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Abstract 22 

Despite great progress in the identification of neurodevelopmental disorder (NDD) risk genes, 23 

there are thousands that remain to be discovered. Computational tools that provide accurate 24 

gene-level predictions of NDD risk can significantly reduce the costs and time needed to 25 

prioritize and discover novel NDD risk genes. Here, we first demonstrate that machine learning 26 

models trained solely on single-cell RNA-sequencing data from the developing human cortex 27 

can robustly predict genes implicated in autism spectrum disorder (ASD), developmental and 28 

epileptic encephalopathy (DEE), and developmental delay (DD). Strikingly, we find differences 29 

in gene expression patterns of genes with monoallelic and biallelic inheritance patterns. We 30 

then integrate these expression data with 300 orthogonal features in a semi-supervised 31 

machine learning framework (mantis-ml) to train inheritance-specific models for ASD, DEE, and 32 

DD. The models have high predictive power (AUCs: 0.84 to 0.95) and top-ranked genes were 33 

up to two-fold (monoallelic models) and six-fold (biallelic models) more enriched for high-34 

confidence NDD risk genes than genic intolerance metrics. Across all models, genes in the top 35 

decile of predicted risk genes were 60 to 130 times more likely to have publications strongly 36 

linking them to the phenotype of interest in PubMed compared to the bottom decile. Collectively, 37 

this work provides highly robust novel NDD risk gene predictions that can complement large-38 

scale gene discovery efforts and underscores the importance of incorporating inheritance into 39 

gene risk prediction tools (https://nddgenes.com).  40 

  41 
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Introduction 42 

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), 43 

developmental and epileptic encephalopathy (DEE), and developmental delay (DD), are highly 44 

heritable. Researchers have made great progress in identifying hundreds of genes associated 45 

with these disorders through sequencing studies of trios, families, and case-control cohorts 1–7. 46 

However, most patients with an NDD still do not receive a genetic diagnosis 8, in part because 47 

there are more NDD-associated genes to discover. In the case of ASD, only 190 of the 48 

estimated 1,000 risk genes have been confidently linked to disease 9, even as cohort sizes have 49 

grown to over 20,000 cases 6. Fully characterizing the genetic architecture of NDDs is crucial to 50 

making accurate molecular diagnoses, elucidating disease mechanisms, and developing 51 

targeted therapies but will likely require hundreds of thousands of additional sequenced cases2.  52 

 In silico approaches can help predict NDD risk genes and accelerate gene discovery. 53 

For example, we and others have shown that genes associated with severe early-onset 54 

disorders are under strong purifying selection and thus tend to be depleted of nonsynonymous 55 

variation in the general population 10–14. Genic intolerance metrics, which quantify the degree to 56 

which genes are intolerant to functional variation, have become a cornerstone in prioritizing 57 

NDD risk genes 1,2,6,15–19. However, not all intolerant genes are involved in NDDs, as any gene in 58 

which mutations reduce fecundity will be intolerant to variation (e.g., genes involved in fertility).  59 

Moreover, although population-level sequencing datasets continue to grow, intolerance metrics 60 

still suffer from a lack of power for smaller genes. Finally, perhaps the biggest current limitation 61 

is that although these scores can reliably detect purifying selection against variants with 62 

monoallelic/dominant inheritance patterns, they struggle to prioritize disease genes with 63 

biallelic/recessive modes of inheritance 20–22. Moreover, to our knowledge, there are no currently 64 

available disease-specific computational risk predictors for recessive disorders. 65 

Other commonly used methods for predicting NDD risk genes rely on gene expression 66 

networks 23,24. However, most of these methods have been based on bulk RNA-sequencing 67 

data and thus do not account for potential cell type-specific expression patterns. Here we 68 

hypothesized that we could bolster NDD risk gene predictions by integrating genic intolerance, 69 

bulk- and single-cell RNA-sequencing data, and other orthogonal datasets in an inheritance-70 

specific manner. First, we assess cell type-specific expression patterns for ASD, DEE, and DD 71 

genes stratified by inheritance pattern (i.e., monoallelic vs. biallelic). We then demonstrate that 72 

expression patterns alone can predict NDD risk genes but that these predictions significantly 73 

improve when used in combination with intolerance metrics. Finally, we use single-cell RNA-74 

sequencing data, intolerance metrics, and hundreds of other gene-level annotations in a semi-75 
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supervised machine learning approach (mantis-ml) 25 to generate inheritance-specific risk gene 76 

predictions for ASD, DEE, and DD. Top risk gene predictions from these models show a striking 77 

enrichment for top genes from trio studies and large case-control analyses, expert-curated risk 78 

gene lists, and genes enriched for their related phenotype associations in published case 79 

reports and case series. We make the scores available through a public browser: 80 

https://nddgenes.com. 81 

 82 

Results 83 

Cell type enrichment of NDD risk genes 84 

We examined the expression patterns of NDD risk genes using a recently published single-cell 85 

RNA-sequencing (scRNA-seq) atlas of the developing human cortex 26. This dataset contains 86 

57,868 cells collected from four human fetal cortical samples spanning 8 weeks during mid-87 

gestation, including post-conception week (PCW) 16, PCW20, PCW21, and PCW24 (Fig. 1A, 88 

B). There are 23 annotated cell types (Fig. 1A), including interneurons from the medial 89 

ganglionic eminence (MGE) and central ganglionic eminence (CGE), nine different clusters of 90 

cortical excitatory neurons (GluN), precursor cells like radial glia, and other non-neuronal cell 91 

types. One of the GluN clusters corresponds to the subplate, a transient cortical structure that 92 

contains some of the earliest formed neurons of the cortex (Table S1). 93 

 To test whether NDD risk genes are preferentially expressed in any of these cell types, 94 

we carefully curated genes that have been implicated in ASD, DEE, and DD (Methods). We 95 

further annotated these genes as “monoallelic” or “biallelic” depending on the pattern of 96 

inheritance of pathogenic mutations in each gene (Methods). In total, we identified 190 97 

monoallelic ASD genes, 94 monoallelic DEE genes, and 438 monoallelic DD genes. We also 98 

identified 17 biallelic ASD genes, 63 biallelic DEE genes, and 473 biallelic DD genes. We 99 

excluded biallelic ASD genes from downstream analyses due to the relatively small size of this 100 

gene set.  101 

To determine whether each of these gene sets was more highly expressed in any fetal 102 

cortical cell type, we computed module Z-scores as previously described (see Methods).27 A 103 

positive Z-score indicates that the module of genes is expressed more highly in a particular cell 104 

than in the rest of the population. We calculated Mann-Whitney P-values for each cluster by 105 

randomly sampling 400 cells from the given cluster and comparing them to 400 random cells 106 

outside of that cluster.  Monoallelic ASD genes were most significantly enriched in several 107 

glutamatergic neuron clusters, particularly those corresponding to more mature neurons 108 

