

1
2
3
4
5
6
7
8
9
10
11
12

13 **Massively parallel single-cell sequencing of genetic loci in diverse microbial populations**

14

15 Freeman Lan^{1*}, Jason Saba^{3,4}, Tyler D Ross¹, Zhichao Zhou³, Katie Krauska¹, Karthik
16 Anantharaman³, Robert Landick^{1,3}, and Ophelia Venturelli^{1,2,3*}

17

18 ¹Department of Biochemistry, University of Wisconsin-Madison, Madison WI 53706

19 ²Department of Chemical & Biological Engineering, University of Wisconsin-Madison,
20 Madison WI 53706

21 ³Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706

22 ⁴Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison WI
23 53706

24

25 *To whom correspondence should be addressed: venturelli@wisc.edu, flan3@wisc.edu

26

27

28 **ABSTRACT**

29 Single cell genetic heterogeneity is ubiquitous in microbial populations and an important aspect
30 of microbial biology. However, we lack a broadly applicable and accessible method to study this
31 heterogeneity at the single cell level. Here, we introduce a simple, robust, and generalizable
32 platform for quantitative and massively parallel single cell sequencing of target genetic loci in
33 microbes using ultrahigh-throughput droplet microfluidics (Droplet Targeted Amplicon
34 Sequencing or DoTA-seq). Using DoTA-seq, we elucidate the highly diverse single cell ON/OFF
35 states of the phase-variable capsule synthesis operons in the prevalent human gut species
36 *Bacteroides fragilis*. In addition, we quantify the shifts in antibiotic resistance gene abundances in
37 different species in a 25 member human gut microbial community in response to antibiotics. By
38 sequencing tens of thousands of single-cells derived from a human fecal sample, we identify links
39 between plasmid replicons and the taxonomic lineages of their associated hosts. In sum, DoTA-
40 seq is an accessible and broadly applicable tool for profiling single-cell genetic variation in
41 microbiomes.

42

43 **INTRODUCTION**

44 Single-cell heterogeneity is ubiquitous in nature and single-cell sequencing is a powerful tool for
45 understanding the biology of systems composed of heterogenous cells. In bacteria, single-cell
46 genetic heterogeneity plays key roles in evolution, antimicrobial resistance¹, host-colonization²,
47 and pathogenesis³. Mechanisms of genomic variation such as phase variation, gene deletion,
48 gene duplication, and horizontal gene transfer, are frequently observed in bacteria. However, it
49 has been difficult to study this variability without robust pipelines for single-cell sequencing.
50 Additionally, most microbes live in multi-species microbial communities, where studying them at
51 the single-cell level is important for understanding the functions of each species. Classically,
52 single-cell genetic heterogeneities are observed through colony plating where single colonies
53 represent populations usually derived from single cells⁴. However, colony plating only detects
54 culturable microbes and thus fails to represent unculturable taxa, which can play key roles in
55 microbial community functions^{5,6}. In addition, the lack of scalability limits their use to low richness
56 (i.e. number of species) communities, small numbers of samples, or both.

57 Despite the demand for them, methods for single-cell genetic sequencing of microbes are
58 not yet widely accessible⁷⁻⁹. This deficit is due in part to the significant challenges associated with
59 sequencing single microbial cells. The diverse makeup of their cell membranes, cell walls, and
60 other protective features require different lysis or permeabilization conditions specific to the
61 individual microbial species. These challenges result in single-cell sequencing protocols that
62 require complex workflows and/or are not generalizable to diverse microbial systems⁷⁻⁹.

63 More recently, novel strategies have been developed based on next generation DNA
64 sequencing to study genotypic heterogeneity in microbial communities at a finer resolution.
65 Metagenomic sequencing in combination with techniques used in chromosome conformation
66 mapping of eukaryotic cells (Hi-C based methods)^{10,11} have been elegantly adapted to physically

67 link proximal genes and then elucidate gene-taxa and taxa-taxa associations within microbial
68 communities. This method has the advantage of being untargeted, enabling a discovery-driven
69 approach to revealing gene-taxa links within microbial communities. However, this method
70 requires complex data analysis workflows.

71 On the other hand, emulsion PCR based methods, where multiple PCR amplicons from
72 single cells are fused by PCR into a single amplicon for sequencing¹², have been used to link
73 genes of interest within cells in microbial populations^{13,14}. However, a major limitation of these
74 methods is that the linked amplicon is only generated when all target sequences of interest are
75 present in the cell and correctly amplified. These methods fail to provide information about cells
76 that are missing one or more target sequences. Furthermore, the limitations in next-generation
77 sequencing and PCR efficiency imposes a limit on the ability to amplify and sequence long
78 amplicons composed of many target sequences. Therefore, the limited number and length of
79 target sequences restrict the generalizability of the method. Finally, the integration of cell lysis
80 and PCR into a one-pot reaction severely limits the range of lysis conditions needed for efficient
81 extraction of DNA from diverse bacterial species due to potential PCR inhibition by the lysis
82 reagents.

83 Overcoming the limitations of the previous approaches, microfluidics-based barcoded
84 single-cell whole genome sequencing holds promise as a generalizable and quantitative method
85 for profiling single-cell genotypic heterogeneity^{9,15}. However, the complex microfluidic workflows
86 (droplet reinjection and droplet merging) and high sequencing costs per cell make this method
87 most suited for large-scale genome sequencing projects backed by substantial resources. Thus,
88 widespread deployment of these methods to scientific community at large is limited. Thus, despite
89 these recent advances, it remains challenging for most labs to study microbial single-cell genetic
90 heterogeneity. As such, there is a pressing need for a widely accessible, generalizable, and
91 quantitative method for profiling genetic heterogeneity within microbial populations at the single-
92 cell level.

93 Here, we report a robust, and generalizable droplet microfluidics workflow for quantitative
94 single-cell targeted genetic profiling of microbes (Droplet Targeted Amplicon Sequencing or
95 DoTA-seq). DoTA-seq uses a microfluidic droplet-maker to encapsulate single microbial cells into
96 millions of picoliter-sized hydrogels. This method separates the steps of cell lysis and PCR which
97 in turn allows multi-step cell lysis procedures without multiple microfluidics steps. Furthermore, it
98 uses multiplexed PCR to attach unique DNA barcodes to the targeted genetic loci of each cell,
99 providing flexibility in the number and type of loci targeted for sequencing. Notably, DoTA-seq
100 leverages the advantages of ultrahigh-throughput droplet microfluidics, allowing quantitative

101 single-cell sequencing of microbes without requiring complex microfluidic processes such as
102 droplet re-injection and droplet merging. This workflow relies only on microfluidic droplet makers
103 and readily available reagents. Hence, it has the potential to be adopted widely by the biology
104 research community.

105 To demonstrate the broad utility of DoTA-seq, we simultaneously and quantitatively profile
106 genetically distinct subpopulations generated by phase variation in the prevalent human gut
107 symbiont *Bacteroides fragilis* (*B. fragilis*). In addition, we tracked the taxonomically resolved
108 frequency shifts of 12 antibiotic resistance genes within a 25-member human gut community
109 exposed to increasing concentration of antibiotics. These data reveal temporal changes in the
110 presence of resistance genes at the single-cell level within members of this community. Lastly,
111 use DoTA-seq to profile the host-range of mobile genetic elements in a human fecal microbial
112 community by sequencing up to >37,000 cells in a single condition. The highlighted applications
113 are only possible using DoTA-seq and represent just a few of many possible future applications
114 of this workflow. In sum, DoTA-seq is a powerful and generalizable method for studying microbial
115 genomes at a single-cell resolution.

116

117 RESULTS

118 *The DoTA-seq workflow*

119 The power of droplet microfluidics to isolate and carry out reactions has been applied to single-
120 cell sequencing^{9,15–17}. However, one significant draw-back of droplet microfluidics is the
121 complexity of multi-step workflows. In particular, these methods require a combination of droplet
122 reinjection, splitting, and merger steps which have high failure rates and are difficult to implement
123 without extensive droplet microfluidics expertise^{9,18,19}. As a result, compromises in efficiency are
124 typically made to achieve cell lysis and molecular reactions simultaneously in a one-pot reaction¹⁴.

125 For many microbial communities, the diversity of bacterial cell walls precludes a one-pot
126 reaction that efficiently lyses all species, while allowing for the desired molecular reactions to
127 occur. By encapsulating microbial cells in hydrogels matrices^{9,13,20}, we can use detergents and
128 lytic enzymes to achieve multi-step lysis while maintaining intact genomic DNA. In DoTA-seq, we
129 encapsulate single cells in reversibly crosslinked polyacrylamide hydrogels (**Fig. 1a**). This type of
130 hydrogel is heat resistant, enabling a wide repertoire of potential lysis conditions to achieve
131 efficient lysis of diverse microbes. The pore size of this polymer matrix is small, retaining small
132 genetic elements such as extrachromosomal plasmids.

133 To enable reliable and robust amplification of target sequences from single cells, we first
134 encapsulate bacterial cells at limiting dilution into water-in-oil droplets using a microfluidic droplet

135 maker such that most droplets contain one or zero cell according to a Poisson distribution (**Fig. 1a, Supplementary Note 1**). At limiting dilution, approximately one in ten droplets will contain a
136 cell, but the microfluidic droplet maker operates at ~10 kHz frequencies, encapsulating hundreds
137 of thousands of single cells within a few minutes. The droplets contain acrylamide monomers and
138 crosslinkers, which are polymerized and reversibly crosslinked into a polyacrylamide matrix,
139 trapping individual cells within the matrix. The polyacrylamide gel matrix contains pores on the
140 scale of 10-100nm²¹, allowing detergents and enzymes to diffuse through, lysing the cells and
141 removing cellular material while entrapping genomic and plasmid DNA (**Fig. 1b**).
142

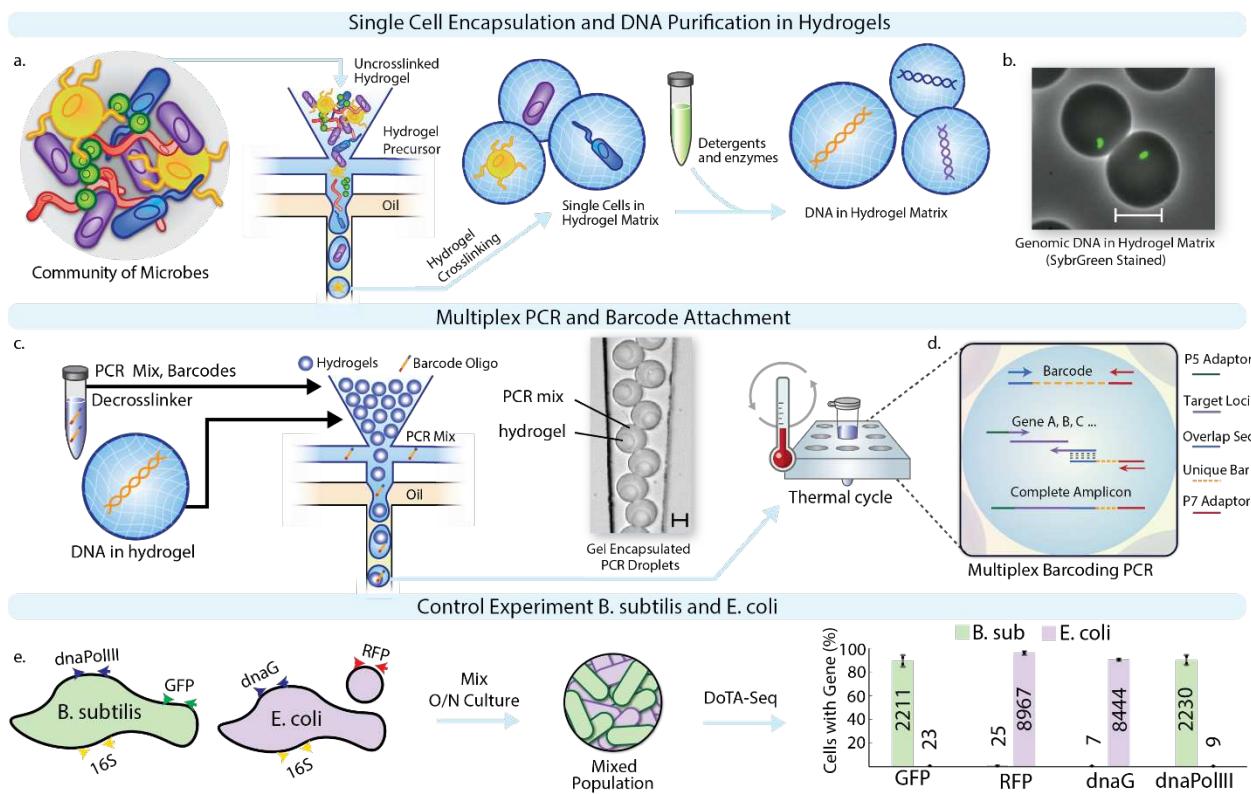
143 Next, we re-encapsulate the gels containing the lysed cells with PCR reagents and
144 random DNA barcodes at a limiting dilution such that most droplets contain one gel and one or
145 zero barcodes according to a Poisson distribution (**Fig. 1c**). Typically, we use a Poisson loading
146 ratio of ~0.1, which means approximately one in ten droplets contain one barcode, and
147 approximately 0.5% of droplets contain more than one barcode. A droplet containing more than
148 one barcode can result in cells that are counted more than once, but since these events are low
149 frequency and occur randomly, they do not substantially impact the sequencing results.
150 Correspondingly, throughput could be augmented with some loss in quantitative resolution simply
151 by increasing the Poisson loading ratio of the barcodes (i.e. fewer droplets contain zero barcodes,
152 but a higher fraction of droplets contain multiple barcodes).

