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Abstract

To survive the brain must extract and predict imfation from key spacetime features of the
physical world. While neural processing of visudsdgatterns has been extensively studied,
much remains to be discovered about the hierarchicain mechanisms underlying
recognition of auditory sequences with associateckdiption errors. We used
magnetoencephalography (MEG) to study the temportalding over milliseconds of brain
activity in 83 participants recognising melodiesl arariations thereof. The results showed a
hierarchy of processing in networks from the auglittm the ventromedial prefrontal and
inferior temporal cortices, hippocampus and mediadjulate gyrus. Both original melodies
and variations engaged the pathway from auditoryegcat the bottom of the hierarchy to
upstream processing in hippocampus and ventromedétontal cortex, but differed in
terms of temporal dynamics, where the recognitibrorginals elicited stronger gamma
power. Our results provide detailed spacetime imisigto the hierarchical brain mechanisms

underlying auditory sequence recognition.

Keywords
Recognition memory, Temporal sequences, Predictiveeoding (PO),

Magnetoencephalography (MEG), Global neuronal wmake (GNW)
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I ntroduction

In order to fully understand the neural substrdtperception and cognition in the human
brain, we must reveal the hierarchical brain prsices in both space and time®, as
suggested by several frameworks such as the gieabnal workspace hypothesis (GNW)
"9 and the predictive coding thed': To elucidate such brain mechanisms, much research
has focused on vision, which is often said to ke kbay sensory modality for humatfs:
However, given that we do not have eyes in the backlitory information is equally
important for survival. In addition, while the veusystem primarily relies on the recognition
of patterns arranged in space, the auditory systetmacts information from patterns and
sequences over tiné& providing unique opportunities to understandtémaporal hierarchies
of the brain.

Decades of studies have clarified that auditorycemion is hierarchically organised
(originating in the periphery in the cochlea andgeeding, progressively, to the brainstem,
pons, trapezoid body, superior olivary complexgtaklemniscus, inferior, medial geniculate
nucleus of the thalamus and finally primary augitoortex*>'9. However, little is known
about the dynamics of higher-level integration aflitory information. Moreover, much
remains to be discovered about the fast-scaleaiaigical brain mechanisms responsible for
encoding and recognizing sequences of sounds edemcer time.

Here, we took advantage of the unique opportuniigered by music. In fact, music is a
highly prized artform providing pleasure and acepgirmeaning through the combination of
its constituent elements extended over titheand exactly for these reasons it provides an
excellent tool for investigating the brain’s temglodynamics'®. However, much remains to
be learned about the fine-grained neural dynanfiteeoauditory system at the milliseconds
level since most of the previous studies on musigoscience have used functional magnetic
resonance imaging (fMRI) with relatively poor temgloresolution on the scale of seconds.
Still, much progress has been made through cleysranental designs. For instance, Gaab
and colleagues observed the brain activity of pigidnts who were requested to compare
different simple melodie¥. Successfully performing the task showed significzhanges in
activity mainly in the superior temporal, superparietal, posterior dorsolateral frontal and
dorsolateral cerebellar regions, supramarginalleftdnferior frontal gyri. In another classic
study, Zatorre and colleaguésinvestigated the brain activity related to thecegtion of
melodies and the pitch comparison of particularesonThe results revealed a dissociation

where melody perception is related to activity lie right superior temporal cortex, while
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72  pitch comparison mainly involves the right prefr@ntortex. Similarly, a more recent study
73 by Kumar and colleague’s showed the key role of the activity and connettitietween
74  primary auditory cortex, inferior frontal gyrus ahgbpocampus for performing an auditory
75 working memory (WM) task consisting of maintainiageries of single sounds.
76 These studies revealed the underlying brain néssviar music processing but could not
77 provide the precise dynamical unfolding of neumality. To overcome this issue, here we
78 used magnetoencephalography (MEG), which has exteiémporal resolution capable of
79 tracking rapid brain responses happening at thdiseibnds level”>. For this reason,
80 previous research has utilized MEG to reveal theetolevels of hierarchical processing in
81 the auditory system by investigating the well-knowamponents of the event-related
82 potentials/fields (ERP/F), which occur in respofseounds and violation of expectations,
83 such as the N100, mismatch negativity, and ¥38 Equally, and even more importantly,
84 MEG allows for the study of higher cognitive proges, providing information on the rapid
85 brain mechanisms associated with perception andpulation of sounds. As an example,
86 Albouy and colleague¥ explored the brain activity underlying memory reien, showing
87 that theta oscillations in the dorsal stream ofgh#icipants’ brain anticipated their abilities
88 to perform an auditory WM task which consisted aimpulating and maintaining sound
89 information. Similarly, Bonetti and colleagu&s® revealed that encoding and recognition of
90 sound information recruited a large network of braieas, spanning from auditory cortex to
91 medial cingulate, inferior temporal cortex, insufegntal operculum, and hippocampus.
92 Moreover, they showed that music complexifyand individual cognitive difference®
93 modulated the activity recorded in the brain nekwdYhile such studies have provided a first
94 glimpse of the neural basis of music processingardeption of auditory information, the
95 rapid brain hierarchies underlying conscious redagn of temporal sequences and their
96 associated prediction error have not yet been kit
97 Here, moving beyond the state-of-the-art, we race-localised MEG of a group of 83
98 participants as they recognised original melodied wariations thereof. This revealed the
99 precise spatiotemporal unfolding of brain activityer milliseconds allowing us to map the
100 hierarchical brain dynamics underlying the recdgnitof previously learned and varied
101 temporal sequences. As such this provided novéhits into the fine-grained hierarchical
102 dynamics of brain processing of spacetime inforamati
103
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Results

Experimental design and behavioral results

Eighty-three participants performed an old/new #ugi recognition task during
magnetoencephalography (MEG) recordings. After niegr a short musical piece,
participants were presented with 135 five-tone wcalséxcerpts lasting 1750 ms each and
were requested to state whether each excerpt keglotogthe original music (‘memorised’
sequence (M), old) or it was a varied musical sege€'novel’ sequence (N), newgifure
l1a).

Twenty-seven excerpts were taken from the origimalsical piece and 108 were
variations of the original melodies. We organizdebse variations in four categories
depending on whether changes involved every musited of the sequence after the first
(NT1), second (NT2), third (NT3) or fourth (NT4)rte Figure 1b). Thus, all the original
sequences and variations had the first same teigare S1 shows a depiction in musical

notation of all the sequences used in the study.

o / N T3

3 EEmsEvE: -z&» _.'."'“—_,;_.y Jdp*ai-d.,.-,e -1§aix-f'f.t'a—-1

a Data acquisition b Temporal sequences
Experimental paradigm
MEG scanning - . Mernordzed musical saquence
i l . é‘ﬁi""ﬁ-;-'ﬁ =]
/ 1 Varlation | 4 E vV
. \ g —_— MewT1 i i . NewTé

& \_

Memonzed musical sequence Mool musical seguance

c Multivariate pattern analysis d Source reconstruction

Support vector machine on MEG data Decoding time series Temporal genaralization Co-registration Forward model Inverse sohution

e Functional regions of interest f  Evoked responses Induced responses

Lett Aucktory Corex Right Auditary Corlex

Left Hippocampus Right Hippocarmpus - ST '\‘b:ﬂ-‘u-muu-ul .
Interior Temporal Cortex  Inferior Termpeeal Corte,  Medtal Ginguiate Gyrus |I‘

Figure 1. Experimental design, stimuli, and analysis pipeline.
a — The brain activity in 83 participants was collected using magnetoencephal ography (MEG) while they
performed an old/new auditory recognition task. One at a time, five-tone temporal sequences (i.e., melodies)

were presented in randomized order and participants were instructed to respond with button presses whether
5
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126  they were ‘old’ (memorized musical sequences, ‘M’) or ‘new’ (novel musical sequences, ‘N'). b — Five types of
127  tenporal sequences (M, NT1, NT2, NT3, NT4) were used in the study. There were three M sequences that
128  comprised the first five tones of the first three measures of the memorised musical piece. The figure shows one
129  of them, as an example (top row). The N sequences were created through systematic variations of each of the
130 three M sequences. This procedure consisted of changing every musical tone of the sequence after the first
131  (NT1), second (NT2), third (NT3) or fourth (NT4) tone, asillustrated in the example reported in the bottom row
132  (red musical tones). c — After MEG data pre-processing, multivariate pattern analysis (decoding) was used to
133  assesswhether it was possible to discriminate the experimental conditions based on the neural activity recorded
134  with the MEG. d — The MEG data was co-registered with the individual anatomical MRI data, and source
135  reconstructed using a beamforming algorithm. This procedure returned one time series for each of the 3559
136  reconstructed brain sources. e— Based on the outcome of the multivariate pattern analysis and of the activity of
137  the source recongructed data, six main functional brain regions (ROIs) were derived. f - We studied the evoked
138  (l€ft plot) and induced (right plot) responses for each ROI and experimental condition.