(GluN4-8 and subplate) as well as MGE-derived interneurons (Fig. 1D, Table S2).  109 
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Monoallelic DEE genes showed a similar pattern as the ASD monoallelic genes, most 110 

strongly enriched in more mature GluN neurons (GluN 6-8), subplate neurons and MGE-derived 111 

interneurons. Biallelic DEE genes were enriched for GluN6, GluN7, GluN8, and SP neurons, but 112 

were not significantly enriched in MGE interneurons, though we note that we were less powered 113 

for this gene set given the smaller sample size compared to monoallelic genes. Monoallelic DD 114 

genes were also generally enriched in GluN neurons but were not significantly enriched in SP 115 

excitatory neurons or MGE interneurons.  116 

Most interestingly, DD biallelic genes showed a strikingly different pattern from DD 117 

monoallelic genes and were preferentially expressed in more immature cell types and non-118 

neuronal cells, such as oligodendrocyte precursor cells (OPCs), intermediate progenitor cells 119 

(IPCs), early and transitional radial glia (Fig. 1D). Altogether, these expression patterns support 120 

the notion that monoallelic ASD, DEE, and DD risk genes converge on similar cell types. 121 

However, while prior studies have suggested that DD genes are enriched for radial glia 28, we 122 

only observe a significant enrichment for biallelic DD genes in this cell type.  123 

  124 
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 125 

Figure 1. Cell type-specific expression patterns for NDD risk genes. (A) Uniform manifold 126 

approximation projection (UMAP) plot of the human fetal cortex from data generated by Trevino et 127 

al26. Cells colored by cell type. RG = radial glia; CycProg = cycling progenitors; tRG = truncated 128 

radial glia; mGPC = multipotent glial progenitor cell; OPC/Oligo = oligodendrocyte progenitor 129 

cell/oligodendrocyte; nIPC = neuronal intermediate progenitor cell; GluN = glutamatergic neuron; 130 

CGE IN = caudal ganglionic eminence interneuron; MGE IN = medial ganglionic eminence 131 

interneuron; EC = endothelial cell; MG, microglia; Peric. = Pericytes. (B) UMAP with cell types 132 

colored by age. (C) UMAP colored by module Z-scores for NDD gene sets. (D) Distribution of 133 
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module Z-scores for each cell type. Asterisks indicate Bonferroni-corrected Mann-Whitney U p-134 

values < 0.05.  135 

 136 

Single-cell expression data bolsters NDD risk gene predictions 137 

Motivated by their cell type-specific expression patterns, we hypothesized that we could 138 

leverage fetal single-cell RNA-sequencing data to predict NDD risk genes stratified by 139 

inheritance pattern. To this end, we trained random forest models using the scRNA-seq data for 140 

each of the NDD risk gene sets and compared their performance to models based on 141 

conventional intolerance metrics. We trained models for each disease gene list using the risk 142 

genes as the positively labeled set and a randomly selected set of genes as the negative set 143 

(1.5x the size of the risk gene list). We then compared model performance using five-fold cross-144 

validation.  145 

Random forest models trained purely on single-cell expression data could accurately 146 

predict NDD risk genes for each gene list (Fig. 2A-E). For monoallelic ASD, DD, and DEE, the 147 

random forest models achieved an area under the receiving operator curve (AUC) statistic of 148 

0.85, 0.82, and 0.78, respectively. The monoallelic scRNA-seq models performed nearly as well 149 

as models trained with the loss-of-function observed/expected upper bound fraction (LOEUF) 150 

score, one of the most used loss-of-function intolerance metrics 20 (Fig. 2A-C). Interestingly, for 151 

NDD risk genes with biallelic patterns of inheritance, scRNA-seq models outperformed models 152 

trained on any of the intolerance metrics (Fig. 2D-E). The expression profiles in the cell types 153 

with the highest module scores were among the most important features for each model (Fig. 154 

S1).   155 
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 156 

Figure 2. Random forest models including cortical single-cell expression data can predict 157 

NDD genes. Mean receiver operating characteristic (ROC) curves (from fivefold cross-validation) 158 

depcting the ability of random forest models trained with single-cell RNA-sequencing (scRNA-seq) 159 

data, intolerance metrics, or both (“All models”) for (A) monoallelic ASD genes, (B) monoallelic DD 160 

genes, (C) monoallelic DEE genes, (D) biallelic DD genes, and (E) biallelic DEE genes. TPR: True 161 

positive rate, FPR: False positive rate. The numbers in parentheses in each figure legend refer to 162 

the mean AUC and the standard deviation across the five folds.  163 

 164 

We next investigated whether the expression-informed models were detecting 165 

information orthogonal to intolerance. To assess this, we built random forest models that 166 

incorporated both scRNA-seq data and intolerance metrics, including LOEUF, missense Z 167 

(misZ), and the residual variation intolerance score (RVIS) 10. We also included the probability of 168 

being intolerant to recessive variation (pREC) score, a measure of genic intolerance to biallelic 169 

loss-of-function variants, for the biallelic gene sets 20. The composite models consistently 170 

outperformed all individual models for each NDD subclass, regardless of the inheritance pattern 171 

(Fig. 2). Collectively, these results suggest that both scRNA-seq data and intolerance provide 172 

independent information in detecting NDD risk genes.  173 

 174 

Incorporation of scRNA-seq data in a semi-supervised machine learning model 175 

One major challenge in generating genome-wide disease risk predictions is that although we 176 

have a set of known risk genes for each disease, we do not know which are definitively not 177 
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associated with the disease (i.e., a true negative set). To address this, we previously introduced 178 

a stochastic semi-supervised machine learning approach called mantis-ml 25. Briefly, mantis-ml 179 

takes as input a list of seed genes (the positive set) and then trains machine learning models on 180 

random balanced datasets across the protein-coding exome. It then generates final gene 181 

rankings by averaging prediction probabilities across all the iterations. Mantis-ml includes 182 

several gene-level features, including several intolerance metrics, protein-protein interaction 183 

networks, and others.   184 

Here, we made several advances to the mantis-ml framework. Foremost, we manually 185 

curated highly confident seed gene lists for ASD, DEE, and DD (Table S3). Given the 186 

differences in intolerance and expression profiles for monoallelic and biallelic gene sets, we 187 

trained inheritance-specific models. In addition, we include several new features, including 188 

scRNA-seq data and a new intolerance metric, gene variation intolerance rank (GeVIR), which 189 

was previously shown to be more sensitive for smaller genes 29. Finally, we introduce a gene 190 

ontology feature selection strategy, in which we perform enrichment analyses on the seed gene 191 

list to determine the gene ontologies to include as features in each model (Methods).  192 

