

Genome-wide prediction of dominant and recessive neurodevelopmental disorder risk genes

Ryan S. Dhindsa^{1,2,3,*}, Blake Weido¹, Justin S. Dhindsa², Arya J. Shetty², Chloe Sands², Slavé Petrovski^{4,5}, Dimitrios Vitsios⁴, Anthony W. Zoghbi^{1,3,6,*}

1. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
2. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
3. Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA
4. Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
5. Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
6. Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030

Correspondence: ryan.dhindsa@bcm.edu (R.S.D.), anthony.zoghbi@bcm.edu (A.W.Z.)

21

22 **Abstract**

23 Despite great progress in the identification of neurodevelopmental disorder (NDD) risk genes,
24 there are thousands that remain to be discovered. Computational tools that provide accurate
25 gene-level predictions of NDD risk can significantly reduce the costs and time needed to
26 prioritize and discover novel NDD risk genes. Here, we first demonstrate that machine learning
27 models trained solely on single-cell RNA-sequencing data from the developing human cortex
28 can robustly predict genes implicated in autism spectrum disorder (ASD), developmental and
29 epileptic encephalopathy (DEE), and developmental delay (DD). Strikingly, we find differences
30 in gene expression patterns of genes with monoallelic and biallelic inheritance patterns. We
31 then integrate these expression data with 300 orthogonal features in a semi-supervised
32 machine learning framework (mantis-ml) to train inheritance-specific models for ASD, DEE, and
33 DD. The models have high predictive power (AUCs: 0.84 to 0.95) and top-ranked genes were
34 up to two-fold (monoallelic models) and six-fold (biallelic models) more enriched for high-
35 confidence NDD risk genes than genic intolerance metrics. Across all models, genes in the top
36 decile of predicted risk genes were 60 to 130 times more likely to have publications strongly
37 linking them to the phenotype of interest in PubMed compared to the bottom decile. Collectively,
38 this work provides highly robust novel NDD risk gene predictions that can complement large-
39 scale gene discovery efforts and underscores the importance of incorporating inheritance into
40 gene risk prediction tools (<https://nddgenes.com>).
41

42 **Introduction**

43 Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD),
44 developmental and epileptic encephalopathy (DEE), and developmental delay (DD), are highly
45 heritable. Researchers have made great progress in identifying hundreds of genes associated
46 with these disorders through sequencing studies of trios, families, and case-control cohorts^{1–7}.
47 However, most patients with an NDD still do not receive a genetic diagnosis⁸, in part because
48 there are more NDD-associated genes to discover. In the case of ASD, only 190 of the
49 estimated 1,000 risk genes have been confidently linked to disease⁹, even as cohort sizes have
50 grown to over 20,000 cases⁶. Fully characterizing the genetic architecture of NDDs is crucial to
51 making accurate molecular diagnoses, elucidating disease mechanisms, and developing
52 targeted therapies but will likely require hundreds of thousands of additional sequenced cases².

53 *In silico* approaches can help predict NDD risk genes and accelerate gene discovery.
54 For example, we and others have shown that genes associated with severe early-onset
55 disorders are under strong purifying selection and thus tend to be depleted of nonsynonymous
56 variation in the general population^{10–14}. Genic intolerance metrics, which quantify the degree to
57 which genes are intolerant to functional variation, have become a cornerstone in prioritizing
58 NDD risk genes^{1,2,6,15–19}. However, not all intolerant genes are involved in NDDs, as any gene in
59 which mutations reduce fecundity will be intolerant to variation (e.g., genes involved in fertility).
60 Moreover, although population-level sequencing datasets continue to grow, intolerance metrics
61 still suffer from a lack of power for smaller genes. Finally, perhaps the biggest current limitation
62 is that although these scores can reliably detect purifying selection against variants with
63 monoallelic/dominant inheritance patterns, they struggle to prioritize disease genes with
64 biallelic/recessive modes of inheritance^{20–22}. Moreover, to our knowledge, there are no currently
65 available disease-specific computational risk predictors for recessive disorders.

66 Other commonly used methods for predicting NDD risk genes rely on gene expression
67 networks^{23,24}. However, most of these methods have been based on bulk RNA-sequencing
68 data and thus do not account for potential cell type-specific expression patterns. Here we
69 hypothesized that we could bolster NDD risk gene predictions by integrating genic intolerance,
70 bulk- and single-cell RNA-sequencing data, and other orthogonal datasets in an inheritance-
71 specific manner. First, we assess cell type-specific expression patterns for ASD, DEE, and DD
72 genes stratified by inheritance pattern (i.e., monoallelic vs. biallelic). We then demonstrate that
73 expression patterns alone can predict NDD risk genes but that these predictions significantly
74 improve when used in combination with intolerance metrics. Finally, we use single-cell RNA-
75 sequencing data, intolerance metrics, and hundreds of other gene-level annotations in a semi-

76 supervised machine learning approach (mantis-ml)²⁵ to generate inheritance-specific risk gene
77 predictions for ASD, DEE, and DD. Top risk gene predictions from these models show a striking
78 enrichment for top genes from trio studies and large case-control analyses, expert-curated risk
79 gene lists, and genes enriched for their related phenotype associations in published case
80 reports and case series. We make the scores available through a public browser:
81 <https://nddgenes.com>.

82

83 **Results**

84 **Cell type enrichment of NDD risk genes**

85 We examined the expression patterns of NDD risk genes using a recently published single-cell
86 RNA-sequencing (scRNA-seq) atlas of the developing human cortex²⁶. This dataset contains
87 57,868 cells collected from four human fetal cortical samples spanning 8 weeks during mid-
88 gestation, including post-conception week (PCW) 16, PCW20, PCW21, and PCW24 (**Fig. 1A, B**). There are 23 annotated cell types (**Fig. 1A**), including interneurons from the medial
89 ganglionic eminence (MGE) and central ganglionic eminence (CGE), nine different clusters of
90 cortical excitatory neurons (GluN), precursor cells like radial glia, and other non-neuronal cell
91 types. One of the GluN clusters corresponds to the subplate, a transient cortical structure that
92 contains some of the earliest formed neurons of the cortex (**Table S1**).

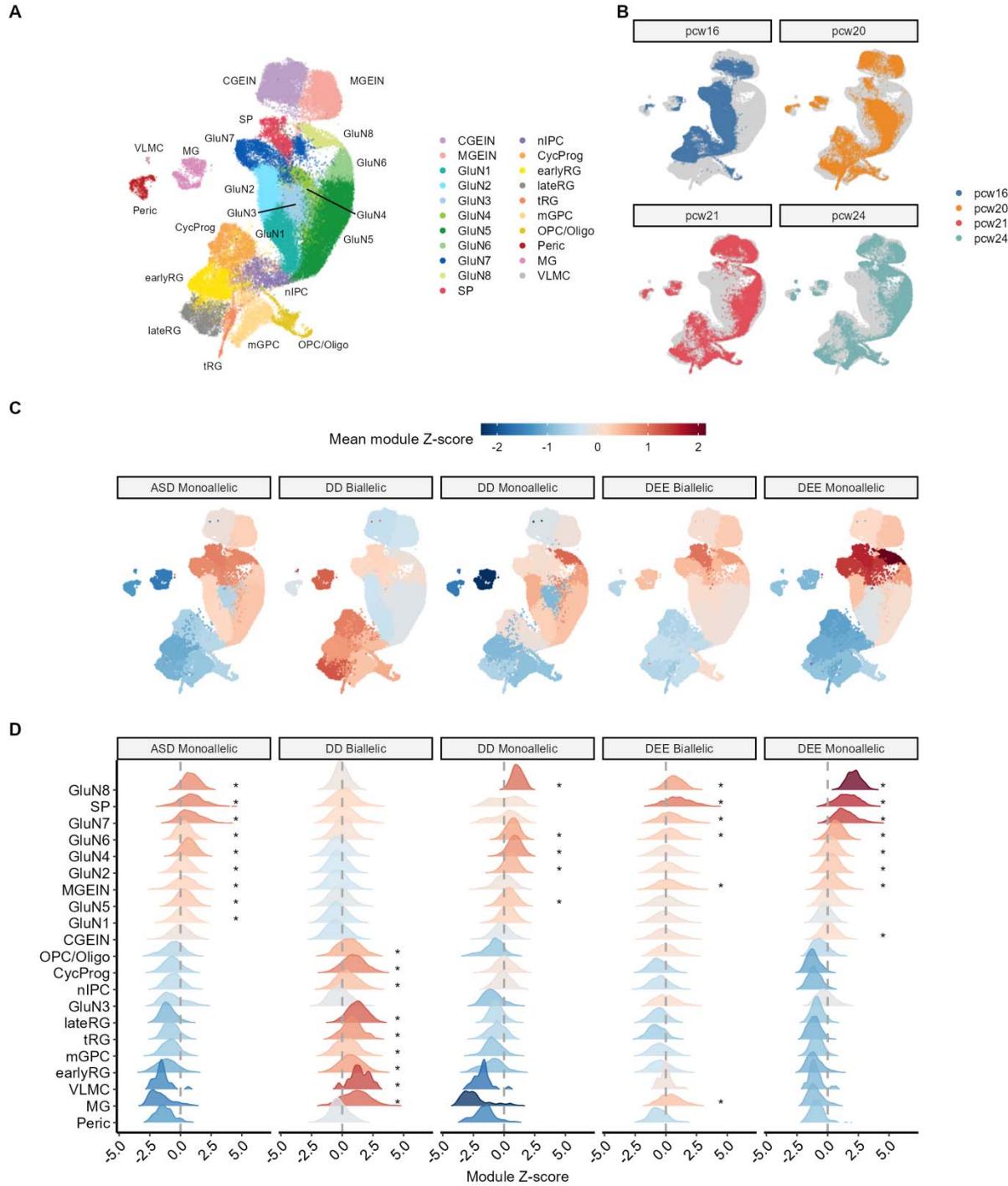
93 To test whether NDD risk genes are preferentially expressed in any of these cell types,
94 we carefully curated genes that have been implicated in ASD, DEE, and DD (Methods). We
95 further annotated these genes as “monoallelic” or “biallelic” depending on the pattern of
96 inheritance of pathogenic mutations in each gene (Methods). In total, we identified 190
97 monoallelic ASD genes, 94 monoallelic DEE genes, and 438 monoallelic DD genes. We also
98 identified 17 biallelic ASD genes, 63 biallelic DEE genes, and 473 biallelic DD genes. We
99 excluded biallelic ASD genes from downstream analyses due to the relatively small size of this
100 gene set.

