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Abstract 18 

To survive the brain must extract and predict information from key spacetime features of the 19 

physical world. While neural processing of visuospatial patterns has been extensively studied, 20 

much remains to be discovered about the hierarchical brain mechanisms underlying 21 

recognition of auditory sequences with associated prediction errors. We used 22 

magnetoencephalography (MEG) to study the temporal unfolding over milliseconds of brain 23 

activity in 83 participants recognising melodies and variations thereof. The results showed a 24 

hierarchy of processing in networks from the auditory to the ventromedial prefrontal and 25 

inferior temporal cortices, hippocampus and medial cingulate gyrus. Both original melodies 26 

and variations engaged the pathway from auditory cortex at the bottom of the hierarchy to 27 

upstream processing in hippocampus and ventromedial prefrontal cortex, but differed in 28 

terms of temporal dynamics, where the recognition of originals elicited stronger gamma 29 

power. Our results provide detailed spacetime insights into the hierarchical brain mechanisms 30 

underlying auditory sequence recognition. 31 

 32 

 33 

 34 
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Introduction 39 

In order to fully understand the neural substrate of perception and cognition in the human 40 

brain, we must reveal the hierarchical brain processing in both space and time 1–6, as 41 

suggested by several frameworks such as the global neuronal workspace hypothesis (GNW) 42 
7–9 and the predictive coding theory 10,11. To elucidate such brain mechanisms, much research 43 

has focused on vision, which is often said to be the key sensory modality for humans 12,13. 44 

However, given that we do not have eyes in the back, auditory information is equally 45 

important for survival. In addition, while the visual system primarily relies on the recognition 46 

of patterns arranged in space, the auditory system extracts information from patterns and 47 

sequences over time 14, providing unique opportunities to understand the temporal hierarchies 48 

of the brain.  49 

 Decades of studies have clarified that auditory perception is hierarchically organised 50 

(originating in the periphery in the cochlea and proceeding, progressively, to the brainstem, 51 

pons, trapezoid body, superior olivary complex, lateral lemniscus, inferior, medial geniculate 52 

nucleus of the thalamus and finally primary auditory cortex 15,16). However, little is known 53 

about the dynamics of higher-level integration of auditory information. Moreover, much 54 

remains to be discovered about the fast-scale, hierarchical brain mechanisms responsible for 55 

encoding and recognizing sequences of sounds extended over time.  56 

 Here, we took advantage of the unique opportunities offered by music. In fact, music is a 57 

highly prized artform providing pleasure and acquiring meaning through the combination of 58 

its constituent elements extended over time 17, and exactly for these reasons it provides an 59 

excellent tool for investigating the brain’s temporal dynamics 18. However, much remains to 60 

be learned about the fine-grained neural dynamics of the auditory system at the milliseconds 61 

level since most of the previous studies on music neuroscience have used functional magnetic 62 

resonance imaging (fMRI) with relatively poor temporal resolution on the scale of seconds. 63 

Still, much progress has been made through clever experimental designs. For instance, Gaab 64 

and colleagues observed the brain activity of participants who were requested to compare 65 

different simple melodies 19. Successfully performing the task showed significant changes in 66 

activity mainly in the superior temporal, superior parietal, posterior dorsolateral frontal and 67 

dorsolateral cerebellar regions, supramarginal and left inferior frontal gyri. In another classic 68 

study, Zatorre and colleagues 20 investigated the brain activity related to the perception of 69 

melodies and the pitch comparison of particular tones. The results revealed a dissociation 70 

where melody perception is related to activity in the right superior temporal cortex, while 71 
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pitch comparison mainly involves the right prefrontal cortex. Similarly, a more recent study 72 

by Kumar and colleagues 21 showed the key role of the activity and connectivity between 73 

primary auditory cortex, inferior frontal gyrus and hippocampus for performing an auditory 74 

working memory (WM) task consisting of maintaining a series of single sounds. 75 

 These studies revealed the underlying brain networks for music processing but could not 76 

provide the precise dynamical unfolding of neural activity. To overcome this issue, here we 77 

used magnetoencephalography (MEG), which has excellent temporal resolution capable of 78 

tracking rapid brain responses happening at the milliseconds level 22. For this reason, 79 

previous research has utilized MEG to reveal the lower levels of hierarchical processing in 80 

the auditory system by investigating the well-known components of the event-related 81 

potentials/fields (ERP/F), which occur in response to sounds and violation of expectations, 82 

such as the N100, mismatch negativity, and P3a 23–29. Equally, and even more importantly, 83 

MEG allows for the study of higher cognitive processes, providing information on the rapid 84 

brain mechanisms associated with perception and manipulation of sounds. As an example, 85 

Albouy and colleagues 30 explored the brain activity underlying memory retention, showing 86 

that theta oscillations in the dorsal stream of the participants’ brain anticipated their abilities 87 

to perform an auditory WM task which consisted of manipulating and maintaining sound 88 

information. Similarly, Bonetti and colleagues 31–33 revealed that encoding and recognition of 89 

sound information recruited a large network of brain areas, spanning from auditory cortex to 90 

medial cingulate, inferior temporal cortex, insula, frontal operculum, and hippocampus. 91 

Moreover, they showed that music complexity 34 and individual cognitive differences 35 92 

modulated the activity recorded in the brain network. While such studies have provided a first 93 

glimpse of the neural basis of music processing and perception of auditory information, the 94 

rapid brain hierarchies underlying conscious recognition of temporal sequences and their 95 

associated prediction error have not yet been identified. 96 

 Here, moving beyond the state-of-the-art, we used source-localised MEG of a group of 83 97 

participants as they recognised original melodies and variations thereof. This revealed the 98 

precise spatiotemporal unfolding of brain activity over milliseconds allowing us to map the 99 

hierarchical brain dynamics underlying the recognition of previously learned and varied 100 

temporal sequences. As such this provided novel insights into the fine-grained hierarchical 101 

dynamics of brain processing of spacetime information. 102 

  103 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.11.19.517195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/


 

 

5

Results 104 

Experimental design and behavioral results 105 

Eighty-three participants performed an old/new auditory recognition task during 106 

magnetoencephalography (MEG) recordings. After learning a short musical piece, 107 

participants were presented with 135 five-tone musical excerpts lasting 1750 ms each and 108 

were requested to state whether each excerpt belonged to the original music (‘memorised’ 109 

sequence (M), old) or it was a varied musical sequence (‘novel’ sequence (N), new) (Figure 110 

1a). 111 

 Twenty-seven excerpts were taken from the original musical piece and 108 were 112 

variations of the original melodies. We organized these variations in four categories 113 

depending on whether changes involved every musical tone of the sequence after the first 114 

(NT1), second (NT2), third (NT3) or fourth (NT4) tone (Figure 1b). Thus, all the original 115 

sequences and variations had the first same tone. Figure S1 shows a depiction in musical 116 

notation of all the sequences used in the study. 117 

 118 

 119 

 120 

 121 

Figure 1. Experimental design, stimuli, and analysis pipeline. 122 

a – The brain activity in 83 participants was collected using magnetoencephalography (MEG) while they 123 

performed an old/new auditory recognition task. One at a time, five-tone temporal sequences (i.e., melodies) 124 

were presented in randomized order and participants were instructed to respond with button presses whether 125 
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they were ‘old’ (memorized musical sequences, ‘M’) or ‘new’ (novel musical sequences, ‘N’). b – Five types of 126 

temporal sequences (M, NT1, NT2, NT3, NT4) were used in the study. There were three M sequences that 127 

comprised the first five tones of the first three measures of the memorised musical piece. The figure shows one 128 

of them, as an example (top row). The N sequences were created through systematic variations of each of the 129 

three M sequences. This procedure consisted of changing every musical tone of the sequence after the first 130 

(NT1), second (NT2), third (NT3) or fourth (NT4) tone, as illustrated in the example reported in the bottom row 131 

(red musical tones). c – After MEG data pre-processing, multivariate pattern analysis (decoding) was used to 132 

assess whether it was possible to discriminate the experimental conditions based on the neural activity recorded 133 

with the MEG. d – The MEG data was co-registered with the individual anatomical MRI data, and source 134 

reconstructed using a beamforming algorithm. This procedure returned one time series for each of the 3559 135 

reconstructed brain sources. e – Based on the outcome of the multivariate pattern analysis and of the activity of 136 

the source reconstructed data, six main functional brain regions (ROIs) were derived. f - We studied the evoked 137 

