

1 An MR-based brain template and atlas for optical projection 2 tomography and light sheet fluorescence microscopy

3

4 Stefanie M.A. Willekens^{1,2,3*}, Federico Morini³, Tomas Mediavilla⁴, Emma Nilsson^{1,2}, Greger
5 Orädd⁴, Max Hahn³, Nunya Chotiwat^{1,2}, Montse Visa⁵, Per-Olof Berggren⁵, Erwin Ilegemans⁵,
6 Anna K. Överby^{1,2}, Ulf Ahlgren³ and Daniel Marcellino^{4*}

7

8 ¹Department of Clinical Microbiology, Umeå University, Umeå, Sweden

9 ²The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden

10 ³Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden

11 ⁴Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

12 ⁵The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm,
13 Sweden

14

15 *Corresponding authors: Dr. Stefanie M.A. Willekens

16 Email: stefanie.willekens@umu.se

17 Dr. Daniel Marcellino

18 Email: daniel.marcellino@umu.se

19

20

21 Key words: Mesoscopic imaging, OPT, LSF, MRI, neuroimaging, brain template

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high-
33 resolution optical imaging techniques operating in the mm-cm range, ideally suited for *ex vivo* 3D
34 whole mouse brain imaging. Although these techniques exhibit high sensitivity and specificity for
35 antibody-labeled targets, the provided anatomical information remains limited. To allow anatomical
36 mapping of fluorescent signal in whole brain, we developed a novel magnetic resonance (MR) – based
37 template with its associated tissue priors and atlas labels, specifically designed for brains subjected to
38 tissue processing protocols required for 3D optical imaging. We investigated the effect of tissue pre-
39 processing and clearing on brain size and morphology and developed optimized templates for
40 BABB/Murrays clear (OCUM) and DBE/iDISCO (iOCUM) cleared brains. By creating optical-(i)OCUM
41 fusion images using our mapping procedure, we localized dopamine transporter and translocator
42 protein expression and tracer innervation from the eye to the lateral geniculate nucleus of thalamus
43 and superior colliculus. These fusion images allowed for precise anatomical identification of
44 fluorescent signal in discrete brain areas. As such, these templates enable applications in a broad
45 range of research areas integrating optical 3D brain imaging by providing an MR template for cleared
46 brains.

47

48

49

50

51

52

53

54

55

56

57

58

59

60 Introduction

61 Three-dimensional (3D) visualization of specific cell populations, protein expression patterns or
62 pathologic markers at the level of the whole brain represents an invaluable tool in neuroscience.
63 Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high-
64 resolution optical 3D imaging techniques, enabling the visualization of specifically labeled targets in
65 mesoscopic sized (mm-cm range) transparent specimens^{1,2}. Therefore, these optical techniques
66 harbor great suitability for *ex vivo* whole rodent brain imaging, providing information at cellular
67 resolution in the intact brain^{3,4}. In line with other functional imaging modalities, OPT and LSFM display
68 high sensitivity and specificity for their target, but offer only limited anatomical information.
69 Considering the highly compartmentalized anatomy of the brain⁵ and the specific roles these regions
70 fulfill, it is of the utmost importance to be able to map the fluorescent signals, acquired by OPT or
71 LSFM, to annotated brain regions. The possibility to anatomically map protein expression profiles and
72 perform 3D quantification and statistics on these images, would greatly benefit the application of
73 optical mesoscopic imaging in neuroscience. The first step towards these analyses is to co-register the
74 optical brain signals to a reference brain for which detailed annotated brain regions can be readily
75 identified.

76

77 The Common Coordinate Framework version 3 (CCFv3) of the Allen Institute of Brain Sciences (AIBS)⁵
78 ⁷ has been used for co-registration and quantitative analyses of 3D optical brain images^{8,9} and has
79 formed the basis for LSFM-specific brain templates based on optically cleared brains, which were
80 successfully applied to study drug effects in the whole brain^{10,11}. Since the AIBS template and
81 concordant atlas are based on serial two-photon tomography (STPT) imaging⁵ morphometric
82 discrepancies can be observed mainly in the most rostral and caudal regions, when compared to whole
83 brain MRI. Nevertheless, its applicability has been demonstrated well suited to link connectivity
84 patterns, functional properties and cellular architecture^{6,12}. The LSFM-based templates, on the other
85 hand, are based on tissue autofluorescence and therefore may generate suboptimal tissue contrast
86 and anatomical detail to distinguish all brain regions. Magnetic Resonance Imaging (MRI) is well known
87 to generate detailed anatomical brain images due to its high resolution and exquisite tissue contrast.
88 Therefore, MR images are ideally suited as an anatomical reference for the creation of fusion images
89 by means of co-registration. The most straightforward way to create fluorescence-MR fusion images
90 is by using an MRI-based mouse brain template, of which several are currently available¹³⁻¹⁵. Whereas
91 the AIBS template is based on histology and the aforementioned MRI-based templates originate from
92 MR scans acquired either *in vivo* or *ex vivo in situ* (acquired within the skull), OPT and LSFM images
93 are acquired after brain removal from the skull and following extensive processing and tissue clearing.