153 In droplets that contain a lysed cell and a unique barcode, multiplex PCR simultaneously
154 amplifies both the target genetic loci and the barcode and splices them together into an amplicon
155 library for sequencing on Illumina platforms (**Fig. 1d**). In droplets without lysed cells or barcode,
156 complete amplicons are not generated, and are thus not sequenced. In sequencing analysis, a
157 matching barcode sequence signifies amplicons that derive from the same droplet and thus the
158 same cell. Rare events from Poisson loading, irregularities in droplet making, and coalescence of
159 droplets during PCR can result in multiple cells associated with the same barcode sequence.
160 These events (i.e. barcodes) can often be filtered out based on unique signatures during data
161 analysis (**Supplementary Note 2**).

162 The microfluidic droplet makers used in DoTA-seq are simple in design and easy to use
163 and fabricate. Similar devices can be purchased from commercial sources (**Supplementary Note**
164 **3**). All reagents for this workflow are widely available off-the-shelf. In our lab, this workflow is
165 regularly performed for 5 samples at a time for ~10,000 cells per sample pooled into one Miseq
166 run, which required <8 hours of hands-on time starting from initial sample to collecting sequence
167 data.
168

169 *DoTA-seq efficiently captures multiple genetic loci in gram-positive and gram-negative bacteria.*
170 To evaluate the ability of DoTA-seq to capture target loci in gram-negative and gram-positive
171 bacteria, we used a defined mixture of *Escherichia coli* MG1655 and *Bacillus subtilis* PY79. *E.*
172 *coli* contained a 4kb plasmid harboring red fluorescent protein (*RFP*) and a pSC101* origin and
173 *B. subtilis* harbored a chromosomally integrated green fluorescent protein (*GFP*)²². We mixed
174 equal volumes of both species and performed DoTA-seq on the mixture. To determine whether
175 we could measure multiple loci on the chromosomes and plasmid, we targeted *RFP* on the
176 plasmid, *GFP* on the chromosome, and the endogenous genes *dnaG* and *dnaPolIII* for *E. coli* and
177 *B. subtilis*, respectively. In addition, we targeted the 16S rRNA V3-V5 region for both species (**Fig.**
178 **1e**).

179 We sequenced a total of ~10,000 cells per run (2 technical replicates per sample). To
180 determine whether the targeted genes were faithfully linked to the correct species, we first
181 aggregated all reads with the same barcode to represent a given cell. Since the 16S rRNA gene
182 sequence is widely used as an indicator for taxonomy, we used the 16S sequence to classify the
183 species identity of each cell. We then aggregated all barcodes associated with a single species
184 and counted the fraction of cells that contained reads mapping to each target gene. For both *E.*
185 *coli* and *B. subtilis* cells, we detected the expected genes in ~90% of the sequenced cells, showing
186 that DoTA-seq can efficiently capture target genes within single cells (**Fig. 1e, Supplementary**
187 **Fig. 1**). At the same time, false positives (genes not belonging to the assigned species) were
188 detected in ~0.2% of cells for the chromosomal genes (*dnaG*, *dnaPolIII*, and *GFP*) and ~1% for
189 the *RFP* on the plasmid. The ~4kb plasmid is orders of magnitude smaller in length than genomic
190 DNA and is also present in multiple copies per cell. Therefore, the plasmid has a higher chance
191 of diffusing out of its cognate hydrogel into neighboring gels during the washing, lysis, and storage
192 steps. As such, sequences on plasmids will have higher false positives rates than chromosomal
193 sequences. This higher false positive rate imposes a higher limit of detection for plasmid.


194 To further assess the ability of DoTA-seq to analyze mixtures of diverse bacteria, we used
195 DoTA-seq to sequence a commercially available microbial community standard (ZymoBIOMICS
196 community standard). This is a standardized community containing a wide range of characterized
197 microbial species at pre-determined relative abundances that was characterized using
198 metagenomic shotgun sequencing. Based on available genome sequences of the species in the
199 sample, we designed primers targeting one essential gene for each of the species observed as
200 well as the 16S rRNA gene. Due to the sample being preserved in a proprietary inactivating buffer
201 (DNA/RNA shield) that lysed gram-negative bacteria, we could only reliably detect the gram-
202 positive species in this sample with DoTA-seq (**Supplementary Fig. 2**). DoTA-seq was

203 successfully applied to fresh or cryo-preserved gram-negative and gram-positive bacteria. Thus,
204 the underrepresentation of gram-negative bacteria is a limitation of the sample preservation
205 method.

206 Using DoTA-seq, we detected all gram-positive species at comparable relative
207 abundances to those obtained by metagenomic shotgun sequencing with the exception of *S.*
208 *aureus* and *L. fermentum* (**Supplementary Fig. 3a**). In addition, the targeted essential genes
209 displayed high prevalence (**Supplementary Fig. 3b**). Since our results did not involve
210 optimization of primer proportions, future optimization of primer concentrations/proportions
211 (**Supplementary note 5**) is expected to further improve the gene detection rate. To evaluate the
212 lysis efficiency, we pre-stained the cells with a dye that binds to cell walls and membrane
213 components (Cellbrite Fix 555) and SYBRgreen (DNA stain) (**Supplementary Figure 4a**).
214 Cellbrite (Cell) and SYBRgreen (DNA) staining showed that the fraction of unlysed cells (Cellbrite
215 positive and SYBR positive cells, comprising ~3.9% of droplets) was substantially reduced
216 following lysis to 0.1% (**Supplementary Fig. 4c**). This indicates efficient cell lysis of diverse
217 bacteria while preserving encapsulated DNA (~3.9% of droplets were SYBR positive before and
218 after lysis) (**Supplementary Figure 4b**). Therefore, DoTA-seq can be used to sequence diverse
219 bacterial species and communities.

220

221

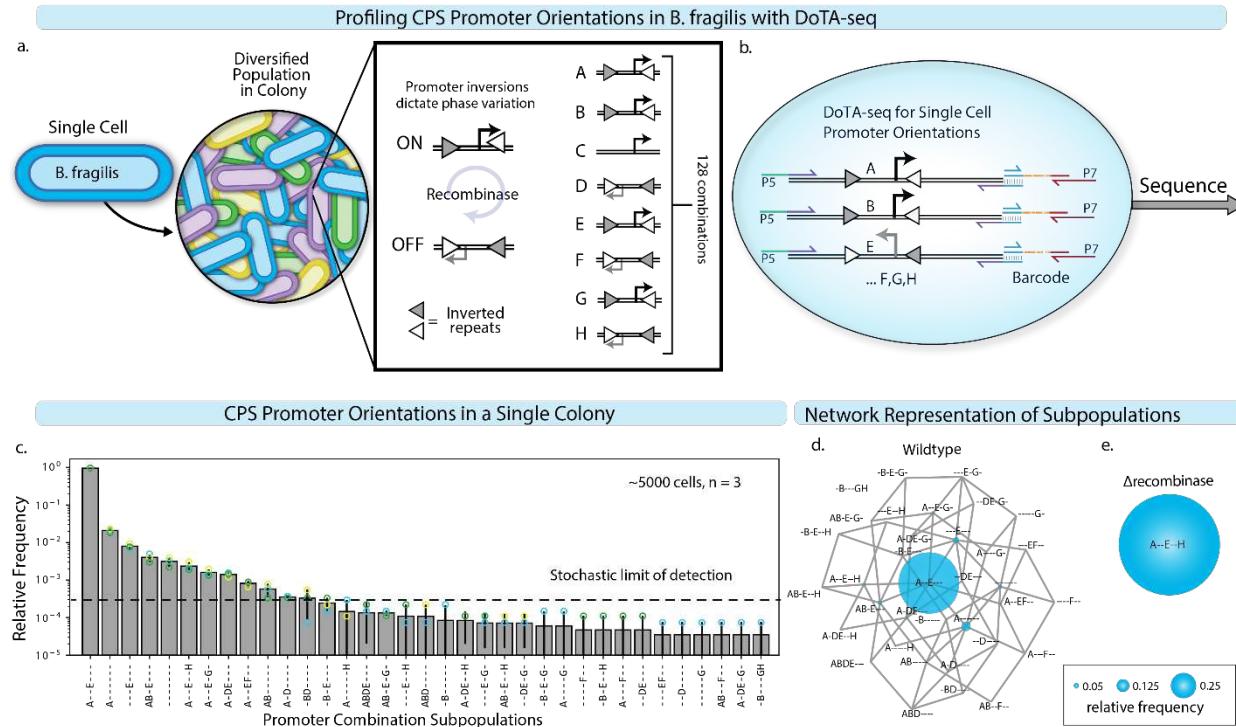
222

Figure 1. Droplet Targeted Amplicon Sequencing (DoTA-seq) accurately profiles single-cell genetic loci in gram-negative and positive bacteria. (a) Overview of the DoTA-seq workflow. Using a microfluidic droplet maker, microbes are encapsulated in a hydrogel matrix according to a Poisson distribution such that most hydrogels contain zero or one cell. Chemical, enzymatic, and/or heat treatments are used lyse the cell within the hydrogel, leaving the genomic and plasmid DNA trapped inside the hydrogel matrix. (b) An overlayed fluorescent and brightfield image following lysis of *B. subtilis* cells inside hydrogels. SYBR green staining reveals the trapped genomic DNA inside the hydrogels. Scale bar represents 20 μ m. For images of the complete lysis workflow, see **Supplementary Fig. 4**. (c) These hydrogels are re-encapsulated with PCR mix containing PCR reagents and primers targeting specific loci, hydrogel de-crosslinker, and unique barcode oligos at a limiting dilution. Microscopy image shows the re-encapsulated gels at the outlet of the microfluidic device. Scale bar represents 20 μ m. (d) Schematic of the barcoding multiplex PCR inside droplets. The target loci and the DNA barcodes are simultaneously amplified during PCR. Complementary regions between the forward primer of the barcode and reverse primer of the target locus results in an overlap-extension generating a spliced product compatible with Illumina sequencing. (e) Monocultures of *B. subtilis* and *E. coli* are mixed then sequenced using DoTA-seq, targeting a designed set of chromosomal and plasmid loci. Grouped bar plot (both species for each gene side-by-side) shows the fraction of cells with the respective gene detected in *B. subtilis* (green bars, ~2,000 cells) or *E. coli* (red bars, ~10,000) cells classified by 16S rRNA sequencing. Numbers on bars represent average number of cells detected. Dots represent independent values and error bars represent 1 s.d. from the mean of technical replicates (n=2). O/N denotes overnight cultures.