(left plot) and induced (right plot) responses for each ROI and experimental condition. 138 

 139 

 Before focusing on the recorded brain data, we performed statistical analyses on the MEG 140 

task behavioral data (see Table 1 for descriptive statistics). We computed two independent 141 

Kruskal-Wallis H tests (non-parametric one-way analysis of variance) to assess whether the 142 

five categories of temporal sequences (M, NT1, NT2, NT3, and NT4) differed in terms of 143 

response accuracy and reaction times (Figure 2a). 144 

 The Kruskal-Wallis H test for response accuracy was significant (H(4) = 36.38, p < .001), 145 

indicating a difference between categories in the number of correct responses. The Tukey-146 

Kramer correction for multiple comparisons highlighted that NT4 trials were correctly 147 

identified with a lower frequency than M (p = .001), NT1 (p = .001), NT2 (p = .0003), NT3 148 

(p < .0001). 149 

 The Kruskal-Wallis H test for the reaction times was also significant (H(4) = 22.53, p = 150 

.0002).The Tukey-Kramer correction for multiple comparisons highlighted that NT4 trials 151 

were correctly identified with a greater reaction time than M (p = .0016), NT1 (p = .0013), 152 

NT2 (p = .0054), NT3 (p = .0008). 153 

 154 

Behavioral variables M NT1 NT2 NT3 NT4 

Correct recognition 22.33 ± 5.30 22.36 ± 4.27 21.58 ± 5.31 21.66 ± 5.34 17.04 ± 7.12 

Reaction times (ms) 2426 ± 226 2407 ± 284 2431 ± 282 2415 ± 272 2578 ± 259 

 155 

Table 1. MEG task behavioral results show differences between NT4 and all the other conditions. 156 
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Mean and standard deviations across participants of number of correctly recognised trials and reaction times 157 

(ms) for the five experimental conditions (previously memorised [‘M’], novel [‘NT1’], novel [‘NT2’], novel 158 

[‘NT3’], novel [‘NT4’]). 159 

 160 

Multivariate pattern analysis 161 

Using a support vector machine (SVM) classifier (see details in Methods, and Figure 1c), we 162 

performed multivariate pattern analyses to decode different neural activity associated with the 163 

recognition of M versus N. Specifically, we computed four independent analyses, decoding 164 

M versus each of the four categories of novel sequences (i.e., M versus NT1, M versus NT2, 165 

M versus NT3, and M versus NT4). 166 

 As shown in Figure 2b and Figure S3, each of these analyses returned a decoding time 167 

series showing how the neural activity differentiated the pair of experimental conditions. 168 

Overall, the results showed that the SVM was able to detect significant differences between 169 

memorised and novel sequences. Specifically, decoding time series were significantly 170 

different from chance level in several time windows. As illustrated in Figure 2b, decoding M 171 

versus NT1 returned the following main significant time windows: 0.53-0.73 sec; 0.91 – 0.95 172 

sec; 1.27 – 1.30 sec; 1.62 – 1.88 sec (q < .012, false-discovery rate [FDR]-corrected). 173 

Decoding M versus NT2 gave rise to the following main significant time windows: 0.89 – 174 

1.18 sec; 1.26 – 1.42 sec; 1.54 – 1.89 sec (q < .012, FDR-corrected). Decoding M versus NT3 175 

returned one main significant time window: 1.25-2.07 sec (q < .012, FDR-corrected). Finally, 176 

decoding M versus NT4 showed the following main significant time window: 1.64-2.07 (q < 177 

.012, FDR-corrected). Detailed statistical results are reported in Table S1 and illustrated in 178 

Figure S3. 179 

 To evaluate the persistence of discriminable neural information over time, we used a 180 

temporal generalization approach by training the SVM classifier at a given timepoint t and 181 

testing it across all timepoints. This was calculated for the four pairs of experimental 182 

conditions described above. The signed-rank test against chance level and cluster-based 183 

Monte-Carlo simulations 42-44, 46, 47 (MCS; α = .01, MCS p-value = .001) showed that the 184 

performance of the classifier was significantly above chance even a few hundreds of 185 

milliseconds beyond the diagonal, for all pairs of conditions. Notably, the neural difference 186 

between M and N was comparable across diverse musical tones, as shown by the recurrent 187 

patterns depicted in Figure 2c and highlighted by the graphs and stars. Detailed statistical 188 

results are reported in Table S2. 189 
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 190 

 191 

 192 

 193 

Figure 2. Machine learning allows for accurate decoding of experimental conditions. 194 

a – Scatter and violin plots for the correct responses (left) and reaction times (right) for the experimental task 195 

performed by the participants in the MEG. The plots separately illustrate each experimental condition. Each dot 196 

represents a participant. The graphs and stars indicate that both accuracy and reaction times for NT4 were 197 

significantly different (p < .01) from M, NT1, NT2, and NT3. b - Multivariate pattern analysis decoding the 198 

different neural activity associated with memorised versus novel musical sequences. The plot shows the 199 

decoding time series for four rounds of pairwise decoding (M vs NT1, M vs NT2, M vs NT3, M vs NT4). The 200 

sketch of the musical tones represents the onset of the sounds forming the temporal sequences. The graphs and 201 

stars indicate the significant time-points when the algorithm successfully decoded the experimental conditions 202 

(q < .012, false-discovery rate [FDR]-corrected) c - Temporal generalization of pairwise decoding of the same 203 

conditions. The graphs and stars indicate the significant time-points when the experimental conditions were 204 

successfully decoded (MCS; α = .01, MCS p-value = .001). The sketch of the musical tones represents the onset 205 

of the sounds forming the temporal sequences. 206 

 207 

 208 

Neural sources of the differential brain activity between M and N 209 

We employed a local-spheres forward model and a beamforming approach as inverse solution 210 

in an 8-mm grid (Figure 1d). To detect the brain sources underlying the differential signal 211 
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observed for M and N, we considered both the results from the decoding analyses and the 212 

inspection of the MEG data after preprocessing. This was necessary since decoding can 213 

capture differences between conditions, but it does not discriminate which condition is 214 

associated with a larger neural signal (see Methods for details). 215 

 This procedure returned the following significant time windows: 0.50 – 0.60 sec; 0.70 – 216 

0.80 sec; 0.98 – 1.02 sec; 1.05 – 1.15 sec; 1.33 – 1.39 sec; 1.45 – 1.55 sec; 1.70 – 1.75 sec; 217 

1.75 – 1.85 sec. For each time window and condition, we averaged the time series of all brain 218 

sources over time and computed t-tests contrasting each combination of M versus Ns. Finally, 219 

we corrected for multiple comparisons using a 3D cluster-based MCS (MCS, α = .003, MCS 220 

p-value = .001).  221 

 As reported in Table 2 and illustrated in Figure S4, this analysis returned several 222 

significant clusters of differential brain activity between M and N, primarily located in the 223 

bilateral medial cingulate gyrus (MC), left (HITL) and right hippocampal area and inferior 224 

temporal cortex (HITR), left (ACL) and right auditory cortex (ACR), and bilateral 225 

ventromedial prefrontal cortex (VMPFC). 226 

 Detailed statistical results are extensively reported in Table S3. 227 

 228 

Time-windows Contrast Cluster size Main ROI(s) Peak t-value MCS p-value 

0.50 - 0.60 M vs NT1 10 MC -4.18 < .001 

0.70 - 0.80 M vs NT1 132 MC 5.59 < .001 

1.05 - 1.15 M vs NT1 162 MC 5.38 < .001 

1.45 – 1.55 M vs NT1 270 
ACR 

MC 
4.91 < .001 

1.75 – 1.85 M vs NT1 175 HITR 5.94 < .001 

0.98 – 1.02 M vs NT2 94 VMPFC -4.33 < .001 

1.05 – 1.15 M vs NT2 57 MC 4.47 < .001 

1.45 – 1.55 M vs NT2 9 MC 3.7 < .001 

1.75 – 1.85 M vs NT2 28 HITR 4.16 < .001 

1.33 – 1.39 M vs NT3 300 
HITR 

VMPFC 
-5.34 < .001 

1.45 – 1.55 M vs NT3 58 ACL -4.57 < .001 

1.75 – 1.85 M vs NT3 79 HITR 4.42 < .001 

1.70 – 1.75 M vs NT4 584 VMPFC -5.57 < .001 

1.75 – 1.85 M vs NT4 197 ACL -5.39 < .001 

 229 

Table 2. Brain sources of decoding significant time windows. 230 
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Significant clusters of brain sources of the significant time windows returned by the decoding analysis. The 231 

table shows the time windows, contrasts, cluster size (number of voxels forming the cluster), main ROI(s) 232 

involved in the cluster, peak t-value, and MCS p-value. 233 

 234 

 235 

 236 

Functional regions of interests (ROIs) 237 

Expanding on the previous analyses, we wished to better define the spatial extent of the 238 

significant brain areas based on their functional profile and computed their associated time 239 

series (see Methods for details). 240 

 This procedure returned six broad ROIs which were particularly active during the 241 

recognition task: left (i) and right auditory cortex (ii), left (iii) and right hippocampus-inferior 242 

temporal cortex (iv), ventromedial prefrontal cortex (v), and medial cingulate gyrus (vi). 243 