We trained separate mantis-ml models for monoallelic ASD, monoallelic DEE, 193 

monoallelic DD, biallelic DEE, and biallelic DD. The XGBoost models showed strong predictive 194 

power, with average AUCs of 0.95, 0.94, and 0.94 for monoallelic ASD, DEE, and DD and mean 195 

AUCs of 0.84 and 0.88 for biallelic DEE and DD, respectively (Fig. 3B, Tables S4-8Random 196 

forest models performed comparably, and we defaulted to the XGBoost-derived models for 197 

downstream analyses (Table S9). Using the Boruta algorithm, we computed feature 198 

importances for each XGBoost model (Methods; Figures S2-4). Constraint metrics were 199 

consistently among the top features for the monoallelic models, whereas expression data and 200 

protein-protein interaction data were relatively more important in the biallelic models. 201 
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 202 

Figure 3. Mantis-ml XGBoost classifier performance across five neurodevelopmental 203 

disorder models. (A) Schematic of the mantis-ml framework, using biallelic developmental delay 204 

(DD) as an example seed gene list. (B) Score distribution of XGBoost area under the curves (AUC) 205 

across all five neurodevelopmental disorder risk mantis-ml models.  206 

 207 

Mantis-ml prioritizes top genes from rare variant association studies 208 

We sought to evaluate mantis-ml’s ability to prioritize putative novel NDD risk genes using 209 

results from recent large-scale exome sequencing studies of ASD, DD, and epilepsy cohorts 1,6 210 

(Tables S11-13). We thus tested whether top-ranked genes from each mantis-ml model were 211 

enriched for nominally significant genes (p<0.01) from these trio and case-control analyses. 212 
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Across all three dominant models, genes in the top 5th percentile of mantis-ml were highly 213 

enriched for genes with nominal evidence of rare variant burden in ASD, DEE, and DD cases (p 214 

< 0.01) (ASD OR = 13, 95%CI: [10.7, 15.8], p = 3.5 x 10-116; DD OR = 25.3, 95%CI: [21.2, 30.2], 215 

p = 4.9 x 10-244; DEE OR = 16.8, 95%CI: [6.4, 44.2], p = 1.0 x 10-8). These enrichments 216 

remained highly significant even after removing seed genes from the evaluation (ASD OR = 8.5, 217 

95%CI: [6.7, 10.8], p = 1.2 x 10-52; DD OR = 13.4, 95%CI: [10.6, 16.8], p = 4.7 x 10-81; DEE OR 218 

= 12.3, 95%CI: [3.5, 40.5], p = 7.4 x 10-05).  219 

We then performed the same enrichment tests using LOEUF instead of mantis-ml. Of 220 

note, the ASD and DD exome studies used LOEUF as a gene weight in their burden tests 6,7, 221 

meaning that top-ranked hits would be skewed for more LOF-intolerant genes. Despite this, 222 

nominally significant (p<0.01) genes from the ASD, DD, and DEE studies were less strongly 223 

enriched for genes within the top 5% of LOEUF than with mantis-ml (Fig. 4). For example, in the 224 

DD study (the best powered of the three studies), top mantis-ml genes (with seed genes 225 

removed) had an odds ratio of 13.4 (95%CI: [10.6, 16.8]; p = 4.7 x 10-81) compared to an odds 226 

ratio of 8.2 (95%CI: [6.4, 10.4]; p =2.0 x 10-50) for top-ranked LOEUF genes. This suggests that 227 

mantis-ml has nearly twice the ability to prioritize potential novel DD risk genes when compared 228 

to LOEUF and represents a significant improvement over the current standard in the field. 229 

Finally, we compared the performance of these monoallelic-specific models to mantis-ml models 230 

that were trained on seed gene lists that were not stratified by inheritance. The inheritance-231 

informed monoallelic models substantially outperformed the inheritance-agnostic models for 232 

both DD and DEE, with 1.6- and 2.8-times larger point estimates, respectively (Fig. S5, Table 233 

S14 and S15). 234 

 235 

Figure 4. Enrichment of mantis-ml predictions among top genes from rare variant gene-level 236 

association studies. (A-C) The enrichment of top mantis-ml predictions (≥95th percentile) and 237 

LOF-intolerant genes (measured via LOEUF) among nominally significant (p<0.01) genes in prior 238 
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gene-level association studies for ASD (n cases = 20,627), DD (n cases = 31,058), and DEE (n 239 

cases = 1,021), respectively. Mantis-ml models for each figure represent the monoallelic model for 240 

each respective NDD. Error bars represent 95% confidence intervals. P-values calculated via two-241 

tailed Fisher’s exact test. Bonferroni-corrected p-value threshold = 0.004 for an alpha of 0.05.  242 

Mantis-ml risk predictions align with the degree of confidence in clinically curated gene 243 

lists  244 

We next tested how well the mantis-ml predictions correlated with manually curated NDD risk 245 

gene lists, including those from the Simons Foundation Autism Research Initiative (SFARI) 246 

database of ASD genes 30 and the DECIPHER Developmental Disorder Genotype–Phenotype 247 

Database (DDG2P) of DD genes 31 (Table S16 and S17). In both resources, each gene 248 

receives a score reflecting the strength of evidence in the published literature of a gene’s role in 249 

the disease. SFARI ranks genes by Tier, in which Tier 1 includes “high confidence” genes (n = 250 

204), Tier 2 includes “strong candidate” genes (n = 208), and Tier 3 includes genes with 251 

“suggestive evidence” (n = 493). The DDG2P resource includes “Definitive” (n = 218), “Strong” 252 

(n = 156), and “Limited” (n = 63) categories for monoallelic risk genes and “Definitive” (n = 452), 253 

“Strong” (n = 202), and “Limited” (n = 98) for biallelic risk genes. Genes from SFARI’s Tier 1 and 254 

DDG2P’s “Definitive” category and a subset of monoallelic genes from DDG2P’s “Strong” 255 

category (n = 55) were used as seed genes for our models, providing an opportunity to test 256 

mantis-ml’s performance on the remaining gene lists (e.g., Tier 2/3 and “Strong”/”Limited”), 257 

which mostly consist of genes that have emerged from smaller trio- and family-based 258 

sequencing studies and functional validation.  259 

We found that the distribution of mantis-ml percentiles correlated with the levels of 260 

evidentiary support and expert curation for both ASD and DD (Fig. 5). As expected, the seed 261 

genes had the highest mantis-ml percentiles (Fig. 5A-C), which were significantly higher than 262 

the remaining genes in the exome (monoallelic ASD MWU p = 3.2 x 10-93, monoallelic DD MWU 263 

p = 1.7 x 10-110, biallelic DD MWU p = 2.9 x 10-176). The percentile ranks of Tier 2 SFARI genes 264 

and DD2GP “Strong” genes were on average lower than seed genes but significantly higher 265 

than the rest of the exome (Fig. 5A-C). Likewise, the percentiles of Tier 3 SFARI genes and 266 