101 To determine whether each of these gene sets was more highly expressed in any fetal
102 cortical cell type, we computed module Z-scores as previously described (see Methods).²⁷ A
103 positive Z-score indicates that the module of genes is expressed more highly in a particular cell
104 than in the rest of the population. We calculated Mann-Whitney P-values for each cluster by
105 randomly sampling 400 cells from the given cluster and comparing them to 400 random cells
106 outside of that cluster. Monoallelic ASD genes were most significantly enriched in several
107 glutamatergic neuron clusters, particularly those corresponding to more mature neurons
108 (GluN4-8 and subplate) as well as MGE-derived interneurons (**Fig. 1D, Table S2**).

110 Monoallelic DEE genes showed a similar pattern as the ASD monoallelic genes, most
111 strongly enriched in more mature GluN neurons (GluN 6-8), subplate neurons and MGE-derived
112 interneurons. Biallelic DEE genes were enriched for GluN6, GluN7, GluN8, and SP neurons, but
113 were not significantly enriched in MGE interneurons, though we note that we were less powered
114 for this gene set given the smaller sample size compared to monoallelic genes. Monoallelic DD
115 genes were also generally enriched in GluN neurons but were not significantly enriched in SP
116 excitatory neurons or MGE interneurons.

117 Most interestingly, DD biallelic genes showed a strikingly different pattern from DD
118 monoallelic genes and were preferentially expressed in more immature cell types and non-
119 neuronal cells, such as oligodendrocyte precursor cells (OPCs), intermediate progenitor cells
120 (IPCs), early and transitional radial glia (**Fig. 1D**). Altogether, these expression patterns support
121 the notion that monoallelic ASD, DEE, and DD risk genes converge on similar cell types.
122 However, while prior studies have suggested that DD genes are enriched for radial glia ²⁸, we
123 only observe a significant enrichment for biallelic DD genes in this cell type.

124



125

126 **Figure 1. Cell type-specific expression patterns for NDD risk genes.** **(A)** Uniform manifold
 127 approximation projection (UMAP) plot of the human fetal cortex from data generated by Trevino et
 128 al²⁶. Cells colored by cell type. RG = radial glia; CycProg = cycling progenitors; tRG = truncated
 129 radial glia; mGPC = multipotent glial progenitor cell; OPC/Oligo = oligodendrocyte progenitor
 130 cell/oligodendrocyte; nIPC = neuronal intermediate progenitor cell; GluN = glutamatergic neuron;
 131 CGE IN = caudal ganglionic eminence interneuron; MGE IN = medial ganglionic eminence
 132 interneuron; EC = endothelial cell; MG, microglia; Peric. = Pericytes. **(B)** UMAP with cell types
 133 colored by age. **(C)** UMAP colored by module Z-scores for NDD gene sets. **(D)** Distribution of

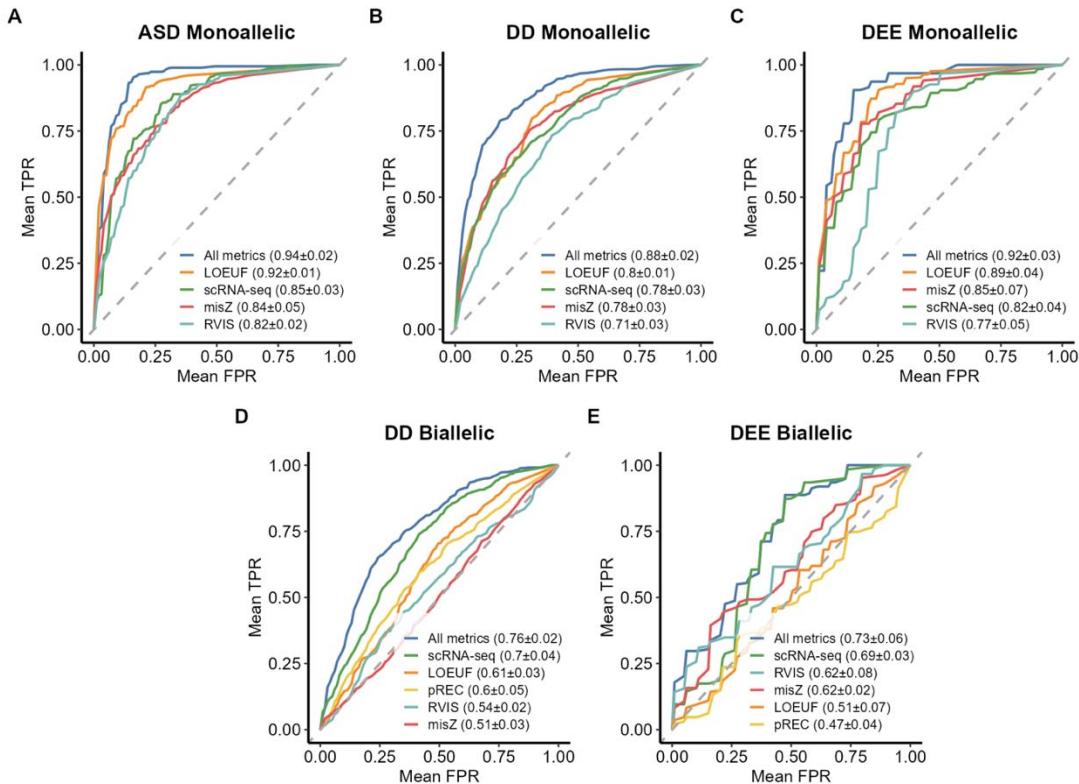
134 module Z-scores for each cell type. Asterisks indicate Bonferroni-corrected Mann-Whitney U p-
135 values < 0.05.

136

137 **Single-cell expression data bolsters NDD risk gene predictions**

138 Motivated by their cell type-specific expression patterns, we hypothesized that we could
139 leverage fetal single-cell RNA-sequencing data to predict NDD risk genes stratified by
140 inheritance pattern. To this end, we trained random forest models using the scRNA-seq data for
141 each of the NDD risk gene sets and compared their performance to models based on
142 conventional intolerance metrics. We trained models for each disease gene list using the risk
143 genes as the positively labeled set and a randomly selected set of genes as the negative set
144 (1.5x the size of the risk gene list). We then compared model performance using five-fold cross-
145 validation.

146 Random forest models trained purely on single-cell expression data could accurately
147 predict NDD risk genes for each gene list (**Fig. 2A-E**). For monoallelic ASD, DD, and DEE, the
148 random forest models achieved an area under the receiving operator curve (AUC) statistic of
149 0.85, 0.82, and 0.78, respectively. The monoallelic scRNA-seq models performed nearly as well
150 as models trained with the loss-of-function observed/expected upper bound fraction (LOEUF)
151 score, one of the most used loss-of-function intolerance metrics²⁰ (**Fig. 2A-C**). Interestingly, for
152 NDD risk genes with biallelic patterns of inheritance, scRNA-seq models outperformed models
153 trained on any of the intolerance metrics (**Fig. 2D-E**). The expression profiles in the cell types
154 with the highest module scores were among the most important features for each model (**Fig.**
155 **S1**).



156

157 **Figure 2. Random forest models including cortical single-cell expression data can predict**
158 **NDD genes.** Mean receiver operating characteristic (ROC) curves (from fivefold cross-validation)
159 depicting the ability of random forest models trained with single-cell RNA-sequencing (scRNA-seq)
160 data, intolerance metrics, or both ("All models") for (A) monoallelic ASD genes, (B) monoallelic DD
161 genes, (C) monoallelic DEE genes, (D) biallelic DD genes, and (E) biallelic DEE genes. TPR: True
162 positive rate, FPR: False positive rate. The numbers in parentheses in each figure legend refer to
163 the mean AUC and the standard deviation across the five folds.

164

165 We next investigated whether the expression-informed models were detecting
166 information orthogonal to intolerance. To assess this, we built random forest models that
167 incorporated both scRNA-seq data and intolerance metrics, including LOEUF, missense Z
168 (misZ), and the residual variation intolerance score (RVIS)¹⁰. We also included the probability of
169 being intolerant to recessive variation (pREC) score, a measure of genic intolerance to biallelic
170 loss-of-function variants, for the biallelic gene sets²⁰. The composite models consistently
171 outperformed all individual models for each NDD subclass, regardless of the inheritance pattern
172 (**Fig. 2**). Collectively, these results suggest that both scRNA-seq data and intolerance provide
173 independent information in detecting NDD risk genes.