Then, we computed one t-test for each time-point and each combination of M versus Ns. 244 

Finally, we corrected for multiple comparisons using one-dimensional (1D) cluster-based 245 

MCS (MCS, α = .05, MCS p-value = .001).  246 

 This analysis returned several significant clusters of differential brain activity over time 247 

between M and Ns. As shown in Figure 3, M versus N was characterized by stronger activity 248 

in VMPFC, ACL, and HITR after 350 – 450 ms from the onset of each tone. Similarly, M 249 

presented stronger negative activity (p < .001) than N in the MC after 400 – 500 ms from the 250 

onset of each tone. 251 

 252 

Contrast ROI 
Temporal extent of the largest clusters 

from the 1st tone of the sequence 
Peak t-value P-value 

Positive activity  

M vs NT1 

VMPFC 900 – 1190 6.13 < .001 

ACL 900 – 1040 6.26 < .001 

HITR 1660 – 1930 5.45 < .001 

M vs NT2 

VMPFC 1680 – 1930 5.94 < .001 

ACL 1260 – 1390 3.56 < .001 

HITR 1640 – 1930 6.12 < .001 

M vs NT3 

VMPFC 1310 – 1540 7.04 < .001 

ACL 1250 – 1390 4.80 < .001 

HITR 1310 – 1530 6.69 < .001 

M vs NT4 

VMPFC 1680 – 1910 8.92 < .001 

ACL 1640 – 1790 6.93 < .001 

HITR 1680 – 1900 7.45 < .001 
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Negative activity  

M vs NT1 MC 680 – 860 -5.18 < .001 

M vs NT2 MC 980 – 1180 -5.77 < .001 

M vs NT3 MC 1360 – 1550 -5.41 < .001 

M vs NT4 MC 1730 – 1920 -5.40 < .001 

 253 

Table 3. Largest clusters of stronger activity of M versus Ns. 254 

Largest clusters of significantly stronger activity of M versus Ns computed for the six ROIs considered in the 255 

study. The table shows the contrast, the correspondent ROI, the temporal extent (in ms) of the largest cluster, 256 

the peak t-value of the cluster and the associated MCS p-value. The MC shows stronger negativity since the 257 

polarity of the MC signal was negative. All clusters are reported in detail in Table S4. 258 

 259 

 Conversely, late N100 responses localized in AC were stronger for N versus M. For 260 

instance, the temporal extent of the larger cluster of ACL for M versus NT1 was 520 – 700 261 

ms from the onset of the first tone of the sequence (peak t-value = 6.75, p < .001). Moreover, 262 

HIT and VMPFC showed a stronger response for N versus M occurring about 250 – 300 ms 263 

after altering the original sequences. For instance, the temporal extent of the larger cluster of 264 

HITR for M versus NT4 was1680 – 1900 ms from the onset of the first tone of the sequence 265 

(peak t-value = 7.45, p < .001); the temporal extent of the larger cluster of VMPFC for M 266 

versus NT4 was 1680 – 1910 ms from the onset of the first tone of the sequence (peak t-value 267 

= 8.92, p < .001). Table 3 reports the main significant clusters, while complete statistical 268 

results are reported in Table S4. 269 

 270 

 271 

 272 
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 273 
Figure 3. Revealing the hierarchy of temporal sequence recognition in the human brain. 274 

Source localized brain activity illustrated for each experimental condition (M, NT1, NT2, NT3, NT4) and ROI. 275 
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The sketch of the musical tones represents the onset of the sounds forming the temporal sequences. The brain 276 

templates illustrate the spatial extent of the ROIs. Graphs and star indicate significant differences. The red ones 277 

refer to the contrast ‘M’ versus ‘NT1’, the blue to ‘NT1’ versus ‘M’, the yellow to ‘NT2’ versus ‘M’, the purple 278 

to ‘NT3’ versus ‘M’ and finally the grey to ‘NT4’ versus ‘M’. 279 

 The first row shows the lower order brain regions (auditory cortices) involved in this study. The bottom 280 

graphs highlight the fast N100 responses to each tone of the sequences, which were stronger for the novel 281 

conditions. The top graphs indicate the stronger and slower responses for the memorised sequences. The second 282 

row and the right plot of the third row illustrate higher-order brain regions, corresponding to the hippocampal 283 

area and inferior-temporal cortices, and ventromedial prefrontal cortex. Also in this case, the bottom graphs 284 

indicate the stronger responses for the novel conditions, while the top graphs the stronger activity recorded for 285 

the memorised sequences. To be noted, the time series systematically change depending on the variation 286 

introduced in the melodic sequences. Moreover, the responses of these higher-order brain regions are slightly 287 

delayed (about 80 ms) compared to the lower-order regions. This suggests a hierarchical processing happening 288 

in the brain to extract meaning form the musical sequences and recognise them. Finally, the left plot of the third 289 

row indicates the medial cingulate gyrus, which presents an overall similar activity in response to each 290 

experimental condition. This suggests that the medial cingulate may be implicated in the general auditory 291 

processing and not specifically in the memory recognition and evaluation of the temporal sequences. 292 

 293 

 Of particular interest is the brain response occurring when the original musical sequence 294 

was varied. Here, AC presented a rapid, sharp signal (150 ms after the altered tone), while 295 

HIT and VMPFC responded slightly later (around 200-250 ms from the altered tone). As an 296 

example, Figure 4b, 4c and S5 depicts the cross-correlation between the time series of left 297 

AC and VMPFC averaged over participants, highlighting the 80 ms lag between the two 298 

signals. 299 

 300 

 301 
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 302 
Figure 4. Brain network underlying temporal sequence recognition. 303 

a – Schematic representation (left) of the brain network underlying the recognition of the temporal sequences. 304 

The schema illustrates the lower-order brain regions at the bottom of the hierarchy (left and right auditory 305 

cortex) and the higher-order brain regions (left and right hippocampus and inferior-temporal cortices, and 306 

ventromedial prefrontal cortex) at the top of the hierarchical brain processing. In the middle, the medial 307 

cingulate gyrus is thought to play an associative role, possibly mediating between lower- and higher-order 308 

brain regions. The right plots show the same representation within brain templates. b - The left plot shows the 309 

source localized brain activity illustrated for each category of N (i.e., NT1, NT2, NT3, NT4) and both left 310 

auditory cortex (AC) and ventromedial prefrontal cortex (VMPFC). Of particular interest it is the sharp peak 311 

occurring after the onset of each tone where left AC precedes VMPFC of about 80 ms. Moreover, while the 312 

strength of the signal increases over time for VMPFC, this does not happen for left AC. This evidence suggests a 313 

hierarchical brain processing underlying the prediction error occurring for the novel conditions. The sketch of 314 

the musical tones below the first two plots represents the onset of the sounds forming the temporal sequences. c 315 

– The plot shows that the strongest cross-correlation computed between the time series averaged over 316 

participants of left AC and VMPFC occurred with a time-lag of approximately 80 ms. 317 

 318 

 319 

 320 
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Time-frequency analysis for induced responses 321 

We computed time-frequency analysis using complex Morlet wavelet transform (from 1 to 60 322 

Hz with 1-Hz intervals). This analysis was conducted for induced responses. First, we 323 

estimated independent time-frequency decompositions for each voxel of the six ROIs and for 324 

each trial. Then, the computed power spectra were averaged over voxels within each ROI and 325 

over trials. Finally, in line with the previous analyses, we calculated four contrasts (M versus 326 