“Limited” DD genes were still significantly higher than the remaining genes in the exome, but not 267 

as enriched as the higher confidence gene sets (Fig. 5A-C). 268 

We next compared the enrichment of mantis-ml predictions to intolerance metrics for 269 

these expert-curated gene lists (Table S18 and S19). Consistent with the collapsing analysis 270 

enrichment tests, Tier 2 and Tier 3 SFARI genes were more strongly enriched for top-ranked 271 

(top 5th percentile) mantis-ml monoallelic ASD genes than the top 5th percentile of LOEUF genes 272 

(Tier 2: OR = 11.8, 95% CI: [8.6, 16.0], p = 1.7 x 10-40,  versus OR = 7.6, 95% CI: [5.4, 10.6], p = 273 

4.9 x 10-25; Tier 3: OR = 4.4, 95% CI: [3.3, 5.7], p = 6.6 x 10-22 versus OR = 3.2, 95% CI: [2.4, 274 
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4.3], p = 2.6 x 10-13). Likewise, mantis-ml monoallelic DD predictions were more strongly 275 

enriched among “Strong” and “Limited” monoallelic DD2GP genes (“Strong”: OR = 30.5, 95% 276 

CI: [16.5, 38.2], p = 6.1 x 10-41 versus OR = 13.1, 95% CI: [8.4, 20.2], p = 3.5 x 10-24; “Limited”: 277 

OR = 9.9, 95% CI: [5.2, 17.8], p = 2.4 x 10-10,  versus OR = 8.1, 95% CI: [4.2, 14.6], p = 3.6 x 10-
278 

9). Although the confidence intervals of these enrichments overlapped, the consistently higher 279 

point estimates for the top mantis-ml genes suggest that these predictions have a stronger 280 

discriminatory ability than LOEUF alone.  281 

We observed an even more dramatic difference in enrichments among biallelic DD 282 

genes. We compared our biallelic DD mantis-ml predictions to the pREC intolerance score,20 283 

which aims to capture the probability a gene is intolerant to homozygous loss-of-function. The 284 

top mantis-ml genes (top 5th percentile) were strongly enriched for both “Strong” and “Limited” 285 

biallelic DDG2P genes. On the other hand, neither of these gene lists was significantly enriched 286 

for genes in the top 5th percentile of pREC (OR = 1.5, 95 CI: [0.7, 2.6], p = 0.2 and OR = 1.8, 287 

95% CI: [0.7, 3.8], p = 0.1, respectively). We compared the performance of the inheritance-288 

stratified models versus the inheritance-agnostic models. For monoallelic DD, the odds ratios of 289 

the monoallelic DD models were 1.3-times and 1.08-times larger than for the inheritance-290 

agnostic DD model for the “Strong” and “Limited” gene lists, respectively (Fig. S6). Likewise, the 291 

odds ratios for the DD-specific models were 1.9- and 1.2-times larger for biallelic “Strong” and 292 

“Limited” DD genes, respectively (Fig. S6). These results suggest that the biallelic DD mantis-ml 293 

model could substantially help in the discovery of biallelic risk genes, whose discovery typically 294 

requires access to consanguineous populations or very large sample sizes (Table S20). 295 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2022.11.21.517436doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517436
http://creativecommons.org/licenses/by-nc-nd/4.0/


 296 

Figure 5. Mantis-ml performance across rare variant association studies and clinically 297 

curated gene lists.  (A-C) The distribution of mantis-ml risk percentiles among clinically curated 298 

gene lists from SFARI and DDG2P compared to the rest of the exome, respectively. ASD and DD 299 

seed genes were comprised of inheritance-specific SFARI Tier 1 genes and DDG2P “Definitive” 300 

genes, respectively. P-values were calculated via the Mann-Whitney U test. **** indicates 301 

Bonferroni-corrected p < 1x10-14. (D) Forest plots comparing the magnitude of SFARI Tier 2 and 302 

Tier 3 gene enrichment in top 5th percentile monoallelic ASD mantis-ml predictions and LOEUF 303 

rankings. (E) Enrichment of DDG2P “Strong” and “Limited” gene categories in the top 5th percentile 304 

of monoallelic DD mantis-ml predictions and LOEUF rankings. (F) DDG2P gene enrichment in top 305 

5th percentile of biallelic DD mantis-ml predictions and pREC scores. ASD: autism spectrum 306 

disorder, DD: developmental delay, SFARI: Simons Foundation Autism Research Initiative, 307 

DDG2P: Developmental Disorder Genotype–Phenotype Database.  308 

 309 

Mantis-ml flags genes in clinically curated databases with limited evidentiary support  310 

The SFARI and DECIPHER DDG2P databases provide clinicians and researchers with broad 311 

categories of confidence for a gene’s relevance to ASD and DD, respectively. Genes within 312 

each category are considered to have the same level of evidentiary support. We sought to 313 

evaluate mantis-ml’s ability to provide a more nuanced and quantitative measure of NDD risk 314 

within these broad, manually curated categories. For each evidentiary category (i.e., Tier 2/3 in 315 

SFARI and “Strong”/“Limited” in DDG2P), we first separated genes into high (≥90th percentile) 316 

and low (<50th percentile) mantis-ml risk prediction groups. We removed any monoallelic DD 317 

seed genes that were included in the “Strong”/”Limited” categories. There are no ASD seed 318 

genes in Tier 2/3. We then used two orthogonal validations to corroborate mantis-ml’s 319 

predictions for each gene: publications linking a given gene to either ASD or DD and statistical 320 

support (p values) from the largest ASD/DD sequencing study to date6. To maximize statistical 321 
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power, we combined genes from SFARI Tiers 2 and 3 for ASD and DDG2P “Strong”/”Limited” 322 

for DD, respectively.  323 

We systematically assessed whether mantis-ml predictions correlated with the degree of 324 

literature support for each gene in SFARI/DDG2P using Automatic Mendelian Literature 325 

Evaluation (AMELIE) 32 (Fig. S7). AMELIE is a natural language processing tool that searches 326 

all of Pubmed for manuscripts that link genes to a phenotype of interest. Importantly, AMELIE 327 

can also detect whether there is language in each article that suggests a specific pattern of 328 

inheritance, which allowed us to search gene-phenotype relationships in an inheritance-specific 329 

manner. For SFARI Tier 2 and 3 genes, we found that 49.3% (108 out of 219) of high mantis-ml 330 

risk genes had ≥ 1 publications linking them to ASD compared to 13.4% (24 out of 179) of low 331 

mantis-ml risk genes (OR 6.3, 95%CI: [3.7, 10.9], p = 9.9x10-15). For the DDG2P 332 