94 These processes are known to exert differential effects on brain size and morphology dependent on
95 which tissue clearing protocol is applied¹⁶.
96

97 Here, we present the creation of a novel high-resolution (40 μm^3 isotropic voxel size) Optically Cleared
98 UMeå (OCUM) brain template, consisting of *ex vivo* T1-weighted MR images acquired after tissue
99 processing and clearing for optical imaging, with its associated tissue priors and corresponding atlas
100 annotating 336 regions of interest (ROIs). Furthermore, two distinct versions of the template and its
101 corresponding atlas are presented, each optimized for two distinct clearing methods that have
102 differential effects on brain size after clearing and rehydration for MRI acquisition. Finally, we
103 demonstrate the utility of OCUM by creating fluorescence-template fusion images with 3D optical
104 images visualizing the dopamine transporter (DAT), the 18 kDa translocator protein (TSPO), and optic
105 nerve innervation of the lateral geniculate nucleus (LGN) of thalamus and superior colliculus. In each
106 case, the fusion images allowed for precise anatomical identification of brain regions with fluorescent
107 signal. As such, these templates will significantly enhance the applicability of mesoscopic optical
108 imaging in neuroscience.
109

110 Results

111 ***Inadequate anatomical referencing with autofluorescence***

112 It was recently shown that significant information can be obtained from tissue autofluorescence¹⁷
113 using OPT/LSFM and, it is well known that the brain generally displays a high level of autofluorescence.
114 Therefore, we first aimed to optimize the reconstruction of the autofluorescence signal, acquired from
115 OPT, to obtain more anatomical details and co-registered the dopamine transporter signal to the
116 improved autofluorescence signal (figure 1). Although we were able to obtain improved tissue
117 contrast between the grey matter (GM) and white matter (WM) regions and improved delineation of
118 the deep nuclei, anatomical detail remained insufficient to identify detailed anatomical regions,
119 mainly in cortical areas. In theory, this contrast could be further improved by enhancing and
120 optimizing the autofluorescence signal. However, to obtain high signal to noise ratio's for the
121 antibody-target optical signals, autofluorescence should remain as limited as possible. Therefore,
122 accurate anatomical mapping of 3D optical brain signals cannot be obtained from tissue
123 autofluorescence.
124

125 ***Differential effects of clearing agents on brain volume***

126 Apart from the anatomical reference problem exemplified in figure 1, brain clearing protocols are
127 known to exert extensive effects on brain morphology which can be differential in distinct brain
128 regions¹⁶. To obtain a representative anatomical reference for optically cleared brains with these

129 morphological changes, we acquired *ex vivo* structural T1-weighted images of brains that were
130 subjected to tissue processing and optical clearing with benzyl alcohol-benzyl benzoate
131 (BABB)/Murray's clear (n=10)^{1,18} or with dibenzyl ether (DBE)/iDISCO (n=9)¹⁹, two frequently used
132 protocols for optical tissue clearing. To investigate the effects of both BABB and DBE clearing on brain
133 size and morphology, we initially created two individual brain templates, namely one for BABB cleared
134 brains and one for DBE cleared brains, respectively. The individual templates were calculated as the
135 mid-point average from the serial registration of all individual, bias-corrected MR-images. The head-
136 to-head comparison of the average BABB and DBE templates revealed a clear difference in size, for
137 which the BABB template was significantly larger than the DBE template (Figure 2a and b).
138 Furthermore, the size difference could not be attributed to sole differences in cortical shrinkage since
139 a clear mismatch was observed in WM tracts and deep nuclei when superimposed in an identical
140 image space (Figure 2a and b). Segment-based brain volume calculations on the individual T1-
141 weighted images revealed that DBE-cleared brains ($0.308 \text{ cm}^3 \pm 0.009$) were significantly smaller when
142 compared to BABB-cleared brains ($0.483 \pm 0.023 \text{ cm}^3$) (Figure 2c). To further characterize the effect of
143 tissue processing and clearing methods on the brain, we proceeded by comparing these volumes with
144 brain volumes calculated from T1-weighted scans acquired *in vivo* (n=62)²⁰ and *ex vivo in situ* (n=40),
145 as well as with brain volumes based on tissue autofluorescence of individual BABB and DBE brains
146 (Figure 2c). We observed significant differences between *in vivo* brain volume ($0.461 \pm 0.011 \text{ cm}^3$) and
147 all other tested volumes. On T1-weighted images, both the *ex vivo* ($0.437 \pm 0.011 \text{ cm}^3$) and DBE brains
148 ($0.308 \pm 0.01 \text{ cm}^3$) were significantly smaller (p<0.001) than the *in vivo* brain volume, while the BABB
149 brain volume was significantly larger ($0.483 \pm 0.023 \text{ cm}^3$; p=0.03); Figure 2c). However, when BABB
150 ($0.343 \pm 0.0517 \text{ cm}^3$) and DBE ($0.299 \pm 0.071 \text{ cm}^3$) brain volumes were calculated from tissue
151 autofluorescence, they were not significantly different (p=0.12). Interestingly, BABB brain volume was
152 significantly larger when calculated based on T1-weighted images ($0.483 \pm 0.023 \text{ cm}^3$) as when
153 calculated from tissue autofluorescence ($0.343 \pm 0.0517 \text{ cm}^3$; p<0.001), which was not the case for the
154 DBE cleared brains (p=0.94), indicating a distinct effect of BABB and DBE clearing on brain rehydration,
155 respectively (Figure 2c). Together, these particular volume effects due to dehydration, rehydration
156 and clearing plead for the application of a representative, optically cleared brain template.
157