245

246 *DoTA-seq reveals diverse bacterial subpopulations generated through combinatorial phase-
247 variation*

248 Phase variation is a biological process to generate genetic and phenotypic heterogeneity across
249 a microbial population by modifying gene expression through heritable and reversible genetic
250 changes²³. By generating heterogeneity across the population, phase variation can serve as a
251 bet-hedging strategy in uncertain environments to promote population fitness²⁴. For example,
252 phase variation contributes to the regulation of genes involved with virulence and host-
253 colonization^{2,25,26}. Observing the subpopulations generated through phase variation at multiple
254 loci (i.e. combinatorial phase variation) could enable a deeper understanding of the underlying
255 mechanisms behind diversification and the impact of population diversification on fitness and
256 functions. For example, capsular polysaccharide (CPS) are polysaccharide shells regulated by
257 phase variation that surround bacterial cells and offer protection from antimicrobials and the host
258 immune system².


259 To demonstrate DoTA-seq's ability to observe these subpopulations, we performed single-
260 cell sequencing of the invertible loci of the capsular polysaccharide (CPS) within single cells of
261 the prevalent human gut species *Bacteroides fragilis*. *B. fragilis* NCTC9343 contains 8 CPS
262 operons, each of which can synthesize a different CPS²⁷. The promoters of 7 operons are
263 regulated by an endogenous recombinase (*mpi*) which toggles the promoter between the ON and
264 OFF state (**Fig. 2a**). Thus, in any *B. fragilis* population, there are 128 possible CPS operon
265 promoter states, where different combinations of promoter ON and OFF states could yield unique
266 CPS phenotypes. Thus far, the *B. fragilis* CPS promoter orientations have been examined
267 independently for each promoter at a population-level^{27,28}. Therefore, we lack an understanding
268 of the extent of combinatorial promoter variation across a bacterial population.

269 To elucidate the ON/OFF states of each promoter driving a given CPS operon in each cell
270 with DoTA-seq, we targeted each phase variable promoter with primers flanking the invertible
271 regions (**Fig. 2b**). Since the ON/OFF orientation for each promoter produces a unique DoTA-seq
272 amplicon, we can deduce the combinatorial promoter ON/OFF states for each cell by matching
273 the amplicon sequence to the expected sequences for each promoter orientation. To observe the
274 diversity of combinatorial promoter states, we quantitatively profiled the CPS promoter states in
275 a *B. fragilis* colony grown for 48 hours on an agar plate. Since a colony is derived from a single
276 cell with a unique promoter orientation combinatorial state, additional observed states should be
277 the result of diversification within the 48-hour timeframe.

278 Since the population was composed entirely of gram-negative bacteria that did not require
279 multi-step lysis procedures, we simplified the procedure by skipping the lysis step and directly

280 encapsulating single cells with PCR mix (see Methods: DoTA-seq of *B. fragilis* CPS). By
281 sequencing the colony in three technical triplicates (~5000 cells for each replicate), we observed
282 35 different promoter states, which accounts for ~25% of all possible promoter states (**Fig. 2c**).
283 We observed low technical variation for the subpopulations that were above the stochastic limit
284 of detection (which can be lowered by sequencing more cells). Pooling the cells from all three
285 technical replicates (~15,000 cells), we generated an undirected network representation of the
286 subpopulations and their connection to other subpopulations observed in the colony (**Fig. 2d**).
287 The largest subpopulation (promoters A and E turned ON, denoted as A--E--- where - represents
288 B,C,F,G, or H promoters in the OFF states) constituted >90% of cells measured in the colony.
289 Across all single cells, up to 4 promoters were observed to be simultaneously turned ON, and
290 some cells had all invertible promoters turned OFF. Most subpopulations were within three
291 promoter inversion steps of the largest subpopulation. In addition, every observed subpopulation
292 was connected to at least one other subpopulation in the network except the -B---GH
293 combinatorial promoter state, indicating that nearly all observed subpopulations were one
294 promoter flip away from at least one other observed subpopulation.

295 These results are consistent with the diversification of promoter states during colony
296 growth from an initial A—E—state, yielding new subpopulations in closely related alternative
297 states. Based on this proposed mechanism, most of the population remained in the A--E--- state,
298 suggesting that promoter inversion rates were slower than growth rates. In a *B. fragilis* strain
299 deleted for the *mpi* recombinase gene²⁹, all sequenced cells (~13,000 cells) had identical
300 promoter states (**Fig. 2e**). These results demonstrate that DoTA-seq can quantitatively resolve
301 with high precision the single-cell genetic heterogeneity in microbial populations, making it a
302 powerful tool for investigating phase variation. Notably, with DoTA-seq, these measurements did
303 not require genetic modifications to the strain of interest (e.g. fluorescent promoter fusions).

304

305 **Figure 2. DoTA-seq elucidates diverse genetic sub-populations in *B. fragilis* generated via**
 306 **phase-variation of capsular polysaccharide (CPS) operons. (a)** Schematic of the *B. fragilis*
 307 CPS operons. Phase variation in *B. fragilis* generates diverse populations starting from a single
 308 cell. There are a total of 8 CPS operons referred to as A-H, 7 of which contain promoters flanked
 309 by inverted repeats (triangles). These promoters switch ON and OFF through recombination at
 310 the inverted repeats driven by an endogenous recombinase (*mpi*). **(b)** Elucidating CPS promoter
 311 ON/OFF states using DoTA-seq with primers designed to flank all 7 invertible promoters. Primers
 312 are represented by half-headed arrows. Gray vertical lines represent region of complementarity
 313 between amplicons and barcodes. P5 and P7 represent the Illumina sequencing adaptor
 314 sequences. **(c)** Bar plot of the relative frequencies of unique CPS promoter states in a single *B.*
 315 *fragilis* colony. Promoter states are represented by a 7-letter code, where the letters (A-H) denote
 316 that a given promoter is turned ON, and “-“ denote the given promoter is turned OFF. Data points
 317 represent technical replicates. Error bars represent 1 s.d. from the mean of technical replicates
 318 ($n=3$). Bar height represents the mean. Since a subset of combinatorial promoter states were rare
 319 in the population and not observed in all technical replicates, we computed the stochastic limit of
 320 detection. This detection limit is determined by the number of cells sequenced, where upon
 321 random sampling of 5000 cells, the subpopulation is expected to be detected at least 80% of the
 322 time (**Supplementary Note 4**). **(d)** An undirected graph network representation of the CPS
 323 promoter state subpopulations in (c). Nodes represent CPS promoter combinatorial states where
 324 diameter is proportional to relative frequency, and edges connect nodes that are one promoter
 325 flip away from each other. **(e)** Network representation of the measured combinatorial promoter
 326 states where the recombinase (*mpi*) responsible for promoter inversions was deleted. In this strain,
 327 the entire population is locked in a single state (A-E-H). The diameter of the node and edges are
 328 the same as (d).

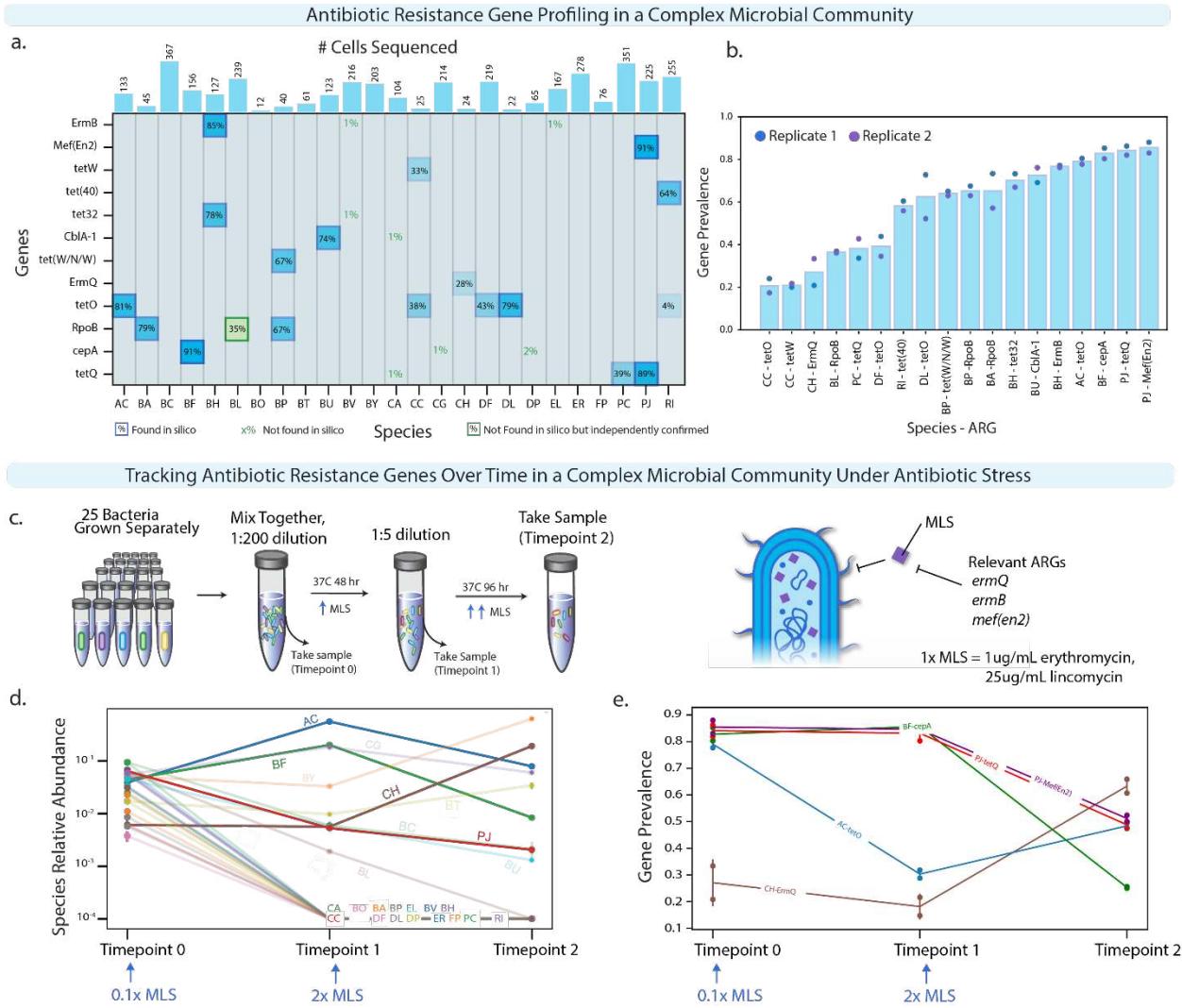
329

330 *DoTA-seq reveals gene dynamics within complex microbial communities*

331 Bacterial genomes are highly plastic, able to lose and gain genes in response to changing
332 environmental stresses^{30,31}. These gene dynamics are critical to the emergence of antimicrobial
333 resistant pathogens³². Despite their enormous impacts on global health, little is known about the
334 temporal trends in mobile genes such as antibiotic resistance genes (ARGs) and their transfer
335 among hosts within microbial communities. This limited understanding stems from a dearth of
336 methods for quantitatively tracking the taxonomic associations of these mobile genes (i.e. in which
337 community members reside). DoTA-seq directly and quantitatively measures genes of interest
338 within single cells and provides a powerful way to observe the dynamics of these genes within
339 microbial communities.

340 To demonstrate DoTA-seq's ability to track ARGs within complex microbial communities,
341 we generated a synthetic microbial community composed of 25 prevalent members of human gut
342 microbiota that have been extensively characterized³³ (**Supplementary Table 1**). We identified
343 12 antibiotic resistance genes (ARGs) within the published genomes of these isolates and
344 designed DoTA-seq primers targeting each ARG and each species' 16S rRNA for taxonomic
345 identification. Each species was grown individually, then mixed (according to approximately equal
346 OD600, but not necessarily equal cell numbers due to variation in the OD600 to cell number
347 relationship among species³⁴) to generate the synthetic community composed of the 25 species.
348 We performed DoTA-seq, sequencing ~3,000 to ~10,000 cells per sample, on this community to
349 elucidate the ARG-species associations.