139

140 Before focusing on the recorded brain data, wéopeed statistical analyses on the MEG
141 task behavioral data (sdeble 1 for descriptive statistics). We computed two indegent
142 Kruskal-Wallis H tests (non-parametric one-way gsial of variance) to assess whether the
143 five categories of temporal sequences (M, NT1, NY23, and NT4) differed in terms of
144 response accuracy and reaction tinkegyr e 2a).

145 The Kruskal-Wallis H test for response accuracyg significant H(4) = 36.38p < .001),
146 indicating a difference between categories in thmlper of correct responses. The Tukey-
147 Kramer correction for multiple comparisons hightiggth that NT4 trials were correctly
148 identified with a lower frequency than Nd € .001), NT1 = .001), NT2 p = .0003), NT3
149 (p <.0001).

150 The Kruskal-Wallis H test for the reaction timeasaalso significantH(4) = 22.53p =
151 .0002).The Tukey-Kramer correction for multiple quamsons highlighted that NT4 trials
152 were correctly identified with a greater reactiong than M p = .0016), NT1 | = .0013),
153 NT2 (p =.0054), NT3§ = .0008).

154
Behavioral variables M NT1 NT2 NT3 NT4
Correct recognition 22.33t5.30 22.36 £ 4.27 21.58+5.31 21.66 £5.34 17.04t7.12
Reaction times (ms) 24261226 2407 £ 284 2431+ 282 2415+ 272 2578 259
155
156 Tablel. MEG task behavioral results show differences between NT4 and all the other conditions.
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Mean and standard deviations across participants of number of correctly recognised trials and reaction times
(ms) for the five experimental conditions (previousy memorised ['M’'], novel ['NT1'], novel ['NT2'], novel
[‘NT3'], novel ['NT4']).

Multivariate pattern analysis

Using a support vector machine (SVM) classifiee(details in Methods, arfedgure 1c), we
performed multivariate pattern analyses to decdifiereint neural activity associated with the
recognition of M versus N. Specifically, we complfeur independent analyses, decoding
M versus each of the four categories of novel secge (i.e., M versus NT1, M versus NT2,
M versus NT3, and M versus NT4).

As shown inFigure 2b andFigure S3, each of these analyses returned a decoding time
series showing how the neural activity differergthtthe pair of experimental conditions.
Overall, the results showed that the SVM was abldetect significant differences between
memorised and novel sequences. Specifically, dagodime series were significantly
different from chance level in several time windows illustrated inFigure 2b, decoding M
versus NT1 returned the following main significimie windows: 0.53-0.73 sec; 0.91 — 0.95
sec; 1.27 — 1.30 sec; 1.62 — 1.88 sec<(.012, false-discovery rate [FDR]-corrected).
Decoding M versus NT2 gave rise to the followingimsignificant time windows: 0.89 —
1.18 sec; 1.26 — 1.42 sec; 1.54 — 1.89 get.012, FDR-corrected). Decoding M versus NT3
returned one main significant time window: 1.25729@c < .012, FDR-corrected). Finally,
decoding M versus NT4 showed the following maimgigant time window: 1.64-2.07(<
.012, FDR-corrected). Detailed statistical resahs reported imable S1 and illustrated in
Figure S3.

To evaluate the persistence of discriminable remfarmation over time, we used a
temporal generalization approach by training théViSalassifier at a given timepoiritand
testing it across all timepoints. This was caledafor the four pairs of experimental
conditions described above. The signed-rank teatnafychance level and cluster-based
Monte-Carlo simulation®** *® 4"(MCS; o. = .01, MCSp-value = .001) showed that the
performance of the classifier was significantly @dochance even a few hundreds of
milliseconds beyond the diagonal, for all pairscohditions. Notably, the neural difference
between M and N was comparable across diverse alusites, as shown by the recurrent
patterns depicted ifigure 2c and highlighted by the graphs and stars. Detaitatisical
results are reported hable S2.
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Figure 2. Machinelearning allows for accurate decoding of experimental conditions.

a — Scatter and violin plots for the correct responses (left) and reaction times (right) for the experimental task
performed by the participants in the MEG. The plots separately illustrate each experimental condition. Each dot
represents a participant. The graphs and stars indicate that both accuracy and reaction times for NT4 were
significantly different (p < .01) from M, NT1, NT2, and NT3. b - Multivariate pattern analysis decoding the
different neural activity associated with memorised versus novel musical sequences. The plot shows the
decoding time series for four rounds of pairwise decoding (M vs NT1, M vs NT2, M vs NT3, M vs NT4). The
sketch of the musical tones represents the onset of the sounds forming the temporal sequences. The graphs and
stars indicate the significant time-points when the algorithm successfully decoded the experimental conditions
(g < .012, false-discovery rate [ FDR] -corrected) ¢ - Temporal generalization of pairwise decoding of the same
conditions. The graphs and stars indicate the significant time-points when the experimental conditions were
successfully decoded (MCS, o= .01, MCS p-value = .001). The sketch of the musical tones represents the onset

of the sounds forming the temporal sequences.

Neural sources of thedifferential brain activity between M and N
We employed a local-spheres forward model and enfweening approach as inverse solution

in an 8-mm grid Eigure 1d). To detect the brain sources underlying the difial signal
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observed for M and N, we considered both the redutim the decoding analyses and the
inspection of the MEG data after preprocessings Mias necessary since decoding can
capture differences between conditions, but it does discriminate which condition is
associated with a larger neural signal (see Methmddetails).

This procedure returned the following significime windows: 0.50 — 0.60 sec; 0.70 —
0.80 sec; 0.98 — 1.02 sec; 1.05 — 1.15 sec; 1B39-sec; 1.45 — 1.55 sec; 1.70 — 1.75 sec;
1.75 — 1.85 sec. For each time window and conditinaveraged the time series of all brain
sources over time and computed t-tests contrasrn combination of M versus Ns. Finally,
we corrected for multiple comparisons using a 3tEr-based MCS (MC$, = .003, MCS
p-value = .001).

As reported inTable 2 and illustrated inFigure $4, this analysis returned several
significant clusters of differential brain activipetween M and N, primarily located in the
bilateral medial cingulate gyrus (MC), left (HIT&nd right hippocampal area and inferior
temporal cortex (HITR), left (ACL) and right audiyo cortex (ACR), and bilateral
ventromedial prefrontal cortex (VMPFC).

Detailed statistical results are extensively regobinTable S3.

Time-windows Contrast Cluster size Main ROI(s) Peak t-value MCS p-value
0.50 - 0.60 Mvs NT1 10 MC -4.18 <.001
0.70 - 0.80 Mvs NTa 132 MC 5.59 <.001
1.05-1.15 Mvs NTa 162 MC 5.38 <.001

ACR
1.45-1.55 Mvs NT1 270 4.91 <.001
MC
1.75-1.85 Mvs NT1 175 HITR 5.94 <.001
0.98 —1.02 Mvs NT2 94 VMPFC -4.33 <.001
1.05—1.15 Mvs NT2 57 MC 4.47 <.001
1.45 —1.55 Mvs NT2 9 MC 3.7 <.001
1.75-1.85 Mvs NT2 28 HITR 4.16 <.001
HITR
1.33-1.39 Mvs NT3 300 -5.34 <.001
VMPFC
1.45—1.55 Mvs NT3 58 ACL -4.57 <.001
1.75-1.85 Mvs NT3 79 HITR 4.42 <.001
1.70 - 1.75 Mvs NT4 584 VMPFC -5.57 <.001
1.75—-1.85 Mvs NT4 197 ACL -5.39 <.001

Table 2. Brain sources of decoding significant time windows.
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Sgnificant clusters of brain sources of the significant time windows returned by the decoding analysis. The
table shows the time windows, contragts, cluster size (number of voxels forming the cluster), main ROI(S)
involved in the cluster, peak t-value, and MCS p-value.

