = 1.9% variance explained; Figure S2). The 281 

linear regression of the 7-SSR admixture proportions for the 370 individuals showed lower concordance 282 

with the 220K-SNP panel admixture proportions predictions (r2=0.49).  Inspection of the 7-SSR 283 

admixture proportion predictions for the 370 individuals showed a high number of individuals predicted 284 

to have less than 1% (242/370 = 66% of individuals) of European ancestry, while the 220K-SNP data set 285 

reported only 151 individuals with European admixture proportions less than 1% suggesting reduced 286 

ability to detect European admixture with the 7-SSR marker panel set. (Figure 2B).  287 
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Separating marker and sample effects 288 

A series of additional admixture detection runs were conducted to isolate the effects of marker number 289 

and individual number on the characterization of European admixture. First, we isolated the effect of 290 

marker number by conducting random down sampling of SNPs while keeping the number of individuals 291 

constant (n=7636). Linear models were used to obtain the regression coefficients for each of the random 292 

marker subsamples (Table 2; Figure 3). The 500 random SNP marker panel performed better than either 293 

SSR panel, reproducing the 220K-SNP admixture predictions with an r2 of 0.97. The 400 and 300 random 294 

marker panels also had regression coefficients of greater than 0.95, suggesting that these marker sets had 295 

sufficient genome coverage to replicate the 220K-SNP admixture predictions with greater than 95% 296 

accuracy. The 200 random SNP panel displayed a larger performance decline relative to the larger 297 

random panels, with an r2 of 0.91 and the 100-SSR panel displayed lower performance still, with r2 of 298 

0.83.  299 

 A second series of additional admixture analyses were run to isolate the effect of individual 300 

sample size on the characterization of European Admixture. For these tests, the composition of the 301 

number of individuals in the dataset was changed to resemble the number and type of individuals 302 

genotyped with the 100-SSR and 7-SSR panels (the data were down sampled to 3485 and 1441 individual 303 

sets respectively). Admixture analyses were run for these down sampled individual sets using: the 220K-304 

SNP marker panel, the 500 random SNP panel, and the 100 random SNP panel. For each panel, when the 305 

number of individuals used in the admixture analysis was reduced there were no significant reductions 306 

observed in the correlation of the admixture prediction values, and those obtained using the 220K-SNP 307 

data set (Table 2; Figure 3). These results suggests that the number of markers had a larger impact on 308 

admixture detection than the number of individuals used in the admixture analysis. 309 

Testing of SNP marker panels  310 
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The PCA of the targeted 301-SNP panel produced genetic clustering patterns highly similar to the 220K-311 

SNP panel, with strong separation of European and North American origin samples along the primary 312 

axis of variation (301-SNP: PC1 = 13.1%, PC2 = 5.2% variance explained; Figure S2). The admixture 313 

analysis was repeated for the down sampled 7636 individuals using the 301-SNP panel and linear 314 

regression comparing the per-individual predictions to the 220K-SNP per-individual admixture 315 

predictions showed that the 301-SNP panel outperformed the SSR panels and the 500 random SNP 316 

panels, with and r2 value of 0.98 (Table 2; Figure 2C). 317 

Assessment of panel classification accuracy 318 

Classification-based comparison of the admixture predictions of the 301-SNP, 100-SSR, and 7-SSR 319 

panels to the 220K-SNP panel predictions was conducted using a binary prediction threshold of 0.1 (pure 320 

North American origin <0.1, European ancestry introgression ≥0.1). The 301-SNP panel had the lowest 321 

mis-classification rate of the three panels, with a 4.8% error rate (Table 3A). The 301-SNP panel 322 

displayed sensitivity to European admixture, with only 3 false negatives and 15 false positives. The 100-323 

SSR panel had a mis-classification rate of 9% (Table 3B), so although the per individual admixture values 324 

may not as strongly correspond to the 220K-SNP panel predictions, the population level characterization 325 

of the number of fish with European ancestry is similar (with 15 false positives and 18 false negatives). 326 