350 DoTA-seq revealed the expected ARG-species associations based on published genome
351 sequences (**Fig. 3 a,b**). One exception was the rifampicin resistant allele of the *rpoB* gene in
352 *Bifidobacterium longum* (BL). This gene was not observed in the published BL genome sequence,
353 but it was detected in BL single cells by DoTA-seq. However, we confirmed this gene in purified
354 genomic DNA by PCR, suggesting that the published genome sequence was incomplete
355 (**Supplementary Fig. 5**). Most ARGs were observed in >70% of single cells (prevalence of >70%)
356 of a given species (*tetO* in *Anaerostipes caccae* AC, *Dorea longicatena* DL or *cepA* in *Bacteroides*
357 *fragilis* BF, for example). However, some genes were observed at <50% (*tetO* in CC, DF for
358 example). Overall, the variation in prevalence between technical replicates was small and
359 negatively correlated (Spearman Rho = -0.57, P < 6.5e-10) to the number of sequenced cells for
360 each species (**Fig. 3b, Supplementary Fig. 5**). This implies that increasing the total number of
361 sequenced cells can reduce some of the technical variability observed in DoTA-seq.


362 The measured prevalence is determined by both the proportion of cells containing the
363 gene as well as by the differences in primer amplification efficiencies targeting the gene and the
364 16S primer (i.e. a low efficiency primer may skew measurements towards lower prevalence). To

365 reduce these effects, relative amplification efficiencies between the different primer sets should
366 be determined and adjusted based on analysis of the sequencing results (see **Supplementary**
367 **Note 5**). Alternatively, gene prevalence could be compared between different conditions (i.e.
368 relative changes) for a given gene-species pair, since potential primer biases are similar across
369 the different conditions.

370 To investigate dynamic changes in gene prevalence, we cultured the 25-member
371 community in the presence of erythromycin and lincomycin (MLS) at successively higher
372 concentrations (**Fig. 3c**). The addition of MLS was expected to confer a fitness advantage to cells
373 that harbored the *ermB*, *ermQ*, or *mef(en2)* gene. The DoTA-seq results showed that the growth
374 of most species was inhibited in the presence of the antibiotics (**Fig. 3d**). Of the species that grew,
375 the prevalence of several ARGs varied across timepoints (**Fig. 3e**). For example, in *Clostridium*
376 *hiranonis* (CH), the prevalence of *ermQ* increased over time. In *Parabacteroides johnsonii* (PJ),
377 the frequencies of *mef(en2)* and *tetQ* decreased. In AC, the prevalence of *tetO* decreased at the
378 first timepoint, then moderately increased following the second timepoint.

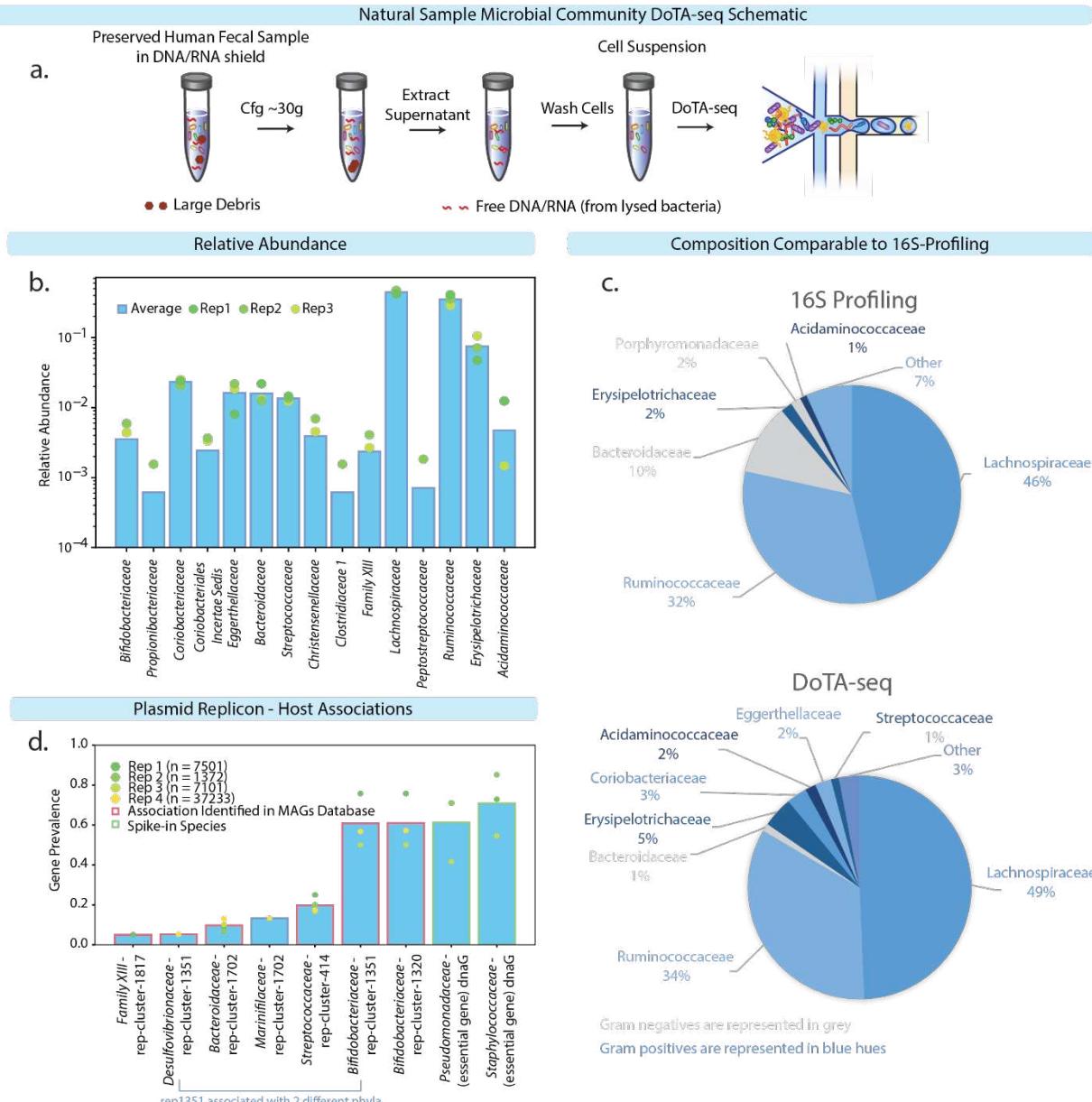
379 To independently validate these trends, we performed colony PCR and single-cell PCR to
380 independently assess the prevalence of *mef(en2)*, *tetQ*, and *cepA* genes in gram-negative
381 species PJ and BF from the samples described above (these techniques were difficult to perform
382 on gram-positive cells). Consistent with DoTA-seq, single-cell PCR showed that *mef(en2)* and
383 *tetQ* in PJ had frequencies of ~0.8 at timepoint 0 and ~0.6 at timepoint 2, while *cepA* had
384 frequencies in BF of ~0.7 at timepoint 0 and ~0.2 at timepoint 2 (**Supplementary Fig. 7a,b,c**).
385 Using selective plating of BF colonies, we further confirmed the decreasing trend of *cepA*
386 prevalence in BF by PCR genotyping of colonies derived from passage 1 (7/14 colonies positive
387 for *cepA*) and passage 2 (0/6 colonies positive for *cepA*) (**Supplementary Fig. 7d**). In sum, DoTA-
388 seq revealed that ARGs can be present in variable fractions of bacterial populations in our
389 conditions. In addition, the fraction of the population that harbors a given gene can drastically
390 increase or decrease in response to antibiotic exposure.

391

392

393 **Figure 3. DoTA-seq enables tracking of gene-species dynamics in a complex human gut**
394 **microbial community. (a)** Heatmap of antibiotic resistance genes (ARGs)-species associations
395 in a 25-member synthetic gut microbial community for a randomly chosen technical replicate. For
396 each species (x-axis) and ARG (y-axis), the proportion of cells detected with the gene (prevalence)
397 is shown. Bars on top show the number of cells sequenced for each species. The opacity of the
398 background for each box is proportional to the prevalence value. Computationally predicted ARGs
399 based on genome sequence are outlined in blue. ARGs that were not found in a given species'
400 genome sequence but observed using DoTA-seq as well as independently confirmed are outlined
401 in green text with outline box. ARGs that were not found in a given species' genome sequence are represented
402 by green text with outline box. Species-ARGs combinations with a prevalence of less than 2%
403 and where the gene is not found in the species' genome sequence are likely due to background
404 noise. **(b)** Bar plot of the average fraction of cells containing the ARG (i.e. gene prevalence) for
405 each ARG-species combination that displayed greater than or equal to 10% prevalence. Data
406 points represent technical replicates (n = 2). **(c)** Schematic of the experimental design for
407 characterizing the ARG-species associations for a 25-member synthetic human gut community in
408 response to antibiotics. The microbial community was cultured in the presence of increasing
409 concentration of antibiotics. In this experiment, the community exposed to a lower concentration
410 of antibiotic for 48 hours was passaged (i.e. community aliquot was transferred to fresh media)

411 into media containing a higher concentration of antibiotic and then cultured for 96 hr. **(d)** Relative
412 abundance of species at each measurement time determined by DoTA-seq. The lines
413 corresponding to species that were not detected after passage 1 or did not contain ARGs are
414 made transparent for de-emphasis. Error bars represent 1 s.d. from the mean of technical
415 replicates ($n = 2$). **(e)** Prevalence of ARG-species associations at different measurement times
416 for the antibiotic experiment. Species that were not detected after passage 1 and/or did not
417 contain targeted ARGs are excluded from this graph. Data points represent technical replicates
418 and error bars represent 1 s.d. from the mean of technical replicates ($n = 2$).
419


420 *DoTA-seq reveals plasmid-host taxonomic relationships in a human fecal derived microbial*
421 *community*

422 To determine whether DoTA-seq could be applied to microbial communities derived from high
423 complexity natural microbiome samples of unknown composition, we used DoTA-seq to
424 characterize a natural microbial community derived from the ZymoBIOMICS fecal community
425 standard (**Fig. 4a**).

426 This human-associated fecal sample was preserved in DNA/RNA shield
427 (<https://www.zymoresearch.com/products/dna-rna-shield>), which lyses gram-negative bacteria,
428 and substantially reduces their ability to be captured by DoTA-seq (**Supplementary fig. 2**).
429 However, the gram-positive bacteria within this sample constitute a highly complex microbial
430 community of unknown composition and thus can be used to evaluate DoTA-seq's capabilities.
431 To analyze single-cells within communities of unknown composition, we developed a novel data
432 analysis pipeline (see Methods). We sequenced the community in three replicates of ~3000 cells
433 and a fourth library of ~37,000 cells. The relative abundances of species were consistent across
434 three replicates (**Fig 4b**). The taxonomic profiling from DoTA-seq with ~37,000 cells displayed
435 similar trends to 16S rRNA gene profiling (**Fig 4c**).

436 To assess the quantitative accuracy for both gram-negative and gram-positive bacteria,
437 we introduced a spike-in of *P. putida* and *S. epidermidis* (species from two families not observed
438 in the fecal sample). We spiked-in the two species at approximately equal number of cells (by
439 hemacytometer counting) at three different abundances relative to the fecal community. DoTA-
440 seq identified the relative ratio of *Pseudomonas* and *Staphylococcus* as 1.35 ± 0.43 (mean \pm
441 standard error) across the three different spike-in conditions (**Supplementary Table 2**). This is
442 reasonably close to the expected equal proportion since cell counting measurement errors are
443 expected when generating the spike-in cells. The total number of observed spike-in cells
444 decreased as their initial total abundance was reduced. In addition, DoTA-seq was able to
445 reasonably recapitulate the quantitative changes in total relative abundance of the spike-in
446 species to the fecal derived cells across conditions (**Supplementary Fig. 8**).

447 As a control for capture efficiency and cross-contamination rates, we targeted one
448 essential gene (*dnaG*) in each spike-in species, which we expected in all spiked in cells and no
449 other fecal derived cells. To identify plasmid replicon host associations, we targeted 9 plasmid
450 replicon sequences identified in the metagenomic shotgun sequences of the fecal sample. Cross
451 contamination of *dnaG* with the fecal community was not observed (**Supplementary Table 2**). In
452 addition, we detected multiple associations between plasmid replicons and microbial taxa,
453 including a replicon (rep 1351) that was associated with hosts from two different phylum in our
454 sample (*Proteobacteria* and *Actinobacteria*) (**Fig. 4d, Supplementary Table 2**). As an
455 independent confirmation of these replicon-taxa associations, we performed a BLAST search of
456 each plasmid replicon sequence to the metagenome assembled genomes (MAG) from the human
457 microbiome for replicon-taxa associations with gene prevalence $\geq 5\%$. All observed replicon-
458 taxa associations were present in the MAG database with the exception of *Marinilaceae*-rep-
459 cluster-1702 (**Fig. 4d, Supplementary Table 3**). In sum, these results demonstrate that DoTA-
460 seq is a powerful tool for studying the dynamics of mobile genetic elements and the dissemination
461 of antibiotic resistance genes in complex natural microbial communities.