Functional regions of interests (ROIs)

Expanding on the previous analyses, we wished ttetbdefine the spatial extent of the
significant brain areas based on their functiomafile and computed their associated time
series (see Methods for details).

This procedure returned six broad ROIs which wpasticularly active during the
recognition task: lefti) and right auditory cortefi), left (iii) and right hippocampus-inferior
temporal cortex(iv), ventromedial prefrontal cortefy), and medial cingulate gyrusi).
Then, we computed one t-test for each time-point @ach combination of M versus Ns.
Finally, we corrected for multiple comparisons gsione-dimensional (1D) cluster-based
MCS (MCS,a = .05, MCSp-value = .001).

This analysis returned several significant clsstafr differential brain activity over time
between M and Ns. As shownkiigure 3, M versus N was characterized by stronger activity
in VMPFC, ACL, and HITR after 350 — 450 ms from ttweset of each tone. Similarly, M
presented stronger negative activipy(.001) than N in the MC after 400 — 500 ms frdma t
onset of each tone.

Temporal extent of the largest clusters
Contrast ROI Peaki-value P-value
from the T* tone of the sequence
Positive activity
VMPFC 900 — 1190 6.13 <.001
Mvs NTa1 ACL 900 — 1040 6.26 <.001
HITR 1660 — 1930 5.45 <.001
VMPFC 1680 -1930 5.94 <.001
Mvs NT2 ACL 1260 - 1390 3.56 <.001
HITR 1640 — 1930 6.12 <.001
VMPFC 1310 — 1540 7.04 <.001
Mvs NT3 ACL 1250—1390 4.80 <.001
HITR 1310 —1530 6.69 <.001
VMPFC 1680 — 1910 8.92 <.001
M vs NT4 ACL 1640 —1790 6.93 <.001
HITR 1680 — 1900 7.45 <.001

10
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Negative activity
Mvs NTa1 MC 680 —860 -5.18 <.001
M vs NT2 MC 980-1180 -5.77 <.001
Mvs NT3 MC 1360 - 1550 -5.41 <.001
Mvs NT4 MC 1730—-1920 -5.40 <.001

Table 3. Largest clugters of stronger activity of M versusNs.

Largest clusters of significantly stronger activity of M versus Ns computed for the six ROIs considered in the
study. The table shows the contrast, the correspondent ROI, the temporal extent (in ms) of the largest cluster,
the peak t-value of the cluster and the associated MCS p-value. The MC shows stronger negativity since the
polarity of the MC signal was negative. All clustersare reported in detail in Table $4.

Conversely, late N100 responses localized in AGewastronger for N versus M. For
instance, the temporal extent of the larger clusteXCL for M versus NT1 was 520 — 700
ms from the onset of the first tone of the sequdpeakt-value = 6.75,p < .001). Moreover,
HIT and VMPFC showed a stronger response for Nugekd occurring about 250 — 300 ms
after altering the original sequences. For instatieetemporal extent of the larger cluster of
HITR for M versus NT4 was1680 — 1900 ms from theatrof the first tone of the sequence
(peakt-value = 7.45,p < .001); the temporal extent of the larger clusteWMPFC for M
versus NT4 was 1680 — 1910 ms from the onset dirstedone of the sequence (peakalue
= 8.92,p < .001).Table 3 reports the main significant clusters, while coetglstatistical
results are reported hable $4.

11
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274  Figure3. Revealing the hierarchy of temporal sequence recognition in the human brain.

275  Sourcelocalized brain activity illustrated for each experimental condition (M, NT1, NT2, NT3, NT4) and ROI.
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276  The sketch of the musical tones represents the onset of the sounds forming the temporal sequences. The brain
277  tenplatesillustrate the spatial extent of the ROIs. Graphs and star indicate significant differences. The red ones
278  refer to the contrast ‘M’ versus ‘NTL, the blueto ‘NT1' versus ‘M’, the yellow to ‘NT2' versus ‘M’, the purple
279 to‘NT3 versus‘M’ and finally the grey to *NT4' versus‘M'.

280 The first row shows the lower order brain regions (auditory cortices) involved in this study. The bottom
281  graphs highlight the fast N100 responses to each tone of the sequences, which were stronger for the novel
282  conditions. The top graphsindicate the stronger and slower responses for the memorised sequences. The second
283  rowand the right plot of the third row illustrate higher-order brain regions, corresponding to the hippocampal
284  area and inferior-temporal cortices, and ventromedial prefrontal cortex. Also in this case, the bottom graphs
285  indicate the stronger responses for the novel conditions, while the top graphs the stronger activity recorded for
286 the memorised sequences. To be noted, the time series systematically change depending on the variation
287  introduced in the melodic sequences. Moreover, the responses of these higher-order brain regions are sightly
288  delayed (about 80 ms) compared to the lower-order regions. This suggests a hierarchical processing happening
289  inthebrain to extract meaning formthe musical sequences and recognise them. Finally, the left plot of the third
290 row indicates the medial cingulate gyrus, which presents an overall similar activity in response to each
291  experimental condition. This suggests that the medial cingulate may be implicated in the general auditory
292  processing and not specifically in the memory recognition and evaluation of the temporal sequences.

293

294 Of particular interest is the brain response aaegrwhen the original musical sequence
295 was varied. Here, AC presented a rapid, sharp k{@38@ ms after the altered tone), while
296 HIT and VMPFC responded slightly later (around 280 ms from the altered tone). As an
297 exampleFigure 4b, 4c and S5 depicts the cross-correlation between the timesaf left
298 AC and VMPFC averaged over participants, highligintthe 80 ms lag between the two
299 signals.

300

301
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303  Figure4. Brain network underlying temporal sequence recognition.
304  a-— Schematic representation (left) of the brain network underlying the recognition of the temporal sequences.
305  The schema illustrates the lower-order brain regions at the bottom of the hierarchy (left and right auditory
306  cortex) and the higher-order brain regions (left and right hippocampus and inferior-temporal cortices, and
307  ventromedial prefrontal cortex) at the top of the hierarchical brain processing. In the middle, the medial
308 cingulate gyrus is thought to play an associative role, possibly mediating between lower- and higher-order
309  brain regions. The right plots show the same representation within brain templates. b - The left plot shows the
310 source localized brain activity illustrated for each category of N (i.e.,, NT1, NT2, NT3, NT4) and both left
311  auditory cortex (AC) and ventromedial prefrontal cortex (VMPFC). Of particular interest it is the sharp peak
312  occurring after the onset of each tone where left AC precedes VMPFC of about 80 ms. Moreover, while the
313  strength of the signal increases over time for VMPFC, this does not happen for left AC. This evidence suggests a
314  nierarchical brain processing underlying the prediction error occurring for the novel conditions. The sketch of
315  the musical tones below the first two plots represents the onset of the sounds forming the temporal sequences. ¢
316 — The plot shows that the strongest cross-correlation computed between the time series averaged over

317  participants of left AC and VMPFC occurred with a time-lag of approximately 80 ms.
318
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Time-frequency analysisfor induced responses

We computed time-frequency analysis using complexiéd wavelet transform (from 1 to 60
Hz with 1-Hz intervals). This analysis was conddcfer induced responses. First, we
estimated independent time-frequency decomposifmnsach voxel of the six ROIs and for
each trial. Then, the computed power spectra wereaged over voxels within each ROl and
over trials. Finally, in line with the previous dyses, we calculated four contrasts (M versus
NT1, M versus NT2, M versus NT3, and M versus NT3pecifically, we computed a t-test
for each frequency and timepoint and correctedrfattiple comparisons using 2D cluster-
based MCS. As shown ifigure 5, results were similar across ROIs and displayed a
generalized increased gamma power for M versug M (001). Conversely, N versus M
presented a stronger power between 2 and 20 Hrefpunding to, approximately, theta,
alpha, and beta bands), in the time window 1.00-s8condsg < .001). Detailed statistical

results about this procedure are extensively redartTable S5 and depicted ifrigure 6.