NT1, M versus NT2, M versus NT3, and M versus NT4). Specifically, we computed a t-test 327 

for each frequency and timepoint and corrected for multiple comparisons using 2D cluster-328 

based MCS. As shown in Figure 5, results were similar across ROIs and displayed a 329 

generalized increased gamma power for M versus N (p < .001). Conversely, N versus M 330 

presented a stronger power between 2 and 20 Hz (corresponding to, approximately, theta, 331 

alpha, and beta bands), in the time window 1.0 – 3.0 seconds (p < .001). Detailed statistical 332 

results about this procedure are extensively reported in Table S5 and depicted in Figure S6. 333 

 334 

 335 

 336 
Figure 5. Significant differences in gamma power when recognising melodies compared to variations. 337 

Contrasts between the source localized induced responses of M versus NT1. The plots indicate a stronger power 338 

for gamma in M. Moreover, theta was overall stronger for M versus NT1 during the presentation of the sounds, 339 
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while alpha, beta and theta were stronger for NT1 versus M after the end of the temporal sequences. The 340 

colorbar indicates the t-values obtained by contrasting M versus NT1.  341 
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Discussion 342 

Using a music recognition paradigm in MEG, we were able to reveal the fine-grained 343 

hierarchical spacetime brain dynamics underlying the recognition of previously memorised 344 

musical sequences, as well as the prediction error arising when varying these auditory 345 

sequences. 346 

 The results show that the recognition of the auditory sequence is built over time through a 347 

rapid hierarchical pathway progressing from the auditory cortex to the ventromedial 348 

prefrontal cortex, hippocampus, and inferior temporal cortex. This provides important 349 

evidence strengthening the case made by other studies suggesting a hierarchical organization 350 

of the brain in terms of predictive coding 1–4. Importantly, the results reported here expands 351 

the previous literature by providing novel information on the spatiotemporal dynamics of the 352 

hierarchical organization of the auditory system linked to crucial memory processes 11,14,30,36.  353 

 More specifically, we observed a hierarchical pathway which characterized the recognition 354 

of the original sequences. Initially, each tone of the sequence showed the expected well-355 

known N100 negative peak after 100 ms in the auditory cortex. Notably, we also found a 356 

novel positive component peaking after 300 ms. These peaks were followed by a similar 357 

component originated in ventromedial prefrontal cortex, hippocampus and inferior temporal 358 

cortex which achieved a maximum 400 ms after each tone. In addition, the medial cingulate 359 

presented a negative peak 400 – 450 ms after each tone. The variations could then be 360 

characterised in terms of how these components were either absent or strongly reduced. 361 

Interestingly, while the response of the medial cingulate was the same to all notes, the 362 

activity of ventromedial prefrontal cortex, hippocampus and inferior temporal cortex 363 

increased over time only for the original sequences. 364 

 In addition, our results showed a different hierarchical pathway for the prediction error 365 

arising in the responses to the systematic variations of the sequences. Here, compared to the 366 

original sequences, the variations were associated with a stronger N100 response in the 367 

auditory cortex for each tone. In contrast, the later responses in the ventromedial prefrontal 368 

cortex and hippocampus occurred only after the tone that disrupted the original sequences 369 

(see for example the response in Figure 3 for [NT1], i.e. after tone two of the melody). Here, 370 

a first sharp negative peak appeared 250 – 300 ms after the tone altering the sequence, while 371 

a second positive component peaked 500 – 550 ms after the tone. The strength of the 372 

responses was progressively greater depending on the tone used to introduce the variation 373 
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(i.e., a variation in tone five [NT4] elicited stronger responses than a variation in tone two 374 

[NT1]). 375 

 The induced-response analysis showed that activity in the gamma band was stronger for 376 

the original sequences compared to variations, especially during the presentation of the 377 

sequences. Conversely, after the end of the sequence, activity in alpha and beta bands was 378 

stronger for variations compared to originals. These results were very similar to those found 379 

across the brain network highlighted by the evoked-response analyses. 380 

 Finally, in terms of behavioural responses, the accuracy and reaction times were nearly 381 

equal for the original sequences and the systematic variations (NT1, NT2, NT3). Notably, 382 

when varying only the last tone of the sequence (NT4), the reaction times were suddenly 383 

significantly larger and the accuracy lower. 384 

 These results revealed the hierarchical brain processing occurring when listening to 385 

auditory sequences and the spacetime differences in hierarchy when listening to systematic 386 

variations thereof. Broadly, they are consistent with previous findings 31,32,34,35, showing a 387 

large network of brain areas involved in the recognition of previously memorised auditory 388 

sequences.  389 

 Moreover, our findings support previous studies which showed the auditory cortex as the 390 

primary neural core for processing auditory information 36,37. Interestingly, although the 391 

stimuli used in this study were musical, the recognition of the temporal sequences required 392 

the involvement of the inferior temporal cortex and hippocampus, which were previously 393 

associated mainly to linguistic elaborations 37,38 and abstract memory 39–41.  394 

 Similarly, we found that the recognition of the auditory sequences required the 395 

involvement of the ventromedial prefrontal cortex, whose role in auditory processing has not 396 

been clearly established yet. Although it is not possible to make definite claims at this stage, 397 

we argue that the ventromedial prefrontal cortex, together with the hippocampus, may track 398 

the progress of the sequence to make the evaluation about the sounds. In this view, it may be 399 

the primary responsible of extracting the meaning of the sequence. 400 

 Another relevant brain region playing a prominent role at the top of the hierarchy is the 401 

medial cingulate gyrus, which presented a negative peak 400 – 450 ms after each tone. The 402 

activity was overall stronger for original sequences versus variations, but the underlying 403 

activity remained there after the sequences were altered. Moreover, the strength did not 404 

increase over time. This constant response strongly suggests that the medial cingulate is 405 

unlikely to be involved in the recognition of the sequences. Instead, in accordance with 406 
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previous research 42, this brain region may be required for the orchestration of allocating 407 

attentional resources. It could also be argued that the medial cingulate might be specifically 408 

involved in auditory processing, joining and unifying the perception of musical tones, and 409 

providing the perception of the musical sequences as a whole pattern rather than a 410 

(disjointed) sequential group of single tones. This interpretation would be coherent with the 411 

specific involvement of medial cingulate in a variety of musical tasks, as highlighted by two 412 

recent meta-analyses 43,44, but it calls for future studies specifically designed to test this 413 

hypothesis. 414 

 Interestingly, our findings provide new insights into the results previously reported 415 
31,32,34,35 on the frequency of evoked responses to melodies. In fact, those studies showed that 416 

the recognition of the temporal sequences is associated with activity in a network including 417 

the cingulate, hippocampus, insula, and inferior temporal cortex in a very slow frequency (0.1 418 

– 1 Hz) accompanying the whole duration of the sequences. Here, however, we observed a 419 

distinct, faster response to each tone of the sequence. The frequency of these responses was 420 

of approximately 1 – 1.5 Hz. This new finding clearly shows that the recognition of the 421 

sequence is associated with responses to each of the musical tones. As such, it could suggest 422 

that the slow signal previously observed 31,32,34,35 could simply be the summation of the 423 

responses to each sound of the sequences. Lending support to this interpretation is the fact 424 

that the duration of each tone was 250 ms in these previous studies rather than the 350 ms 425 

used here, and so the individual responses were closer in time and therefore added up to build 426 

a slower and stronger signal (0.1 – 1 Hz). To further understand this effect, future studies 427 

could modulate the speed of the musical sequences to detect whether 1 – 1.5 Hz is a specific 428 

rhythm of the brain associated to recognition or whether it is driven by the speed of the 429 

stimuli. 430 

 Overall, our results on temporal sequences recognition are consistent and provide insights 431 

into the GNW hypothesis proposed by Changeux and Dehaene 7,9. The authors hypothesized 432 

that processing privileged categories of stimuli such as meaningful temporal sequences 433 

activate the brain areas comprised in the GNW. The GNW was defined as a network of brain 434 

areas responsible for consciously processing information in terms of attention, memory, and 435 

valence, and subsequently for making it available to the whole brain 7,9. As hypothesised, in 436 

our study the recognition of memorised versus novel musical sequences led to stronger 437 

activity in putative regions of the GNW such as the cingulate gyrus, hippocampus, and 438 

ventromedial prefrontal cortex 5. These areas could be necessary to extract a meaningful 439 
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representation of the sequences and match them with previously acquired memory traces. 440 