174

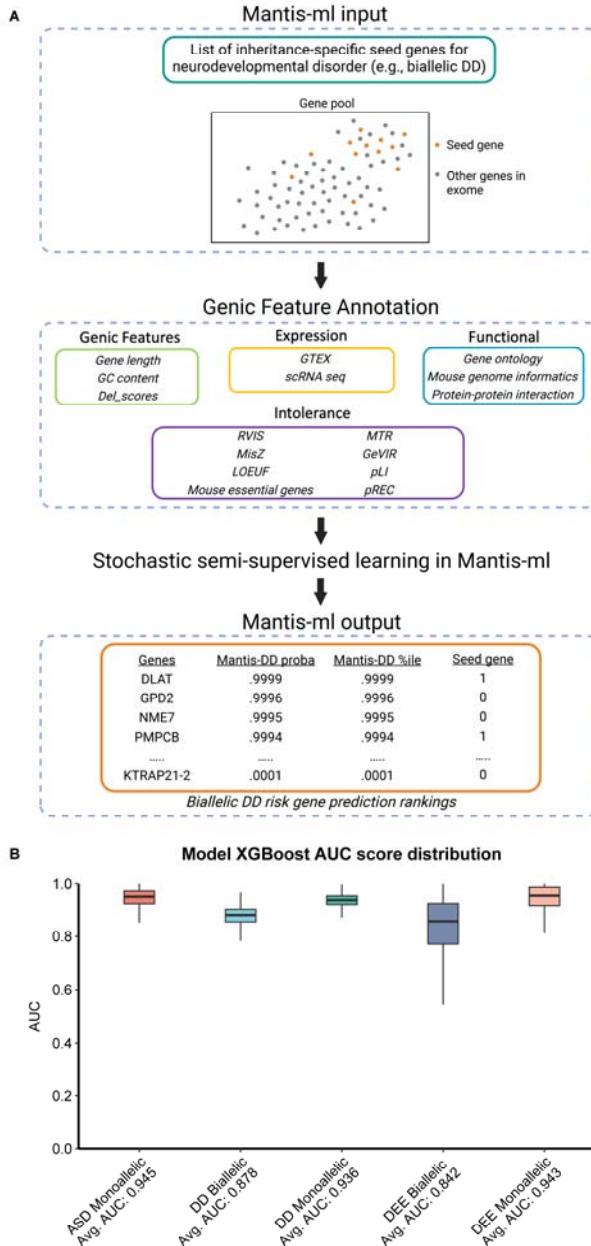
175 **Incorporation of scRNA-seq data in a semi-supervised machine learning model**

176 One major challenge in generating genome-wide disease risk predictions is that although we
177 have a set of known risk genes for each disease, we do not know which are definitively not

178 associated with the disease (i.e., a true negative set). To address this, we previously introduced
179 a stochastic semi-supervised machine learning approach called mantis-ml²⁵. Briefly, mantis-ml
180 takes as input a list of seed genes (the positive set) and then trains machine learning models on
181 random balanced datasets across the protein-coding exome. It then generates final gene
182 rankings by averaging prediction probabilities across all the iterations. Mantis-ml includes
183 several gene-level features, including several intolerance metrics, protein-protein interaction
184 networks, and others.

185 Here, we made several advances to the mantis-ml framework. Foremost, we manually
186 curated highly confident seed gene lists for ASD, DEE, and DD (**Table S3**). Given the
187 differences in intolerance and expression profiles for monoallelic and biallelic gene sets, we
188 trained inheritance-specific models. In addition, we include several new features, including
189 scRNA-seq data and a new intolerance metric, gene variation intolerance rank (GeVIR), which
190 was previously shown to be more sensitive for smaller genes²⁹. Finally, we introduce a gene
191 ontology feature selection strategy, in which we perform enrichment analyses on the seed gene
192 list to determine the gene ontologies to include as features in each model (Methods).

193 We trained separate mantis-ml models for monoallelic ASD, monoallelic DEE,
194 monoallelic DD, biallelic DEE, and biallelic DD. The XGBoost models showed strong predictive
195 power, with average AUCs of 0.95, 0.94, and 0.94 for monoallelic ASD, DEE, and DD and mean
196 AUCs of 0.84 and 0.88 for biallelic DEE and DD, respectively (**Fig. 3B, Tables S4-8**). Random
197 forest models performed comparably, and we defaulted to the XGBoost-derived models for
198 downstream analyses (**Table S9**). Using the Boruta algorithm, we computed feature
199 importances for each XGBoost model (Methods; **Figures S2-4**). Constraint metrics were
200 consistently among the top features for the monoallelic models, whereas expression data and
201 protein-protein interaction data were relatively more important in the biallelic models.



202

203 **Figure 3. Mantis-ml XGBoost classifier performance across five neurodevelopmental**
204 **disorder models. (A)** Schematic of the mantis-ml framework, using biallelic developmental delay
205 (DD) as an example seed gene list. **(B)** Score distribution of XGBoost area under the curves (AUC)
206 across all five neurodevelopmental disorder risk mantis-ml models.

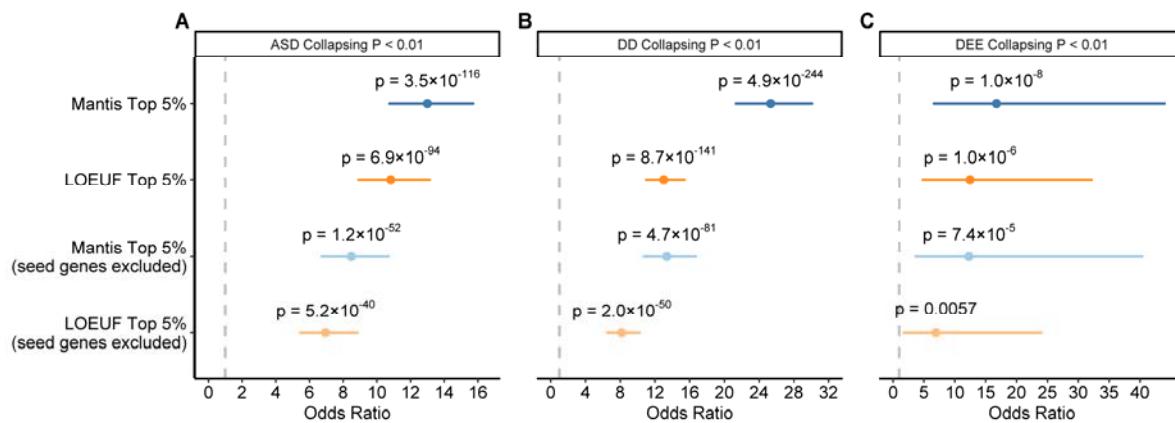
207

208 **Mantis-ml prioritizes top genes from rare variant association studies**

209 We sought to evaluate mantis-ml's ability to prioritize putative novel NDD risk genes using
210 results from recent large-scale exome sequencing studies of ASD, DD, and epilepsy cohorts ^{1,6}
211 (**Tables S11-13**). We thus tested whether top-ranked genes from each mantis-ml model were
212 enriched for nominally significant genes ($p < 0.01$) from these trio and case-control analyses.

213 Across all three dominant models, genes in the top 5th percentile of mantis-ml were highly
214 enriched for genes with nominal evidence of rare variant burden in ASD, DEE, and DD cases (p
215 < 0.01) (ASD OR = 13, 95%CI: [10.7, 15.8], $p = 3.5 \times 10^{-116}$; DD OR = 25.3, 95%CI: [21.2, 30.2],
216 $p = 4.9 \times 10^{-244}$; DEE OR = 16.8, 95%CI: [6.4, 44.2], $p = 1.0 \times 10^{-8}$). These enrichments
217 remained highly significant even after removing seed genes from the evaluation (ASD OR = 8.5,
218 95%CI: [6.7, 10.8], $p = 1.2 \times 10^{-52}$; DD OR = 13.4, 95%CI: [10.6, 16.8], $p = 4.7 \times 10^{-81}$; DEE OR
219 = 12.3, 95%CI: [3.5, 40.5], $p = 7.4 \times 10^{-05}$).

220 We then performed the same enrichment tests using LOEUF instead of mantis-ml. Of
221 note, the ASD and DD exome studies used LOEUF as a gene weight in their burden tests ^{6,7},
222 meaning that top-ranked hits would be skewed for more LOF-intolerant genes. Despite this,
223 nominally significant ($p < 0.01$) genes from the ASD, DD, and DEE studies were less strongly
224 enriched for genes within the top 5% of LOEUF than with mantis-ml (Fig. 4). For example, in the
225 DD study (the best powered of the three studies), top mantis-ml genes (with seed genes
226 removed) had an odds ratio of 13.4 (95%CI: [10.6, 16.8]; $p = 4.7 \times 10^{-81}$) compared to an odds
227 ratio of 8.2 (95%CI: [6.4, 10.4]; $p = 2.0 \times 10^{-50}$) for top-ranked LOEUF genes. This suggests that
228 mantis-ml has nearly twice the ability to prioritize potential novel DD risk genes when compared
229 to LOEUF and represents a significant improvement over the current standard in the field.
230 Finally, we compared the performance of these monoallelic-specific models to mantis-ml models
231 that were trained on seed gene lists that were not stratified by inheritance. The inheritance-
232 informed monoallelic models substantially outperformed the inheritance-agnostic models for
233 both DD and DEE, with 1.6- and 2.8-times larger point estimates, respectively (**Fig. S5, Table**
234 **S14 and S15**).



235

236 **Figure 4. Enrichment of mantis-ml predictions among top genes from rare variant gene-level**
237 **association studies. (A-C)** The enrichment of top mantis-ml predictions ($\geq 95^{\text{th}}$ percentile) and
238 LOF-intolerant genes (measured via LOEUF) among nominally significant ($p < 0.01$) genes in prior

239 gene-level association studies for ASD (n cases = 20,627), DD (n cases = 31,058), and DEE (n
240 cases = 1,021), respectively. Mantis-ml models for each figure represent the monoallelic model for
241 each respective NDD. Error bars represent 95% confidence intervals. P-values calculated via two-
242 tailed Fisher's exact test. Bonferroni-corrected p-value threshold = 0.004 for an alpha of 0.05.