462

463 **Figure 4. DoTA-seq can elucidate plasmid replicon-taxa associations in a fecal derived microbial**
 464 **community (ZymoBIOMICS human fecal standard). a) Schematic of experimental procedures.** A
 465 **human fecal sample preserved in DNA/RNA shield was gently centrifuged to remove large debris.**
 466 **The supernatant is extracted and washed to remove free DNA, leaving a suspension of cells,**
 467 **which was sequenced with DoTA-seq. b) Bar plot of the relative abundance at the family level.**
 468 **Each bar represents the mean and the markers represent individual replicates (n=3 technical**
 469 **replicates). The spike-in species are not included in the graph because they were at different**
 470 **relative abundances in each replicate (Supplementary Figure 8). C) Comparison of relative**
 471 **abundance obtained by 16S profiling (V3-V4 region) to DoTA-seq (V6-V8 region) of ~37,000 cells.**
 472 **Gram-negative bacteria (Bacteroides for example) are under-represented in the DoTA-seq results,**
 473 **which is an artifact of the sample preservation method (DNA/RNA shield lyses gram-negatives)**
 474 **and thus not attributed to DoTA-seq (Supplementary Fig. 2). d) Bar plot of the gene prevalence**
 475 **(the fraction of single cells of a given taxonomic identity containing a given plasmid replicon gene)**
 476 **of replicon-host associations (i.e. plasmid replication genes) detected in the DoTA-seq data. The**

477 bar represents the average of 3 replicates plus one additional replicate sequencing ~37,000 cells.
478 The circular markers represent individual replicates. The red outlines represent replicon-host
479 associations that are also found in a database of human gut metagenome assembled genomes.
480 The green outlines denote spike-in species that were not observed in the fecal derived community.
481

482 DISCUSSION

483 Single-cell genetic heterogeneity underlies numerous important phenomena in the microbial world
484 affecting evolutionary dynamics and microbiome functions^{24,25,35,36}. Profiling genetic variation in
485 complex microbial communities at the single-cell level is crucial for understanding them. However,
486 major roadblocks to profiling single-cell genetic variation in microbiomes include efficient lysis
487 conditions for diverse microbial species and efficiency of molecular biology reactions on low DNA
488 template concentrations. To address these challenges, we developed DoTA-seq, a robust,
489 accessible, and widely applicable tool for ultrahigh-throughput single-cell genetic profiling of
490 microbes. Key to this method is cell encapsulation into reversibly crosslinked hydrogels with an
491 appropriate pore size distribution. Encapsulation into hydrogels enables multi-step procedure for
492 efficient lysis of diverse bacteria and simplification of microfluidics steps. We demonstrated the
493 capability to profile genetic loci in up to ~37,000 single-cells using 30 minutes of droplet making
494 and one Miseq run. Therefore, it is reasonable to scale up to ~3 hours of droplet making which
495 corresponds to ~10⁵ cells per run with an appropriate depth of sequencing. There are several
496 aspects in DoTA-seq that can be tweaked to modify or improve performance. We discuss the
497 most important ones below.

498 The encapsulation of unique barcoding primers at a limiting dilution captures ~10% of the
499 encapsulated cells. For many microbiomes and microbial populations, the number of available
500 cells is not a limiting factor, and thus this capture frequency is acceptable. In cases where a large
501 fraction of encapsulated cells need to be captured with unique barcodes, barcoded hydrogels³⁷
502 could be used to replace the barcoded oligos. Hydrogels pack closely within the microfluidic
503 device to enable delivery of a unique barcode to every droplet (instead of the ~1 in 10 for limiting
504 dilution), resulting in ~100% cell capture. Alternatively, unique barcodes could be added at a
505 higher encapsulation rate, such that on average, multiple unique barcodes are included per
506 droplet, and very few droplets contain no barcodes at all. In this case, many cells would be
507 represented by multiple unique barcodes according to the Poisson distribution. Downstream data
508 analyses would have to take this additional layer into account by fitting a Poisson model to the
509 barcode count data to infer the underlying single cell frequencies.

510 The use of microfluidics chips for droplet making presents a barrier to large-scale sample
511 parallelization as compared to methods that can be performed in 96-well plates. However, that

512 has not precluded the usefulness of chip-based library preparation techniques as exemplified by
513 the success of commercial instruments like the 10X genomics Chromium³⁸. Given that DoTA-seq
514 requires only droplet making steps, a chip-less version of this workflow is theoretically possible
515 using particle templated emulsions³⁹, which could be developed in the future for those who require
516 massive sample parallelization.

517 Designing specific primers that efficiently amplify the sequences of interest while
518 minimizing off-target annealing is a crucial step in DoTA-seq. Primers that do not have these
519 features can yield low rates of gene capture in DoTA-seq. The degree to which sequences are
520 captured also depend on PCR conditions (e.g. type of DNA polymerase, buffer conditions, etc).
521 Therefore, the absence of an amplicon can result from both the absence of a gene in the cell or
522 a failure to capture a gene that is present due to low capture efficiency. We normalize the effect
523 of capture efficiency by comparing gene frequencies relative to samples that are analyzed using
524 the same protocol (i.e. primer sequences and reagents). For certain systems, we can overcome
525 this limitation by designing primers that produce amplicons for all possible target gene states (e.g.
526 unique amplicons for the ON and OFF state in the *B. fragilis* phase variation system), which
527 enables absolute quantification.

528 The multiplex PCR primers used in DoTA-seq should be verified to not produce large
529 primer dimers (“smears” larger than 300bp on a gel) when used together. Primer dimers that
530 remain as <300bp fragments on a gel are typically tolerated as they can be removed using DNA
531 size selection. In addition, each target should be amplified at similar efficiencies, though
532 differences in the intrinsic amplification efficiency of primer sets can be compensated for by
533 adjusting the relative primer concentrations. Although we have not explored the limits for the
534 number of simultaneous targets possible in DoTA-seq, we generated a 12-plex DoTA-seq target
535 assay with minimal effort using an automated script (see Methods: Generating DoTA-seq primers).
536 In addition, commercial multiplex PCR amplification assays of up to ~20,000 targets are reportedly
537 available (CleanPlex, Paragon Genomics). This further supports the notion that a large number
538 of loci could be simultaneously targeted with DoTA-seq. Previously characterized multiplex PCR
539 primer sets, including well-characterized redundant PCR primer sets⁴⁰ should perform well in
540 DoTA-seq. Lastly, one pitfall to consider is that all cells regardless of their physiological or viability
541 state are sequenced in DoTA-seq without discrimination. However, this pitfall is shared among all
542 microbiome DNA-sequencing based methods and could be addressed using cell sorting to
543 distinguish between different sub-populations based on fluorescent metabolic activity or viability
544 dyes⁴¹.

545 The frequency of false positive (false association of a given gene with a taxonomic identity),
546 serves as the limit of detection for rare events. These false positives arise from several potential
547 factors including free DNA in the cell suspension, encapsulation of multiple cells per gel, diffusion
548 of small DNA fragments (e.g. plasmids) between gels during storage, or infrequent merging of
549 droplets during PCR. The likelihood of false positives is also determined by the abundance of the
550 the target sequence within the sample. We have shown that the degree of false positives for small
551 ~4kb plasmids that are abundant in the population is ~1%. Notably, this frequency of false
552 positives is substantially lower for genetic loci harbored on bacterial chromosomes. To evaluate
553 the false-detection rate, a target control gene (e.g. essential gene or a gene in a spike-in species
554 containing a plasmid) could be analyzed across different experimental conditions.

555 DoTA-seq enabled us to profile the diverse subpopulations generated by phase variation
556 of the CPS operons in the human gut symbiont *B. fragilis*. This new capability to observe
557 combinatorial phase-variation enables future investigations of this system, which we explore in
558 detail in another report⁴². Beyond the CPS operons of *B. fragilis*, mechanisms of rapid single-cell
559 genomic variation, such as phase variation, antigenic variation⁴³, and hypermutation⁴⁴ are
560 pervasive in microbes and play key roles in the lifecycles of pathogens. DoTA-seq will be a
561 powerful tool for understanding these important phenomena.

562 DoTA-seq has a wide range of potential applications beyond the systems we explored
563 here. For example, DoTA-seq could be used to quantify gene prevalence across different taxa,
564 such as the genes for synthesis of the atherogenic compound trimethylamine in gut microbiota
565 via a diverse set of metabolic pathways⁴⁰, or the chemical conversion of cholesterol preventing
566 its absorption in the gut⁴⁵. Further, DoTA-seq can be used to interrogate the real-time
567 microevolution of microbial populations by designing primers to target mutation hotspots^{46,47}
568 determined from shotgun sequencing. The nucleotide sequence of these amplicons can be used
569 to reconstruct phylogenetic lineages¹⁹. Furthermore, droplets can serve as highly parallelized
570 compartments for culturing of small microbial communities⁴⁸. In each droplet, DoTA-seq could be
571 used to read out the composition of communities assembled in droplets by targeting the 16S rRNA
572 gene of each species in ultrahigh-throughput. Finally, DoTA-seq could be adapted to probe the
573 spatial heterogeneity of microbiomes via immobilization and fractionation in a gel matrix mirroring
574 the MaPS-seq approach pioneered by Sheth et al⁴⁹. In some applications, it is necessary to first
575 characterize samples with metagenomics shotgun sequencing to identify genetic targets for
576 subsequent single-cell analysis with DoTA-seq.

577 DoTA-seq represents a platform technology for building ultrahigh-throughput targeted
578 single-cell analysis methods for diverse microbes. This generalizable and flexible workflow can

579 be adapted to make other types of measurements in addition to sequencing of genetic loci. For
580 example, performing DoTA-seq on cells pre-labelled with DNA barcode conjugated antibodies⁵⁰
581 can enable single-cell profiling of targeted phenotypes such as protein expression, CPS
582 expression, and other cellular phenotypes. In the future, we plan to expand this method to allow
583 simultaneously profiling of genetic loci and target cell phenotypes via barcoded antibody labeling,
584 generating genotype–phenotype matched single-cell data for microbial populations. This
585 approach would further enrich the types of single-cell data available for microbiology and
586 microbiome research.

587

588 **ACKNOWLEDGEMENTS**

589 We thank Yu-Yu Cheng for providing the *E. coli* and *B. subtilis* strains and helpful discussions.
590 We thank Ryan Clark for assistance with the synthetic human gut community. We are also grateful
591 to Laurie Comstock for providing the *B. fragilis* recombinase deletion strain and Brian Pfleger for
592 providing the *Pseudomonas putida* KT2440 strain. This research was supported by the National
593 Institutes of Allergy and Infectious Diseases under grant number R21AI156438, National Institute
594 of General Medical Sciences under grant number R01GM38660 and R35GM124774.

595

596 **AUTHOR CONTRIBUTIONS**

597 F.L. and O.S.V. conceived the study. F.L., O.S.V., J.S. and R.L. designed experiments and
598 interpreted the data. F.L. performed experiments and analyzed data. J.S. designed the DoTA-seq
599 assay and analyzed data for experiments involving phase variation in *B. fragilis*. T.D.R. designed
600 scripts for analysis of single-cell digital PCR data. Z.Z. developed the data analysis pipeline for
601 natural microbiome samples. F.L. and O.S.V. wrote the manuscript. F.L., O.S.V., R.L., K. A., and
602 T.D.R. contributed to the revision of the manuscript.

603

604 **CONFLICTS OF INTEREST**

605 F.L. and O.S.V. have filed a provisional patent Methods for isolating and barcoding nucleic acid.
606 US Provisional Application 63/337468.

607

608 **DATA AVAILABILITY**

609 Processed data containing barcodes and their mapped associated reads are available from
610 Zenodo (<https://doi.org/10.5281/zenodo.6537689>). Raw sequencing data will be available from
611 Zenodo at the time of publication.