Induced responses: Memorized versus Novel T1

Left auditory cortax Right audiory cortex Left hippocampal regions and inferior temporal cortex

00 TR Tl TR

tirme (s} time (s} time (3)

Figure 5. Significant differencesin gamma power when recognising melodies compared to variations.

Contrasts between the source localized induced responses of M versus NT1. The plots indicate a stronger power
for gamma in M. Moreover, theta was overall stronger for M versus NT1 during the presentation of the sounds,
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340 while alpha, beta and theta were stronger for NT1 versus M after the end of the temporal sequences. The
341  colorbar indicates the t-values obtained by contrasting M versus NT1.
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342 Discussion
343 Using a music recognition paradigm in MEG, we weide to reveal the fine-grained
344 hierarchical spacetime brain dynamics underlying bcognition of previously memorised
345 musical sequences, as well as the prediction arising when varying these auditory
346 sequences.
347 The results show that the recognition of the audisequence is built over time through a
348 rapid hierarchical pathway progressing from the iteng cortex to the ventromedial
349 prefrontal cortex, hippocampus, and inferior tenaparortex. This provides important
350 evidence strengthening the case made by otherestsdggesting a hierarchical organization
351 of the brain in terms of predictive codifig. Importantly, the results reported here expands
352 the previous literature by providing novel informoeat on the spatiotemporal dynamics of the
353 hierarchical organization of the auditory systemidid to crucial memory processes?*30-3
354 More specifically, we observed a hierarchical paty which characterized the recognition
355 of the original sequences. Initially, each tonettid sequence showed the expected well-
356 known N100 negative peak after 100 ms in the anditortex. Notably, we also found a
357 novel positive component peaking after 300 ms. &hmsaks were followed by a similar
358 component originated in ventromedial prefrontatexr hippocampus and inferior temporal
359 cortex which achieved a maximum 400 ms after eaoh.tin addition, the medial cingulate
360 presented a negative peak 400 — 450 ms after emeh The variations could then be
361 characterised in terms of how these components eigher absent or strongly reduced.
362 Interestingly, while the response of the medialguiate was the same to all notes, the
363 activity of ventromedial prefrontal cortex, hippogaus and inferior temporal cortex
364 increased over time only for the original sequences
365 In addition, our results showed a different hiehazal pathway for the prediction error
366 arising in the responses to the systematic vanatal the sequences. Here, compared to the
367 original sequences, the variations were associaidd a stronger N100 response in the
368 auditory cortex for each tone. In contrast, therlaesponses in the ventromedial prefrontal
369 cortex and hippocampus occurred only after the tbiaé disrupted the original sequences
370 (see for example the response in Figure 3 for [NiT&] after tone two of the melody). Here,
371 afirst sharp negative peak appeared 250 — 300ftersthe tone altering the sequence, while
372 a second positive component peaked 500 — 550 res #hié tone. The strength of the

373 responses was progressively greater dependingeototie used to introduce the variation
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374 (i.e., a variation in tone five [NT4] elicited sirger responses than a variation in tone two
375 [NT1)).

376 The induced-response analysis showed that activithe gamma band was stronger for
377 the original sequences compared to variations, cespe during the presentation of the
378 sequences. Conversely, after the end of the seguantvity in alpha and beta bands was
379 stronger for variations compared to originals. Ehessults were very similar to those found
380 across the brain network highlighted by the evole=sponse analyses.

381 Finally, in terms of behavioural responses, theuescy and reaction times were nearly
382 equal for the original sequences and the systerwatiations (NT1, NT2, NT3). Notably,
383 when varying only the last tone of the sequence4{NThe reaction times were suddenly
384 significantly larger and the accuracy lower.

385 These results revealed the hierarchical brain geging occurring when listening to
386 auditory sequences and the spacetime differenchgermrchy when listening to systematic
387 variations thereof. Broadly, they are consisterthvgrevious findings™>%**3® showing a
388 large network of brain areas involved in the redtigm of previously memorised auditory
389 sequences.

390 Moreover, our findings support previous studiesciwishowed the auditory cortex as the
391 primary neural core for processing auditory infotima 3%’ Interestingly, although the
392 stimuli used in this study were musical, the redtgm of the temporal sequences required
393 the involvement of the inferior temporal cortex amgpocampus, which were previously
394 associated mainly to linguistic elaboratidhd® and abstract memory

395 Similarly, we found that the recognition of the ddary sequences required the
396 involvement of the ventromedial prefrontal cortesose role in auditory processing has not
397 Dbeen clearly established yet. Although it is nadgdlole to make definite claims at this stage,
398 we argue that the ventromedial prefrontal cortegether with the hippocampus, may track
399 the progress of the sequence to make the evaluaiout the sounds. In this view, it may be
400 the primary responsible of extracting the meanihihe sequence.

401 Another relevant brain region playing a prominesié at the top of the hierarchy is the
402 medial cingulate gyrus, which presented a negateak 400 — 450 ms after each tone. The
403 activity was overall stronger for original sequencrsus variations, but the underlying
404 activity remained there after the sequences weryeal Moreover, the strength did not
405 increase over time. This constant response strosgfjgests that the medial cingulate is

406 unlikely to be involved in the recognition of thegsiences. Instead, in accordance with

18


https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.19.517195; this version posted December 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

407 previous researcf?, this brain region may be required for the oratatismn of allocating
408 attentional resources. It could also be arguedttf@imedial cingulate might be specifically
409 involved in auditory processing, joining and umiyithe perception of musical tones, and
410 providing the perception of the musical sequencesaawhole pattern rather than a
411 (disjointed) sequential group of single tones. Tihterpretation would be coherent with the
412  specific involvement of medial cingulate in a vayief musical tasks, as highlighted by two
413 recent meta-analysé$* but it calls for future studies specifically dgised to test this
414 hypothesis.
415 Interestingly, our findings provide new insightsta the results previously reported
416 34323433 the frequency of evoked responses to melottigact, those studies showed that
417 the recognition of the temporal sequences is astgutiwith activity in a network including
418 the cingulate, hippocampus, insula, and inferiorgeral cortex in a very slow frequency (0.1
419 - 1 Hz) accompanying the whole duration of the segas. Here, however, we observed a
420 distinct, faster response to each tone of the seguélhe frequency of these responses was
421  of approximately 1 — 1.5 Hz. This new finding clgashows that the recognition of the
422 sequence is associated with responses to eack ofuhkical tones. As such, it could suggest
423 that the slow signal previously obsernv&?3****could simply be the summation of the
424  responses to each sound of the sequences. Lengipgrs to this interpretation is the fact
425 that the duration of each tone was 250 ms in tipese@ious studies rather than the 350 ms
426 used here, and so the individual responses weserciio time and therefore added up to build
427 a slower and stronger signal (0.1 — 1 Hz). To frtnderstand this effect, future studies
428 could modulate the speed of the musical sequencestéct whether 1 — 1.5 Hz is a specific
429 rhythm of the brain associated to recognition orethibr it is driven by the speed of the
430 stimuli.
431 Overall, our results on temporal sequences retiograre consistent and provide insights
432 into the GNW hypothesis proposed by Changeux arfth&®e”®. The authors hypothesized
433 that processing privileged categories of stimulctsuas meaningful temporal sequences
434  activate the brain areas comprised in the GNW.GN&V was defined as a network of brain
435 areas responsible for consciously processing irdtion in terms of attention, memory, and
436 valence, and subsequently for making it availabléhe whole brairf°. As hypothesised, in
437 our study the recognition of memorised versus nawakical sequences led to stronger
438 activity in putative regions of the GNW such as thegulate gyrus, hippocampus, and

439 ventromedial prefrontal cortex These areas could be necessary to extract a mggani
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representation of the sequences and match thempngtfiously acquired memory traces.
Importantly, our study also potentially expands ttieory of the GNW by revealing the fine-
grained hierarchical dynamics between the undeglymain regions while participants
recognised memorised and novel temporal sequences.