“Strong”/”Limited” categories, 69.7% (154 out of 221) of high mantis-ml risk genes had ≥ 1 333 

publication linking them to DD compared to 53.4% (31 out of 58) of low mantis-ml risk genes 334 

(OR 2.2, 95%CI: [1.2, 4.0], p = 0.02).  335 

We next assessed statistical human genetics evidence support from the largest and 336 

most recent sequencing study of ASD and DD6 (Fig. S8). For SFARI Tier 2 and 3 genes, we 337 

found that 25.1% (52 out of 207) of high-mantis-ml risk genes had nominally significant p-values 338 

<0.01 compared to 0% (0 out of 173) of low mantis-ml risk genes (OR Inf, 95%CI: [4.3, Inf], p = 339 

3x10-6). Similarly, for monoallelic DECIPHER “Strong”/”Limited” categories, 44.6% (45 out of 340 

101) of high mantis-ml risk genes vs. 0% (0 out of 15) of low mantis-ml risk genes had p-values 341 

<0.01 (OR Inf, 95%CI: [2.7, Inf], p = 4x10-4). Of note, X chromosome genes were not included in 342 

the p-value analysis as they were not analyzed in the Fu et al. study. 343 

These data demonstrate mantis-ml’s ability to flag likely false positive genes that are 344 

included in clinically curated databases such as SFARI and DECIPHER. For example, CDH15 345 

(mantis 46th percentile) is a DDG2P “Limited” gene and currently has an active gene-phenotype 346 

listing in Online Mendelian Inheritance in Man (OMIM).33 However, the evidence for this 347 

association is supported only by one publication from 2008 which lists three missense variants 348 

that were purported to be associated with severe intellectual disability.34 A curation of these 349 

variants reveals that two have been reclassified as Benign in ClinVar and the third is present in 350 

18 individuals in the gnomAD database, which is inconsistent with a pathogenic variant for 351 

severe intellectual disability. Similarly, CD96 (mantis 3rd percentile) is a DDG2P “Limited” gene 352 

with an active gene-phenotype listing for C Syndrome in OMIM. This association is only 353 

supported by one manuscript from 2007 which identified a translocation breakpoint in CD96 in a 354 

patient with C syndrome and a missense mutation (Thr280Met) in CD96 in a patient with 355 
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Bohring-Opitz Syndrome.35 However, subsequent papers have largely refuted this association 356 

including a balanced translocation disrupting CD96 without symptoms of C syndrome,36 357 

negative mutation screening of CD96 in C syndrome patients,37 phenotypically normal Cd96-/- 358 

mice,38 and the presence of the Thr280Met missense variant in six individuals in the non-359 

neurologic subset of gnomAD. These are only two of many examples of genes flagged by 360 

mantis-ml as being unlikely to be causal for NDDs.  361 

Manually curating databases such as SFARI, DECIPHER, and OMIM is a time-362 

consuming process and prone to false positives given the vast amounts of literature and human 363 

genetics evidence that needs to be reviewed for thousands of genes. Given that clinicians often 364 

look to these databases when assessing the evidence for a gene’s involvement in a disease, it 365 

is critical to ensure that the genes included in these databases are of high quality. Our data 366 

show that mantis-ml can provide an automated, immediate, and inheritance-specific 367 

assessment of the evidence for each gene’s risk for NDDs that can aid clinicians and 368 

researchers who manually curate these databases. 369 

  370 

Mantis-ml predicts gene-phenotype relationships in published literature 371 

Before emerging as significant in large-scale sequencing studies, genes are often initially 372 

implicated in disease through case reports with supporting functional work, case series, or 373 

family-based studies. Thus, we sought to evaluate the relationship between a gene’s predicted 374 

mantis-ml risk percentile and the number of publications linked to the phenotype of interest. We 375 

used AMELIE to identify the number of publications linking each gene in the genome to our 376 

three phenotypes of interest (ASD, DD, DEE) in an inheritance-specific manner.  377 

For each mantis-ml model, we removed seed genes and binned the remaining genes 378 

into predicted mantis-ml risk deciles. Across all five models, the top mantis-ml deciles were 379 

significantly more enriched for genes with at least one publication linking the gene to the 380 

phenotype of interest when compared to the rest of the genes in the genome (Fig. 6, Fig. S9 381 

and Table S21). The enrichments were even stronger when we considered the top first 382 

percentile (Fig. 6). There was a stepwise decrease in the strength of enrichment for each 383 

successive decile. We imposed a more stringent AMELIE cutoff in which we tested the 384 

enrichment of genes with at least five phenotype-matching PubMed records (the maximum 385 

allowed by AMELIE) and observed even stronger enrichments among the top deciles and first 386 

percentile for each model (Fig. 6, Fig. S10).  387 

These results further support the role of mantis-ml in discriminating putative new NDD 388 

risk genes. For example, in the mantis-ml biallelic DD model, 8.8% (138/1575) of genes in the 389 
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top decile have at least five publications linking them to biallelic DD in AMELIE vs. 0.2% 390 

(3/1861) of genes in the last decile (OR = 59.4, 95% CI: [19.8, 289.8], p = 5.0x10-44). Strikingly, 391 

23.7% of genes in the top first percentile of risk have five or more publications linked to biallelic 392 

DD. Thus, these top percentile genes are more than 190 times more likely than genes in the 393 

bottom decile to have a high confidence association with biallelic DD in the literature (OR = 394 

190.3 95%CI: [56.9, 1019.8], p = 5.4x10-32). The powerful discriminatory ability of mantis-ml 395 

between the top and bottom decile of predictions is consistent across all five disease models 396 

and inheritance patterns (ASD monoallelic OR Inf, 95%CI: [11.6, Inf], p = 1.1x10-13, DEE 397 

monoallelic OR 91.3, 95%CI: [24.8, 752.8], p = 2.3x10-48, DEE biallelic OR 59.1, 95%CI: [15.9, 398 

494.0], p = 1.8x10-31, DD monoallelic OR 138.1, 95%CI: [24.2, 5338.7], p = 1.9x10-36) (Fig. 6, 399 

Table S22).  400 

Lastly, we used AMELIE (≥ 5 publications) to compare the performance of mantis-ml 401 

models trained using inheritance-specific versus inheritance-agnostic seed gene lists for DD 402 

and DEE (Table S23). The enrichment of top decile mantis-ml hits was 1.4-, 1.3-, 2.5-, and 4.6-403 

times greater for monoallelic DD, monoallelic DEE, biallelic DD, and biallelic DEE, respectively, 404 

for the inheritance-informed models (Fig. S11). For the biallelic models, these enrichments were 405 

even more striking in the top percentile of mantis-ml risk, with odds ratios that were 9.7-times 406 

and 21.5-times higher for biallelic DD and biallelic DEE, respectively (Fig. S11).  407 
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 408 