Importantly, our study also potentially expands the theory of the GNW by revealing the fine-441 

grained hierarchical dynamics between the underlying brain regions while participants 442 

recognised memorised and novel temporal sequences. 443 

 Our findings are also providing support for the well-known predictive coding theory 10,11, 444 

which states that the brain is constantly updating internal models to predict external 445 

information and stimuli. Recently, this theory has been connected to complex cognitive 446 

processes, finding a remarkable example in the neuroscience of music 11,45. Both Vuust and 447 

colleagues 45 and Koelsch and colleagues 11 suggested that, while processing music, the brain 448 

constantly generates hypothesis about the upcoming development of musical sentences. Our 449 

results support and expand predictive coding theory for the recognition of both previously 450 

memorised and novel sequences in terms of identifying the underlying hierarchical 451 

processing. On the one hand, when the upcoming sound was matched with the predicted 452 

sound based on the previously stored memory trace, first the auditory cortex and then 453 

hippocampus, inferior temporal cortex and ventromedial prefrontal cortex respond. These 454 

responses increase over time, showing stronger neural activity after each successful 455 

prediction of the upcoming sounds. On the other hand, the present study revealed the changes 456 

in hierarchical processing associated with prediction errors when the melodies were 457 

systematically altered. This indicates that when the upcoming sound was incoherent with the 458 

prediction made by the brain, a network of hierarchical areas was recruited, with the 459 

information flowing from auditory cortex to ventromedial prefrontal cortex and hippocampal 460 

regions. Notably, this brain network was similar to the one employed for the recognition of 461 

previously memorised sequences, but their temporal dynamics sharply differed.  462 

 This latter finding is also coherent with the plethora of studies investigating automatic 463 

prediction error in audition indexed by N100 and mismatch negativity (MMN) 24,26,29,46. 464 

Previous research has revealed the primary involvement of auditory cortex in the generation 465 

of the prediction error signal 46,47, reporting a complementary yet much reduced recruitment 466 

of the medial cingulate, frontal and hippocampal areas 28,48. Conversely, in our study we 467 

investigated the prediction error and revealed the hierarchical organization of the brain which 468 

recruited first auditory cortex (100 – 150 ms) and then, with a stronger activity, the 469 

ventromedial prefrontal cortex and hippocampus (250 – 500 ms). Moreover, our results 470 

showed that auditory cortex discriminated melodies versus systematic variations but did not 471 

distinguish the strength of the errors (i.e., errors happening later in the sequence). For 472 
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instance, the response to the variation inserted at tone number two was the same to the 473 

variation at tone number five. In addition, the auditory cortex responded to novel tones for 474 

the entire duration of the sequence in a similar manner (i.e., for NT1, the auditory cortex 475 

responded in the same way to tones number two, three, four, and five). Remarkably, the 476 

prediction error observed in the hippocampal regions and ventromedial prefrontal cortex 477 

showed a different strength depending on when the sequence was altered (e.g., the response 478 

to the variation inserted at tone number five was much stronger than to the variation at tone 479 

number two). Moreover, these areas responded primarily to the first tone where we 480 

introduced the variation and very little to the subsequent sounds. These findings suggest that 481 

the brain signature underlying the awareness of the variation may be represented by the 482 

responses recorded in the ventromedial prefrontal cortex and hippocampus and their specific 483 

temporal dynamics. 484 

 Along this line, our findings showed a potential relationship between reaction times and 485 

accuracy in the recognition task and the second response of the prediction error occurring in 486 

the right hippocampus and inferior temporal cortex and in the ventromedial prefrontal cortex. 487 

Indeed, both reaction times and accuracy were approximately the same for original sequences 488 

and NT1, NT2, and NT3. However, accuracy was significantly reduced, and reaction times 489 

increased for NT4. Similarly, while the second component of the prediction errors (occurring 490 

after approximately 500 ms from the onset of the varied tone) was rather sharp for NT1, NT2, 491 

and NT3, its frequency was much slower for NT4. There are at least two possible 492 

explanations for this phenomenon: 1) The variation of the last tone of the sequence elicited a 493 

slower prediction error, both at a neural and behavioral level or, alternatively, 2) a bolder and 494 

more intriguing hypothesis relates to musical chunking and the beat used to present the 495 

stimuli. We would argue that the lower accuracy and higher reaction times for NT4 was due 496 

to the chunking occurring when listening to the musical stimuli presented with a beat every 497 

four tones. In this view, after listening to four tones of the original sequence (corresponding 498 

to a full beat), the perception that the sequence belonged to the group of previously learned 499 

sequences was very strong and, especially much stronger than after only three tones. For this 500 

reason, we did not observe a linear increase in reaction times and accuracy but only a strong 501 

difference between all categories and NT4 and a much slower prediction error only for NT4 502 

compared to the other categories of N. Currently, we do not have enough data to make 503 

definitive claims and future studies are needed where the length of the sequences is 504 

systematically varied. This could, for example, be achieved by having sequences with a beat 505 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.11.19.517195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/


 

 

22

every four tones and a length of seven, eight or nine tones. Similarly, future studies should 506 

use musical stimuli with a beat every three tones and thus reveal which interpretation is 507 

correct. 508 

 Finally, the induced-response analysis showed that the gamma band was stronger for 509 

original compared to varied melodies, especially during the presentation of the sequences. 510 

Conversely, after the end of the sequence, alpha and beta bands were stronger for the 511 

variations compared to the originals. This result is coherent with previous studies which 512 

reported increased gamma power during recognition of target stimuli 49,50 and, more 513 

generally, a modulation of the brain oscillations associated with memory load and complex 514 

cognitive functions 51–52. In addition, our findings expand on previous literature by providing 515 

evidence that bursts of gamma activity are associated with recognition of temporal sequences 516 

built upon musical sounds. The induced-response analysis also showed stronger power for 517 

alpha and beta in varied compared to originals after the end of the sequence. Arguably, this 518 

result may represent the higher processing required by the brain after listening to novel 519 

temporal sequences, possibly to store the new information carried by the unfamiliar sounds. 520 

Future studies are necessary to further clarify this interpretation. Moreover, further research 521 

employing MEG and additional tools such as intracranial EEG (iEEG) should conduct cross-522 

frequency coupling analysis, testing whether gamma-theta coupling is connected to 523 

recognition of temporal sequences. 524 

 Overall, the results presented here reveal the hierarchical dynamics of the brain underlying 525 

processing of auditory sequences extended over time. The results provide pertinent evidence 526 

on the neural basis of memory recognition and prediction error, and provides new insights 527 

into the brain mechanisms responsible for making temporal information available to humans. 528 

  529 
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Materials and methods 530 

 531 

Participants 532 

The participant sample consisted of 83 volunteers (33 males and 50 females) aged 19 to 63 533 

years old (mean age: 28.76 ± 8.06 years). The sample was recruited in Denmark and 534 

participants came from Western countries. All participants were healthy and reported normal 535 

hearing. Their educational background was homogeneous. 536 

The project was approved by the Institutional Review Board (IRB) of Aarhus University 537 

(case number: DNC-IRB-2020-006). The experimental procedures were carried out in 538 

compliance with the Declaration of Helsinki – Ethical Principles for Medical Research. All 539 

participants gave the informed consent before starting the experimental procedure. 540 

 541 

Experimental stimuli and design 542 

In this study, we used an old/new paradigm auditory recognition task 31,32,34,35 during 543 

magnetoencephalography (MEG) recordings. First, participants listened to a short 544 

(approximately 25 seconds long) musical piece twice and were asked to memorise it as much 545 

as possible. The musical piece consisted of the first four measures of the right-hand part of 546 

Johann Sebastian Bach’s Prelude No. 2 in C Minor, BWV 847. A MIDI version of the piece 547 

was created using Finale (MakeMusic, Boulder, CO). Each tone of the piece had the same 548 

duration (approximately 350 ms). Second, participants were presented with 135 five-tone 549 

musical excerpts that lasted 1750 ms each. Participants were requested to state whether each 550 

excerpt belonged to the original music (‘memorised’ sequence [M], old) or were a varied 551 

musical sequence (‘novel’ sequence [N], new) (Figure 1a). Twenty-seven excerpts were 552 

drawn from the original musical piece and 108 were variations of the original melodies 553 

(Figure S1 shows all the sequences used in the study). The two categories of stimuli (M and 554 

N) were created as follows. The M sequences were comprised by the first five tones of the 555 

first three measures of the musical piece. These sequences were presented nine times each, 556 

for a total of 27 trials. The N sequences were created through systematic variations of the 557 

three M sequences (Figure 1b). This procedure consisted of changing every musical tone of 558 

the sequence after the first (NT1), second (NT2), third (NT3) or fourth (NT4) tone. We 559 

created nine variations for each of the original M sequences and each of the four categories of 560 