For the 7-SSR panel there is a 13.2% mis-classification rate, that was directional in nature with 46 false 327 

negatives and only 3 false positives (Table 3C).  328 

Machine learning model comparison 329 

Prior to training of the machine learning models we removed potential bias by producing blind admixture 330 

values (withholding the 370 validation individuals at all stages and reconducting the 301-SNP admixture 331 

analyses) for use as response variables in machine learning model training. A linear regression 332 

demonstrated that the blind admixture proportions did not differ from the per-individual admixture 333 

proportions (r2 > 0.99, p < 2e-16).  334 
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Following model training (using the test set and blind admixture values), predictions were made 335 

on the test and validation sets. The root mean squared error (RMSE) of predictions for the 301-SNP panel 336 

models on the test set (n = 1454, 20% of individuals) were: 0.0417 for the DNN, 0.013 for the RF, and 337 

0.035 for the SVM. For the 301-SNP panel model’s predictions on the validation data the RMSE were: 338 

0.018 for the DNN, 0.039 for the RF, and 0.035 for the SVM. The per-individual admixture predictions 339 

produced by the three models were then compared to the ground truth admixture values obtained using 340 

the full set of SNP markers and individuals (Figure 4). For both the test and validation data sets, the DNN 341 

output admixture predictions that most closely resembled the ground truth predictions with regression 342 

coefficients (r2) of 0.99 and 0.95 for the test and validation data respectively. The SVR performance was 343 

similar for both data sets (test r2 = 0.99, validation r2 = 0.95), and the RF model had comparable 344 

performance to the other models on the test data (r2 = 0.99), but inferior performance on the validation 345 

data set (r2 = 0.81), suggesting the RF had either overfit to the training data or that it was less effective at 346 

characterizing intermediate admixture values that were more prevalent in the validation data. The strong 347 

test set scores for of all models are likely due to the similarity of the training and test individuals, which 348 

were subsets of the original full set of 7636 individuals and contained samples of similar origin (i.e. 349 

individuals from same wild sampling locations or individuals derived from the same aquaculture stock) 350 

and also due to the test set having individuals with less admixed genomes (full European or North 351 

American origin). The validation individuals were completely withheld in the machine learning process 352 

(not included in the additional admixture analysis used to create response values for model training) and 353 

there was a higher proportion of intermediate admixture individuals compared to the test set which had 354 

many individuals of pure North American or European origin, making these values a more robust 355 

assessment of model performance. 356 

Based on these results, the 301-SNP DNN model was selected for use in the SalmonEuAdmix 357 

package because of its ability to yield predictions that most closely resembled the European admixture 358 

proportions obtained through the complete admixture analysis for the previously unseen individuals. Due 359 
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to the unconstrained nature of the DNN (e.g. predictions could be <0.0 or >1.0) there were individuals in 360 

the test set with predicted European ancestry proportions in excess of 1.0 (Figure 4). To account for this, a 361 

default, but optional heuristic was included in the SalmonEuAdmix package which constrained admixture 362 

predictions to a lower bound of 0.0 and an upper bound of 1.0. 363 

364 
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Discussion  365 

Targeted SNP panels and admixture detection algorithms are becoming common place in conservation 366 

management activities revealing both population structure and hybridization (Camacho-Sanchez et al. 367 

2019; May et al. 2020; Stronen et al. 2022).  In Atlantic Salmon, the identification of introgression of 368 

aquaculture salmon has become central to conservation efforts aimed at curbing salmon decline across the 369 

North Atlantic (e.g., Forseth et al. 2017; Bradbury et al. 2020) and genomic tools have been successfully 370 

applied to quantify hybridization and introgression (e.g., Karlsson et al. 2011; Pritchard et al. 2016; 371 

Wringe et al. 2019). Here we extended previous observations of aquaculture associated European 372 

introgression into North American salmon populations (O’Reilly et al. 2006; Bradbury et al. 2022) and 373 

develop targeted genomic and machine learning tools to mobilize European ancestry detection to inform 374 

conservation and management efforts. Our results suggest that accurate aquaculture associated European 375 

admixture estimation is possible with subsets of loci and accuracy is dependent more on genome coverage 376 

than number of baseline individuals considered. Iterative down sampling suggests that approximately 300 377 

markers provided sufficient genomic coverage to closely replicate genome-wide admixture analysis in an 378 

efficient and cost-effective manner and that accuracy declined below this panel size. Combining this 379 

information with bioinformatics and lab-based metrics, we designed a panel of 301 SNPs, for use in 380 

future analyses aimed at characterizing European admixture proportions in North American populations. 381 