Figure 6. Enrichment of genes with 100% phenotype match from the published literature 409 

stratified by mantis-ml decile. For each model, we used AMELIE to generate gene-phenotype 410 

match scores from the literature for all genes in an inheritance specific manner. AMELIE gene-411 

phenotype match scores range from 0 to 100%. We limited our analysis to 100% gene-phenotype 412 

matches from the literature based on the following phenotypes: HP:0000729 (autistic behavior) for 413 

ASD, HP:0012759 (neurodevelopmental abnormality) for DD, and HP:0001250 (seizures) for DEE. 414 

We then plotted the enrichment of gene-phenotype matches stratified by mantis-ml prediction 415 

deciles (and top 1st percentile) with ≥ 1 matching publications in orange and ≥ 5 in blue. P-values 416 

for these comparisons are available in Tables S21 and S22. 417 

 418 

Discussion 419 

While there has been great progress in identifying hundreds of genes associated with 420 

neurodevelopmental disorders, there remain thousands of additional risk genes to be identified. 421 

Sequencing studies will require hundreds of thousands of additional participants to fully resolve 422 

the genetic architecture of neurodevelopmental disorders2. Here, we used the mantis-ml semi-423 

supervised machine-learning framework to provide dominant and recessive gene risk 424 

predictions across the spectrum of neurodevelopmental disorders. We conducted multiple 425 

orthogonal validations of mantis-ml that demonstrate its ability to prioritize both monoallelic and 426 

biallelic risk genes for neurodevelopmental disorders.  427 
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            Our results suggest that the monoallelic ASD, DD, and DEE models outperform 428 

intolerance metrics alone in prioritizing the top results from NDD rare variant association 429 

studies. While intolerance metrics such as LOEUF, RVIS, and others have proven extremely 430 

useful in prioritizing risk genes, they are not specific to any disease. Mantis-ml leverages 431 

multiple measures of genic intolerance, bulk, and single-cell RNAseq data, protein-protein 432 

interaction networks, and gene ontology annotations tailored to the specific disorder and 433 

inheritance pattern of interest. We also showed that mantis-ml predictions aligned with experts’ 434 

degree of confidence in risk genes included in curated gene lists available through SFARI and 435 

DDG2P. However, mantis-ml also flagged several genes in the SFARI and DDG2P databases 436 

as having a low likelihood of being risk genes for ASD or DD. We showed that SFARI/DDG2P 437 

genes with low mantis-ml risk percentiles (<50th percentile) for ASD/DD have significantly fewer 438 

publications and weaker human genetics supporting evidence from the largest ASD/DD 439 

sequencing studies, suggesting that they are unlikely to be true risk genes. These results 440 

suggest that mantis-ml predictions can help geneticists further prioritize disease genes in 441 

clinically curated lists and that one should reconsider the evidence for those with very low 442 

mantis-ml predictions. To this point, KATNAL2, currently a Tier 1 SFARI gene (the highest 443 

confidence), was predicted by the monoallelic ASD model to have only a 2.9% chance of being 444 

an ASD risk gene, despite being used as a seed gene in our original analysis. Indeed, a recent 445 

re-curation of the evidence for KATNAL2 as a risk gene suggests that it is unlikely to contribute 446 

to autism risk through haploinsufficiency and it is no longer statistically significant in the most 447 

recent and largest ASD sequencing study 6,39.  448 

We foresee several clinical applications for mantis-ml. First, mantis-ml can be used in 449 

conjunction with genomic or functional evidence to accelerate gene discovery. For example, 450 

mantis-ml can provide orthogonal evidence to prioritize genes with strong human genetics 451 

evidence that do not yet meet genome-wide significance in association studies. Second, we 452 

have shown that mantis-ml can also substantially improve the reliability and confidence of 453 

manually curated disease-gene databases such as SFARI and DDG2P by flagging likely false 454 

positive genes. Third, mantis-ml can help clinicians and researchers prioritize which genes to 455 

build novel clinical disease-gene cohorts. Often, clinicians and researchers may encounter one 456 

or two patients with rare deleterious variants in a gene and submit these genes to tools such as 457 

GeneMatcher40 to determine if other groups have seen variants linked to similar phenotypes in 458 

the same gene. Researchers could focus their efforts on genes with very high mantis-ml 459 

percentiles (top 5th percentile, ~800 genes), re-analyzing existing variants on these genes in 460 

addition to reaching out to other groups in a more targeted manner to build disease-gene 461 
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cohorts. Similarly, mantis-ml could also be used to nominate or de-prioritize genes for deeper 462 

functional characterization using model organism or cell-based approaches, as has been done 463 

in the Undiagnosed Disease Network’s Model Organism Screening Center41. Lastly, we also 464 

envision that mantis-ml could be incorporated as gene weights in gene discovery efforts to 465 

improve power. The use of genic intolerance to inform gene priors has already led to a greater 466 

than 20% increase in ASD gene discovery power 7, and mantis-ml's outperformance of LOEUF 467 

across rare variant association studies suggests that it will provide a significant additional boost 468 

in power.  469 

The immediate research and clinical impact of these results are significant. First, based 470 

on our validation testing, the top 1% of predicted genes from each mantis-ml model provide a 471 

high-confidence list of hundreds of likely NDD risk genes for researchers and clinicians across 472 

the NDD spectrum. For example, depending on the model, 30-60% of these genes already have 473 

publications linking them to phenotypes of interest, a substantial enrichment compared to the 474 

rest of the genome. Moreover, the top 1% predicted risk genes are highly enriched compared to 475 

the rest of the genome for statistical associations in recent sequencing studies of ASD, DD, and 476 

DEE. Second, mantis-ml can help clinicians solve molecular diagnoses. Mantis-ml is a highly 477 

accurate NDD risk gene predictor, particularly for genes falling in the top decile of mantis-ml 478 

predictions. If a clinician or researcher is presented with a patient with two candidate variants in 479 

genes in the top and bottom deciles of mantis-ml risk, depending on the model used, they can 480 

have roughly 60-130 times more confidence that the gene in the top decile of risk will be reliably 481 

associated with the phenotype of interest. However, we note that the interpretation of the variant 482 

effect within any given remains an important challenge in clinical interpretation.  483 

 Lastly, while there are several published measures of recessive intolerance 20–22, to our 484 

knowledge, there are no currently available disease-specific risk predictors for recessive 485 

disorders. The discovery of novel recessive disease genes will likely require large sample sizes 486 

or access to consanguineous and founder populations given the rarity of homozygous or 487 

compound heterozygous pathogenic variants. Until then, mantis-ml’s biallelic models 488 

immediately provide a high-confidence assessment of a gene’s probability of being implicated in 489 

recessive forms of epilepsy or developmental delay, helping clinicians and researchers solve 490 

undiagnosed cases and prioritize genes for deeper functional characterization and gene-491 

matching strategies with other clinicians and patient cohorts. Taken together, our mantis-ml 492 