243 **Mantis-ml risk predictions align with the degree of confidence in clinically curated gene
244 lists**

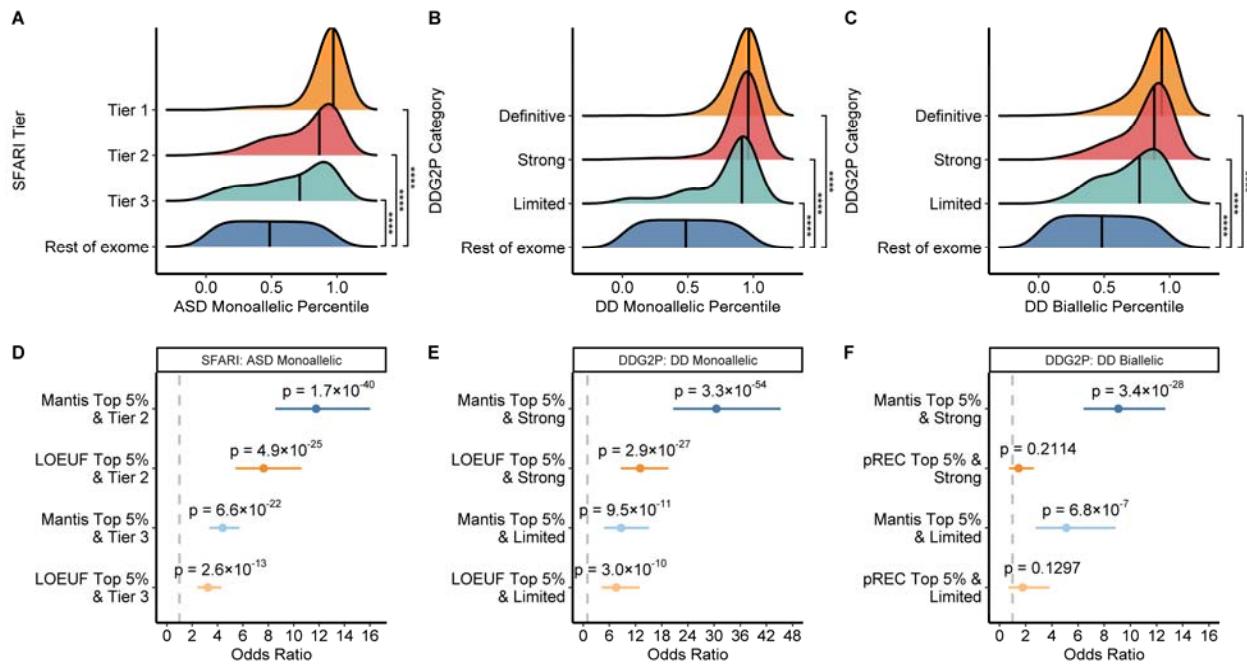
245 We next tested how well the mantis-ml predictions correlated with manually curated NDD risk
246 gene lists, including those from the Simons Foundation Autism Research Initiative (SFARI)
247 database of ASD genes³⁰ and the DECIPHER Developmental Disorder Genotype–Phenotype
248 Database (DDG2P) of DD genes³¹ (**Table S16 and S17**). In both resources, each gene
249 receives a score reflecting the strength of evidence in the published literature of a gene's role in
250 the disease. SFARI ranks genes by Tier, in which Tier 1 includes "high confidence" genes (n =
251 204), Tier 2 includes "strong candidate" genes (n = 208), and Tier 3 includes genes with
252 "suggestive evidence" (n = 493). The DDG2P resource includes "Definitive" (n = 218), "Strong"
253 (n = 156), and "Limited" (n = 63) categories for monoallelic risk genes and "Definitive" (n = 452),
254 "Strong" (n = 202), and "Limited" (n = 98) for biallelic risk genes. Genes from SFARI's Tier 1 and
255 DDG2P's "Definitive" category and a subset of monoallelic genes from DDG2P's "Strong"
256 category (n = 55) were used as seed genes for our models, providing an opportunity to test
257 mantis-ml's performance on the remaining gene lists (e.g., Tier 2/3 and "Strong"/"Limited"),
258 which mostly consist of genes that have emerged from smaller trio- and family-based
259 sequencing studies and functional validation.

260 We found that the distribution of mantis-ml percentiles correlated with the levels of
261 evidentiary support and expert curation for both ASD and DD (**Fig. 5**). As expected, the seed
262 genes had the highest mantis-ml percentiles (**Fig. 5A-C**), which were significantly higher than
263 the remaining genes in the exome (monoallelic ASD MWU p = 3.2×10^{-93} , monoallelic DD MWU
264 p = 1.7×10^{-110} , biallelic DD MWU p = 2.9×10^{-176}). The percentile ranks of Tier 2 SFARI genes
265 and DD2GP "Strong" genes were on average lower than seed genes but significantly higher
266 than the rest of the exome (**Fig. 5A-C**). Likewise, the percentiles of Tier 3 SFARI genes and
267 "Limited" DD genes were still significantly higher than the remaining genes in the exome, but not
268 as enriched as the higher confidence gene sets (**Fig. 5A-C**).

269 We next compared the enrichment of mantis-ml predictions to intolerance metrics for
270 these expert-curated gene lists (**Table S18 and S19**). Consistent with the collapsing analysis
271 enrichment tests, Tier 2 and Tier 3 SFARI genes were more strongly enriched for top-ranked
272 (top 5th percentile) mantis-ml monoallelic ASD genes than the top 5th percentile of LOEUF genes
273 (Tier 2: OR = 11.8, 95% CI: [8.6, 16.0], p = 1.7×10^{-40} , versus OR = 7.6, 95% CI: [5.4, 10.6], p =
274 4.9×10^{-25} ; Tier 3: OR = 4.4, 95% CI: [3.3, 5.7], p = 6.6×10^{-22} versus OR = 3.2, 95% CI: [2.4,

275 4.3], $p = 2.6 \times 10^{-13}$). Likewise, mantis-ml monoallelic DD predictions were more strongly
276 enriched among “Strong” and “Limited” monoallelic DD2GP genes (“Strong”: OR = 30.5, 95%
277 CI: [16.5, 38.2], $p = 6.1 \times 10^{-41}$ versus OR = 13.1, 95% CI: [8.4, 20.2], $p = 3.5 \times 10^{-24}$; “Limited”:
278 OR = 9.9, 95% CI: [5.2, 17.8], $p = 2.4 \times 10^{-10}$, versus OR = 8.1, 95% CI: [4.2, 14.6], $p = 3.6 \times 10^{-9}$).
279 Although the confidence intervals of these enrichments overlapped, the consistently higher
280 point estimates for the top mantis-ml genes suggest that these predictions have a stronger
281 discriminatory ability than LOEUF alone.

282 We observed an even more dramatic difference in enrichments among biallelic DD
283 genes. We compared our biallelic DD mantis-ml predictions to the pREC intolerance score,²⁰
284 which aims to capture the probability a gene is intolerant to homozygous loss-of-function. The
285 top mantis-ml genes (top 5th percentile) were strongly enriched for both “Strong” and “Limited”
286 biallelic DDG2P genes. On the other hand, neither of these gene lists was significantly enriched
287 for genes in the top 5th percentile of pREC (OR = 1.5, 95 CI: [0.7, 2.6], $p = 0.2$ and OR = 1.8,
288 95% CI: [0.7, 3.8], $p = 0.1$, respectively). We compared the performance of the inheritance-
289 stratified models versus the inheritance-agnostic models. For monoallelic DD, the odds ratios of
290 the monoallelic DD models were 1.3-times and 1.08-times larger than for the inheritance-
291 agnostic DD model for the “Strong” and “Limited” gene lists, respectively (**Fig. S6**). Likewise, the
292 odds ratios for the DD-specific models were 1.9- and 1.2-times larger for biallelic “Strong” and
293 “Limited” DD genes, respectively (**Fig. S6**). These results suggest that the biallelic DD mantis-ml
294 model could substantially help in the discovery of biallelic risk genes, whose discovery typically
295 requires access to consanguineous populations or very large sample sizes (**Table S20**).



296

297 **Figure 5. Mantis-ml performance across rare variant association studies and clinically**
298 **curated gene lists.** (A-C) The distribution of mantis-ml risk percentiles among clinically curated
299 gene lists from SFARI and DDG2P compared to the rest of the exome, respectively. ASD and DD
300 seed genes were comprised of inheritance-specific SFARI Tier 1 genes and DDG2P “Definitive”
301 genes, respectively. P-values were calculated via the Mann-Whitney U test. **** indicates
302 Bonferroni-corrected $p < 1 \times 10^{-14}$. (D) Forest plots comparing the magnitude of SFARI Tier 2 and
303 Tier 3 gene enrichment in top 5th percentile monoallelic ASD mantis-ml predictions and LOEUF
304 rankings. (E) Enrichment of DDG2P “Strong” and “Limited” gene categories in the top 5th percentile
305 of monoallelic DD mantis-ml predictions and LOEUF rankings. (F) DDG2P gene enrichment in top
306 5th percentile of biallelic DD mantis-ml predictions and pREC scores. ASD: autism spectrum
307 disorder, DD: developmental delay, SFARI: Simons Foundation Autism Research Initiative,
308 DDG2P: Developmental Disorder Genotype–Phenotype Database.

309

310 **Mantis-ml flags genes in clinically curated databases with limited evidentiary support**

311 The SFARI and DECIPHER DDG2P databases provide clinicians and researchers with broad
312 categories of confidence for a gene’s relevance to ASD and DD, respectively. Genes within
313 each category are considered to have the same level of evidentiary support. We sought to
314 evaluate mantis-ml’s ability to provide a more nuanced and quantitative measure of NDD risk
315 within these broad, manually curated categories. For each evidentiary category (i.e., Tier 2/3 in
316 SFARI and “Strong”/“Limited” in DDG2P), we first separated genes into high ($\geq 90^{\text{th}}$ percentile)
317 and low ($< 50^{\text{th}}$ percentile) mantis-ml risk prediction groups. We removed any monoallelic DD
318 seed genes that were included in the “Strong”/“Limited” categories. There are no ASD seed
319 genes in Tier 2/3. We then used two orthogonal validations to corroborate mantis-ml’s
320 predictions for each gene: publications linking a given gene to either ASD or DD and statistical
321 support (p values) from the largest ASD/DD sequencing study to date⁶. To maximize statistical

322 power, we combined genes from SFARI Tiers 2 and 3 for ASD and DDG2P “Strong”/”Limited”
323 for DD, respectively.