158 ***OCUM: T1-weighted reference template and atlas for optically cleared brains***

159 Due to the differential effects of BABB and DBE clearing and the significant size differences of the T1-
160 weighted images (Figure 2), we decided on the creation of two brain templates containing all T1-
161 weighted images (n=19) namely the Optically Cleared UMeå (OCUM) brain template and atlas for
162 BABB/Murray's cleared brains and the iOCUM brain template and atlas for DBE/iDISCO cleared brains.

163 The DSURQE mouse brain template with $40 \mu\text{m}^3$ isotropic voxel size^{14,21-24} and its atlas labels served
164 as the basis to construct both OCUM and iOCUM. A schematic overview of the applied pipeline to
165 create OCUM and iOCUM is provided in Figure 3. All required image transformations were calculated
166 in SPM, using the SPMmouse toolbox (<http://spmmouse.org>)²⁵. The outcome of all applied
167 transformations was reviewed cautiously by two independent readers and correctness and
168 preservation of left and right was checked in every step to avoid involuntary image flipping along the
169 y-axis. Initially, all individual BABB and DBE cleared brains were co-registered to their respective
170 template (mid-point average of serial registration) with an estimation separation of 0.08 mm and 0.04
171 mm followed by 4th degree B-spline interpolation. Co-registration was followed by normalization of
172 the individual BABB brains to the DBE template and vice versa. These normalizations performed best
173 with following settings: no affine regularization, trilinear interpolation and image smoothing using a
174 Gaussian kernel of 0.72 mm. Of note, these specific normalizations performed worse when applying a
175 higher degree B-spline transformation. Next, we created the OCUM and iOCUM templates by
176 calculating the mid-point average from the serial registration of all individual (n=19), bias-corrected
177 MR-images in BABB and DBE size, respectively (Figure 4a and 4b). Consequently, we created specific
178 tissue segments and tissue probability maps (TPM) using a double consequent segmentation + DARTEL
179 pipeline. For the initial segmentation and DARTEL pipeline, generating preliminary tissue priors for our
180 templates, we used in-house tissue priors obtained from *ex vivo in situ* acquired T1-weighted images.
181 Therefore, GM, WM and CSF segments were co-registered and normalized to both OCUM and iOCUM
182 and applied as animal preset in SPMmouse. Thereafter, we ran the complete process (segmentation
183 + DARTEL algorithm) again, using the preliminary tissue priors generated in the previous step, to
184 produce accurate and template specific TPMs for both OCUM and iOCUM (Figure 4c). To use our newly
185 created TPMs in all following image transformations and image analyses, we created two template-
186 specific animal presets to use in the SPMmouse toolbox. Finally, we normalized (no affine
187 regularization, 4th degree B-spline interpolation and 16 non-linear iterations) the DSURQE atlas to
188 OCUM space to delineate the ROIs. Subcortical structures such as the deep nuclei and the anterior
189 cortical regions were perfectly aligned with OCUM by normalization and the posterior cortical ROIs
190 were manually adapted on each template, resulting in OCUM and iOCUM specific atlas labels (Figure
191 4d). Together, our final resources (OCUM and iOCUM) comprise: two high-resolution ($40 \mu\text{m}^3$ isotropic
192 voxel dimension) whole mouse brain templates, their corresponding TPMs (GM + WM + CSF
193 probability maps) required for brain segmentation and warping, a mouse brain atlas with 336
194 annotated ROIs and a protocol to create fluorescence-MR fusion images by means of co-registration
195 and normalization.