NDD models provide accurate gene risk predictions across the NDD spectrum and illustrate the 493 

importance of considering inheritance patterns in generating machine learning-based gene risk 494 

predictions.    495 
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Methods 496 

Seed Gene List Curation 497 

We used SFARI Tier 1 ASD genes (n=207), the highest confidence ranking, as the basis for our 498 

monoallelic ASD model. We then reviewed each of the Tier 1 genes to ensure that they were 499 

associated with ASD through a monoallelic mechanism and removed genes that had a biallelic 500 

mechanism (e.g., ADSL, ALDH5A1) or weak evidence of association to ASD based on the most 501 

recent large-scale studies of ASD (e.g., KATNAL2). After filtering, we were left with 190 502 

monoallelic ASD seed genes.  503 

For the DD monoallelic and biallelic models, we selected the 832 genes with “Definitive” 504 

confidence and “Brain/Cognition” organ involvement from the Developmental Disorder 505 

Genotype-Phenotype Database (DD2GP). DD2GP provides mechanism-of-inheritance data for 506 

each gene, and we used this information to separate the gene lists into those with monoallelic 507 

(N=218) and biallelic inheritance patterns (N=449). For the DD monoallelic model, we combined 508 

the DD2GP monoallelic genes with 199 genome-wide significant genes from the largest trio 509 

exome sequencing study of DD2, resulting in a total of 417 monoallelic seed genes for DD.  510 

For DEE, we first selected genes from OMIM33 with the specific phenotype of 511 

“Developmental and Epileptic Encephalopathy” and stratified them based on their pattern of 512 

inheritance. We then combined these genes with the list of clinically curated DEE genes from 513 

the most recent Epi25k study of epilepsy,1 stratified by inheritance. Lastly, we added additional 514 

genes from OMIM that had robust evidence for causing epileptic encephalopathy by conducting 515 

an advanced search for “epileptic encephalopathy” and manually curating the strength of the 516 

associated literature. Genes that were associated with epilepsy but not robustly associated with 517 

epileptic encephalopathy were not included as seed genes (e.g., DEPDC5) as we aimed to train 518 

the model on the most severe forms of epilepsy. 519 

 520 

Fetal cortex scRNA-seq analysis 521 

We downloaded single-cell RNA expression data generated from human fetal cortical samples 522 

as described in a prior publication26. The data, which include four samples from an 8-week span 523 

during mid-gestation, consisted of 57,868 single-cell transcriptomes. Using the same cell 524 

identity annotations from the original publication, we calculated the module score for all cells 525 

using Seurat’s AddModuleScore function with the seed gene list for each NDD as the input 526 

feature 27,42. We then Z-score normalized these module scores to evaluate the relative 527 

expression of disease-associated genes between cell clusters. We also calculated the average 528 
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unique molecular identifier (UMI) counts of all genes per cell type per age of tissue. These were 529 

used as features in the machine learning models. 530 

 531 

Fetal cortex scRNA-sequencing models 532 

To demonstrate the baseline power of fetal cortex single-cell RNA-sequencing data as a 533 

predictor of NDD risk genes, we evaluated the performance of a Random Forest model for each 534 

set of curated seed genes. Due to the intrinsic imbalance between the positively labeled and 535 

unlabeled genes, machine learning models can quickly become biased towards the majority 536 

class. Reducing the size of the overrepresented class can help diminish the likelihood of a 537 

model overfitting, providing more accurate predictions. We thus created balanced datasets for 538 

each inheritance-specific phenotype seed gene list consisting of all positively labeled genes and 539 

a random subset of unlabeled genes, with the resulting dataset containing a ratio of positively 540 

labeled to unlabeled genes of 1:1.5. Next, we performed zero imputation and removed highly 541 

correlated features (Pearson’s r > 0.95). We used the scikit-learn library in Python to construct 542 

the Random Forest Model with the default parameters. Using 5-fold cross-validation, we 543 

evaluated the performance of the random forest model for each dataset by calculating the area 544 

under the receiver operater curve. Additionally, we compared the performance of the scRNA-545 

seq expression models to models trained on intolerance metrics, including missense Z, RVIS, 546 

LOEUF, and pREC 10,13,20.  547 

The Boruta algorithm is an iterative feature selection method, using the Random Forest 548 

algorithm during learning, that determines if a feature has a statistically robust predictive power. 549 

Unlike other feature selection methods where features are compared against each other, Boruta 550 

compares each feature against randomized versions of the original feature set called “shadow” 551 

features. Features achieving less significant importance than the “shadow” features are 552 

progressively eliminated. Eventually, a “confirmed” set of features (i.e., features that are 553 

considered predictive) are identified and ranked based on Z-scores representing importance 554 

scores. We employed the Boruta algorithm in R to evaluate the feature importance of our fetal 555 

cortex scRNA-seq data. We repeated this step for each model using the default parameters and 556 

the corresponding balanced dataset with all fetal cortex scRNA-seq features. 557 

 558 

Mantis-ml 559 

The mantis-ml framework has been previously described in detail 25. Briefly, mantis-ml is a 560 

semi-supervised machine learning framework for the prediction of possible novel disease-561 

associated genes. Following its initial setup, disease/phenotype terms of interest provided to 562 
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mantis-ml are used to automatically extract associated known disease genes and relevant 563 

features. In this manuscript, given the relative importance of using high confidence seed genes, 564 

we elected to manually curate our seed genes. Next, mantis-ml annotates all genes in the 565 

genome with several hundred diverse features. The semi-supervised learning method employed 566 

by mantis-ml infers the risk of a gene’s association with a specific phenotype based on the 567 

similarity between the feature signature of the gene and that of the seed genes, as captured by 568 

hundreds or thousands of balanced sets comprising of known and unlabeled genes. Mantis-ml 569 

then generates exome-wide gene-level risk prediction probabilities and their corresponding 570 

percentiles for the phenotype of interest.  571 

We instituted several key improvements to the original mantis-ml framework to improve 572 

performance for NDD risk gene prediction. First, we integrated fetal human cortex scRNA-seq 573 

data containing the average gene expression for each major cell type over four different 574 

developmental stages. We expanded on the previous collection of gene intolerance metrics in 575 

mantis-ml by adding the gene variation intolerance rank (GeVIR)29, which performs well for 576 

smaller genes and missense intolerant genes. We also added GeVIR’s LOEUF-joined 577 

derivative, ViRLoF, which has been shown to outperform LOEUF alone in prioritizing NDD risk 578 

genes. Lastly, we included GeVIR’s fold-enrichment scores for autosomal dominant and 579 

recessive modes of inheritance for each gene. Gene Ontology (GO) terms are a powerful tool 580 

for describing the relationship between a gene/gene product and its functional, molecular, and 581 

spatial properties. The original mantis-ml framework incorporated GO terms by applying a 582 

pattern search using the disease/phenotype input terms and collapsing the number of 583 

associations between a gene and the matched GO terms into a new, one-hot encoded feature 584 

per input term. We now expand the GO feature set by also including the top 20 individual GO 585 

terms that seed genes are most enriched for compared to the rest of the exome (quantified via 586 