324 We systematically assessed whether mantis-ml predictions correlated with the degree of
325 literature support for each gene in SFARI/DDG2P using Automatic Mendelian Literature
326 Evaluation (AMELIE)³² (**Fig. S7**). AMELIE is a natural language processing tool that searches
327 all of Pubmed for manuscripts that link genes to a phenotype of interest. Importantly, AMELIE
328 can also detect whether there is language in each article that suggests a specific pattern of
329 inheritance, which allowed us to search gene-phenotype relationships in an inheritance-specific
330 manner. For SFARI Tier 2 and 3 genes, we found that 49.3% (108 out of 219) of high mantis-ml
331 risk genes had ≥ 1 publications linking them to ASD compared to 13.4% (24 out of 179) of low
332 mantis-ml risk genes (OR 6.3, 95%CI: [3.7, 10.9], $p = 9.9 \times 10^{-15}$). For the DDG2P
333 “Strong”/”Limited” categories, 69.7% (154 out of 221) of high mantis-ml risk genes had ≥ 1
334 publication linking them to DD compared to 53.4% (31 out of 58) of low mantis-ml risk genes
335 (OR 2.2, 95%CI: [1.2, 4.0], $p = 0.02$).

336 We next assessed statistical human genetics evidence support from the largest and
337 most recent sequencing study of ASD and DD⁶ (**Fig. S8**). For SFARI Tier 2 and 3 genes, we
338 found that 25.1% (52 out of 207) of high-mantis-ml risk genes had nominally significant p-values
339 <0.01 compared to 0% (0 out of 173) of low mantis-ml risk genes (OR Inf, 95%CI: [4.3, Inf], $p =$
340 3×10^{-6}). Similarly, for monoallelic DECIPHER “Strong”/”Limited” categories, 44.6% (45 out of
341 101) of high mantis-ml risk genes vs. 0% (0 out of 15) of low mantis-ml risk genes had p-values
342 <0.01 (OR Inf, 95%CI: [2.7, Inf], $p = 4 \times 10^{-4}$). Of note, X chromosome genes were not included in
343 the p-value analysis as they were not analyzed in the Fu et al. study.

344 These data demonstrate mantis-ml’s ability to flag likely false positive genes that are
345 included in clinically curated databases such as SFARI and DECIPHER. For example, *CDH15*
346 (mantis 46th percentile) is a DDG2P “Limited” gene and currently has an active gene-phenotype
347 listing in Online Mendelian Inheritance in Man (OMIM).³³ However, the evidence for this
348 association is supported only by one publication from 2008 which lists three missense variants
349 that were purported to be associated with severe intellectual disability.³⁴ A curation of these
350 variants reveals that two have been reclassified as Benign in ClinVar and the third is present in
351 18 individuals in the gnomAD database, which is inconsistent with a pathogenic variant for
352 severe intellectual disability. Similarly, *CD96* (mantis 3rd percentile) is a DDG2P “Limited” gene
353 with an active gene-phenotype listing for C Syndrome in OMIM. This association is only
354 supported by one manuscript from 2007 which identified a translocation breakpoint in *CD96* in a patient with
355 C syndrome and a missense mutation (Thr280Met) in *CD96* in a patient with

356 Bohring-Opitz Syndrome.³⁵ However, subsequent papers have largely refuted this association
357 including a balanced translocation disrupting *CD96* without symptoms of C syndrome,³⁶
358 negative mutation screening of *CD96* in C syndrome patients,³⁷ phenotypically normal *Cd96*-/
359 mice,³⁸ and the presence of the Thr280Met missense variant in six individuals in the non-
360 neurologic subset of gnomAD. These are only two of many examples of genes flagged by
361 mantis-ml as being unlikely to be causal for NDDs.

362 Manually curating databases such as SFARI, DECIPHER, and OMIM is a time-
363 consuming process and prone to false positives given the vast amounts of literature and human
364 genetics evidence that needs to be reviewed for thousands of genes. Given that clinicians often
365 look to these databases when assessing the evidence for a gene's involvement in a disease, it
366 is critical to ensure that the genes included in these databases are of high quality. Our data
367 show that mantis-ml can provide an automated, immediate, and inheritance-specific
368 assessment of the evidence for each gene's risk for NDDs that can aid clinicians and
369 researchers who manually curate these databases.

370

371 **Mantis-ml predicts gene-phenotype relationships in published literature**

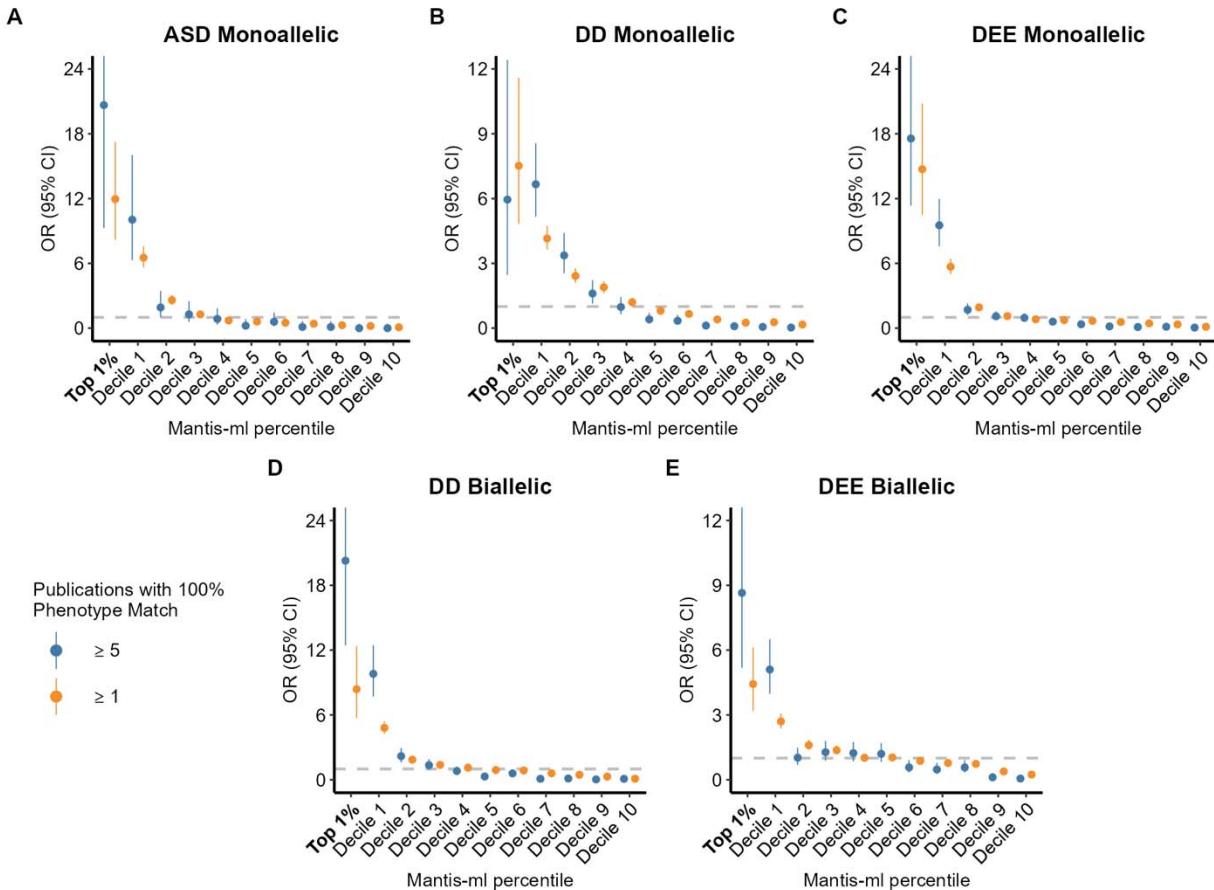
372 Before emerging as significant in large-scale sequencing studies, genes are often initially
373 implicated in disease through case reports with supporting functional work, case series, or
374 family-based studies. Thus, we sought to evaluate the relationship between a gene's predicted
375 mantis-ml risk percentile and the number of publications linked to the phenotype of interest. We
376 used AMELIE to identify the number of publications linking each gene in the genome to our
377 three phenotypes of interest (ASD, DD, DEE) in an inheritance-specific manner.

378 For each mantis-ml model, we removed seed genes and binned the remaining genes
379 into predicted mantis-ml risk deciles. Across all five models, the top mantis-ml deciles were
380 significantly more enriched for genes with at least one publication linking the gene to the
381 phenotype of interest when compared to the rest of the genes in the genome (**Fig. 6, Fig. S9**
382 and **Table S21**). The enrichments were even stronger when we considered the top first
383 percentile (**Fig. 6**). There was a stepwise decrease in the strength of enrichment for each
384 successive decile. We imposed a more stringent AMELIE cutoff in which we tested the
385 enrichment of genes with at least five phenotype-matching PubMed records (the maximum
386 allowed by AMELIE) and observed even stronger enrichments among the top deciles and first
387 percentile for each model (**Fig. 6, Fig. S10**).

388 These results further support the role of mantis-ml in discriminating putative new NDD
389 risk genes. For example, in the mantis-ml biallelic DD model, 8.8% (138/1575) of genes in the

390 top decile have at least five publications linking them to biallelic DD in AMELIE vs. 0.2%
391 (3/1861) of genes in the last decile (OR = 59.4, 95% CI: [19.8, 289.8], $p = 5.0 \times 10^{-44}$). Strikingly,
392 23.7% of genes in the top first percentile of risk have five or more publications linked to biallelic
393 DD. Thus, these top percentile genes are more than 190 times more likely than genes in the
394 bottom decile to have a high confidence association with biallelic DD in the literature (OR =
395 190.3 95%CI: [56.9, 1019.8], $p = 5.4 \times 10^{-32}$). The powerful discriminatory ability of mantis-ml
396 between the top and bottom decile of predictions is consistent across all five disease models
397 and inheritance patterns (ASD monoallelic OR Inf, 95%CI: [11.6, Inf], $p = 1.1 \times 10^{-13}$, DEE
398 monoallelic OR 91.3, 95%CI: [24.8, 752.8], $p = 2.3 \times 10^{-48}$, DEE biallelic OR 59.1, 95%CI: [15.9,
399 494.0], $p = 1.8 \times 10^{-31}$, DD monoallelic OR 138.1, 95%CI: [24.2, 5338.7], $p = 1.9 \times 10^{-36}$) (**Fig. 6**,
400 **Table S22**).