This panel, along with the deep neural network contained in the software package SalmonEuAdmix, 382 

allow for rapid and accurate de novo admixture proportion estimates to be made as part of future Atlantic 383 

salmon conservation and management efforts. The methods developed here serve as an example of how 384 

admixture data for at-risk wildlife species can be used in conjunction with machine learning algorithms to 385 

streamline ancestry estimation in support of conservation. 386 

Marker panel comparison 387 

This work provides a comprehensive comparative study of the ability of different marker panels to detect 388 

European admixture within North American Atlantic salmon. The ability of the SNP array to accurately 389 
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estimate individual ancestry was demonstrated through consistent performance across a range of marker 390 

panel sizes and baseline sample numbers. This is likely in part due to the high levels of differentiation 391 

between the North American and European lineages, which are estimated to have been isolated from one 392 

another for the past 600,000 years, with minimal secondary contact (Bourret et al. 2013; Moore et al. 393 

2014; Rougemont & Bernatchez 2018; Lehnert et al. 2020; Bradbury et al. 2022). The inability to detect 394 

low levels of admixture was a limitation of the SSR panels (i.e., the 100-SSR and 7-SSR panels) as both 395 

of these SSR panels displayed reduced ancestry prediction accuracy (i.e. lower regression coefficients) 396 

compared to the 220K-SNP panel. These results for the 7-SSR panel are consistent with the hypothesis 397 

that the reduced performance of the SSR panels is mostly likely due to poor coverage of the Atlantic 398 

salmon genome. The Atlantic salmon genome has 27-29 chromosomes (Lien et al. 2016), so even if each 399 

of the 7-SSR panel’s markers were on separate chromosomes, any introgression on 22 of the 29 400 

chromosomes (approximately 76% of the genome, or more depending on the size of the chromosomes 401 

containing the SSR markers) would not be in physical linkage with a panel marker and admixture in these 402 

regions would therefore go undetected. Scenarios with more European introgression, where 403 

recombination has occurred and smaller European ancestry tracts are present across numerous 404 

chromosomes, would go undetected by the 7-SSR panel unless by chance the admixture tracts span the 405 

SSR locations and contained a European ancestry tract. This same reasoning supports the major 406 

assumption we have made in the comparative study, which is that the 220K-SNP panel admixture 407 

predictions serve as a ‘ground truth’ to which other predictions are compared. With 186292 polymorphic 408 

SNP markers passing QC steps and being included in this panel, and the salmon genome being 409 

approximately 2.96 Gbp in size, the 220K-SNP panel provides genome wide coverage of approximately 410 

one SNP every 15.9 Kb of the Atlantic salmon genome, which is a level of genome-wide resolution 411 

sufficient to detect even very low levels of admixture (Lehnert et al. 2019; Bradbury et al. 2022). 412 

 Interestingly, the 100-SSR panel offered better genomic coverage than the 7-SSR panel, having 413 

specifically been designed to have representation of all chromosomes and therefore poor genomic 414 
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coverage may not be the sole cause of its reduced admixture detection (Bradbury et al. 2018). An 415 

alternative hypothesis for the poorer performance of this panel relative to similarly sized SNP panels 416 

could be the accumulation of homoplastic (e.g. same repeat number) alleles within the North American 417 

and European lineages. Changes in microsatellite repeat number are a common mode of allelic evolution 418 

and have been shown to lead to microsatellite alleles of the same size with different evolutionary histories 419 

(Makova et al. 2000; Culver et al. 2001; Moodley et al. 2015). The estimated 600,000 YBP divergence 420 

time (Rougemont & Bernatchez 2018) of the two Atlantic salmon lineages would afford sufficient time 421 

for the accumulation of homoplastic microsatellite alleles and thereby contribute to the observed reduced 422 

admixture detection in comparison to the 100 locus SNP panel (see below).   423 

 The classification-based comparison of predictions further highlighted the differences in 424 

sensitivity to European admixture detection among the panels and demonstrated the potential impacts of 425 

these differences on classification-based screening of populations. Although the 7-SSR panel has 426 

previously been shown to have 100% correct continent of origin assignment (King et al. 2001), our work 427 

demonstrates that its capacity to detect European introgression is much more limited. The 7-SSR panel 428 

was shown to drastically under classify European introgression, which suggests that screening based on 429 

this panel would fail to detect European admixture in the majority of cases. Conversely, the 301-SNP 430 

panel possessed an error profile more suitable for applied conservation efforts aimed at screening for 431 