612

613 **CODE AVAILABILITY**

614 All code used in analysis of DoTA-seq sequencing data are available on Github:
615 <https://github.com/lanfreem/DoTA-seq-Paper>.

616

617 **MATERIALS AND METHODS**

618

619 *Oligonucleotides and primers*

620 The oligonucleotides used were purchased from Integrated DNA Technologies as regular single
621 stranded DNA oligonucleotides for universal sequences, an oligo-pool for the antibiotic resistance
622 gene primers, and as Ultramers for the *B. fragilis* promoter primers. Ultramers were used to
623 ensure higher synthesis yields. We found that best performance is achieved with individually
624 ordered and validated primers and carefully combined manually to equal concentrations, rather
625 than using the oligo-pool synthesis methods. Primer sequence and other details can be found in
626 **Supplementary Tables**.

627

628 *Microfluidics fabrication*

629 The master mold for the microfluidic devices was fabricated using soft lithography⁵¹ in a negative
630 pressure cleanroom. Thin layers of SU-8 3025 photoresist (MicroChem) were applied to 3-inch
631 silicon wafers (University Wafers) using a spin coating process to achieve layers of 20 µm for
632 droplet generator 1 and 30 µm for droplet generator 2 respectively. Microfluidic feature patterns
633 were then transferred to the SU-8 layers using a photolithography mask (CAD/Art Services) and
634 a 365 nm collimated LED (Thorlabs M405L4-C1) at 120 mW for 1 minute and 45 seconds.
635 Following exposure, the mold was soft-baked at 95 °C for 5 minutes before developing the
636 patterned SU-8 in propylene glycol methyl ether acetate (PGMEA) for 2 minutes. The developed
637 master mold was hard-baked at 200 °C for 2 minutes to complete curing of the SU-8.

638 Microfluidic devices were cast from the negative mold using polydimethylsiloxane (PDMS)
639 (Sylgard-184) at a 1:11 crosslinker to elastomer ratio and cured at 65 °C for at least 12 hours.
640 The devices were then cut from the master mold with a scalpel (Feather) and holes for the inlets
641 and outlets were cut using a 0.75 mm biopsy punch (World Precision Instruments). To close the
642 open microfluidic channels, a glass slide was bonded to the bottom of the PDMS devices.
643 Chemical bonding between the PDMS and glass was achieved on contact following plasma
644 activation with a plasma cleaner (Harrick Plasma). The completed microfluidic channels were
645 treated with Aquapel Glass Treatment (Aquapel # 47100) to render the surfaces hydrophobic.

646

647 *DoTA-seq workflow*

648 A cell suspension was stained with 1x SYBR Green (Invitrogen) and counted using a
649 hemacytometer (Fisher scientific #0267151B) under a microscope to obtain the cell concentration.
650 This concentration will be used to calculate the volume of cells to add to obtain the appropriate
651 concentration for loading into the droplets (2.5×10^7 cells/mL for lambda = 0.1). A polyacrylamide
652 gel solution was prepared as follows: 100 μ L acrylamide monomer (Sigma-aldrich) in water (25%
653 w/v), 15 μ L Bis-acryloyl Cystamine (Santacruz Biotech) in Methanol (Sigma-aldrich) (5% w/v),
654 10 μ L ammonium persulfate (Sigma-aldrich) (10% w/v), 75 μ L PBS, and the appropriate number
655 of cells to obtain an encapsulation ratio of 0.1 in 4pL droplets. This solution was injected into a
656 microfluidic drop maker (device 1) along with Biorad droplet generation oil for Evagreen (Biorad
657 #1864005) with 0.5% v/v TEMED (Sigma) dissolved in the oil as catalyst. Droplet generation was
658 carried out at 1000 μ L/hr for oil and 600 μ L/hr for the aqueous solutions. Collected droplets were
659 incubated at 37°C for 10 mins for gel polymerization to complete. The polymerized gels were
660 removed from the oil as follows: First the oil is drained using a pipette, and 1mL of acetone was
661 added, then removed, then 1mL of isopropanol was added, then removed, then 1mL of PBS Wash
662 Buffer was added to resuspend the gels in an aqueous buffer. The gels were then subject to 3
663 more washes in PBS Wash Buffer.

664 Cell lysis in the gels were carried out by adding 2x lysozyme buffer (20 mM Tris-HCl, pH
665 8.0; 10 mM EDTA; NaCl 100mM, 1% Triton X-100) with 20 mg/mL lysozyme (Sigma L6876) to
666 equal volume of gels and incubating at 37°C for 30mins. The gels were then washed three times
667 in 1mL PBS + 10mM EDTA, then added to equal volume of 2x proteinase K lysis buffer (Tris pH
668 8.0, 20mM EDTA, 100mM NaCl, 1% SDS) with 200 ug/mL proteinase K and incubating at 55°C
669 for 30mins. The gels were finally washed four times in 1mL gel storage buffer (10mM HEPES
670 pH 7.5, Tween 20 2%, NaCl 100mM, EDTA 20mM) and kept at 4°C until ready for use in
671 barcoding.

672 Barcoding of the gels was carried out by first washing the gels four times in 1 mL pre-
673 injection buffer (10mM HEPES pH 7.5, NaCl 25mM, EDTA 0.1mM, 2% Tween 20) achieving at
674 least 1000x dilution. A PCR mix is made consisting of 1x Biorad ddPCR probes mix without dUTPs
675 (Biorad 1863024), 400nM of P7, 40nM of Barrev-V3, 400nM of P5_I5_x where x represents the
676 unique I5 index used for multiplexing libraries, 20nM (*E. coli*/*B. subtilis* and *B. fragilis* primers) or
677 5nM (ARGs primers) of each oligo in the targeted primer set, 0.015pM Barcode oligo (freshly
678 diluted from 500pM stock), 2.5mM DTT (from single use aliquots) to a total of volume of 25 μ L.
679 The gel and PCR mix are injected into microfluidic droplet maker device 2 (supplemental materials)
680 with Biorad Evagreen droplet oil for encapsulation of gels with PCR mix using 200 μ L/hr for the

681 gel and PCR mix, and 900 μ L/hr for the oil. Droplets are collected into a PCR tube (Fisher Scientific
682 #14222292) until the PCR mix runs out. In the collected emulsion, excess oil is drained using a
683 pipette, and thermocycled as follows: 95°C 5 min, 20 cycles of 95°C 30s, 72°C 10s, 60°C 5 min,
684 72°C 30s, then 20 cycles of 95°C 30s, 72°C 10s, 60°C 90s, 72°C 30s, then 72°C 10min. All steps
685 except the first and last used 1°C/s ramp rate. For detailed video instructions on droplet making
686 with gels, please refer to this video article by Demaree et al.⁵².

687 After PCR, the coalesced droplets were removed using a pipette, and the emulsion was
688 broken on ice by adding 20 μ L 500mM EDTA and 20 μ L perfluoro-octanol (Sigma 370533), then
689 vortexed followed by a spin pulse centrifugation. The aqueous phase was transferred to another
690 tube by pipette, then 20 μ L 1M TCEP (UBP Bio P1021-100) was added to completely de-crosslink
691 the gels, and the resulting solution vortexed for 10s to completely dissolve the gels. The whole
692 mixture was cleaned up using a Zymo cleanup and concentrator kit (Zymo Research D4013),
693 then subject to size selection using SPRI-select beads (Beckman Coulter B23317) using 0.7x
694 volume of beads. A further round of size selection was performed in 100mM NaOH, 10% Ethanol,
695 and 1.4x volume of beads to increase the purity of the library. For the most up to date and detailed
696 DoTA-seq protocol, please refer to dx.doi.org/10.17504/protocols.io.n92ldzox7v5b/v1 .
697

698 *Sequencing DoTA-seq libraries*

699 The resultant libraries were quantified using qPCR (NEB E7630S) and sequenced on a Miseq
700 (Illumina) using V3 150 cycles kit using custom read 1 and I7 primers. Up to 5 libraries were
701 pooled per run.
702

703 *DoTA-seq of mixture culture of *E. coli* and *B. subtilis**

704 *E. coli* and *B. subtilis* strains (**Supplementary Table 4**) were grown overnight separately in LB
705 broth (DOT scientific) with 34 μ g/mL of chloramphenicol and 5 μ g/mL of chloramphenicol, 1 μ g/mL
706 of erythromycin, and 25 μ g/mL of lincomycin for *E. coli* and *B. subtilis*, respectively. 100 μ L of the
707 respective overnight cultures were taken, mixed, then washed in 1mL PBS (Crystalgen) + 0.1%
708 Tween-20 (Sigma-aldrich) twice before resuspending in 100 μ L of PBS. The cell suspension was
709 then used as input for DoTA-seq using the *E. coli* and *B. subtilis* control primer sets
710 (**Supplementary Table 5**).
711

712 *DoTA-seq of ZymoBIOMICS microbial community standard*

713 For the microbial community standard experiments, 20 μ L of the ZymoBIOMICS Microbial
714 Community Standard (Zymo #D6300) was washed twice in PBS + 1% Pluronic F68 (Thermofisher

715 #24040032) and resuspended in 200 μ L of PBS + 1% Pluronic F68. Cells were stained by
716 incubation with 10X Cellbrite Fix 555 (Biotium #30088) and 10X SYBRGreen for 5 minutes and
717 counted with a hemacytometer using CF555 fluorescence to estimate cell concentrations. These
718 cells were prepared for sequencing using the Zymo Standard DoTA-seq primerset
719 (**Supplementary table 6**) following the DoTA-seq V3 protocol which can be found at
720 dx.doi.org/10.17504/protocols.io.n92ldzox7v5b/v1.

721

722 *Fluorescence microscopy of droplets and gels and counting of particles and droplets*

723 Droplets (in oil) or gels (in aqueous buffer) were stained with SYBRGreen by mixing with equal
724 volumes of SYBRGreen saturated Biorad Oil or dissolving SYBRGreen to 10x concentration,
725 respectively. Next, 10 μ L of the SYBRGreen stained droplets or gels were pipetted into a
726 disposable cell counting chamber slide (#C10228) and imaged on a Nikon Eclipse Ti
727 epifluorescence microscope using 4x objective with a X-cite120 LED light source with 470/40nm
728 filter and 560/40nm filters for SYBRGreen and CF-555 channels, respectively. The resulting raw
729 images were analyzed using ImageJ (FIJI v1.53f51) using the Find Maxima function on the
730 fluorescence and brightfield images to automatically count the numbers of fluorescent particles
731 and droplets, respectively. In empty droplets or gels, the Find Maxima algorithm failed to identify
732 fluorescent particles, as expected.

733

734 *DoTA-seq of the 25-member synthetic community*

735 The 25 member synthetic community (**Supplementary table 1**) was prepared as in Clark et al.³³.
736 Briefly, 25 isolates were grown individually in an anaerobic chamber, then mixed to approximate
737 equal proportions based on absorbance at 600 nm (OD600) using a Tecan F200 Plate Reader,
738 with 200 μ L in a 96-Well Microplate. Note that not all monocultures grew to sufficient OD to allow
739 equal representation in the final community. The mixture of species was combined with 50%
740 glycerol (Research Products International) and 400 μ L aliquots stored at -80°C. For each DoTA-
741 seq experiment, a new glycerol stock was thawed, 200 μ L of cells were spun down and washed
742 in 1mL PBS + 0.1% Tween-20 twice, before resuspension in 100 μ L PBS + 0.1% Tween-20. The
743 cell suspension was used as input for DoTA-seq using the 25-member community primer sets
744 (**Supplementary Table 7**).