401 Lastly, we used AMELIE (≥ 5 publications) to compare the performance of mantis-ml
402 models trained using inheritance-specific versus inheritance-agnostic seed gene lists for DD
403 and DEE (**Table S23**). The enrichment of top decile mantis-ml hits was 1.4-, 1.3-, 2.5-, and 4.6-
404 times greater for monoallelic DD, monoallelic DEE, biallelic DD, and biallelic DEE, respectively,
405 for the inheritance-informed models (**Fig. S11**). For the biallelic models, these enrichments were
406 even more striking in the top percentile of mantis-ml risk, with odds ratios that were 9.7-times
407 and 21.5-times higher for biallelic DD and biallelic DEE, respectively (**Fig. S11**).



408

409 **Figure 6. Enrichment of genes with 100% phenotype match from the published literature**
410 **stratified by mantis-ml decile.** For each model, we used AMELIE to generate gene-phenotype
411 match scores from the literature for all genes in an inheritance specific manner. AMELIE gene-
412 phenotype match scores range from 0 to 100%. We limited our analysis to 100% gene-phenotype
413 matches from the literature based on the following phenotypes: HP:0000729 (autistic behavior) for
414 ASD, HP:0012759 (neurodevelopmental abnormality) for DD, and HP:0001250 (seizures) for DEE.
415 We then plotted the enrichment of gene-phenotype matches stratified by mantis-ml prediction
416 deciles (and top 1st percentile) with ≥ 1 matching publications in orange and ≥ 5 in blue. P-values
417 for these comparisons are available in Tables S21 and S22.

418

419 **Discussion**

420 While there has been great progress in identifying hundreds of genes associated with
421 neurodevelopmental disorders, there remain thousands of additional risk genes to be identified.
422 Sequencing studies will require hundreds of thousands of additional participants to fully resolve
423 the genetic architecture of neurodevelopmental disorders². Here, we used the mantis-ml semi-
424 supervised machine-learning framework to provide dominant and recessive gene risk
425 predictions across the spectrum of neurodevelopmental disorders. We conducted multiple
426 orthogonal validations of mantis-ml that demonstrate its ability to prioritize both monoallelic and
427 biallelic risk genes for neurodevelopmental disorders.

428 Our results suggest that the monoallelic ASD, DD, and DEE models outperform
429 intolerance metrics alone in prioritizing the top results from NDD rare variant association
430 studies. While intolerance metrics such as LOEUF, RVIS, and others have proven extremely
431 useful in prioritizing risk genes, they are not specific to any disease. Mantis-ml leverages
432 multiple measures of genic intolerance, bulk, and single-cell RNAseq data, protein-protein
433 interaction networks, and gene ontology annotations tailored to the specific disorder and
434 inheritance pattern of interest. We also showed that mantis-ml predictions aligned with experts'
435 degree of confidence in risk genes included in curated gene lists available through SFARI and
436 DDG2P. However, mantis-ml also flagged several genes in the SFARI and DDG2P databases
437 as having a low likelihood of being risk genes for ASD or DD. We showed that SFARI/DDG2P
438 genes with low mantis-ml risk percentiles (<50th percentile) for ASD/DD have significantly fewer
439 publications and weaker human genetics supporting evidence from the largest ASD/DD
440 sequencing studies, suggesting that they are unlikely to be true risk genes. These results
441 suggest that mantis-ml predictions can help geneticists further prioritize disease genes in
442 clinically curated lists and that one should reconsider the evidence for those with very low
443 mantis-ml predictions. To this point, *KATNAL2*, currently a Tier 1 SFARI gene (the highest
444 confidence), was predicted by the monoallelic ASD model to have only a 2.9% chance of being
445 an ASD risk gene, despite being used as a seed gene in our original analysis. Indeed, a recent
446 re-curation of the evidence for *KATNAL2* as a risk gene suggests that it is unlikely to contribute
447 to autism risk through haploinsufficiency and it is no longer statistically significant in the most
448 recent and largest ASD sequencing study^{6,39}.

449 We foresee several clinical applications for mantis-ml. First, mantis-ml can be used in
450 conjunction with genomic or functional evidence to accelerate gene discovery. For example,
451 mantis-ml can provide orthogonal evidence to prioritize genes with strong human genetics
452 evidence that do not yet meet genome-wide significance in association studies. Second, we
453 have shown that mantis-ml can also substantially improve the reliability and confidence of
454 manually curated disease-gene databases such as SFARI and DDG2P by flagging likely false
455 positive genes. Third, mantis-ml can help clinicians and researchers prioritize which genes to
456 build novel clinical disease-gene cohorts. Often, clinicians and researchers may encounter one
457 or two patients with rare deleterious variants in a gene and submit these genes to tools such as
458 GeneMatcher⁴⁰ to determine if other groups have seen variants linked to similar phenotypes in
459 the same gene. Researchers could focus their efforts on genes with very high mantis-ml
460 percentiles (top 5th percentile, ~800 genes), re-analyzing existing variants on these genes in
461 addition to reaching out to other groups in a more targeted manner to build disease-gene

462 cohorts. Similarly, mantis-ml could also be used to nominate or de-prioritize genes for deeper
463 functional characterization using model organism or cell-based approaches, as has been done
464 in the Undiagnosed Disease Network's Model Organism Screening Center⁴¹. Lastly, we also
465 envision that mantis-ml could be incorporated as gene weights in gene discovery efforts to
466 improve power. The use of genic intolerance to inform gene priors has already led to a greater
467 than 20% increase in ASD gene discovery power⁷, and mantis-ml's outperformance of LOEUF
468 across rare variant association studies suggests that it will provide a significant additional boost
469 in power.

470 The immediate research and clinical impact of these results are significant. First, based
471 on our validation testing, the top 1% of predicted genes from each mantis-ml model provide a
472 high-confidence list of hundreds of likely NDD risk genes for researchers and clinicians across
473 the NDD spectrum. For example, depending on the model, 30-60% of these genes already have
474 publications linking them to phenotypes of interest, a substantial enrichment compared to the
475 rest of the genome. Moreover, the top 1% predicted risk genes are highly enriched compared to
476 the rest of the genome for statistical associations in recent sequencing studies of ASD, DD, and
477 DEE. Second, mantis-ml can help clinicians solve molecular diagnoses. Mantis-ml is a highly
478 accurate NDD risk gene predictor, particularly for genes falling in the top decile of mantis-ml
479 predictions. If a clinician or researcher is presented with a patient with two candidate variants in
480 genes in the top and bottom deciles of mantis-ml risk, depending on the model used, they can
481 have roughly 60-130 times more confidence that the gene in the top decile of risk will be reliably
482 associated with the phenotype of interest. However, we note that the interpretation of the variant
483 effect within any given remains an important challenge in clinical interpretation.

484 Lastly, while there are several published measures of recessive intolerance²⁰⁻²², to our
485 knowledge, there are no currently available disease-specific risk predictors for recessive
486 disorders. The discovery of novel recessive disease genes will likely require large sample sizes
487 or access to consanguineous and founder populations given the rarity of homozygous or
488 compound heterozygous pathogenic variants. Until then, mantis-ml's biallelic models
489 immediately provide a high-confidence assessment of a gene's probability of being implicated in
490 recessive forms of epilepsy or developmental delay, helping clinicians and researchers solve
491 undiagnosed cases and prioritize genes for deeper functional characterization and gene-
492 matching strategies with other clinicians and patient cohorts. Taken together, our mantis-ml
493 NDD models provide accurate gene risk predictions across the NDD spectrum and illustrate the
494 importance of considering inheritance patterns in generating machine learning-based gene risk
495 predictions.

496 **Methods**

497 **Seed Gene List Curation**

498 We used SFARI Tier 1 ASD genes (n=207), the highest confidence ranking, as the basis for our
499 monoallelic ASD model. We then reviewed each of the Tier 1 genes to ensure that they were
500 associated with ASD through a monoallelic mechanism and removed genes that had a biallelic
501 mechanism (e.g., *ADSL*, *ALDH5A1*) or weak evidence of association to ASD based on the most
502 recent large-scale studies of ASD (e.g., *KATNAL2*). After filtering, we were left with 190
503 monoallelic ASD seed genes.

504 For the DD monoallelic and biallelic models, we selected the 832 genes with “Definitive”
505 confidence and “Brain/Cognition” organ involvement from the Developmental Disorder
506 Genotype-Phenotype Database (DD2GP). DD2GP provides mechanism-of-inheritance data for
507 each gene, and we used this information to separate the gene lists into those with monoallelic
508 (N=218) and biallelic inheritance patterns (N=449). For the DD monoallelic model, we combined
509 the DD2GP monoallelic genes with 199 genome-wide significant genes from the largest trio
510 exome sequencing study of DD², resulting in a total of 417 monoallelic seed genes for DD.

511 For DEE, we first selected genes from OMIM³³ with the specific phenotype of
512 “Developmental and Epileptic Encephalopathy” and stratified them based on their pattern of
513 inheritance. We then combined these genes with the list of clinically curated DEE genes from
514 the most recent Epi25k study of epilepsy,¹ stratified by inheritance. Lastly, we added additional
515 genes from OMIM that had robust evidence for causing epileptic encephalopathy by conducting
516 an advanced search for “epileptic encephalopathy” and manually curating the strength of the
517 associated literature. Genes that were associated with epilepsy but not robustly associated with
518 epileptic encephalopathy were not included as seed genes (e.g., *DEPDC5*) as we aimed to train
519 the model on the most severe forms of epilepsy.