196

197 ***Accurate anatomical referencing of optical brain images***

198 To highlight the applicability of the newly designed templates, we created fusion images of fluorescent
199 optical signals, acquired from BABB and DBE cleared brains, with OCUM and iOCUM, respectively.
200 Therefore, optical images were reconstructed into DICOM format and converted to NIFTI format
201 (Figure 3), to allow image transformations in SPM and fusion image creation in PMOD. First, we co-
202 registered (voxel-to-voxel affine registration, followed by 4th degree B-spline interpolation) the optical
203 images to the template. Therefore, voxel-to-voxel affine transformation matrices were calculated
204 using the autofluorescence image. Since the autofluorescence and signal images are in the same
205 native space, this transformation matrix can then be applied to the signal image to co-register
206 fluorescent signals to the template. To improve quality of the fusion images by compensating for
207 natural variation in brain size and differences in tissue deformation due to dehydration and clearing,
208 normalization or warping to the template image is preferred. As shown in figure 1, anatomical detail
209 remains limited in the autofluorescence image, which hampers accurate image warping. Therefore,
210 we created a binary mask based on the autofluorescence image and normalized (no affine
211 regularization, nearest-neighbor interpolation, and 2 mm gaussian kernel smoothing) this mask to a
212 similar binary (i)OCUM mask and applied identical transformations to the original images which
213 resulted in near-perfect normalized fusion images (Figure 5, Supplementary Figure 2). In each case,
214 fusion images allowed for precise anatomical identification of brain regions with fluorescent signal. In
215 figure 5a, we traced anterograde innervation from the eye after injection of fluorescently labeled
216 cholera toxin B (CTB) in the anterior chamber of the eye by visualizing CTB using OPT. We observed
217 clear localization of CTB signal within LGN of thalamus and the superior colliculus and observed a
218 perfect match of brain regions of the visual system, indicating anterograde innervation from the eye
219 towards the visual cortex. Figure 5b and supplementary figure 2 display fusion images from DAT OPT
220 with OCUM and iOCUM, respectively. We identified clear DAT signal in the striatum, hypothalamus,
221 olfactory tubercle, amygdala and even in the substantia nigra. All these regions are well-known to
222 express DAT, which underlines the applicability of our templates and atlases. Lastly, we created fusion
223 images of both OPT (figure 5c) and LSFM (figure 5d) signal of TSPO, a well-known microglial
224 neuroinflammation marker, with OCUM. In contrast to the two previous examples, TSPO displays a
225 diffuse expression pattern rather than being expressed in distinct brain regions. Figures 5c and d
226 clearly show that the presented pipeline also works for optical images originating from diffusely
227 expressed markers. Both TSPO OPT and LSFM showed elevated signal in brain vasculature, which can
228 be explained by TSPO expression in endothelial cells. Furthermore, next to detailed vessel staining,
229 TSPO LSFM showed high signal in the cortical layer IV, which suggests higher expression levels of
230 activated microglia in this highly myelinated cortical layer.

231 **Discussion**

232 Whole brain optical imaging is rapidly gaining interest and popularity for the study of protein
233 expression profiles and disease markers in neuroscience. MR, on the other hand, is a non-invasive,
234 well-established and common imaging modality used for brain research, both in preclinical and clinical
235 settings. Application of these techniques, in combination with advanced image quantification,
236 represents a powerful triad to discover insights into both the healthy and diseased brain. Here we
237 report, to our knowledge, the first MR-based high-resolution brain template and atlas, specifically
238 designed for brains that were subjected to the required pre-processing and tissue clearing protocols
239 for 3D optical imaging. To overcome issues related to differential volumetric and morphological effects
240 related to tissue clearing, two versions of the template were created: OCUM for BABB/Murray's
241 clearing method and iOCUM for DBE/iDISCO protocols. The utility and application of both templates
242 was then illustrated by detailed anatomical mapping of several distinct whole brain optical signals.
243

244 To optimally design OCUM and iOCUM as MRI-based template atlases, we employed the DSURQE
245 template and atlas^{14,21-24} as a starting point. While the AIBS CCFv3 has been used as a reference for
246 brain atlases in several publications involving LSFM^{10,11}, we specifically chose to work with an MRI-
247 based template as a starting point, rather than a two-photon tomography-based template, to increase
248 accuracy. Our resulting resources are comprised of four key components namely: (1) a T1-weighted
249 template image (40 μm^3 isotropic spatial resolution) defining the (i)OCUM space; (2) the associated
250 tissue priors, or TPMs, required to segment and normalize optical images to the template space; (3) a
251 whole brain atlas, delineating 336 ROIs and (4) a detailed protocol of how to employ these resources
252 to create fusion images and identify specific areas containing optical signal using the atlas. These
253 resources will furthermore allow for ROI- and voxel-based quantitative analysis of large samples of
254 brains, aligned in the same image space, both being well-characterized quantification methods for PET
255 and MR brain studies. It should be noted that each template is comprised of brain images acquired
256 from both C57Bl/6J WT and transgenic mice, however, all transgenic models were bred on a C57Bl/6
257 background. The knockout mice used to create the templates did not have any differences in brain
258 size or morphology to C57Bl/6J WT mice, and therefore did not influence the anatomical precision of
259 either template. Since (i)OCUM is based on normal adult C57Bl/6 mouse brains, its application might
260 not be justified when using mice with severe brain defects or altered brain morphology and optical
261 data obtained from other mouse strains must be cautiously handled.
262

263 The fact that different tissue clearing methods exert differential effects on brain size and morphology
264 has become a generally accepted concept in the field^{16,26}. Our head-to-head comparison showed
265 significant volume differences calculated from T1-weighted images between BABB and DBE-cleared

266 brains (Figure 2), while no significant differences in brain volume were detected when calculated using
267 tissue autofluorescence (Figure 2c). Interestingly, there was no significant difference in DBE cleared
268 brain volume calculated from autofluorescence or T1-weighted images, while for BABB cleared brains,
269 volumes calculated from T1-weighted images was even slightly larger than *in vivo* brain volume. These
270 data suggest a differential effect of clearing agents on tissue rehydration rather than on shrinkage.
271 Another factor we identified to impact brain size of optical images, potentially rendering the pipeline
272 more challenging, was the zoom factor used during whole brain imaging. With our OPT setup, we
273 repeatedly observed near perfect fusion results on images acquired with an optical zoom factor of
274 1.25 and 1.6 during image acquisition, while images acquired with larger zoom factors were less
275 accurate after normalization, likely due to additional skewing to OCUM. In line with previous reports
276 mapping optical 3D signal to brain templates¹⁰, we experienced more difficulty in automatically
277 delineating the cortical ROIs located in the hind brain and had to adapt them manually to fit, while
278 this procedure was not required in anterior cortical regions, implying differential effects of clearing
279 agents throughout the brain.
280