Our findings are also providing support for thellskeown predictive coding theoryf*}
which states that the brain is constantly updatimgrnal models to predict external
information and stimuli. Recently, this theory hiasen connected to complex cognitive
processes, finding a remarkable example in theoseience of musit**>. Both Vuust and
colleague$® and Koelsch and colleagutssuggested that, while processing music, the brain
constantly generates hypothesis about the upcodemglopment of musical sentences. Our
results support and expand predictive coding théarythe recognition of both previously
memorised and novel sequences in terms of idemgfyihe underlying hierarchical
processing. On the one hand, when the upcomingdsa@s matched with the predicted
sound based on the previously stored memory tréist, the auditory cortex and then
hippocampus, inferior temporal cortex and ventraadegrefrontal cortex respond. These
responses increase over time, showing strongeraheastivity after each successful
prediction of the upcoming sounds. On the othedhtre present study revealed the changes
in hierarchical processing associated with preglictierrors when the melodies were
systematically altered. This indicates that whenupcoming sound was incoherent with the
prediction made by the brain, a network of hiersn@hareas was recruited, with the
information flowing from auditory cortex to ventreaial prefrontal cortex and hippocampal
regions. Notably, this brain network was similarthe one employed for the recognition of
previously memorised sequences, but their temglyr@dmics sharply differed.

This latter finding is also coherent with the plata of studies investigating automatic
prediction error in audition indexed by N100 andsmmatch negativity (MMN)?**26:29.46
Previous research has revealed the primary invawerof auditory cortex in the generation
of the prediction error signdf*’ reporting a complementary yet much reduced reugrit
of the medial cingulate, frontal and hippocampadaar®*® Conversely, in our study we
investigated the prediction error and revealedchikearchical organization of the brain which
recruited first auditory cortex (100 — 150 ms) athen, with a stronger activity, the
ventromedial prefrontal cortex and hippocampus (25600 ms). Moreover, our results
showed that auditory cortex discriminated melodiessus systematic variations but did not

distinguish the strength of the errors (i.e., exrbappening later in the sequence). For

20


https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.19.517195; this version posted December 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

473 instance, the response to the variation insertetbrag number two was the same to the
474 variation at tone number five. In addition, the ity cortex responded to novel tones for
475 the entire duration of the sequence in a similanmea (i.e., for NT1, the auditory cortex
476 responded in the same way to tones number twoe,ttioerr, and five). Remarkably, the
477 prediction error observed in the hippocampal regiand ventromedial prefrontal cortex
478 showed a different strength depending on when ¢lq@ence was altered (e.g., the response
479 to the variation inserted at tone number five wagmstronger than to the variation at tone
480 number two). Moreover, these areas responded plymer the first tone where we
481 introduced the variation and very little to the sedpuent sounds. These findings suggest that
482 the brain signature underlying the awareness ofviréation may be represented by the
483 responses recorded in the ventromedial prefromidéx and hippocampus and their specific
484 temporal dynamics.

485 Along this line, our findings showed a potentialationship between reaction times and
486 accuracy in the recognition task and the seaesgonse of the prediction error occurring in
487 the right hippocampus and inferior temporal codex in the ventromedial prefrontal cortex.
488 Indeed, both reaction times and accuracy were appately the same for original sequences
489 and NT1, NT2, and NT3. However, accuracy was sicgnitly reduced, and reaction times
490 increased for NT4. Similarly, while the second comgnt of the prediction errors (occurring
491 after approximately 500 ms from the onset of théedatone) was rather sharp for NT1, NT2,
492 and NT3, its frequency was much slower for NT4. réhare at least two possible
493 explanations for this phenomenon: 1) The variatibthe last tone of the sequence elicited a
494  slower prediction error, both at a neural and baravlevel or, alternatively, 2) a bolder and
495 more intriguing hypothesis relates to musical chogkand the beat used to present the
496 stimuli. We would argue that the lower accuracy higher reaction times for NT4 was due
497 to the chunking occurring when listening to the imalsstimuli presented with a beat every
498 four tones. In this view, after listening to fownes of the original sequence (corresponding
499 to a full beat), the perception that the sequersteniged to the group of previously learned
500 sequences was very strong and, especially muchggtrahan after only three tones. For this
501 reason, we did not observe a linear increase icticgatimes and accuracy but only a strong
502 difference between all categories and NT4 and ahnslmwer prediction error only for NT4
503 compared to the other categories of N. Currentlg, d® not have enough data to make
504 definitive claims and future studies are needed revithe length of the sequences is

505 systematically varied. This could, for example dokieved by having sequences with a beat
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506 every four tones and a length of seven, eight e nones. Similarly, future studies should
507 use musical stimuli with a beat every three toned #us reveal which interpretation is
508 correct.

509 Finally, the induced-response analysis showed ttgamma band was stronger for
510 original compared to varied melodies, especiallyirduthe presentation of the sequences.
511 Conversely, after the end of the sequence, alpltbbeta bands were stronger for the
512 variations compared to the originals. This resslicoherent with previous studies which

49350 and, more

513 reported increased gamma power during recognitibrtagget stimuli
514 generally, a modulation of the brain oscillatiossaciated with memory load and complex
515 cognitive functions™ ™2 In addition, our findings expand on previousriitere by providing
516 evidence that bursts of gamma activity are assstiaith recognition of temporal sequences
517 built upon musical sounds. The induced-respons&/sisaalso showed stronger power for
518 alpha and beta in varied compared to originalg &ffte end of the sequence. Arguably, this
519 result may represent the higher processing requisedhe brain after listening to novel
520 temporal sequences, possibly to store the newnirefon carried by the unfamiliar sounds.
521 Future studies are necessary to further clarify thierpretation. Moreover, further research
522 employing MEG and additional tools such as intralaEEG (IEEG) should conduct cross-
523 frequency coupling analysis, testing whether gantmeta coupling is connected to
524  recognition of temporal sequences.

525 Overall, the results presented here reveal thradtieical dynamics of the brain underlying
526 processing of auditory sequences extended over filme results provide pertinent evidence
527 on the neural basis of memory recognition and ptesh error, and provides new insights
528 into the brain mechanisms responsible for makingpteral information available to humans.
529
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Materials and methods

Participants

The participant sample consisted of 83 volunteg8snjales and 50 females) aged 19 to 63
years old (mean age: 28.76 + 8.06 years). The sampls recruited in Denmark and
participants came from Western countries. All ggpints were healthy and reported normal
hearing. Their educational background was homogeeo

The project was approved by the Institutional Revieoard (IRB) of Aarhus University
(case number: DNC-IRB-2020-006). The experimentaic@dures were carried out in
compliance with the Declaration of Helsinki — E#ldi®®rinciples for Medical Research. All

participants gave the informed consent beforeistathe experimental procedure.