N. This resulted in 27 N sequences for each category, and 108 N in total. To be noted, the 561 

variations were created according to the following rules: 562 
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• Inverted melodic contours (used twice): the melodic contour of the variation was 563 

inverted with respect to the original M sequence (i.e., if the M sequence had the 564 

following melodic contour: down-down-up-down, the N sequence would be: up-565 

up-down-up) 566 

• Same tone scrambled (used three times): the remaining tones of the M sequence 567 

were scrambled (e.g., M sequence: C-E-D-E-C, was converted into NT1 sequence: 568 

C-C-E-E-D). When this was not possible (e.g., in the case of NT4, where only the 569 

last tone is different from the M sequence), we substituted the last tone of the M 570 

sequence with a random tone. 571 

• Same tone (used three times): the same tone was repeatedly used, in some cases 572 

varying only the octave (e.g., M sequence: C-E-D-E-C, was transformed into NT1 573 

sequence: C-E8- E8- E8
- E8). 574 

• Scrambling intervals (used once): the intervals between the tones were scrambled 575 

(e.g., M sequence: 6thm - 2ndm – 2ndm – 3rdm, was adapted to NT1 sequence: 576 

2ndm, 6thm, 3rdm, 2ndm). 577 

This procedure allowed us to investigate (i) the brain dynamics underlying the recognition of 578 

previously memorised auditory sequences and (ii) the conscious detection of the sequence 579 

variation. 580 

 581 

Data acquisition 582 

The MEG recordings were acquired in a magnetically shielded room at Aarhus University 583 

Hospital (AUH), Aarhus, Denmark, using an Elekta Neuromag TRIUX MEG scanner with 584 

306 channels (Elekta Neuromag, Helsinki, Finland). The data was recorded at a sampling rate 585 

of 1000 Hz with an analogue filtering of 0.1 – 330 Hz. Before the recordings, the head shape 586 

of the participants and the position of four Head Position Indicator (HPI) coils were 587 

registered with respect to three anatomical landmarks using a 3D digitizer (Polhemus Fastrak, 588 

Colchester, VT, USA). This recording was later used to co-register the MEG data with the 589 

MRI anatomical scans. For the entire duration of the MEG recordings, the HPI coils 590 

registered the continuous localization of the head, which was subsequently employed for 591 

movement correction. In addition, two sets of bipolar electrodes were used to record cardiac 592 

rhythm and eye movements. This allowed us to remove the electrocardiography (ECG) and 593 

electrooculography (EOG) artifacts in a later stage of the analysis pipeline. 594 
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The MRI scans were recorded on a CE-approved 3T Siemens MRI-scanner at AUH. The 595 

recorded data consisted of structural T1 (mprage with fat saturation) with a spatial resolution 596 

of 1.0 x 1.0 x 1.0 mm and the following sequence parameters: echo time (TE) = 2.61 ms, 597 

repetition time (TR) = 2300 ms, reconstructed matrix size = 256 x 256, echo spacing = 7.6 598 

ms, bandwidth = 290 Hz/Px. 599 

The MEG and MRI recordings were acquired in two separate days. 600 

 601 

Behavioral data 602 

We obtained behavioral data (number of correctly recognised trials and correspondent 603 

reaction times) from the experimental task carried out during the MEG recording. 604 

Since the data was not normally distributed, we computed two independent Kruskal-Wallis H 605 

tests 6 (non-parametric one-way analysis of variance) to assess whether the five categories of 606 

temporal sequences (M, NT1, NT2, NT3, NT4, NT5) differed in terms of correct responses 607 

and reaction times. Multiple comparisons were corrected using the Tukey-Kramer correction 608 
53. 609 

 610 

MEG data preprocessing 611 

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was first pre-612 

processed by MaxFilter 54 to attenuate external interferences. We applied signal space 613 

separation (MaxFilter parameters: spatiotemporal signal space separation [SSS], down-614 

sample from 1000Hz to 250Hz, movement compensation using cHPI coils [default step size: 615 

10 ms], correlation limit between inner and outer subspaces used to reject overlapping 616 

intersecting inner/outer signals during spatiotemporal SSS: 0.98). 617 

The data was then converted into Statistical Parametric Mapping (SPM) format and further 618 

preprocessed and analyzed in MATLAB (MathWorks, Natick, MA, USA) using a 619 

combination of in-house-built codes (LBPD, https://github.com/leonardob92/LBPD-1.0.git) 620 

and the Oxford Centre for Human Brain Activity (OHBA) Software Library (OSL) 55 621 

(https://ohba-analysis.github.io/osl-docs/), a freely available software that builds upon 622 

Fieldtrip 56, FSL 57, and SPM 58 toolboxes. 623 

The continuous MEG data was visually inspected to identify and remove large artifacts using 624 

the OSLview tool. The data that was removed was less than 0.1% of the amount of collected 625 

data. Independent component analyses (ICA) were used to discard the interference of 626 

eyeblinks and heart-beat artefacts from the brain data 59. First, we decomposed the original 627 
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signal into independent components. Second, we isolated and discarded the components that 628 

picked up eyeblink and heart-beat activities. Third, the signal was rebuilt using the remaining 629 

components. Finally, the signal was epoched in 135 trials (27 M, 27 NT1, 27 NT2, 27 NT3, 630 

27 NT4) and baseline-corrected by removing the mean signal recorded in the baseline from 631 

the post-stimulus brain signal. Each trial lasted 4500 ms (4400 ms plus 100 ms of baseline 632 

time). 633 

 634 

Multivariate pattern analysis (decoding) 635 

We performed multivariate pattern analyses to decode different neural activity associated 636 

with the recognition of M versus N. Here, we computed four independent analyses, decoding 637 

M from each of the four categories of the novel sequences (i.e., M versus NT1, M versus 638 

NT2, M versus NT3, M versus NT4). 639 

We used support vector machines (SVMs) 60 and calculated independent analyses for each 640 

participant. The MEG data was rearranged in a 3D matrix (channels x timepoints x trials) and 641 

submitted to the SVM algorithm. To avoid overfitting, a leave-one-out cross-validation 642 

approach was adopted to train the SVM classifier to decode the two experimental conditions. 643 

This procedure divided the trials into N different groups (here N = 8). Then, for each 644 

timepoint, it assigned N − 1 groups to the training set and the remaining Nth group to the 645 

testing set. After that, the classifier ability to separate the two conditions was evaluated. This 646 

process was performed 100 times with random reassignment of the data to training and 647 

testing sets. To summarize, the decoding accuracy time series were averaged to obtain a final 648 

time series showing the performance of the classifier for each participant. 649 

To test the significance of the decoding results (chance level set at 50%), we employed a sign 650 

permutation test against the chance level for each timepoint and then corrected for multiple 651 

comparisons using false-discovery rate (FDR) correction (α = .05; FDR-adjusted q < .012). 652 

To assess whether each pair of conditions were differentiated by neural patterns which were 653 

stable over time, we computed four temporal generalization multivariate analyses. The 654 

algorithm was the same as the one previously described. However, in this case we utilized 655 

each timepoint of the training set to predict not only the same timepoint in the testing set, but 656 

all timepoints 61,62. Here, the significance was tested using a signed permutation test against 657 

the chance level (50%) for each timepoint, as the previous analyses. Then, we corrected for 658 

multiple comparisons using two-dimensional (2D) cluster-based Monte-Carlo simulations 659 

(MCS, α = .01, MCS p-value = .001) 1-5, 17. First, we computed the clusters size of the 660 
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continuous, binarized, significant values in time. Second, we made 1000 permutations of 661 

these binarized values. For each permutation, we computed the size of the maximum 662 

emerging cluster and built a reference distribution using those values. Finally, we considered 663 

significant the original clusters that were bigger than the 99.99% of the permuted data 664 

maximum cluster sizes. 665 

 666 

Source reconstruction 667 

MEG is a powerful tool to detect the whole-brain activity with excellent temporal resolution. 668 