281 The creation of optical-MR fusion images by means of co-registration and normalization implies
282 bringing the optical signal to the MR template reference space, adapting these both to the template's
283 bounding box and voxel dimension. This has several implications for optical images. While OCUM is a
284 high-resolution template with a voxel size of $40 \mu\text{m}^3$, the original OPT-images in this study have a voxel
285 size ranging from $16.5 - 21 \mu\text{m}^3$. This means that the voxel size of optical images is increased, thus
286 lowering their resolution to create fusion images to perform anatomical mapping. LSFM has even
287 smaller voxel dimensions, hence higher resolution compared to OPT, resulting in a greater loss of
288 resolution when fit into the MR-template space. Furthermore, while OPT imaging generates isotropic
289 voxels (identical dimensions along x, y, and z-axis), LSFM has lower axial than lateral resolution,
290 resulting in anisotropic voxels. LSFM images can be first resampled along the z-axis to reach isotropic
291 voxel size and then co-registered and normalized to the anatomical template. Nevertheless, this may
292 lead to ambiguities in the axial direction due to signal skewing during the resampling process, which
293 may greatly impact voxel-wise quantitative analyses but may even exert a clear effect on the ROI level.
294 However, great advances are being made both for software and hardware in this field. In 2019,
295 Chakraborty et al. described cleared-tissue axially swept light-sheet microscopy (ctASLM) wherein z-
296 axial resolution is significantly increased which results in approximate isotropic voxels²⁷.
297
298 To exemplify the possibilities of our resources, we created fusion images of OPT and LSFM images with
299 OCUM and iOCUM, for BABB and DBE clearing, respectively. Using both OCUM and iOCUM, we created
300 fusion images of DAT expression in the mouse brain and identified signal in the striatum, amygdala,

301 olfactory tubercle, hypothalamus and substantia nigra. All these regions are known DAT expressing
302 regions, which clearly highlight the applicability of our resources. Although beyond the scope of this
303 study, we only observed DAT signal on the outermost surface of striatum based on OPT, which might
304 be due to the lower resolution of OPT compared to LSFM or due to antibody competition induced by
305 the high striatal expression rate of the transporter. Furthermore, we were able to trace anterograde
306 innervation from the eye to LGN of thalamus and superior colliculus and observed a perfect match to
307 brain regions from the visual system by the optic nerve. Finally, we visualized TSPO expression both
308 by OPT and LSFM and observed high expression on the 4th cortical brain layer indicating high levels of
309 microglia in this layer and observed extremely high signal in the vessels. Although it is known that
310 TSPO is also expressed in endothelial cells²⁸, TSPO Positron Emission Tomography Images do not show
311 this feature due to its limited resolution while OPT and LSFM showed the extent of vessel binding of
312 this important neuroinflammation marker. These examples highlight the potential of this technique
313 to discover novel biological insights among different brain systems and brain diseases. Indeed, OCUM
314 was recently used to identify viral distribution patterns on a whole brain level using OPT²⁹. Together,
315 this demonstrates how these resources can aid spatial and quantitative analyses of treated versus
316 control animals or for a cross-sectional quantitation of specific disease markers over time. Finally, it
317 may serve in the further development of machine-learning approaches for optical imaging³⁰.
318
319 In conclusion, we present a full MRI-based brain template and atlas for mouse brains that were
320 previously processed and cleared for 3D whole brain optical imaging. Thereby, we provide the brain
321 imaging community with a unique tool allowing anatomical brain mapping of optical brain signals
322 without the need for repetitive, time-consuming, and expensive MRI scanning. Furthermore, OCUM
323 and iOCUM offer a means to standardize structural and functional optical data analysis pipelines that
324 may significantly assist in the discovery of novel neurobiological insights.
325

326 Methods

327 *Ethics declaration*

328 All animal experiments were approved and performed according to the guidelines of the regional
329 Animal Research Ethics Committee of Northern Norrland, the Animal Review Board at the Court of
330 Appeal of Northern Stockholm and by the Swedish Board of Agriculture (Ethical permits: A35-2016,
331 A9-2018 and A41-2019). Reporting regarding all *in vivo* experiments was performed compliant with
332 the ARRIVE guidelines.
333
334

335

336 **Animals**

337 Eight- to eleven-week-old male C57Bl/6J mice (n=10) were purchased from Jackson Laboratories (Bar
338 Harbor, ME, USA) or and Charles River, (Wilmington, MA, USA). Interferon alpha/beta receptor
339 knockout (IFNAR^{-/-}) (n=6, 4M/2F) (Muller 1994), interferon-beta promoter stimulator-1 knockout (IPS-
340 1^{-/-}) (n=3, 1M/2F) and Viperin^{-/-}(n=1, F) mice (a kind gift from Peter Cresswell, Department of
341 Immunobiology, Yale University School of Medicine) were bred at the Umeå Centre for Comparative
342 Biology (UCCB). Animal experiments were conducted at UCCB and at the department of Molecular
343 Medicine and Surgery at Karolinska Institutet (MMK). Following euthanasia using O₂ deprivation or
344 anesthesia using 60 mg/ml pentobarbital (APL, Kungens Kurva, Sweden), all animals (n=19) were
345 transcardially perfused using 20 mL PBS followed by 20 mL 4% paraformaldehyde (PFA) in PBS
346 whereafter brains were harvested for *ex vivo* analyses.