Experimental stimuli and design

In this study, we used an old/new paradigm audit@gognition task®>*23*3° during
magnetoencephalography (MEG) recordings. Firsttigi@ants listened to a short
(approximately 25 seconds long) musical piece twaing were asked to memorise it as much
as possible. The musical piece consisted of tisé fitur measures of the right-hand part of
Johann Sebastian Bach’s Prelude No. 2 in C Mindv¥y/B347. A MIDI version of the piece
was created using Finale (MakeMusic, Boulder, G&2ch tone of the piece had the same
duration (approximately 350 ms). Second, partidipamere presented with 135 five-tone
musical excerpts that lasted 1750 ms each. Patitspnere requested to state whether each
excerpt belonged to the original music (‘memorissdguence [M], old) or were a varied
musical sequence (‘novel’ sequence [N], neWwiggre 1la). Twenty-seven excerpts were
drawn from the original musical piece and 108 weagiations of the original melodies
(Figure S1 shows all the sequences used in the study). Toe#&tegories of stimuli (M and

N) were created as follows. The M sequences wemgpdsed by the first five tones of the
first three measures of the musical piece. Thegaesees were presented nine times each,
for a total of 27 trials. The N sequences wereterk#hrough systematic variations of the
three M sequence§igure 1b). This procedure consisted of changing every nalisane of

the sequence after the first (NT1), second (NTRYdt(NT3) or fourth (NT4) tone. We
created nine variations for each of the originat&fuences and each of the four categories of
N. This resulted in 27 N sequences for each cagegord 108 N in total. To be noted, the

variations were created according to the followinigs:
23
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¢ Inverted melodic contours (used twice): the melaintour of the variation was
inverted with respect to the original M sequence. (if the M sequence had the
following melodic contour: down-down-up-down, thesiquence would be: up-
up-down-up)

e Same tone scrambled (used three times): the remgainones of the M sequence
were scrambled (e.g., M sequence: C-E-D-E-C, wasanted into NT1 sequence:
C-C-E-E-D). When this was not possible (e.g., m¢hse of NT4, where only the
last tone is different from the M sequence), wessitiied the last tone of the M
sequence with a random tone.

e Same tone (used three times): the same tone waateejty used, in some cases
varying only the octave (e.g., M sequence: C-E-D;Bvas transformed into NT1
sequence: CEE® Eg Eg).

e Scrambling intervals (used once): the intervalsvben the tones were scrambled
(e.g., M sequence:"d - 2% — 2%m — 3°m, was adapted to NT1 sequence:
2"%m, 6"m, 3%m, 2¥%m).

This procedure allowed us to investigédethe brain dynamics underlying the recognition of
previously memorised auditory sequences aijdtl{e conscious detection of the sequence

variation.

Data acquisition

The MEG recordings were acquired in a magneticsiiielded room at Aarhus University
Hospital (AUH), Aarhus, Denmark, using an ElektauNemag TRIUX MEG scanner with
306 channels (Elekta Neuromag, Helsinki, Finlafithe data was recorded at a sampling rate
of 1000 Hz with an analogue filtering of 0.1 — 338. Before the recordings, the head shape
of the participants and the position of four Heagsiffon Indicator (HPI) coils were
registered with respect to three anatomical lanésnasing a 3D digitizer (Polhemus Fastrak,
Colchester, VT, USA). This recording was later usedo-register the MEG data with the
MRI anatomical scans. For the entire duration & MEG recordings, the HPI coils
registered the continuous localization of the heslklich was subsequently employed for
movement correction. In addition, two sets of bpalectrodes were used to record cardiac
rhythm and eye movements. This allowed us to rentbeeelectrocardiography (ECG) and

electrooculography (EOG) artifacts in a later stafjhe analysis pipeline.
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The MRI scans were recorded on a CE-approved 3imeéis MRI-scanner at AUH. The

recorded data consisted of structural T1 (mpradle fat saturation) with a spatial resolution
of 1.0 x 1.0 x 1.0 mm and the following sequenceapeeters: echo time (TE) = 2.61 ms,
repetition time (TR) = 2300 ms, reconstructed madize = 256 x 256, echo spacing = 7.6
ms, bandwidth = 290 Hz/Px.

The MEG and MRI recordings were acquired in twoesafe days.

Behavioral data

We obtained behavioral data (number of correctiyogaised trials and correspondent
reaction times) from the experimental task caraetiduring the MEG recording.

Since the data was not normally distributed, we mated two independent Kruskal-Wallis H
tests® (non-parametric one-way analysis of variance)ssesas whether the five categories of
temporal sequences (M, NT1, NT2, NT3, NT4, NT5fadd#d in terms of correct responses

and reaction times. Multiple comparisons were ate® using the Tukey-Kramer correction
53

MEG data preprocessing

The raw MEG sensor data (204 planar gradiometeisl82 magnetometers) was first pre-
processed by MaxFilter* to attenuate external interferences. We appliemasi space
separation (MaxFilter parameters: spatiotemporghai space separation [SSS], down-
sample from 1000Hz to 250Hz, movement compensaisamg cHPI coils [default step size:
10 ms], correlation limit between inner and outebspaces used to reject overlapping
intersecting inner/outer signals during spatioterap8SS: 0.98).

The data was then converted into Statistical Paramndapping (SPM) format and further
preprocessed and analyzed in MATLAB (MathWorks, itdat MA, USA) using a
combination of in-house-built codes (LBPD, httgsthiub.com/leonardob92/LBPD-1.0.git)
and the Oxford Centre for Human Brain Activity (OMB Software Library (OSL)>
(https://ohba-analysis.github.io/osl-docs/), a liyeavailable software that builds upon
Fieldtrip®°, FSL*’, and SPM?® toolboxes.

The continuous MEG data was visually inspectedléntify and remove large artifacts using
the OSLview tool. The data that was removed was tlegn 0.1% of the amount of collected
data. Independent component analyses (ICA) wer@ tgediscard the interference of

eyeblinks and heart-beat artefacts from the brata¥. First, we decomposed the original
25
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signal into independent components. Second, watebland discarded the components that
picked up eyeblink and heart-beat activities. Thilhg signal was rebuilt using the remaining
components. Finally, the signal was epoched intlidas (27 M, 27 NT1, 27 NT2, 27 NT3,
27 NT4) and baseline-corrected by removing the nssgmal recorded in the baseline from
the post-stimulus brain signal. Each trial last®@3tms (4400 ms plus 100 ms of baseline

time).

Multivariate pattern analysis (decoding)

We performed multivariate pattern analyses to decdifferent neural activity associated
with the recognition of M versus N. Here, we congalfour independent analyses, decoding
M from each of the four categories of the noveluseges (i.e., M versus NT1, M versus
NT2, M versus NT3, M versus NT4).

We used support vector machines (SVMand calculated independent analyses for each
participant. The MEG data was rearranged in a 3Dixn@hannels x timepoints x trials) and
submitted to the SVM algorithm. To avoid overfilina leave-one-out cross-validation
approach was adopted to train the SVM classifieteicode the two experimental conditions.
This procedure divided the trials into N differegitoups (here N = 8). Then, for each
timepoint, it assigned N — 1 groups to the trainggg and the remainingsNgroup to the
testing set. After that, the classifier abilitydeparate the two conditions was evaluated. This
process was performed 100 times with random reass&gt of the data to training and
testing sets. To summarize, the decoding accunaeyderies were averaged to obtain a final
time series showing the performance of the clasdifir each participant.

To test the significance of the decoding resulsuice level set at 50%), we employed a sign
permutation test against the chance level for e¢medpoint and then corrected for multiple
comparisons using false-discovery rate (FDR) ctioedo. = .05; FDR-adjusted q < .012).

To assess whether each pair of conditions wererdiftiated by neural patterns which were
stable over time, we computed four temporal gerstabn multivariate analyses. The
algorithm was the same as the one previously destriHowever, in this case we utilized
each timepoint of the training set to predict noftydhe same timepoint in the testing set, but
all timepoints®*®2 Here, the significance was tested using a sigrethutation test against
the chance level (50%) for each timepoint, as tlexipus analyses. Then, we corrected for
multiple comparisons using two-dimensional (2D)stéu-based Monte-Carlo simulations

(MCS, a = .01, MCS p-value = .001) 1-5, 17. First, we categd the clusters size of the
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continuous, binarized, significant values in ting=cond, we made 1000 permutations of
these binarized values. For each permutation, wapated the size of the maximum
emerging cluster and built a reference distributismg those values. Finally, we considered
significant the original clusters that were bigdean the 99.99% of the permuted data

maximum cluster sizes.

Sour ce reconstruction

MEG is a powerful tool to detect the whole-braitinaty with excellent temporal resolution.
However, to obtain a complete picture of the wHhumian activity underlying complex
cognitive tasks the spatial component of the baaitivity must be also identified. Here, we
employed the established beamforming metfod, built upon a combination of in-house-
built codes and codes available in OSL, SPM, arttfFrip.