However, to obtain a complete picture of the whole-brain activity underlying complex 669 

cognitive tasks the spatial component of the brain activity must be also identified. Here, we 670 

employed the established beamforming method 63–65, built upon a combination of in-house-671 

built codes and codes available in OSL, SPM, and FieldTrip. 672 

To reconstruct the brain sources that generated the MEG signal, an inverse problem must be 673 

solved. The MEG recording shows the activity of the neural signals outside the head but 674 

cannot provide information on the specific brain sources which generated it. Thus, we used 675 

beamforming algorithms to solve this problem, implementing the two following steps: (i) 676 

designing a forward model and (ii) computing the inverse solution. 677 

The forward model is a theoretical model which considers each brain source as an active 678 

dipole (brain voxel). It describes how the unitary strength of each dipole would be reflected 679 

over all MEG sensors. Here, we employed magnetometer channels and an 8-mm grid, which 680 

returned 3559 dipole locations (voxels) within the whole brain. After co-registering the 681 

individual structural T1 data with the fiducial points (i.e., information about head landmarks), 682 

we computed the forward model by adopting the widely used method called “Single Shell”, 683 

which is presented in detail in Nolte 66. The output of this computation, referred to as 684 

“leadfield model”, was stored in the matrix L (sources x MEG channels). In the three cases 685 

where the structural T1 was not available we performed the leadfield computation using a 686 

template (MNI152-T1 with 8-mm spatial resolution). 687 

 Then, we computed the inverse solution. As mentioned above, we chose the beamforming, 688 

which is one of the most popular and effective algorithms available in the field. This 689 

procedure employs a different set of weights which are sequentially applied to the source 690 

locations for isolating the contribution of each source to the activity recorded by the MEG 691 

channels. This is done for each timepoint of the recorded brain data. The beamforming 692 

inverse solution can be summarized by the following main steps. 693 
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 The data recorded by MEG sensors (B) at time t, can be described by the following 694 

equation (1): 695 

 696 

 ���� � � � �
���,��

�   (1) 

 697 

where L is the leadfield model, Q is the dipole matrix carrying the activity of each active 698 

dipole (q) over time and � is noise (see Huang and colleagues 64 for details). To solve the 699 

inverse problem, Q must be computed. In the beamforming algorithm, weights are computed 700 

and then applied to the MEG sensors at each timepoint, as shown for the single dipole q in 701 

equation (2): 702 

 703 

 ���� � 	� � ���� (2) 

 704 

To obtain q, the weights W should be computed (the subscript T refers to transpose matrix). 705 

To this goal, the beamforming relies on the matrix multiplication between L and the 706 

covariance matrix between MEG sensors (C), which is calculated on the concatenated 707 

experimental trials. Specifically, for each brain source n, the weights Wn are computed as 708 

shown in equation (3): 709 

 710 

 	��� �  
����
� �  ��� � �����

�� �  ����
� �  ��� (3) 

 711 

To be noted, the computation of the leadfield model was performed for the three main 712 

orientations of each brain source (dipole), according to Nolte 66. Before computing the 713 

weights, the orientations were reduced to one using the singular value decomposition 714 

algorithm on the matrix multiplication reported in equation (4). This procedure is widely 715 

adopted to simplify the beamforming output 67,68. 716 

 717 

 � �  ��
�� �  ��� � ���� (4) 

 718 

Here, l represents the leadfield model with the three orientations, while L is the resolved one-719 

orientation model that was utilized in (3). Finally, the weights were applied to each brain 720 

source and timepoint. To be noted, the covariance matrix � was computed on the continuous 721 

signal, which was estimated by concatenating the trials of all experimental conditions. The 722 
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weights were applied to the brain data associated with each condition and normalized 723 

according to Luckhoo et al. 68 for counterbalancing the reconstruction bias towards the centre 724 

of the head. The weights were applied to the neural activity averaged over trials for the 725 

evoked responses and to the neural activity of each independent trial for the induced 726 

responses. This procedure returned a time series for each of the 3559 brain sources (and each 727 

trial in the case of induced responses). The sign ambiguity of the evoked responses time 728 

series was adjusted for each brain source using its sign in correspondence with the N100 729 

response to the first tone of the auditory sequences 31,34,35. 730 

 731 

Neural sources of the differential brain activity between M and N 732 

To detect the brain sources underlying the differential signal observed for M and N, we 733 

considered both the results from the decoding analyses and the inspection of the MEG data 734 

after preprocessing. We calculated this to identify which condition was association with a 735 

larger neural signal. If condition one is significantly stronger than condition two at time t = x 736 

and then condition two is significantly stronger than condition one at time t = x + 1, the 737 

decoding will return an overall significant difference between conditions from t = x until t = x 738 

+ 1, even if such difference is qualitatively not the same at t = x and at t = x +1. Thus, to 739 

define the time windows for inspecting the neural sources, it is good practice to look both at 740 

significant results from decoding and the correspondent brain activity in the MEG data after 741 

preprocessing. 742 

This procedure, applied to all our four contrasts, returned the following time windows: 0.50 – 743 

0.60 sec; 0.70 – 0.80 sec; 0.98 – 1.02 sec; 1.05 – 1.15 sec; 1.33 – 1.39 sec; 1.45 – 1.55 sec; 744 

1.70 – 1.75 sec; 1.75 – 1.85 sec. For each time window and condition, we averaged the time 745 

series of all brain sources over time and computed t-tests contrasting M versus N (t-tests were 746 

computed independently for M versus each of the four categories of N). Finally, we corrected 747 

for multiple comparisons using a 3D cluster-based MCS (MCS, α = .003, MCS p-value = 748 

.001). Here, we calculated the sizes of the clusters of neighbouring brain voxels which were 749 

significant. Then, we computed 1000 permutations of the original data. For each permutation, 750 

we estimated the sizes of the clusters of neighbouring permuted brain voxels which were 751 

significant. This returned a reference distribution of the biggest cluster sizes observed in the 752 

permutated data. Finally, we considered significant the original clusters that were bigger than 753 

the 99.99% of clusters forming the reference distribution. Additional details on the MCS 754 

algorithm can be found in 31,34,35,69. 755 
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 756 

Functional regions of interests (ROIs) 757 

Our previous analyses highlighted a network mainly comprising four broad brain areas which 758 

were involved in the task. These areas roughly corresponded to the bilateral medial cingulate 759 

gyrus (MC), right hippocampal area and inferior temporal cortex (HITR), left auditory cortex 760 

(ACL), and bilateral ventromedial prefrontal cortex (VMPFC). 761 

Then, we wished to refine the spatial extent of those areas based on their functional profile 762 

and obtain their associated time series. Thus, first we computed t-values for each brain voxel 763 

and each timepoint contrasting M versus N. Second, we isolated the strongest t-value in 764 

absolute terms for each of the four broad regions identified in our previous analysis. This 765 

allowed us to identify the peaks of differential activity occurring between M and N for each 766 

ROI. Third, we used those peaks (averaged in a time window of ± 20 ms) and strict t-value 767 

thresholds (abs(t) > 3) to isolate the brain voxels that were mainly contributing to 768 

discriminate M versus N. This procedure refined the spatial extent of the four broad ROIs that 769 

we previously identified. Finally, to cover potential hemispheric differences, we created two 770 

more ROIs which mirrored HITR and ACL in the opposite hemisphere (HITL and ACR, 771 

respectively). Once we defined these six broad ROIs, we computed the time series showing 772 

their activity over time by averaging the time series of each of the brain voxels forming every 773 

ROI. To be noted, the spatial accuracy of the reconstructed MEG signal cannot be completely 774 

accurate, thus it is good practice employing such broad ROIs 70,71. 775 

 776 

Statistical analysis on ROIs time series  777 

We employed the time series of the previously identified ROIs to compute additional 778 

statistics between M and N conditions. Here, we computed one t-test for each timepoint and 779 

each combination of M versus Ns (i.e., M versus NT1, M versus NT2, M versus NT3, M 780 

versus NT4). Then, we corrected for multiple comparisons using a one-dimensional (1D) 781 

cluster-based MCS (MCS, α = .05, MCS p-value = .001). First, we identified the clusters of 782 

significant continuous values in time. Second, we computed 1000 permutations, randomizing 783 

the significant values obtained from the t-tests. For each permutation, we extracted the 784 

maximum cluster size and built their reference distribution. Finally, we considered significant 785 

the original clusters that were larger than 99.99% of the permuted ones. 786 

 787 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.11.19.517195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/


 

 

31

Time-frequency analysis for induced responses 788 

We computed a time-frequency analysis using complex Morlet wavelet transform (from 1 to 789 