European admixture. The 301-SNP panel was sensitive to European admixture, detecting over 95% of 432 

true positives, while showing low levels of false positives as well. This is more suitable for screening in 433 

applied conservation efforts, where the costs of false negatives (overlooking true admixture and its 434 

associated negative effects) outweigh the costs of false positives (additional sampling or analytical efforts 435 

of non-admixed populations). 436 

Admittedly, the direct comparison of panel results was limited to a subset of individuals (n = 437 

370). Although these represented only a small fraction of the complete data sets, the admixture 438 

proportions of these individuals captured the level of ancestry variation in the total dataset and as such 439 
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were well suited to assess the sensitivity of the different panels across a range admixture levels. For 440 

example, the 220K-SNP panel European admixture proportion predictions for these individuals ranged 441 

from 0.0 - 0.587 with 136 individuals having values in the range of 0.01 - 0.1 (e.g., 1% - 10% European 442 

Ancestry). These values reflect the range of admixture detected in broader analyses of aquaculture salmon 443 

and escapees (Bradbury et al. 2022) and also represent low admixture proportions that panels with poor 444 

genomic coverage would be more likely to fail to detect. If the common test set included more individuals 445 

with high (or complete) European ancestry, then the SSR panels admixture predictions would have likely 446 

more closely resembled the 220K-SNP panel predictions. Resolution of low to intermediate admixture 447 

proportions is of interest in applied conservation efforts, so the 370 individual test set used in this work is 448 

reflective of the context in which these findings will be applied and therefore likely very appropriate.  449 

Marker and sample number effects on admixture prediction 450 

The iterative down sampling of SNPs showed an approximately linear decline, until a sharper drop in 451 

admixture prediction performance that was observed when only 200 markers were used; this is consistent 452 

with the hypothesis that at this point genomic coverage was sparse enough that larger admixture tracts 453 

went undetected. These results are similar to previous studies of admixture estimation using different 454 

numbers of markers, which have shown several hundred SNPs to provide sufficient genomic coverage for 455 

accurate estimation in a wide variety of species and contexts, while smaller panels (e.g. <100 markers) 456 

can have reduced admixture estimation ability in many situations (Vähä & Primmer 2006; Gärke et al. 457 

2011; Oliveira et al. 2015; Puckett & Eggert 2016; Fischer et al. 2017; Saint-Pé et al. 2019). The use of 458 

approximately 300 SNPs in subsequent custom panel design and predictive admixture model construction 459 

were therefore selected to strike a balance between genome coverage, admixture detection accuracy, and 460 

marker parsimony. The results of this study have shown only fractional performance declines for the 301-461 

SNP panel relative to the 220K-SNP panel that was several orders of magnitude larger (when all other 462 

variables are held equal). Compared to genotyping individuals with the complete 220K Atlantic salmon 463 

SNP array (Barson et al. 2015), the 301 SNP genotypes required for admixture prediction with the 301-464 
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SNP panel can be obtained more economically and efficiently using targeted genotyping methods such as 465 

Genotyping-in-Thousands by sequencing (GT-seq) (Campbell et al. 2015). 466 

The differences in the samples genotyped using the SSR and SNP marker panels complicated the 467 

interpretation of the results. Here, we attempted to isolate and quantify this effect through a comparative 468 

study of the admixture analyses and the use of down sampling to change the composition of individuals 469 

considered therein. In addition to the by-individual down sampled admixture runs that did not reveal 470 

significant effects of individual sample size on admixture predictions, comparing the difference in 471 

performance between the 100-SSR marker set and the 100 random SNP set (in terms of replication of the 472 

220K-SNP admixture predictions on the 370 common individuals) indirectly gives an indication of the 473 

effect of the samples considered. The 100-SSR panel produced an r2 of 0.64, while the 100 random SNP 474 

panel produced an r2 of 0.83 (Table S1). This 0.182 difference in performance is unexpected given the 475 

information rich (e.g. multi-allelic) nature of microsatellite markers relative to bi-allelic SNPs and is 476 

contrary to previous work that has shown an opposing relationship of performance differences between 477 

similarly sized SNPs and SSRs sample sets utilized in admixture analyses (Gärke et al. 2011). As an 478 

alternative to the previously discussed microsatellite homoplasy hypothesis, the difference in performance 479 

may result from the bias introduced by the random SNPs being a subset of the 220K-SNP set used to 480 

obtain the ground truth admixture values and matching sets of individuals being used in these analyses. 481 