745

746 *DoTA-seq of the ZymoBIOMICS human fecal reference*

747 The ZymoBIOMICS human fecal reference sample (Zymo D6323) was thawed at room
748 temperature and 100 μ L was taken and centrifuged at 35g for 20 minutes to separate cells from

749 large fecal particles. The cell pellet containing supernatant was transferred to a new tube and
750 washed twice with PBS + 1% Pluronic F68 and resuspended in 100 μ L of PBS + 1% Pluronic F68.
751 Next, 100 μ L of overnight cultures of *Pseudomonas putida* KT2440 and *Staphylococcus*
752 *epidermidis* ATCC 12228 grown in LB and BHI broth (Sigma # 53286) respectively were washed
753 twice in PBS + 1% Pluronic F68 then resuspended in 100 μ L of PBS + 1% Pluronic F68. All cells
754 were stained with 10X SYBRGreen and counted on a hemacytometer to estimate cell
755 concentrations. Fecal community and spike-in cells were combined at predetermined ratios and
756 prepared for sequencing with the fecal sample DoTA-seq primer mix (**Supplementary Table 8**)
757 using the DoTA-seq V3 protocol available on protocols.io at
758 dx.doi.org/10.17504/protocols.io.n92ldzox7v5b/v1. For the large-scale experiment sequencing
759 that captured >37,000 cells, the same protocol was followed except no spike-in cells were added
760 and 250 μ L of the PCR master mix was used.

761

762 *Metagenomic shotgun sequencing and 16S profiling abundances for the ZymoBIOMICS microbial*
763 *community standard and fecal standard communities*

764 The raw reads and abundance data for both communities were taken from the respective
765 datasheets of the products available at zymoresearch.com.

766

767 *Generating DoTA-seq target primers*

768 For defined microbial communities, target genes were first identified from the genome sequences
769 of the constituent strains. In particular, 100 candidate primers were generated from each gene
770 using Primer3⁵³ (<http://primer3.org>). The thermodynamic ΔG of primer self and heterodimerization
771 of each candidate primer for all target primer genes were calculated using ntthal, which is a
772 submodule of Primer3. A simulated annealing algorithm is then used to select primers for each
773 gene that minimizes the potential of primer dimers. All steps are automated in Jupyter notebooks,
774 which are available at Github (see Code Availability). For the fecal derived microbial community,
775 the raw reads obtained from metagenomic shotgun sequencing (see above) are first assembled
776 using Megahit v1.2.9⁵⁴ using default options. The resulting contigs are searched using BLAST
777 against the replicon database from Mob-suite⁵⁵. We filtered the results to matches with more than
778 500bp in length and the top 10% identity. The plasmid replicon Inc18 was removed from the set
779 of 10 targets because the primers generated large primer dimers in initial PCR tests. Since this
780 primer set was not crucial for demonstration purposes, we simply removed this gene target from
781 the list as opposed to testing different Inc18 primers.

782

783 *Sequencing the capsule polysaccharide (CPS) promoters in B. fragilis using DoTA-seq*
784 *B. fragilis* DSM 2151 was streaked onto petri dishes containing Bacteroides minimal media with
785 1.5% w/v agar (**Supplementary Note 6**). The plate was incubated in the anaerobic chamber at
786 37°C for 48 hours. After incubation, colonies were randomly picked using a pipette tip and
787 resuspended into PBS + 0.1% Tween-20. The cell suspension was used as input for step 2 of the
788 DoTA-seq using the *B. fragilis* CPS promoter primer sets, with a slight modification of the protocol.
789 The first step of gel encapsulation and lysis was skipped, instead the cells were directly mixed
790 with the PCR mix in the second step of DoTA-seq. The PCR mix used was NEB Q5 Ultra Mix
791 (M0544S), and the thermocycling protocol was as follows: 98°C 2min, 40 cycles of 98°C 30s and
792 65°C 5 min, then 72°C 10min. Ramp rate was kept at 2°C/s. Primers used for these experiments
793 are found in **Supplementary Table 9**.

794

795 *Culturing of the 25-member synthetic human gut microbial community*

796 One glycerol stock of the 25-member synthetic community prepared as described above was
797 resuspended in 2 mL of YBHI (**Supplementary Note 7**) in the anaerobic chamber and incubated
798 at 37°C for 1 hour to recover. After one hour, the culture is split into two 1mL tubes for
799 experimental replicates. YBHI is added to each tube to a total of 5mL with 0.1ug/mL of
800 erythromycin and 0.25ug/mL of lincomycin. After 48 hours incubation at 37°C, 200µL of cells are
801 taken out and added to 200µL of 50% glycerol, labeled “timepoint 1” and frozen down at -80°C.
802 1mL of the culture is added to 4mL of fresh YBHI with 2ug/mL erythromycin and 50ug/mL of
803 lincomycin and incubated at 37°C anaerobically. After an additional 96 hours, 200µL of cells are
804 taken out and added to 200µL of 50% glycerol, labeled “passage 2”, and frozen down at -80°C.

805

806 *Single-cell digital PCR*

807 Cells derived from glycerol stocks of the synthetic human gut community exposed to antibiotics
808 were thawed on ice, then 100µL of cells was washed with 1mL of PBS + 0.1% Tween-20, then
809 resuspended in 30µL of PBS. 70µL of 100% Ethanol (Koptec) was added to fix the cells for 10
810 minutes at room temperature. After fixation, the cells are washed and then resuspended in 50µL
811 of pre-injection buffer. A PCR mix was prepared using 10µL of Biorad digital pcr mix for probes,
812 1µL of 20X Primetime probe assay (IDT) for species specific *rpoB* gene, 1µL of 20X Primetime
813 probe assay for the ARGs *cepA* for BF and *tetQ* and *mef(en2)* for PJ, 4µL of pre-injection buffer,
814 and 4µL of washed cells in pre-injection buffer. 30µL of the Biorad droplet generation oil is added,
815 and the solution is vortexed at the highest setting for 30s with a Biorad BR-2000 vortexer. The
816 resulting emulsion is thermo-cycled for PCR as follows: 95°C 10min, and 40 cycles of 94°C 30s

817 and 60°C 1min with a ramp rate of 2°C/s. 10µL of the resulting emulsion is loaded into a countess
818 cell counting chamber (Invitrogen) and imaged with a Nikon Eclipse Ti epifluorescence
819 microscope using 4x objective with a X-cite120 LED light source with 470/40nm filter and
820 560/40nm filters for FAM (*rpoB*) and HEX (ARGs) channels, respectively. For each sample, at
821 least 4 images are counted in ImageJ to obtain the ratio of FAM/HEX positive droplets, using a
822 custom macro script (see code availability) when more than 30 positive droplets are present and
823 by manual inspection when less than 50 positive droplets are present. Primers for single-cell
824 digital PCR are found in **Supplementary Table 10**.

825

826 *Colony PCR for B. fragilis and cepA*

827 Cells derived from glycerol stocks from the synthetic human gut community antibiotic experiment
828 were streaked onto Bacteroides minimal media agar plates and incubated for 48 hours in the
829 anaerobic chamber for outgrowth of colonies. Individual colonies were picked using a pipette tip
830 and inoculated into a YBHI growth media for growth overnight (~16 hours) in the anaerobic
831 chamber. Individual cultures were then spun down and resuspended in 1mL of TE buffer. A PCR
832 mix consisting of 5µL ssoAdvanced Probes mix (Biorad), 0.5µL each of the 20X Primetime assay
833 for *B. fragilis rpoB* and for *cepA*, 4µL of H2O, and 1µL of the cell suspension. The mix was thermo-
834 cycled in a Biorad CFX-connect real-time PCR system as follows: 95°C 3min, 40 cycles of 95°C
835 15s and 60°C 45s with fluorescence detection at 60°C. The samples with amplification detected
836 in the HEX and FAM channels were determined to have originated from BF colonies and contain
837 the *cepA* gene, respectively. *B. fragilis* was chosen for this experiment because a selective growth
838 medium (Bacteroides minimal media, **Supplementary Note 6**) was available to isolate colonies
839 from the community that were likely to be *B. fragilis*.

840

841 *DoTA-seq data analysis for synthetic communities*

842 The raw sequencing reads are obtained from the Miseq. Reads 1 and 2 represent the targeted
843 amplicons. The first index read represents the unique cell barcode while the second index read
844 is used to multiplex libraries from different experiments. Demultiplexing of different libraries (index
845 2) is performed by the Miseq software. See **Supplementary Figure 9** for a flow chart of the
846 analysis pipeline. Cell barcode demultiplexing and quality control is performed using a custom
847 python script (R4-parser.ipynb). A typical library will yield ~90% reads after filtering (see
848 **Supplementary Table 11** for the sequencing performance of typical DoTA-seq libraries). The
849 filtered reads were mapped to custom built reference databases containing *B. fragilis* CPS
850 promoter sequences, 16S rRNA sequences and antibiotic resistance genes⁵⁶ available on GitHub

851 (see code availability) using Bowtie2 V2.3.4.1⁵⁷ using “--very-sensitive” presets. A typical library
852 will yield ~90% mapped reads. The mapped reads were analyzed using custom python scripts as
853 follows: The mapped reads are organized into read groups consisting of reads with the same
854 unique cell barcode representing amplicons from the same droplet. Read groups with too few
855 reads are removed. For each amplicon target for each read group, a minimum of 1% of the reads
856 of the barcode group, or 5 reads, whichever is higher, is required to be present to count as a true
857 “hit” for that target. This step removes background crosstalk between the barcodes in the library.
858 When sequencing microbial communities containing different species, 16S rDNA amplicons
859 within each read group are used to taxonomically identify the bacteria represented by the reads
860 within the read group. Read groups with multiple 16S target matches are discarded. When
861 sequencing *B. fragilis* CPS operons, only read groups containing amplicons for less than all 7
862 targeted amplicons or containing amplicons indicating conflicting promoter orientations are
863 discarded. All scripts are available on GitHub (see code availability).

864

865 *DoTA-seq data analysis for natural microbial communities*

866 Using DoTA-seq on communities of unknown composition presents unique data analysis
867 opportunities and challenges. The ability to target multiple loci in a single cell presents the
868 opportunity to simultaneously target multiple marker genes with short read sequencing to obtain
869 more accurate taxonomic classifications. However, traditional pipelines for analysis of microbial
870 taxonomic marker genes do not readily accommodate the single-cell barcoded data format.
871 Marker genes originating from the same droplet should represent a single species. Leveraging
872 this knowledge, we can first group marker gene reads by similarity for each droplet and build a
873 consensus sequence for each group to correct for sequencing/PCR errors. We can then perform
874 taxonomic classification for each droplet by using each consensus sequence for each droplet. We
875 identify multi-encapsulated droplets as those that contain representative marker genes that
876 represent distinct taxa. Thus far, we have implemented a proof-of-principle version of this analysis
877 workflow for our natural microbial community datasets.

878 First, reads filtered for barcode quality score using standard DoTA-seq script (R4-
879 parser.ipynb). Then, sequences were converted from “fastq” to “fasta” format with a minimum
880 quality of Q20 using Seqtk (<https://github.com/lh3/seqtk>). Next, potential chimeras were filtered
881 using USEARCH v11.0.667_i86linux32 using “silva_132_97_16S.fna” from the
882 “SILVA_132_QIIME_release”⁵⁸ as the reference using “sensitive” mode. Then OTUs for all
883 chimera-filtered sequences were generated using MMseqs2 v13.45111⁵⁹ with the settings of “--
884 min-seq-id 0.97 -c 0.95 --cov-mode 1”. Then, the OTU representative sequences were searched

885 against “silva_132_99_16S.fna” from the “SILVA_132_QIIME_release”⁵⁸ using BLASTN with the
886 settings of “-eval 0.001 -perc_identity 90 -max_target_seqs 1”. The final taxonomy hits were
887 filtered by the criterion of sequence identity $\geq 95\%$ and query coverage ≥ 90 . Target genes (non-
888 taxonomic markers) were identified using a database containing those genes and aligned using
889 Bowtie2 as described in the standard DoTA-seq analysis workflow. The results of taxonomic
890 classification of 16S OTU BLAST and target gene alignment with Bowtie2 are combined into one
891 dataset and analyzed in a Jupyter notebook (Unknown-sample-analysis.ipynb). See
892 **Supplementary Figure 9** for a flowchart depicting this pipeline.

893
894 *Identifying plasmid replicon sequences in MAGs*
895 The website <https://opendata.lifebit.ai/table/SGB> contains 154,723 microbial genomes
896 assembled from 9,428 samples of the human microbiome from diverse geographic locations,
897 body sites, diseases, and lifestyles⁶⁰. We downloaded all MAGs from the database,
898 performed BLASTN search for all target replicon sequences with settings “-eval 0.001 -
899 perc_identity 0.9 -max_target_seqs 1, and filtered BLASTN results with an identity cutoff of
900 90%, replicon coverage cutoff of 70%. Within the filtered results, we used GTDB-Tk⁶¹ v1.8 to
901 extract taxonomic information for all selected MAGs, which contained hits to the replicon
902 sequences.