60 Hz with 1-Hz intervals) 72. This analysis was conducted for induced responses, 790 

independently for the six ROIs previously described and for the four contrasts considered in 791 

this study (i.e., M versus NT1, M versus NT2, M versus NT3, M versus NT4). Specifically, 792 

the time-frequency decomposition was done independently for each trial, brain voxel, and 793 

participant. Then, the power spectrum of each trial and each brain voxel was averaged within 794 

each of the six ROIs. 795 

Finally, we computed a t-test for each frequency and timepoint, making four contrasts: M 796 

versus NT1, M versus NT2, M versus NT3, M versus NT4. The emerging p-values were 797 

binarized (α = .05) and then submitted to a 2D MCS (MCS p-value = .001). Here, we 798 

calculated the clusters size of continuous significant values in time and frequency. Then, we 799 

made 1000 permutations of the binarized p-values. For each permutation, we measured the 800 

size of the maximum emerging cluster and built a reference distribution with one value for 801 

each permutation. Finally, the original clusters were considered significant when they were 802 

bigger than the 99.99% of the permuted data maximum cluster sizes. 803 

 804 

  805 
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Data availability 806 

The codes are available at the following link: https://github.com/leonardob92/LBPD-1.0.git. 807 

The multimodal neuroimaging data related to the experiment is available upon reasonable 808 

request. 809 

  810 
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SUPPLEMENTARY MATERIAL 1018 

 1019 

Supplementary materials related to this study and organised as supplementary figures (i) and 1020 

tables (ii). In the cases when the supplementary tables were too large to be reported in the 1021 

current document, they have been exported to Excel files that can be found at the following 1022 

link: 1023 

https://drive.google.com/drive/folders/1W1w8UpPKnyp0RMjksKmxi3XqC6UwseBY?usp=s1024 
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Figure S1. Temporal sequences used in the experiment. 1035 

The figure shows all temporal sequences used in the experiment, providing detailed information on how they 1036 

were created. The M sequences were three and comprised the first five tones of the first three measures of the 1037 

musical piece. These three sequences were presented nine times each, for a total of 27 trials. The N sequences 1038 

were created through systematic variations of the three M sequences. This procedure consisted of changing 1039 

every musical tone of the sequence after the first (NT1), second (NT2), third (NT3) or fourth (NT4) tone. We 1040 

created nine variations for each of the original M sequences and each of the four categories of N. This resulted 1041 

in 27 N sequences for each category, and 108 N in total. To be noted, as shown in this figure, the variations 1042 

were created according to the following rules: (i) Inverted melodic contours (used twice): the melodic contour 1043 

of the variation was inverted with respect to the original M sequence (i.e., if the M sequence had the following 1044 

melodic contour: down-down-up-down, the N sequence would be: up-up-down-up); (ii) Same tone scrambled 1045 

(used three times): the remaining tones of the M sequence were scrambled (e.g., M sequence: C-E-D-E-C, was 1046 

converted into NT1 sequence: C-C-E-E-D). When this was not possible (e.g., in the case of NT4, where only the 1047 

last tone is different from the M sequence), we substituted the last tone of the M sequence with a random tone; 1048 

(iii) Same tone (used three times): the same tone was repeatedly used, in some cases varying only the octave 1049 

(e.g., M sequence: C-E-D-E-C, was transformed into NT1 sequence: C-E8- E8- E8
- E8); (iv) Scrambling intervals 1050 

(used once): the intervals between the tones were scrambled (e.g., M sequence: 6thm - 2ndm – 2ndm – 3rdm, was 1051 

adapted to NT1 sequence: 2ndm, 6thm, 3rdm, 2ndm). 1052 

1053 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.11.19.517195doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/


 

 

46

 1054 

 1055 

Figure S2. Functional parcels (ROIs) derived from the brain activity underlying the task. 1056 

The main activity during recognition of the previously memorised and novel auditory sequences gave rise to the 1057 

following six functional ROIs: left (i) and right auditory cortex (ii); left (iii) and right hippocampal regions and 1058 

inferior temporal cortex (iv); medial cingulate gyrus (v), and ventromedial prefrontal cortex (vi). 1059 
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 1061 

Figure S3. Pairwise decoding time series. 1062 

Multivariate pattern analysis decoding the different neural activity associated with memorised versus novel 1063 

musical sequences. Each plot shows the decoding time series for one of the four rounds of pairwise decoding 1064 

that we computed (M vs NT1, M vs NT2, M vs NT3, M vs NT4). The sketch of the musical tones represents the 1065 

onset of the sounds forming the temporal sequences. 1066 
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 1068 

 1069 

Figure S4. Brain activity recorded at a prototypical magnetometer channel (MEG 0211) and source 1070 

reconstruction of the main components. 1071 

Brain activity recorded over time by the fronto-temporal left MEG channel 0211 showing the five experimental 1072 

conditions. The sketch of the musical tones represents the onset of the sounds forming the musical sequences. 1073 

For each of the main positive components, contrasts between the source reconstruction of M versus NT1 have 1074 

been computed and corrected for multiple comparisons using cluster-based MCS. Results are reported in the 1075 

brain template above the waveforms. With regards to the negative component indexing the prediction error 1076 

associated to the disruption of the original sequences, we computed contrasts between the source reconstruction 1077 

of M versus each category of N (i.e., M vs NT1, M vs NT2, M vs NT3, M vs NT4, respectively) and corrected for 1078 

multiple comparisons using cluster-based MCS. Results are reported in the brain template below the 1079 

waveforms. The colour of the arrows illustrates what contrast was performed (e.g., the blue arrow indicates that 1080 

we contrasted M versus NT1, while the yellow arrow refers to M versus NT2, etc.). The colorbar shows the t-1081 

values obtained from the contrasts. 1082 
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 1084 
Figure S5. Focus on the NT1 for left auditory cortex (AC) and ventro-medial prefrontal cortex (VMPFC). 1085 

The left plot shows the source localized brain activity illustrated for NT1 for left auditory cortex (AC) and 1086 

ventro-medial prefrontal cortex (VMPFC). Of particular interest it is the sharp peak occurring after the onset of 1087 

each tone where left AC precedes VMPFC of approximately 80 ms, suggesting a hierarchical processing in the 1088 

brain. The sketch of the musical tones below the first two plots represents the onset of the sounds forming the 1089 

temporal sequences. 1090 
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 1092 

 1093 

Figure S6. Source localized induced responses – M versus NT2, NT3, NT4. 1094 

Contrasts between the source localized induced responses of M versus NT2, NT3, NT4, respectively. The plots 1095 

indicate a stronger power for gamma in M. Moreover, theta was overall stronger for M versus NT1 during the 1096 

presentation of the sounds, while alpha, beta and theta were stronger for N versus M after the end of the 1097 

temporal sequences. The colorbar indicates the t-values obtained by contrasting M versus N. 1098 
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SUPPLEMENTARY TABLES 1100 

 1101 

Table S1. Pairwise decoding. 1102 

Binary time series showing the FDR-corrected significant timepoints (1s) of the decoding time series (i.e., when 1103 

the algorithm successfully classified M versus N). The first row shows time (in seconds), while the other rows 1104 

refer to the four contrasts of this study (M versus NT1, M versus NT2, M versus NT3, M versus NT4). 1105 

 1106 

Table S2. Temporal generalization. 1107 

Cluster-based MCS on temporal generalization decoding results computed independently for the four following 1108 

contrasts: M versus NT1, M versus NT2, M versus NT3, M versus NT4. The table shows size, MCS p-value and 1109 

temporal extent of the cluster (both training and testing sets). 1110 

 1111 

Table S3. Brain source of decoding time windows. 1112 

Significant brain sources (after cluster based MCS correction for multiple comparisons) of the significant time 1113 

windows emerged from the decoding analysis. Results are reported with the correspondent AAL label of each of 1114 

the significant voxel, as well as their hemisphere, t-value and MNI coordinates. Results are provided for the 1115 

following contrasts: M versus NT1, M versus NT2, M versus NT3, M versus NT4. 1116 

 1117 

Table S4. ROIs time series. 1118 

Significant clusters of differential brain activity between M and N in the six broad functional ROIs isolated in 1119 

the previous analyses. Results are reported independently for the six ROIs and for the four contrasts (M versus 1120 

NT1, M versus NT2, M versus NT3, M versus NT4), and comprise cluster size, p-value, temporal extent of the 1121 

clusters and peak t-value within the cluster. 1122 

 1123 

Table S5. Time-frequency results of induced responses. 1124 

Significant clusters of differential power in different frequency bands (1 – 60Hz) computed using complex 1125 

Morlet wavelet transform. Results are reported independently for the six ROIs and for the four contrasts (M 1126 

versus NT1, M versus NT2, M versus NT3, M versus NT4), and comprise cluster size, p-value, temporal, and 1127 

frequency extent of the clusters. 1128 
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