Fisher’s exact test), further increasing the strength of the mantis-ml feature set.  587 

We used fixed configuration and classifier parameters for each input seed gene list and 588 

their corresponding disease/phenotype terms of interest, as described in the original mantis-ml 589 

publication (Table S24). Prior to model training and inference, mantis-ml automatically performs 590 

preprocessing and exploratory data analysis (EDA). The initial preprocessing step of mantis-ml 591 

performs feature filtering by calculating Pearson’s correlation coefficient between all features 592 

and dropping those with correlations above a defined threshold. To prevent the removal of 593 

valuable scRNA-seq features due to genes with low or non-existent expression in fetal cortex 594 

tissue, we specified a high correlation threshold of 0.95 (default = 0.8). We retained the default 595 

mantis-ml parameters for the remainder of the preprocessing and EDA steps.  596 
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For the stochastic semi-supervised component of mantis-ml, we utilized the random 597 

forest and extreme gradient boosting (XGBoost) classifiers due to their superior performance in 598 

the original paper. First, mantis-ml generated balanced datasets (M) containing a ratio of 599 

randomly selected positively labeled genes to randomly selected unlabeled genes equal to 600 

1:1.5, with the positively labeled genes containing only 80% of known disease-associated 601 

genes. For each balanced dataset, mantis-ml performed stratified k-fold cross-validation with 602 

out-of-bag prediction using � � 10 folds. After prediction probabilities are generated for the 603 

entire gene space, mantis-ml repeats this process a total of 10 times (�) by creating new 604 

balanced datasets and performing stratified k-fold cross-validation. Finally, mantis-ml generated 605 

a ranked candidate gene list by computing the mean prediction probability and corresponding 606 

percentile score for each gene. 607 

 608 

Validation of mantis-ml using rare variant association study summary statistics 609 

We tested whether top predicted monoallelic mantis-ml risk genes were enriched for genes with 610 

statistical support from recent large-scale sequencing studies. We obtained summary statistics 611 

from the largest and most recently available studies of ASD and DD6 and epileptic 612 

encephalopathy 1. All three of these association studies only included dominant models. Thus, 613 

we tested for enrichment across the three relevant monoallelic mantis-ml models. Using a two-614 

tailed Fisher’s exact test, we calculated the enrichment of the top 5th percentile of mantis-ml 615 

predictions among nominally significant genes (p<0.01) from each of the three association 616 

studies. Fu et al. did not include the X-chromosome in their test, so excluded X-chromosome 617 

genes in the enrichment tests for ASD and DD. We also calculated the enrichment of genes 618 

highly intolerant to loss-of-function variation (LOEF top 5th percentile). Due to potential concerns 619 

of circularity, we repeated these enrichment tests excluding seed genes.  620 

 621 

Validation of mantis-ml with clinically curated gene lists 622 

We downloaded clinically curated gene lists from Simons Foundation Autism Research Initiative 623 

(SFARI) for ASD (download date: 01/18/2022) and DECIPHER’s Developmental Disorder 624 

Genotype – Phenotype Database (DDG2P) for DD (download date: 12/16/2021).  SFARI 625 

currently provides three Tiers of confidence and DDG2P provides five including Definitive (our 626 

seed genes), Strong, Moderate, Limited, and Relevant Disease and Incidental Finding (RD/IF). 627 

For our analysis, we only used Strong and Limited as there were too few genes with Moderate 628 

and RD/IF classifications. We then plotted the distribution of monoallelic ASD mantis-ml 629 

percentiles for Tier 1 (seed genes), Tier 2, and Tier 3 ASD genes and compared them to the 630 
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distribution to the rest of the genes in the exome not included in Tiers 1, 2, and 3. We repeated 631 

the same procedures for the DDG2P “Definitive” (seed genes), “Strong”, and “Limited” evidence 632 

genes, stratified by monoallelic and biallelic inheritance with the distribution of their respective 633 

mantis-ml risk percentiles. 634 

 We then evaluated the degree of enrichment of genes in the top 5th percentile of mantis-635 

ml predictions across each tier / category using a two-tailed Fisher’s exact test. We also 636 

calculated the enrichment for two intolerance metrics: LOEUF and pREC (for biallelic/recessive 637 

lists). For each enrichment test, we compared genes within each tier/category to genes in the 638 

rest of the protein-coding genome that were not contained in any other category.  639 

 640 

Validation of mantis-ml using an automated literature search with AMELIE 641 

Further validation of mantis-ml results was performed using AMELIE (Automatic Mendelian 642 

Literature Evaluation)32. Briefly, AMELIE uses natural language processing to identify 643 

manuscripts from the extant literature with a phenotype match for genes of interest. For each 644 

manuscript with a gene-phenotype match, AMELIE reports a phenotypic match score based on 645 

the strength of the match of the language in the manuscript with the Human Phenotype 646 

Ontology input term. A match of 100% represents a perfect match for a gene and given 647 

phenotype and lower phenotypic match percentiles are given for related descendant 648 

phenotypes in the Human Phenotype Ontology (HPO)43. 649 

For each model, we generated genome-wide AMELIE phenotype match scores in a two-650 

step process. Using the default parameters, we ran AMELIE with the HPO terms HP:0000729 651 

(Autistic Behavior), HP:0001250 (Seizures), and HP:0012759 (Neurodevelopmental 652 

abnormality) for ASD, DEE, and DD, respectively. We repeated this process with the inheritance 653 

mode parameter set to “dominant”. Although AMELIE does not permit the use of “recessive” as 654 

an inheritance mode filter, it assigns both recessive and dominant scores based on the context 655 

of an article. The dominant inheritance mode instructs AMELIE to avoid returning articles for 656 

genes with higher recessive scores. Therefore, we treated the non-union of genes between the 657 

non-specified inheritance and dominant runs as our recessive set of AMELIE scores (Tables 658 

S25-29). For each set of mantis-ml ranked predictions, we annotated genes with their 659 

corresponding phenotypic match score and removed the seed genes from the dataset. We then 660 

used Fisher’s exact test to determine the enrichment of at least one publication with a 100% 661 

phenotypic match score in each mantis-ml decile across all models. We repeated this process 662 

using the most stringent level of evidence that AMELIE allows (five or more publications with 663 
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100% phenotypic match scores) to evaluate mantis-ml’s performance with the highest 664 

confidence gene-phenotype matches.  665 
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