520

521 **Fetal cortex scRNA-seq analysis**

522 We downloaded single-cell RNA expression data generated from human fetal cortical samples
523 as described in a prior publication²⁶. The data, which include four samples from an 8-week span
524 during mid-gestation, consisted of 57,868 single-cell transcriptomes. Using the same cell
525 identity annotations from the original publication, we calculated the module score for all cells
526 using Seurat’s AddModuleScore function with the seed gene list for each NDD as the input
527 feature^{27,42}. We then Z-score normalized these module scores to evaluate the relative
528 expression of disease-associated genes between cell clusters. We also calculated the average

529 unique molecular identifier (UMI) counts of all genes per cell type per age of tissue. These were
530 used as features in the machine learning models.

531

532 **Fetal cortex scRNA-sequencing models**

533 To demonstrate the baseline power of fetal cortex single-cell RNA-sequencing data as a
534 predictor of NDD risk genes, we evaluated the performance of a Random Forest model for each
535 set of curated seed genes. Due to the intrinsic imbalance between the positively labeled and
536 unlabeled genes, machine learning models can quickly become biased towards the majority
537 class. Reducing the size of the overrepresented class can help diminish the likelihood of a
538 model overfitting, providing more accurate predictions. We thus created balanced datasets for
539 each inheritance-specific phenotype seed gene list consisting of all positively labeled genes and
540 a random subset of unlabeled genes, with the resulting dataset containing a ratio of positively
541 labeled to unlabeled genes of 1:1.5. Next, we performed zero imputation and removed highly
542 correlated features (Pearson's $r > 0.95$). We used the scikit-learn library in Python to construct
543 the Random Forest Model with the default parameters. Using 5-fold cross-validation, we
544 evaluated the performance of the random forest model for each dataset by calculating the area
545 under the receiver operator curve. Additionally, we compared the performance of the scRNA-
546 seq expression models to models trained on intolerance metrics, including missense Z, RVIS,
547 LOEUF, and pREC^{10,13,20}.

548 The Boruta algorithm is an iterative feature selection method, using the Random Forest
549 algorithm during learning, that determines if a feature has a statistically robust predictive power.
550 Unlike other feature selection methods where features are compared against each other, Boruta
551 compares each feature against randomized versions of the original feature set called "shadow"
552 features. Features achieving less significant importance than the "shadow" features are
553 progressively eliminated. Eventually, a "confirmed" set of features (i.e., features that are
554 considered predictive) are identified and ranked based on Z-scores representing importance
555 scores. We employed the Boruta algorithm in R to evaluate the feature importance of our fetal
556 cortex scRNA-seq data. We repeated this step for each model using the default parameters and
557 the corresponding balanced dataset with all fetal cortex scRNA-seq features.

558

559 **Mantis-ml**

560 The mantis-ml framework has been previously described in detail²⁵. Briefly, mantis-ml is a
561 semi-supervised machine learning framework for the prediction of possible novel disease-
562 associated genes. Following its initial setup, disease/phenotype terms of interest provided to

563 mantis-ml are used to automatically extract associated known disease genes and relevant
564 features. In this manuscript, given the relative importance of using high confidence seed genes,
565 we elected to manually curate our seed genes. Next, mantis-ml annotates all genes in the
566 genome with several hundred diverse features. The semi-supervised learning method employed
567 by mantis-ml infers the risk of a gene's association with a specific phenotype based on the
568 similarity between the feature signature of the gene and that of the seed genes, as captured by
569 hundreds or thousands of balanced sets comprising of known and unlabeled genes. Mantis-ml
570 then generates exome-wide gene-level risk prediction probabilities and their corresponding
571 percentiles for the phenotype of interest.

572 We instituted several key improvements to the original mantis-ml framework to improve
573 performance for NDD risk gene prediction. First, we integrated fetal human cortex scRNA-seq
574 data containing the average gene expression for each major cell type over four different
575 developmental stages. We expanded on the previous collection of gene intolerance metrics in
576 mantis-ml by adding the gene variation intolerance rank (GeVIR)²⁹, which performs well for
577 smaller genes and missense intolerant genes. We also added GeVIR's LOEUF-joined
578 derivative, ViRLoF, which has been shown to outperform LOEUF alone in prioritizing NDD risk
579 genes. Lastly, we included GeVIR's fold-enrichment scores for autosomal dominant and
580 recessive modes of inheritance for each gene. Gene Ontology (GO) terms are a powerful tool
581 for describing the relationship between a gene/gene product and its functional, molecular, and
582 spatial properties. The original mantis-ml framework incorporated GO terms by applying a
583 pattern search using the disease/phenotype input terms and collapsing the number of
584 associations between a gene and the matched GO terms into a new, one-hot encoded feature
585 per input term. We now expand the GO feature set by also including the top 20 individual GO
586 terms that seed genes are most enriched for compared to the rest of the exome (quantified via
587 Fisher's exact test), further increasing the strength of the mantis-ml feature set.

588 We used fixed configuration and classifier parameters for each input seed gene list and
589 their corresponding disease/phenotype terms of interest, as described in the original mantis-ml
590 publication (**Table S24**). Prior to model training and inference, mantis-ml automatically performs
591 preprocessing and exploratory data analysis (EDA). The initial preprocessing step of mantis-ml
592 performs feature filtering by calculating Pearson's correlation coefficient between all features
593 and dropping those with correlations above a defined threshold. To prevent the removal of
594 valuable scRNA-seq features due to genes with low or non-existent expression in fetal cortex
595 tissue, we specified a high correlation threshold of 0.95 (default = 0.8). We retained the default
596 mantis-ml parameters for the remainder of the preprocessing and EDA steps.

597 For the stochastic semi-supervised component of mantis-ml, we utilized the random
598 forest and extreme gradient boosting (XGBoost) classifiers due to their superior performance in
599 the original paper. First, mantis-ml generated balanced datasets (M) containing a ratio of
600 randomly selected positively labeled genes to randomly selected unlabeled genes equal to
601 1:1.5, with the positively labeled genes containing only 80% of known disease-associated
602 genes. For each balanced dataset, mantis-ml performed stratified k -fold cross-validation with
603 out-of-bag prediction using $k = 10$ folds. After prediction probabilities are generated for the
604 entire gene space, mantis-ml repeats this process a total of 10 times (L) by creating new
605 balanced datasets and performing stratified k -fold cross-validation. Finally, mantis-ml generated
606 a ranked candidate gene list by computing the mean prediction probability and corresponding
607 percentile score for each gene.

608

609 **Validation of mantis-ml using rare variant association study summary statistics**

610 We tested whether top predicted monoallelic mantis-ml risk genes were enriched for genes with
611 statistical support from recent large-scale sequencing studies. We obtained summary statistics
612 from the largest and most recently available studies of ASD and DD⁶ and epileptic
613 encephalopathy¹. All three of these association studies only included dominant models. Thus,
614 we tested for enrichment across the three relevant monoallelic mantis-ml models. Using a two-
615 tailed Fisher's exact test, we calculated the enrichment of the top 5th percentile of mantis-ml
616 predictions among nominally significant genes ($p < 0.01$) from each of the three association
617 studies. Fu et al. did not include the X-chromosome in their test, so excluded X-chromosome
618 genes in the enrichment tests for ASD and DD. We also calculated the enrichment of genes
619 highly intolerant to loss-of-function variation (LOEF top 5th percentile). Due to potential concerns
620 of circularity, we repeated these enrichment tests excluding seed genes.

621

622 **Validation of mantis-ml with clinically curated gene lists**

623 We downloaded clinically curated gene lists from Simons Foundation Autism Research Initiative
624 (SFARI) for ASD (download date: 01/18/2022) and DECIPHER's Developmental Disorder
625 Genotype – Phenotype Database (DDG2P) for DD (download date: 12/16/2021). SFARI
626 currently provides three Tiers of confidence and DDG2P provides five including Definitive (our
627 seed genes), Strong, Moderate, Limited, and Relevant Disease and Incidental Finding (RD/IF).
628 For our analysis, we only used Strong and Limited as there were too few genes with Moderate
629 and RD/IF classifications. We then plotted the distribution of monoallelic ASD mantis-ml
630 percentiles for Tier 1 (seed genes), Tier 2, and Tier 3 ASD genes and compared them to the

631 distribution to the rest of the genes in the exome not included in Tiers 1, 2, and 3. We repeated
632 the same procedures for the DDG2P “Definitive” (seed genes), “Strong”, and “Limited” evidence
633 genes, stratified by monoallelic and biallelic inheritance with the distribution of their respective
634 mantis-ml risk percentiles.

635 We then evaluated the degree of enrichment of genes in the top 5th percentile of mantis-
636 ml predictions across each tier / category using a two-tailed Fisher’s exact test. We also
637 calculated the enrichment for two intolerance metrics: LOEUF and pREC (for biallelic/recessive
638 lists). For each enrichment test, we compared genes within each tier/category to genes in the
639 rest of the protein-coding genome that were not contained in any other category.

640

641 **Validation of mantis-ml using an automated literature search with AMELIE**

642 Further validation of mantis-ml results was performed using AMELIE (Automatic Mendelian
643 Literature Evaluation)³². Briefly, AMELIE uses natural language processing to identify
644 manuscripts from the extant literature with a phenotype match for genes of interest. For each
645 manuscript with a gene-phenotype match, AMELIE reports a phenotypic match score based on
646 the strength of the match of the language in the manuscript with the Human Phenotype
647 Ontology input term. A match of 100% represents a perfect match for a gene and given
648 phenotype and lower phenotypic match percentiles are given for related descendant
649 phenotypes in the Human Phenotype Ontology (HPO)⁴³.