We attempted to quantify this bias through the down sampling of individuals to match the composition of 482 

the 100-SSR and 7-SSR admixture analyses, but this did not lead to any significant declined in the r2 of 483 

predictions relative to the 220K-SNP set. Conservatively, the 0.18 r2 difference between the 100 random 484 

SNP and 100-SSR marker sets may therefore be considered an estimate of the bias in favour of the SNP 485 

panel results, due to the SNP panels not being truly blind to the data in the 220K-SNP admixture 486 

predictions that constituted our ground truth values. Nonetheless, even with this bias taken into account 487 

(e.g. if we state that the hypothetical r2 of the 100-SSR is near or slightly higher than the 100 random SNP 488 

r2 of 0.8292), based on the other results of this study the 301-SNP panel would still likely far exceed the 489 
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SSR panels’ admixture detection ability if the samples analyzed with the different marker panels were 490 

completely equivalent.  491 

SalmonEuAdmix and application of machine learning models 492 

Machine learning models have recently been leveraged to infer genetic ancestry and to allow for the 493 

reconstruction of complex admixture histories in situations where traditionally employed methods can 494 

encounter limitations (Villanea & Schraiber 2019; Fortes-Lima et al. 2021; Bilschak et al. 2021). Our 495 

work represents a novel, alternative application of machine learning algorithms in ancestry estimation; 496 

instead of trying to better resolve admixture estimates, we trained supervised machine learning algorithms 497 

to replicate admixture proportion estimates which themselves were produced using an unsupervised 498 

learning algorithm (Pritchard et al. 2000; Tarca et al. 2007; Alexander et al. 2009). The predictive models 499 

learn the patterns relating genotypes to admixture proportions in the training data and make novel 500 

admixture estimates based solely on the genotypes of new individuals. This shifts the bulk of the 501 

analytical burden from the end user onto the algorithm designer, thereby transforming admixture 502 

estimation from a complex bioinformatics analysis into a simplified screening test, which is ideal for use 503 

in applied conservation efforts. This approach can be replicated within other species in order to take a 504 

robust set of admixture predictions and produce a customized diagnostic tool for rapid and simplified 505 

species-specific admixture estimation tool for use in applied conservation efforts (Oliveira et al. 2015; 506 

Bilschak et al. 2021; Stronen et al. 2022). 507 

It is important to remember that this supervised learning approach to admixture estimation is 508 

meant to complement, not replace, traditional unsupervised admixture estimation methods. As evidenced 509 

by our assessment of panel classification accuracy, supervised models (such as the DNN used in 510 

SalmonEuAdmix) can be developed that are sensitive to the presence of admixture, allowing for the 511 

detection of cases of interest within applied contexts. However, the fine scale admixture proportions are 512 

inferior to a complete admixture analysis run using a maximal amount of available genetic markers. 513 

Within the intended application as an admixture screening tool, SalmonEuAdmix is likely to be robust, 514 
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being based on genetic data from thousands of Atlantic salmon that display a spectrum of admixture 515 

proportions. The ability of SalmonEuAdmix’s models to predict admixture of previously untested 516 

populations is uncertain and may vary depending on the details of the population in question; however, 517 

we expect it to be effective for sample from novel locations in Atlantic Canada given the wide-ranging set 518 

of wild North American samples used in this study and the significant proportion of genomic variation 519 

explained by North American and European divergence. Despite potential limitation of model 520 

generalizability, the DNNs of SalmonEuAdmix are likely to outperform admixture analyses based on the 521 