To reconstruct the brain sources that generateM#&@® signal, an inverse problem must be
solved. The MEG recording shows the activity of tleural signals outside the head but
cannot provide information on the specific braimses which generated it. Thus, we used
beamforming algorithms to solve this problem, impdsting the two following steps: (i)
designing a forward model and (ii) computing theeirse solution.

The forward model is a theoretical model which cdeis each brain source as an active
dipole (brain voxel). It describes how the unitatsength of each dipole would be reflected
over all MEG sensors. Here, we employed magnetancatnnels and an 8-mm grid, which
returned 3559 dipole locations (voxels) within twaole brain. After co-registering the
individual structural T1 data with the fiducial pts (i.e., information about head landmarks),
we computed the forward model by adopting the wideled method called “Single Shell”,
which is presented in detail in Nolf8 The output of this computation, referred to as
“leadfield model”, was stored in the matrix L (soces x MEG channels). In the three cases
where the structural T1 was not available we peréa the leadfield computation using a
template (MNI152-T1 with 8-mm spatial resolution).

Then, we computed the inverse solution. As mepticebove, we chose the beamforming,
which is one of the most popular and effective atgms available in the field. This
procedure employs a different set of weights whach sequentially applied to the source
locations for isolating the contribution of eachus® to the activity recorded by the MEG
channels. This is done for each timepoint of theomded brain data. The beamforming

inverse solution can be summarized by the followiragn steps.

27


https://doi.org/10.1101/2022.11.19.517195
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.19.517195; this version posted December 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

694
695
696

697
698
699
700
701
702
703

704
705
706
707
708
709
710

711
712
713
714
715
716
717

718
719
720
721
722

available under aCC-BY-ND 4.0 International license.

The data recorded by MEG sensoB} &t timet, can be described by the following

equation (1):
Bipy=L*Qp, .+ (1)

wherelL is the leadfield model is the dipole matrix carrying the activity of eaabtive
dipole @) over time and. is noise (see Huang and colleagfiefor details). To solve the
inverse problemQ must be computed. In the beamforming algorithmghts are computed
and then applied to the MEG sensors at each timgpas shown for the single dipalein
equation (2):

Ay =W" * B, ()

To obtaing, the weights/V should be computed (the subsciiptefers to transpose matrix).
To this goal, the beamforming relies on the maimultiplication betweenL and the
covariance matrix between MEG senso®), (which is calculated on the concatenated
experimental trials. Specifically, for each bramuscen, the weightsW, are computed as

shown in equation (3):
Wy = (L * €71 % Liy) ™ % Liyy" * €77 3)

To be noted, the computation of the leadfield modes performed for the three main
orientations of each brain source (dipole), acemydio Nolte ®°. Before computing the
weights, the orientations were reduced to one usimg singular value decomposition
algorithm on the matrix multiplication reported éguation (4). This procedure is widely

adopted to simplify the beamforming outp(t®
L= svd(I"» Cct+D7! 4

Here,l represents the leadfield model with the threensaitions, whilel is the resolved one-

orientation model that was utilized in (3). Finalthe weights were applied to each brain

source and timepoint. To be noted, the covarianaixC was computed on the continuous

signal, which was estimated by concatenating tiadstof all experimental conditions. The
28
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weights were applied to the brain data associatéd each condition and normalized
according to Luckhoo et &t for counterbalancing the reconstruction bias tolsahe centre

of the head. The weights were applied to the neactlity averaged over trials for the
evoked responses and to the neural activity of @adependent trial for the induced
responses. This procedure returned a time senesafh of the 3559 brain sources (and each
trial in the case of induced responses). The smghiguity of the evoked responses time
series was adjusted for each brain source usingigts in correspondence with the N100

response to the first tone of the auditory sequetcé®

Neural sources of thedifferential brain activity between M and N

To detect the brain sources underlying the diffea¢érsignal observed for M and N, we
considered both the results from the decoding aralyand the inspection of the MEG data
after preprocessing. We calculated this to iden#ifyich condition was association with a
larger neural signal. If condition one is signifitlg stronger than condition two at time x
and then condition two is significantly strongearthcondition one at time= x + 1, the
decoding will return an overall significant diffexee between conditions frot x untilt = x

+ 1, even if such difference is qualitatively nbetsame at = x and att = x +1. Thus, to
define the time windows for inspecting the neurlrses, it is good practice to look both at
significant results from decoding and the corresieon brain activity in the MEG data after
preprocessing.

This procedure, applied to all our four contrasttirned the following time windows: 0.50 —
0.60 sec; 0.70 — 0.80 sec; 0.98 — 1.02 sec; 1035-sec; 1.33 — 1.39 sec; 1.45 — 1.55 sec;
1.70 — 1.75 sec; 1.75 — 1.85 sec. For each timdomimand condition, we averaged the time
series of all brain sources over time and comptitedts contrasting M versus N (t-tests were
computed independently for M versus each of the ¢ategories of N). Finally, we corrected
for multiple comparisons using a 3D cluster-basedSV(IMCS, o = .003, MCSp-value =
.001). Here, we calculated the sizes of the clasténeighbouring brain voxels which were
significant. Then, we computed 1000 permutatiortheforiginal data. For each permutation,
we estimated the sizes of the clusters of neighibgusermuted brain voxels which were
significant. This returned a reference distributajrthe biggest cluster sizes observed in the
permutated data. Finally, we considered signifi¢aatoriginal clusters that were bigger than
the 99.99% of clusters forming the reference distion. Additional details on the MCS

algorithm can be found ift3#3>%9
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Functional regions of interests (ROI s)

Our previous analyses highlighted a network mamoiyprising four broad brain areas which
were involved in the task. These areas roughlyesponded to the bilateral medial cingulate
gyrus (MC), right hippocampal area and inferior pemal cortex (HITR), left auditory cortex
(ACL), and bilateral ventromedial prefrontal cori@MPFC).

Then, we wished to refine the spatial extent okéhareas based on their functional profile
and obtain their associated time series. Thug,iescomputed-values for each brain voxel
and each timepoint contrasting M versus N. Secwval,solated the strongesivalue in
absolute terms for each of the four broad regiaestified in our previous analysis. This
allowed us to identify the peaks of differentiatigity occurring between M and N for each
ROI. Third, we used those peaks (averaged in awmdow of+ 20 ms) and strict-value
thresholds (abg( > 3) to isolate the brain voxels that were maimyntributing to
discriminate M versus N. This procedure refinedgpatial extent of the four broad ROIs that
we previously identified. Finally, to cover poteaithemispheric differences, we created two
more ROIs which mirrored HITR and ACL in the oppeshemisphere (HITL and ACR,
respectively). Once we defined these six broad R@éscomputed the time series showing
their activity over time by averaging the time serof each of the brain voxels forming every
ROI. To be noted, the spatial accuracy of the rstanted MEG signal cannot be completely

accurate,hus it is good practice employing such broad R&{§

Statistical analysis on ROIstime series

We employed the time series of the previously idiedt ROIs to compute additional
statistics between M and N conditions. Here, we mated one t-test for each timepoint and
each combination of M versus Ns (i.e., M versus NWIlversus NT2, M versus NT3, M
versus NT4). Then, we corrected for multiple congmars using a one-dimensional (1D)
cluster-based MCS (MC$, = .05, MCSp-value = .001). First, we identified the clusters of
significant continuous values in time. Second, weputed 1000 permutations, randomizing
the significant values obtained from the t-testsr Each permutation, we extracted the
maximum cluster size and built their referenceritistion. Finally, we considered significant

the original clusters that were larger than 99.289%he permuted ones.
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Time-frequency analysisfor induced responses

We computed a time-frequency analysis using complexet wavelet transform (from 1 to
60 Hz with 1-Hz intervals)’®. This analysis was conducted for induced responses
independently for the six ROIs previously descrilbed for the four contrasts considered in
this study (i.e., M versus NT1, M versus NT2, Mstes NT3, M versus NT4). Specifically,
the time-frequency decomposition was done indepahdéor each trial, brain voxel, and
participant. Then, the power spectrum of each &mal each brain voxel was averaged within
each of the six ROIs.