650 For each model, we generated genome-wide AMELIE phenotype match scores in a two-
651 step process. Using the default parameters, we ran AMELIE with the HPO terms HP:0000729
652 (Autistic Behavior), HP:0001250 (Seizures), and HP:0012759 (Neurodevelopmental
653 abnormality) for ASD, DEE, and DD, respectively. We repeated this process with the inheritance
654 mode parameter set to “dominant”. Although AMELIE does not permit the use of “recessive” as
655 an inheritance mode filter, it assigns both recessive and dominant scores based on the context
656 of an article. The dominant inheritance mode instructs AMELIE to avoid returning articles for
657 genes with higher recessive scores. Therefore, we treated the non-union of genes between the
658 non-specified inheritance and dominant runs as our recessive set of AMELIE scores (**Tables**
659 **S25-29**). For each set of mantis-ml ranked predictions, we annotated genes with their
660 corresponding phenotypic match score and removed the seed genes from the dataset. We then
661 used Fisher’s exact test to determine the enrichment of at least one publication with a 100%
662 phenotypic match score in each mantis-ml decile across all models. We repeated this process
663 using the most stringent level of evidence that AMELIE allows (five or more publications with

664 100% phenotypic match scores) to evaluate mantis-ml's performance with the highest
665 confidence gene-phenotype matches.

666

667 **Acknowledgments**

668 We thank Dr. Huda Zoghbi for useful discussions and valuable feedback. This work was
669 supported by grant NIH NINDS F32 NS127854 (R.S.D.) and K23MH121669 (A.W.Z.).

670

671 **Data Availability**

672 The mantis-ml predictions for all five NDD models are available as supplementary files and
673 through a publicly available browser: <https://nndgenes.com>.

674

675 **Code Availability**

676 The mantis-ml code is available on GitHub (<https://github.com/astrazeneca-cgr-publications/mantis-ml-release>).

677

678 **Declaration of Interests**

679 R.S.D., S.P., D.V., and A.W.Z. are current employees and/or stockholders of AstraZeneca.
680 B.W., J.S.D., A.J.S., and C.S. declare no competing interests.

681

682

683 **References**

684 1. Feng, Y.-C. A. *et al.* Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome
685 Sequencing Study of 17,606 Individuals. *The American Journal of Human Genetics* **105**,
686 267–282 (2019).

687 2. Kaplanis, J. *et al.* Evidence for 28 genetic disorders discovered by combining healthcare
688 and research data. *Nature* **586**, 757–762 (2020).

689 3. McRae, J. F. *et al.* Prevalence and architecture of de novo mutations in developmental
690 disorders. *Nature* **542**, 433–438 (2017).

691 4. Motelow, J. E. *et al.* Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome
692 sequencing study of 29,165 individuals. *The American Journal of Human Genetics* **108**,
693 965–982 (2021).

694 5. Allen, A. S. *et al.* De novo mutations in epileptic encephalopathies. *Nature* **501**, 217–221
695 (2013).

696 6. Fu, J. M. *et al.* *Rare coding variation illuminates the allelic architecture, risk genes, cellular*
697 *expression patterns, and phenotypic context of autism.*
698 <http://medrxiv.org/lookup/doi/10.1101/2021.12.20.21267194> (2021)
699 doi:10.1101/2021.12.20.21267194.

700 7. Satterstrom, F. K. *et al.* Large-Scale Exome Sequencing Study Implicates Both
701 Developmental and Functional Changes in the Neurobiology of Autism. *Cell* **180**, 568–
702 584.e23 (2020).

703 8. Srivastava, S. *et al.* Meta-analysis and multidisciplinary consensus statement: exome
704 sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental
705 disorders. *Genet Med* **21**, 2413–2421 (2019).

706 9. Iossifov, I. *et al.* The contribution of de novo coding mutations to autism spectrum disorder.
707 *Nature* **515**, 216–221 (2014).

708 10. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic Intolerance to
709 Functional Variation and the Interpretation of Personal Genomes. *PLoS Genet* **9**, e1003709
710 (2013).

711 11. Dhindsa, R. S., Copeland, B. R., Mustoe, A. M. & Goldstein, D. B. Natural Selection Shapes
712 Codon Usage in the Human Genome. *The American Journal of Human Genetics* **107**, 83–
713 95 (2020).

714 12. Traynelis, J. *et al.* Optimizing genomic medicine in epilepsy through a gene-customized
715 approach to missense variant interpretation. *Genome Res* **27**, 1715–1729 (2017).

716 13. Samocha, K. E. *et al.* A framework for the interpretation of de novo mutation in human
717 disease. *Nat Genet* **46**, 944–950 (2014).

718 14. Vitsios, D., Dhindsa, R. S., Middleton, L., Gussow, A. B. & Petrovski, S. Prioritizing non-
719 coding regions based on human genomic constraint and sequence context with deep
720 learning. *Nat Commun* **12**, 1504 (2021).

721 15. Palmer, D. S. *et al.* Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene
722 shared with schizophrenia. *Nat Genet* **54**, 541–547 (2022).

723 16. Singh, T. *et al.* Rare coding variants in ten genes confer substantial risk for schizophrenia.
724 *Nature* **604**, 509–516 (2022).

725 17. Zoghbi, A. W. *et al.* High-impact rare genetic variants in severe schizophrenia. *Proc Natl
726 Acad Sci USA* **118**, e2112560118 (2021).

727 18. Halvorsen, M. *et al.* Exome sequencing in obsessive-compulsive disorder reveals a burden
728 of rare damaging coding variants. *Nat Neurosci* **24**, 1071–1076 (2021).

729 19. iPSYCH-Broad Consortium *et al.* Autism spectrum disorder and attention deficit
730 hyperactivity disorder have a similar burden of rare protein-truncating variants. *Nat Neurosci*
731 **22**, 1961–1965 (2019).

732 20. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in
733 141,456 humans. *Nature* **581**, 434–443 (2020).

734 21. Balick, D. J., Jordan, D. M., Sunyaev, S. & Do, R. Overcoming constraints on the detection
735 of recessive selection in human genes from population frequency data. *The American
736 Journal of Human Genetics* **109**, 33–49 (2022).

737 22. Hsu, J. S. *et al.* Inheritance-mode specific pathogenicity prioritization (ISPP) for human
738 protein coding genes. *Bioinformatics* **32**, 3065–3071 (2016).

739 23. Krishnan, A. *et al.* Genome-wide prediction and functional characterization of the genetic
740 basis of autism spectrum disorder. *Nat Neurosci* **19**, 1454–1462 (2016).

741 24. Liu, L. *et al.* DAWN: a framework to identify autism genes and subnetworks using gene
742 expression and genetics. *Molecular Autism* **5**, 22 (2014).

743 25. Vitsios, D. & Petrovski, S. Mantis-ml: Disease-Agnostic Gene Prioritization from High-
744 Throughput Genomic Screens by Stochastic Semi-supervised Learning. *The American
745 Journal of Human Genetics* **106**, 659–678 (2020).

746 26. Trevino, A. E. *et al.* Chromatin and gene-regulatory dynamics of the developing human
747 cerebral cortex at single-cell resolution. *Cell* **184**, 5053-5069.e23 (2021).

748 27. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell
749 RNA-seq. *Science* **352**, 189–196 (2016).

750 28. Polioudakis, D. *et al.* A Single-Cell Transcriptomic Atlas of Human Neocortical Development
751 during Mid-gestation. *Neuron* **103**, 785-801.e8 (2019).

752 29. Abramovs, N., Brass, A. & Tassabehji, M. GeVIR is a continuous gene-level metric that
753 uses variant distribution patterns to prioritize disease candidate genes. *Nat Genet* **52**, 35–39
754 (2020).

755 30. Abrahams, B. S. *et al.* SFARI Gene 2.0: a community-driven knowledgebase for the autism
756 spectrum disorders (ASDs). *Molecular Autism* **4**, 36 (2013).

757 31. Bragin, E. *et al.* DECIPHER: database for the interpretation of phenotype-linked plausibly
758 pathogenic sequence and copy-number variation. *Nucl. Acids Res.* **42**, D993–D1000
759 (2014).

760 32. Birgmeier, J. *et al.* AMELIE speeds Mendelian diagnosis by matching patient phenotype and
761 genotype to primary literature. *Sci. Transl. Med.* **12**, eaau9113 (2020).

762 33. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online
763 Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic
764 disorders. *Nucleic acids research* **33**, D514–D517 (2005).

765 34. Bhalla, K. *et al.* Alterations in CDH15 and KIRREL3 in patients with mild to severe
766 intellectual disability. *Am J Hum Genet* **83**, 703–713 (2008).

767 35. Kaname, T. *et al.* Mutations in CD96, a member of the immunoglobulin superfamily, cause a
768 form of the C (Opitz trigonocephaly) syndrome. *Am J Hum Genet* **81**, 835–841 (2007).

769 36. Darlow, J. M., McKay, L., Dobson, M. G., Barton, D. E. & Winship, I. On the origins of renal
770 cell carcinoma, vesicoureteric reflux and C (Opitz trigonocephaly) syndrome: A complex
771 puzzle revealed by the sequencing of an inherited t (2; 3) translocation. *Eur. J. Hum. Genet*
772 **21**, 145 (2013).

773 37. Urreizti, R. *et al.* Screening of CD96 and ASXL1 in 11 patients with Opitz C or Bohring–
774 Opitz syndromes. *American Journal of Medical Genetics Part A* **170**, 24–31 (2016).

775 38. Chan, C. J. *et al.* The receptors CD96 and CD226 oppose each other in the regulation of
776 natural killer cell functions. *Nature immunology* **15**, 431–438 (2014).

777 39. Schaaf, C. P. *et al.* A framework for an evidence-based gene list relevant to autism
778 spectrum disorder. *Nat Rev Genet* **21**, 367–376 (2020).

779 40. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: A Matching Tool for
780 Connecting Investigators with an Interest in the Same Gene. *Human Mutation* **36**, 928–930
781 (2015).

782 41. Undiagnosed Diseases Network *et al.* Model organisms contribute to diagnosis and
783 discovery in the undiagnosed diseases network: current state and a future vision. *Orphanet
784 J Rare Dis* **16**, 206 (2021).

785 42. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e21
786 (2019).

787 43. Robinson, P. N. *et al.* The Human Phenotype Ontology: A Tool for Annotating and Analyzing
788 Human Hereditary Disease. *The American Journal of Human Genetics* **83**, 610–615 (2008).

789