7-SSR or 100-SSR marker panels, as the 301-SNP panel provides greater genomic coverage and is 522 

comprised of bi-allelic SNPs (providing a defined parameter space for variation, whereas SSR markers 523 

may be found in novel variants within new populations). As more genotyped Atlantic salmon samples are 524 

made available, we will monitor SalmonEuAdmix’s performance in a growing number of contexts 525 

through the comparison of model predictions to additional, complete admixture re-analyses. Should areas 526 

of underperformance be identified, we will update the underlying model of SalmonEuAdmix and 527 

document changes in order to ensure the package provides accurate European admixture proportion 528 

predictions in the widest possible set of populations. 529 

Conclusion 530 

The use of aquaculture salmon with European ancestry in North America presents a continued threat to 531 

declining North American Atlantic populations (Glover et al. 2017; Wringe et al. 2018; Bradbury et al. 532 

2020, 2022). Extending previous studies which designed marker panels for aquaculture introgression 533 

(King et al. 2001; Bradbury et al. 2018; Bradbury et al. 2022), here our results present a comparison of 534 

different marker panel’s ability to detect aquaculture associated European introgression and demonstrated 535 

the greater accuracy and resolution of large SNP panels compared to commonly employed microsatellite-536 

based methods. With the aim of producing the genomic and analytical tools necessary for efficient 537 

European admixture detection in future applied conservation efforts, we quantified accuracy differences 538 

between SNP panels of various sizes and used this information to inform the design of an optimized SNP 539 
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panel, comprised of 301 markers, that provided highly similar admixture estimates to the 220K-SNP 540 

panel using a more parsimonious data set. To further aid the application of these panels in Atlantic salmon 541 

conservation and management efforts we developed the Python package SalmonEuAdmix 542 

(https://github.com/CNuge/SalmonEuAdmix), which uses the panels and a corresponding deep neural 543 

network to generate accurate estimates of European admixture proportions without the need for complete 544 

admixture analysis pipelines. The panels and software we have designed and tested will aid in Atlantic 545 

salmon conservation by providing the resources necessary to screen wild and aquaculture populations for 546 

evidence of European admixture and thereby allow evidence-based management decisions to mitigate 547 

negative impacts on wild populations throughout North America. The results also demonstrate how 548 

machine learning algorithms can streamline ancestry estimation to support applied conservation efforts; 549 

these techniques can be applied to other species at risk, allowing existing genetic information to be used 550 

to train models that facilitate rapid admixture estimates to inform conservation efforts. 551 
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Tables and Figures 563 

 564 

Table 1. Origin of the Atlantic salmon samples genotyped using the different marker panels and utilized 565 
in the comparative admixture analyses. † The Unknown category were wild caught fish from New 566 
Brunswick, Canada of unknown wild or aquaculture origin. ‡ These were triploid samples that were 567 
genetically down sampled to create artificial diploids (2 of the 3 alleles were retained at random for each 568 
marker) for use in admixture analysis. 569 

 North American Icelandic European  

Data 

Category 
Wild Aquaculture 

Aquaculture 

Escapee 

Aquaculture 

Wild Mix 
Unknown† 

Aquaculture 

Iceland 

Aquaculture 

Norway 

Norway 

wild 
Total 

220K-

SNP 

panel 

5570 440 496 195 27 18 187 806 7739 

100-

SSR 

panel 

2733 201 296  44  187 + 272‡  3733 

7-SSR 

marker 

panel 

614 195 385  44  269‡  1516 

 570 

 571 
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 573 

 574 

Figure 1. A) Map of the 148 sampling locations for the 5570 wild North American Atlantic salmon used 575 
in the study. B) Map of the 50 sampling locations for the 806 wild European Atlantic salmon used in the 576 
study. C) Scatter plot of Principal Components (PCs) of genetic variation for the 7636 Atlantic salmon 577 
genotyped using the 220K-SNP panel. The 186292 SNPs that passed quality control and filtering steps 578 
were the input for the PCA. The colour of the points indicates the category of origin for the samples 579 
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(Table 1).  D) Per-individual European admixture proportion estimates (Q2-values) based on admixture 580 
analysis of the 186292 SNPs passing quality control for the 7636 Atlantic salmon genotyped using the 581 
220K-SNP panel. The samples are sorted by their data category of origin in the same left to right order as 582 
presented in Table 1. 583 