Finally, we computed a t-test for each frequencg amepoint, making four contrasts: M
versus NT1, M versus NT2, M versus NT3, M versusANThe emerging-values were
binarized ¢ = .05) and then submitted to a 2D MCS (M@&alue = .001). Here, we
calculated the clusters size of continuous sigaificvalues in time and frequency. Then, we
made 1000 permutations of the binarizedalues. For each permutation, we measured the
size of the maximum emerging cluster and built faresce distribution with one value for
each permutation. Finally, the original clustergaveonsidered significant when they were

bigger than the 99.99% of the permuted data maximiuster sizes.
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Data availability
The codes are available at the following litiktps://github.com/leonardob92/LBPD-1.0.git

The multimodal neuroimaging data related to theeexment is available upon reasonable

request.
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1020 Supplementary materials related to this study agdresed as supplementary figurésapd
1021 tables (i). In the cases when the supplementary tables teeréarge to be reported in the
1022 current document, they have been exported to Hiteslthat can be found at the following
1023 link:
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1035 Figure S1. Temporal sequences used in the experiment.

1036 The figure shows all temporal sequences used in the experiment, providing detailed information on how they
1037  were created. The M sequences were three and comprised the first five tones of the first three measures of the
1038 musical piece. These three sequences were presented nine times each, for a total of 27 trials. The N sequences
1039  were created through systematic variations of the three M sequences. This procedure consisted of changing
1040 every nusical tone of the sequence after the first (NT1), second (NT2), third (NT3) or fourth (NT4) tone. We
1041 created nine variations for each of the original M sequences and each of the four categories of N. This resulted
1042 in 27 N sequences for each category, and 108 N in total. To be noted, as shown in this figure, the variations
1043  were created according to the following rules: (i) Inverted melodic contours (used twice): the melodic contour
1044  of the variation was inverted with respect to the original M sequence (i.e., if the M sequence had the following
1045 melodic contour: down-down-up-down, the N sequence would be: up-up-down-up); (i) Same tone scrambled
1046  (used three times): the remaining tones of the M sequence were scrambled (e.g., M sequence: C-E-D-E-C, was
1047  converted into NT1 sequence: C-C-E-E-D). When this was not possible (e.g., in the case of NT4, where only the
1048 last tone is different from the M sequence), we substituted the last tone of the M sequence with a random tone;
1049 (iii) Same tone (used three times): the same tone was repeatedly used, in some cases varying only the octave
1050 (e.g., M sequence: C-E-D-E-C, was transformed into NT1 sequence: C-E® E® Eg Eg); (iv) Scrambling intervals
1051  (used once): the intervals between the tones were scrambled (e.g., M sequence: 6"'m - 2"m — 2"m — 3“m, was
1052  adapted to NT1 sequence: 2m, 6™m, 3%m, 2™m).
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Functional regions of interest

Left auditory cortex Right auditory cortex Left hippocampal regions and inferior temporal cortex

Figure S2. Functional parcels (ROI s) derived from the brain activity underlying the task.

The main activity during recognition of the previously memorised and novel auditory sequences gave rise to the
following six functional ROIs: left (i) and right auditory cortex (ii); left (iii) and right hippocampal regions and
inferior temporal cortex (iv); medial cingulate gyrus (v), and ventromedial prefrontal cortex (vi).
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Pairwise decoding

Memorized versus MNovel T1 Memorized versus Novel T2 Memorized versus Novel T3 Memorized versus Neval T4

Cecocing nocumey [

XN i 1 A rrrrr B b

Figure S3. Pairwise decoding time series.

Multivariate pattern analysis decoding the different neural activity associated with memorised versus novel
musical sequences. Each plot shows the decoding time series for one of the four rounds of pairwise decoding
that we computed (M vs NT1, M vs NT2, M vs NT3, M vs NT4). The sketch of the musical tones represents the
onset of the sounds forming the temporal sequences.
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1070 Figure S4. Brain activity recorded at a prototypical magnetometer channel (MEG 0211) and source
1071  reconstruction of the main components.

1072  Brain activity recorded over time by the fronto-temporal left MEG channel 0211 showing the five experimental
1073  conditions. The sketch of the musical tones represents the onset of the sounds forming the musical sequences.
1074  For each of the main positive components, contrasts between the source reconstruction of M versus NT1 have
1075  been computed and corrected for multiple comparisons using cluster-based MCS. Results are reported in the
1076 brain template above the waveforms. With regards to the negative component indexing the prediction error
1077 associated to the disruption of the original sequences, we computed contrasts between the source reconsiruction
1078  of M versuseach category of N (i.e., M vs NT1, M vs NT2, M vs NT3, M vs NT4, respectively) and corrected for
1079 multiple comparisons using cluster-based MCS. Results are reported in the brain template below the
1080  waveforms. The colour of the arrows illustrates what contrast was performed (e.g., the blue arrow indicates that
1081 we contrasted M versus NT1, while the yellow arrow refers to M versus NT2, etc.). The colorbar shows the t-
1082  values obtained fromthe contrasts.
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1085 Figure S5. Focuson the NT1 for left auditory cortex (AC) and ventro-medial prefrontal cortex (VMPFC).
1086 The left plot shows the source localized brain activity illustrated for NT1 for left auditory cortex (AC) and
1087  ventro-medial prefrontal cortex (VMPFC). Of particular interest it is the sharp peak occurring after the onset of
1088  each tone where left AC precedes VMPFC of approximately 80 ms, suggesting a hierarchical processing in the
1089 brain. The sketch of the musical tones below the first two plots represents the onset of the sounds forming the
1090 temporal sequences.
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1094  Figure S6. Source localized induced responses— M versus NT2, NT3, NT4.

Mermcrizad verm.s Pl T4
8 s & B

1095 Contrasts between the source localized induced responses of M versus NT2, NT3, NT4, respectively. The plots
1096 indicate a stronger power for gamma in M. Moreover, theta was overall stronger for M versus NT1 during the
1097 presentation of the sounds, while alpha, beta and theta were stronger for N versus M after the end of the
1098 temporal sequences. The colorbar indicates the t-values obtained by contrasting M versus N.
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1100 SUPPLEMENTARY TABLES

1101
1102 Table Si1. Pairwise decoding.

1103 Binary time series showing the FDR-corrected significant timepoints (1s) of the decoding time series (i.e., when
1104 the algorithm successfully classified M versus N). The first row shows time (in seconds), while the other rows
1105 refer to the four contrasts of this study (M versus NT1, M versus NT2, M versus NT3, M versus NT4).

1106

1107 Table S2. Temporal generalization.

1108 Cluster-based MCS on temporal generalization decoding results computed independently for the four following
1109 contrasts: M versus NT1, M versus NT2, M versus NT3, M versus NT4. The table shows size, MCS p-value and
1110 temporal extent of the cluster (both training and testing sets).

1111

1112 Table S3. Brain source of decoding time windows.

1113  dgnificant brain sources (after cluster based MCS correction for multiple comparisons) of the significant time
1114  windows emerged from the decoding analysis. Results are reported with the correspondent AAL label of each of
1115 the significant voxel, as well as their hemisphere, t-value and MNI coordinates. Results are provided for the
1116 following contrasts: M versus NT1, M versus NT2, M versus NT3, M versus NT4.

1117

1118 Table S4. ROIstime series.

1119 dgrificant clusters of differential brain activity between M and N in the six broad functional ROls isolated in
1120 the previous analyses. Results are reported independently for the six ROls and for the four contrasts (M versus
1121 NT1, M versus NT2, M versus NT3, M versus NT4), and comprise cluster size, p-value, temporal extent of the
1122  clustersand peak t-value within the cluster.

1123

1124  Table S5. Time-frequency results of induced responses.

1125 dgnificant clusters of differential power in different frequency bands (1 — 60Hz) computed using complex
1126  Morlet wavelet transform. Results are reported independently for the six ROIs and for the four contrasts (M
1127  versus NT1, M versus NT2, M versus NT3, M versus NT4), and comprise cluster size, p-value, temporal, and
1128  frequency extent of the clusters.
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