347

348 **Whole mount immunohistochemistry and optical clearing**

349 PFA-fixed brains were fluorescently immunolabeled and processed for OPT as described previously^{3,31}.
350 Briefly, brains were dehydrated using stepwise gradients of methanol (MeOH), permeabilized by 4
351 cycles of repetitive freeze-thawing in MeOH at -80°C and bleached overnight (ON) in
352 MeOH:H₂O₂:DMSO (2:3:1) at room temperature (RT) to quench tissue autofluorescence. For
353 immunolabeling, brains were rehydrated into TBST (50mM Tris-HCl pH7.4, 150mM NaCl and 0.1%
354 TritonX-100) and labelled with primary (recombinant rabbit anti-TSPO (1:1000) (ab109497, Abcam,
355 Cambridge, United Kingdom) or rabbit anti-DAT (1:400) (clone 1D2 ZooMAb, n°: ZRB1525, Sigma
356 Aldrich, St. Louis, MO, USA) and secondary (goat anti-rabbit Alexa-594 (1:500) (A-11037, Thermo
357 Fisher, Scientific, Waltham, MA, USA) or donkey anti-rabbit Alexa-594 (1:500) (ab150064, Abcam)).
358 After immunolabeling, all brains were mounted in 1.5% low melting point agarose (SeaPlaque, Lonza,
359 Basel, Switzerland) and optically cleared using benzyl alcohol: benzyl benzoate (1:2) (BABB) or dibenzyl
360 ether (DBE) (Sigma-Aldrich).

361

362 **Optical Projection Tomography**

363 OPT image acquisition was performed on an in-house developed near-infrared OPT (NiR-OPT) system,
364 as described by Eriksson et al.³¹ A zoom factor of 1.25 (cholera toxin) or 1.6 (all other brains) was
365 applied which resulted in a respective isotropic voxel dimension of 21 μm³ or 16.5 μm³. For cholera
366 toxin, OPT images were acquired using the following settings: Ex: 630/50 nm, Em: 665/95nm
367 (exposure time: 3000 ms). For all other targets, OPT images were acquired using Ex: 580/25 nm, Em:
368 625/30 nm (exposure time: 500 ms (TSPO) or 3000 ms (DAT). All tissue fluorescence images were
369 acquired with the same settings namely: Ex: 425/60 nm, Em 480LP nm (exposure time: 200 ms). To

370 increase the signal-to-noise ratio (SNR) of the labeled molecules in the brains, the pixel intensity range
371 of all images were adjusted to display minima and maxima and a contrast limited adaptive histogram
372 equalization (CLAHE) algorithm with a tile size of 16 x 16 was applied to the projection images acquired
373 in the fluorescent signal channels. Tomographic reconstruction with additional misalignment
374 compensation and ring artifact reduction was performed using NRecon software v.1.7.0.4 (Skyscan
375 microCT, Bruker, Belgium). Afterwards, OPT images displaying both the targeted signals and the tissue
376 autofluorescence signals, were reconstructed into DICOM format using NRecon software, followed by
377 their conversion into NifTi format using the PMOD view tool (version 4.2, PMOD Technologies Inc.,
378 Zurich, Switzerland).

379

380 ***Light Sheet Fluorescence Microscopy***

381 The brain stained for TSPO and imaged by NiR-OPT was consequently rescanned using an
382 UltraMicroscope II (Miltenyi Biotec, Germany) including a 1x Olympus objective (Olympus PLAPO 2XC)
383 coupled to an Olympus MVX10 zoom body, providing 0.63x up to 6.3x magnification with a lens
384 corrected dipping cap MVPLAPO 2x DC DBE objective (Olympus). The cleared brain was immersed in
385 BABB and magnification was set to 0.63x. For image acquisition, left and right light sheets were blend
386 merged with a 0.14 numerical aperture, resulting in a light sheet z-thickness of 3.87 μ m and 80% width,
387 while using a 12-step contrast adaptive dynamic focus across the field of view. Image sections with a
388 step size of 10 μ m were generated by Imspector Pro software (v7.1.15, Miltenyi Biotec GmbH,
389 Germany) and stitched together using the implemented TeraStitcher script (v.9). The obtained images
390 were then converted into NifTi files using Amira Avizo software (version 6.3.0, Thermo Fisher
391 Scientific, Waltham, MA, USA) and resampled prior to coregistration.