 584 
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Figure 2. A) Scatter plot comparing the per-individual European admixture proportion predictions made 587 
by the 100-SSR SNP panel (x-axis) to the European admixture proportion predictions made using the 588 
220K-SNP panel for the 370 individuals common to the two data sets. The colour of the points indicates 589 
the category of origin for the given sample.  B) Scatter plot comparing the per-individual European 590 
admixture proportion predictions made by the 7-SSR SNP panel (x-axis) to the European admixture 591 
proportion predictions made using the 220K-SNP panel for the 370 individuals common to the two data 592 
sets. The colour of the points indicates the category of origin for the given sample. C) Scatter plot 593 
comparing the per-individual European admixture proportion predictions made by the 301-SNP panel (x-594 
axis) to the European admixture proportion predictions made using the 220K-SNP panel for the 370 595 
individuals common to the different marker panel data sets. The colour of the points indicates the 596 
category of origin for the given sample, Adjusted R-squared:  0.9754, p < 2.2e-16. 597 
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 600 

Table 2. Summary of regression results for the comparison of the predicted admixture proportions from 601 
different marker panels to the admixture predictions made using the 220K-SNP data set for the common 602 
set of 370 individuals.  603 

Analysis purpose 
Panel used for admixture 

prediction 

Number 

of 

markers 

Number of 

individuals 

r2 when compared to 

220K-SNP panel 

admixture proportions 

Panel comparison 
100-SSR 100 3733 0.6432 

7-SSR 7 1516 0.4858 

Quantifying marker 

number effect 

500 random SNP  500 

7636 

 

0.9684 

400 random SNP  400 0.9576 

300 random SNP  300 0.9507 

200 random SNP  200 0.9131 

100 random SNP  100 0.8292 

SNP sub-panel design 301-SNP  301 7636 0.9754 

Quantifying sample 

number effect 

220K-SNP 

– down sampled individuals 
186292 

3485 0.9982 

1441 0.9968 

500 random SNP – down 

sampled individuals 
500 

3485 0.969 

1441 0.9696 

100 random SNP – down 

sampled individuals 
100 

3485 0.8159 

1441 0.8424 

 604 

 605 

 606 

 607 
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 608 

Figure 3. Scatter plot comparing the predicted admixture proportions from different marker types, marker 609 
numbers, and individual sample sizes to the admixture predictions made using the 220K-SNP data set for 610 
the common set of 370 individuals. Exact sample size, marker numbers, and r2 coefficients are presented 611 
in Table 2.   612 
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 613 

Figure 4. Scatter plots comparing the per-individual European admixture proportion predictions made by 614 
the three machine learning models (x-axis) to the original admixture proportion predictions made using 615 
the 301-SNP panel (y-axis) for: A) the 1454 randomly selected individuals in the test data set (r2 of 616 
regressions: Random Forest = 0.9973, SVM = 0.9948, DNN = 0.9980), and B) the validation set of 370 617 
individuals common to the different marker panel data sets. (r2 of regressions: Random Forest = 0.8134, 618 
SVM = 0.9458, DNN = 0.9486). 619 
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 620 

Table 3. Confusion matrices comparing the number of samples with predicted European admixture 621 
proportions greater than or less than 0.1 for: A) the 220K-SNP panel and the 301-SNP panel, B) the 622 
220K-SNP panel and the 100-SSR panel, and C) the 220K-SNP panel and the 7-SSR panel. 623 

A) 624 

 301-SNP panel classification 

Predicted low European 
ancestry (Q2 < 0.1) 

Predicted high 
European ancestry (Q2 
>= 0.1) 

220K-SNP panel 
classification 

Predicted low 
European ancestry (Q2 
< 0.1) 

272 15 

Predicted high 
European ancestry (Q2 
>= 0.1) 

3 80 

 625 

B) 626 

 100-SSR panel classification 

Predicted low European 
ancestry (Q2 < 0.1) 

Predicted high 
European ancestry (Q2 
>= 0.1) 

220K-SNP panel 
classification 

Predicted low 
European ancestry (Q2 
< 0.1) 

272 15 

significant European 
ancestry (Q2 >= 0.1) 

18 65 

 627 

 C) 628 

 7-SSR panel classification 

Predicted low European 
ancestry (Q2 < 0.1) 

Predicted high 
European ancestry (Q2 
>= 0.1) 

220K-SNP panel 
classification 

Predicted low 
European ancestry (Q2 
< 0.1) 

304 4 

Predicted high 
European ancestry (Q2 
>= 0.1) 

47 38 

 629 

 630 

  631 
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