903
904

905 REFERENCES

- 906 1. Sulaiman, J. E. & Lam, H. Proteomic Investigation of Tolerant *Escherichia coli* Populations
907 from Cyclic Antibiotic Treatment. *J. Proteome Res.* **19**, 900–913 (2020).
- 908 2. Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A Subset of Polysaccharide
909 Capsules in the Human Symbiont *Bacteroides thetaiotaomicron* Promote Increased
910 Competitive Fitness in the Mouse Gut. *Cell Host Microbe* **22**, 494-506.e8 (2017).
- 911 3. Jonsson, A.-B., Ilver, D., Falk, P., Pepose, J. & Normark, S. Sequence changes in the pilus
912 subunit lead to tropism variation of *Neisseria gonorrhoeae* to human tissue. *Mol. Microbiol.*
913 **13**, 403–416 (1994).
- 914 4. Li, J. *et al.* Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in
915 *Streptococcus pneumoniae*. *PLOS Pathog.* **12**, e1005762 (2016).

916 5. Marcy, Y. *et al.* Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare
917 and uncultivated {TM7} microbes from the human mouth. *Proc. Natl. Acad. Sci. U. S. A.*
918 **104**, 11889–11894 (2007).

919 6. Rinke, C. *et al.* Insights into the phylogeny and coding potential of microbial dark matter.
920 *Nature* **499**, 431–437 (2013).

921 7. Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA
922 sequencing by in situ combinatorial indexing. *Nat. Microbiol.* **5**, 1192–1201 (2020).

923 8. Kuchina, A. *et al.* Microbial single-cell RNA sequencing by split-pool barcoding. *Science*
924 **371**, eaba5257 (2021).

925 9. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-
926 high-throughput with microfluidic droplet barcoding. *Nat. Biotechnol.* **35**, 640–646 (2017).

927 10. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile
928 antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-
929 C. *Nat. Commun.* **11**, 4379 (2020).

930 11. Marbouty, M., Thierry, A., Millot, G. A. & Koszul, R. MetaHiC phage-bacteria infection
931 network reveals active cycling phages of the healthy human gut. *eLife* **10**, e60608 (2021).

932 12. Zeitoun, R. I. *et al.* Multiplexed tracking of combinatorial genomic mutations in engineered
933 cell populations. *Nat. Biotechnol.* **33**, 631–637 (2015).

934 13. Spencer, S. J. *et al.* Massively parallel sequencing of single cells by {epicPCR} links
935 functional genes with phylogenetic markers. *ISME J.* **10**, 427–436 (2016).

936 14. Diebold, P. J., New, F. N., Hovan, M., Satlin, M. J. & Brito, I. L. Linking plasmid-based beta-
937 lactamases to their bacterial hosts using single-cell fusion PCR. *eLife* **10**, e66834 (2021).

938 15. Zheng, W. *et al.* High-throughput, single-microbe genomics with strain resolution, applied to
939 a human gut microbiome. *Science* **376**, eabm1483 (2022).

940 16. Macosko, E. Z. *et al.* Highly parallel genome-wide expression profiling of individual cells
941 using nanoliter droplets. *Cell* **161**, 1202–1214 (2015).

942 17. Klein, A. M. *et al.* Droplet Barcoding for Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada,
943 N., Veres, A., Li, V., \ldots Kirschner, M. W. (2015). Droplet Barcoding for Single-Cell
944 Transcriptomics Applied to Embryonic Stem Cells. *Cell*, 161(5), 1187–1201.
945 doi:10.1016/j.cell.2. *Cell* **161**, 1187–1201 (2015).

946 18. Eastburn, D. J., Sciambi, A. & Abate, A. R. Ultrahigh-throughput Mammalian single-cell
947 reverse-transcriptase polymerase chain reaction in microfluidic drops. *Anal. Chem.* **85**,
948 8016–21 (2013).

949 19. Lan, F., Haliburton, J. R., Yuan, A. & Abate, A. R. Droplet barcoding for massively parallel
950 single-molecule deep sequencing. *Nat. Commun.* **7**, (2016).

951 20. Tamminen, M. V. & Virta, M. P. J. Single gene-based distinction of individual microbial
952 genomes from a mixed population of microbial cells. *Front. Microbiol.* **6**, (2015).

953 21. Holmes, D. L. & Stellwagen, N. C. Estimation of polyacrylamide gel pore size from Ferguson
954 plots of linear DNA fragments. II. Comparison of gels with different crosslinker
955 concentrations, added agarose and added linear polyacrylamide. *ELECTROPHORESIS* **12**,
956 612–619 (1991).

957 22. Cheng, Y.-Y. *et al.* Efficient plasmid transfer via natural competence in a synthetic microbial
958 community. 2020.10.19.342733 Preprint at <https://doi.org/10.1101/2020.10.19.342733>
959 (2022).

960 23. van der Woude, M. W. Phase variation: how to create and coordinate population diversity.
961 *Curr. Opin. Microbiol.* **14**, 205–211 (2011).

962 24. Jayaraman, R. *Phase variation and adaptation in bacteria: A ‘Red Queen’s Race’*. REVIEW
963 *ARTICLES CURRENT SCIENCE* vol. 100 (2011).

964 25. Hoskisson, P. A. & Smith, M. C. M. Hypervariation and phase variation in the bacteriophage
965 ‘resistome’. *Curr. Opin. Microbiol.* **10**, 396–400 (2007).

966 26. Anjuwon-Foster, B. R. & Tamayo, R. Phase variation of *Clostridium difficile* virulence
967 factors. *Gut Microbes* **9**, 1–8 (2017).

968 27. Krinos, C. M. *et al.* Extensive surface diversity of a commensal microorganism by multiple
969 DNA inversions. *Nature* **414**, 555–558 (2001).

970 28. Troy, E. B., Carey, V. J., Kasper, D. L. & Comstock, L. E. Orientations of the *Bacteroides*
971 *fragilis* Capsular Polysaccharide Biosynthesis Locus Promoters during Symbiosis and
972 Infection. *J. Bacteriol.* **192**, 5832–5836 (2010).

973 29. Coyne, M. J., Weinacht, K. G., Krinos, C. M. & Comstock, L. E. Mpi recombinase globally
974 modulates the surface architecture of a human commensal bacterium. *Proc. Natl. Acad. Sci.*
975 **100**, 10446–10451 (2003).

976 30. Dobrindt, U. & Hacker, J. Whole genome plasticity in pathogenic bacteria. *Curr. Opin.*
977 *Microbiol.* **4**, 550–557 (2001).

978 31. Bonham, K. S., Wolfe, B. E. & Dutton, R. J. Extensive horizontal gene transfer in cheese-
979 associated bacteria. *eLife* **6**, e22144 (2017).

980 32. Murray, C. J. *et al.* Global burden of bacterial antimicrobial resistance in 2019: a systematic
981 analysis. *The Lancet* **399**, 629–655 (2022).

982 33. Clark, R. L. *et al.* Design of synthetic human gut microbiome assembly and butyrate
983 production. *Nat. Commun.* **12**, 3254 (2021).

984 34. Venturelli, O. S. *et al.* Deciphering microbial interactions in synthetic human gut microbiome
985 communities. *Mol. Syst. Biol.* **14**, (2018).

986 35. Nassif, X. *et al.* Antigenic variation of pilin regulates adhesion of *Neisseria meningitidis* to
987 human epithelial cells. *Mol. Microbiol.* **8**, 719–725 (1993).

988 36. Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens.
989 *Science* **372**, 462–463 (2021).

990 37. Wang, Y. *et al.* Dissolvable Polyacrylamide Beads for High-Throughput Droplet DNA
991 Barcoding. *Adv. Sci.* **1903463**, 1903463 (2020).

992 38. Freytag, S., Tian, L., Lönnstedt, I., Ng, M. & Bahlo, M. Comparison of clustering tools in R
993 for medium-sized 10x Genomics single-cell RNA-sequencing data. *F1000Research* **7**, 1297
994 (2018).

995 39. Hatori, M. N., Kim, S. C. & Abate, A. R. Particle-Templated Emulsification for Microfluidics-
996 Free Digital Biology. *Anal. Chem.* **90**, 9813–9820 (2018).

997 40. Rath, S., Heidrich, B., Pieper, D. H. & Vital, M. Uncovering the trimethylamine-producing
998 bacteria of the human gut microbiota. *Microbiome* **5**, 54 (2017).

999 41. Maurice, C. F. & Turnbaugh, P. J. Quantifying the metabolic activities of human-associated
1000 microbial communities across multiple ecological scales. *FEMS Microbiol. Rev.* **37**, 830–848
1001 (2013).

1002 42. Lan, F. *et al.* Single-cell bacterial sequencing of invertible loci reveals promoter inversion
1003 rates as a strong determinant of population heterogeneity. 2022.10.31.514637 Preprint at
1004 <https://doi.org/10.1101/2022.10.31.514637> (2022).

1005 43. van der Woude, M. W. & Bäumler, A. J. Phase and Antigenic Variation in Bacteria. *Clin.*
1006 *Microbiol. Rev.* **17**, 581–611 (2004).

1007 44. Roux, S. *et al.* Ecology and molecular targets of hypermutation in the global microbiome.
1008 *Nat. Commun.* **12**, 3076 (2021).

1009 45. Kenny, D. J. *et al.* Cholesterol Metabolism by Uncultured Human Gut Bacteria Influences
1010 Host Cholesterol Level. *Cell Host Microbe* **28**, 245-257.e6 (2020).

1011 46. Lourenço, M. *et al.* A Mutational Hotspot and Strong Selection Contribute to the Order of
1012 Mutations Selected for during *Escherichia coli* Adaptation to the Gut. *PLOS Genet.* **12**,
1013 e1006420 (2016).

1014 47. Zhao, S. *et al.* Adaptive Evolution within Gut Microbiomes of Healthy People. *Cell Host*
1015 *Microbe* **25**, 656-667.e8 (2019).

1016 48. Hsu, R. H. *et al.* Microbial Interaction Network Inference in Microfluidic Droplets. *Cell Syst.*
1017 **9**, 229-242.e4 (2019).

1018 49. Sheth, R. U. *et al.* Spatial metagenomic characterization of microbial biogeography in the
1019 gut. *Nat. Biotechnol.* **37**, 877–883 (2019).

1020 50. Agasti, S. S., Liong, M., Peterson, V. M., Lee, H. & Weissleder, R. Photocleavable DNA
1021 Barcode–Antibody Conjugates Allow Sensitive and Multiplexed Protein Analysis in Single
1022 Cells. *J. Am. Chem. Soc.* **134**, 18499–18502 (2012).

1023 51. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid Prototyping of
1024 Microfluidic Systems in Poly(dimethylsiloxane). *Anal. Chem.* **70**, 4974–4984 (1998).

1025 52. Demaree, B., Weisgerber, D., Lan, F. & Abate, A. R. An ultrahigh-throughput microfluidic
1026 platform for single-cell genome sequencing. *J. Vis. Exp.* **2018**, (2018).

1027 53. Untergasser, A. *et al.* Primer3-new capabilities and interfaces. *Nucleic Acids Res.* **40**,
1028 (2012).

1029 54. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node
1030 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
1031 *Bioinformatics* **31**, 1674–1676 (2015).

1032 55. Robertson, J. & Nash, J. H. E. MOB-suite: software tools for clustering, reconstruction and
1033 typing of plasmids from draft assemblies. *Microb. Genomics* **4**, e000206 (2018).

1034 56. Alcock, B. P. *et al.* CARD 2020: antibiotic resistome surveillance with the comprehensive
1035 antibiotic resistance database. *Nucleic Acids Res.* **48**, (2019).

1036 57. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,
1037 357–359 (2012).

1038 58. Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
1039 processing and web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2013).

1040 59. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the
1041 analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

1042 60. Pasolli, E. *et al.* Extensive Unexplored Human Microbiome Diversity Revealed by Over
1043 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. *Cell* **176**,
1044 649-662.e20 (2019).

1045 61. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify
1046 genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925–1927 (2020).

1047