392

393 ***MRI acquisition***

394 After optical clearing with BABB (n=10) or DBE (n=9) and OPT scanning of selected brains, all brains
395 (n=19), were rehydrated into TBST, incubated in 0.29M sucrose to remove the surrounding agarose
396 and washed in PBS prior to MRI. T1-weighted images were acquired using a Modified Driven Equilibrium
397 Fourier Transform (MDEFT) sequence with five repetitions (TR: 3000 ms; TE: 3 ms; TI: 950 ms; voxel
398 size 40 x 40 x 40 μ m³) on a 9.4 Tesla (T) preclinical MR system (Bruker BioSpec 94/20, Bruker Ettlingen,
399 Germany), equipped with a cryogenic Radio Frequency (RF) coil (MRI CryoProbe, Bruker) running
400 Paravision 7.0 software. Data were exported in DICOM format using Paravision routines followed by
401 image conversion from DICOM to NifTi format using the dcm2nii tool in MRIcron. The individual
402 repetitions of each scan were realigned and averaged using statistical parametric mapping (SPM8)

403 (the Wellcome Trust Centre for Neuroimaging, UCL, London, U.K.) implemented in Matlab (R2014a,
404 The MathWorks Inc., Natick, MA, USA).

405

406 ***OCUM template and atlas creation***

407 Initially, two distinct templates: namely one specifically for BABB (n=10) and DBE (n=9) cleared brains,
408 were created using bias corrected (SPM8) MR images, which were realigned and averages using serial
409 longitudinal registration (SLR) in SPM12, implemented in Matlab (R2015b, The MathWorks Inc.)
410 whereafter all individual MR scans were coregistered to their respective template. Individual DBE
411 brains were then normalized to the BABB template while individual BABB brains were normalized to
412 the DBE template. Consequently, the final OCUM and iOCUM templates were created by rerunning
413 the SLR on all brains (n=19) both in BABB and DBE size, respectively. Both for OCUM and iOCUM,
414 specific segments and TPMs were created using a 2-step segmentation and DARTEL pipeline, initially
415 based on in-house generated tissue priors. Briefly, a primary segmentation and DARTEL algorithm was
416 applied to the individual MR images of both templates to generate preliminary tissue priors for both
417 OCUM and iOCUM, using the toolbox SPMmouse²⁵. Thereafter, the complete process (segmentation
418 + DARTEL) was repeated using the tissue priors generated from the previous step to produce accurate
419 template specific TPMs for both templates.

420

421 ***Creation of fusion images with OCUM template***

422 Initially, both the autofluorescence image and the OPT image displaying specific signals were
423 reoriented manually in SPM8 to the templates orientation and their origins were set tangent to the
424 upper edge of the brain at Bregma. For co-registration of OPT and MR images, voxel-to-voxel affine
425 transformation matrices were calculated using the autofluorescence OPT images and applied to those
426 displaying the specifically targeted signals. To further improve the fusion images and enable image
427 warping, binary masks of the autofluorescence OPT images were created in ITK-SNAP version 3.8.0
428 (www.itksnap.org)³² which were consequently normalized to a binary OCUM template mask. Finally,
429 fusion images were created in the PMOD view tool and 3D images were created in Amira-Avizo
430 software (version 6.3.0, Thermo Fisher Scientific).

431

432 **Data availability statement**

433 All data are available at the department of Clinical Microbiology of Umeå University and can be
434 obtained upon request. The OCUM and iOCUM brain templates with all their resources will be made
435 publicly available for general use upon acceptance of the manuscript.

436

437 References

438 1 Dodt, H. U. *et al.* Ultramicroscopy: three-dimensional visualization of neuronal networks in
439 the whole mouse brain. *Nat Methods* **4**, 331-336, doi:10.1038/nmeth1036 (2007).

440 2 Sharpe, J. *et al.* Optical projection tomography as a tool for 3D microscopy and gene
441 expression studies. *Science* **296**, 541-545, doi:10.1126/science.1068206 (2002).

442 3 Alanentalo, T. *et al.* Tomographic molecular imaging and 3D quantification within adult
443 mouse organs. *Nat Methods* **4**, 31-33, doi:10.1038/nmeth985 (2007).

444 4 Hansen, H. H., Roostalu, U. & Hecksher-Sorensen, J. Whole-brain three-dimensional imaging
445 for quantification of drug targets and treatment effects in mouse models of
446 neurodegenerative diseases. *Neural Regen Res* **15**, 2255-2257, doi:10.4103/1673-
447 5374.284983 (2020).

448 5 Wang, Q. *et al.* The Allen Mouse Brain Common Coordinate Framework: A 3D Reference
449 Atlas. *Cell* **181**, 936-953 e920, doi:10.1016/j.cell.2020.04.007 (2020).

450 6 Oh, S. W. *et al.* A mesoscale connectome of the mouse brain. *Nature* **508**, 207-214,
451 doi:10.1038/nature13186 (2014).

452 7 Sunkin, S. M. *et al.* Allen Brain Atlas: an integrated spatio-temporal portal for exploring the
453 central nervous system. *Nucleic Acids Res* **41**, D996-D1008, doi:10.1093/nar/gks1042 (2013).

454 8 Furth, D. *et al.* An interactive framework for whole-brain maps at cellular resolution. *Nat
455 Neurosci* **21**, 139-149, doi:10.1038/s41593-017-0027-7 (2018).

456 9 Renier, N. *et al.* Mapping of Brain Activity by Automated Volume Analysis of Immediate Early
457 Genes. *Cell* **165**, 1789-1802, doi:10.1016/j.cell.2016.05.007 (2016).

458 10 Perens, J. *et al.* An Optimized Mouse Brain Atlas for Automated Mapping and Quantification
459 of Neuronal Activity Using iDISCO+ and Light Sheet Fluorescence Microscopy.
460 *Neuroinformatics* **19**, 433-446, doi:10.1007/s12021-020-09490-8 (2021).

461 11 Salinas, C. B. G. *et al.* Integrated Brain Atlas for Unbiased Mapping of Nervous System Effects
462 Following Liraglutide Treatment. *Sci Rep* **8**, 10310, doi:10.1038/s41598-018-28496-6 (2018).

463 12 Qu, L. *et al.* Cross-modal coherent registration of whole mouse brains. *Nat Methods* **19**, 111-
464 118, doi:10.1038/s41592-021-01334-w (2022).

465 13 Barriere, D. A. *et al.* Brain orchestration of pregnancy and maternal behavior in mice: A
466 longitudinal morphometric study. *Neuroimage* **230**, 117776,
467 doi:10.1016/j.neuroimage.2021.117776 (2021).

468 14 Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N. & Henkelman, R. M. High resolution three-
469 dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J
470 mice. *Neuroimage* **42**, 60-69, doi:10.1016/j.neuroimage.2008.03.037 (2008).

471 15 Hikishima, K. *et al.* In vivo microscopic voxel-based morphometry with a brain template to
472 characterize strain-specific structures in the mouse brain. *Sci Rep* **7**, 85, doi:10.1038/s41598-
473 017-00148-1 (2017).

474 16 Wan, P. *et al.* Evaluation of seven optical clearing methods in mouse brain. *Neurophotonics*
475 **5**, 035007, doi:10.1117/1.NPh.5.3.035007 (2018).

476 17 Hahn, M. *et al.* Mesoscopic 3D imaging of pancreatic cancer and Langerhans islets based on
477 tissue autofluorescence. *Sci Rep* **10**, 18246, doi:10.1038/s41598-020-74616-6 (2020).

478 18 Becker, K., Jahrling, N., Saghafi, S. & Dodt, H. U. Ultramicroscopy: light-sheet-based
479 microscopy for imaging centimeter-sized objects with micrometer resolution. *Cold Spring
480 Harb Protoc* **2013**, 704-713, doi:10.1101/pdb.top076539 (2013).

481 19 Renier, N. *et al.* iDISCO: a simple, rapid method to immunolabel large tissue samples for
482 volume imaging. *Cell* **159**, 896-910, doi:10.1016/j.cell.2014.10.010 (2014).

483 20 Mediavilla, T. *et al.* Learning-related contraction of grey matter in rodent sensorimotor
484 cortex is associated with adaptive myelination. *Elife* **11**, doi:10.7554/elife.77432 (2022).

485 21 Qiu, L. R. *et al.* Mouse MRI shows brain areas relatively larger in males emerge before those
486 larger in females. *Nat Commun* **9**, 2615, doi:10.1038/s41467-018-04921-2 (2018).

487 22 Richards, K. *et al.* Segmentation of the mouse hippocampal formation in magnetic resonance
488 images. *Neuroimage* **58**, 732-740, doi:10.1016/j.neuroimage.2011.06.025 (2011).

489 23 Steadman, P. E. *et al.* Genetic effects on cerebellar structure across mouse models of autism
490 using a magnetic resonance imaging atlas. *Autism Res* **7**, 124-137, doi:10.1002/aur.1344
491 (2014).

492 24 Ullmann, J. F., Watson, C., Janke, A. L., Kurniawan, N. D. & Reutens, D. C. A segmentation
493 protocol and MRI atlas of the C57BL/6J mouse neocortex. *Neuroimage* **78**, 196-203,
494 doi:10.1016/j.neuroimage.2013.04.008 (2013).

495 25 Sawiak, S. J., Picq, J. L. & Dhenain, M. Voxel-based morphometry analyses of in vivo MRI in
496 the aging mouse lemur primate. *Front Aging Neurosci* **6**, 82, doi:10.3389/fnagi.2014.00082
497 (2014).

498 26 Kim, J. H. *et al.* Optimizing tissue-clearing conditions based on analysis of the critical factors
499 affecting tissue-clearing procedures. *Sci Rep* **8**, 12815, doi:10.1038/s41598-018-31153-7
500 (2018).

501 27 Chakraborty, T. *et al.* Light-sheet microscopy of cleared tissues with isotropic, subcellular
502 resolution. *Nat Methods* **16**, 1109-1113, doi:10.1038/s41592-019-0615-4 (2019).

503 28 Guilarte, T. R., Rodichkin, A. N., McGlothan, J. L., Acanda De La Rocha, A. M. & Azzam, D. J.
504 Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and
505 subcellular localization. *Pharmacol Ther* **234**, 108048,
506 doi:10.1016/j.pharmthera.2021.108048 (2022).

507 29 Chotiwat, N. e. a. in *bioRxiv* (2021).

508 30 Todorov, M. I. *et al.* Machine learning analysis of whole mouse brain vasculature. *Nat
509 Methods* **17**, 442-449, doi:10.1038/s41592-020-0792-1 (2020).

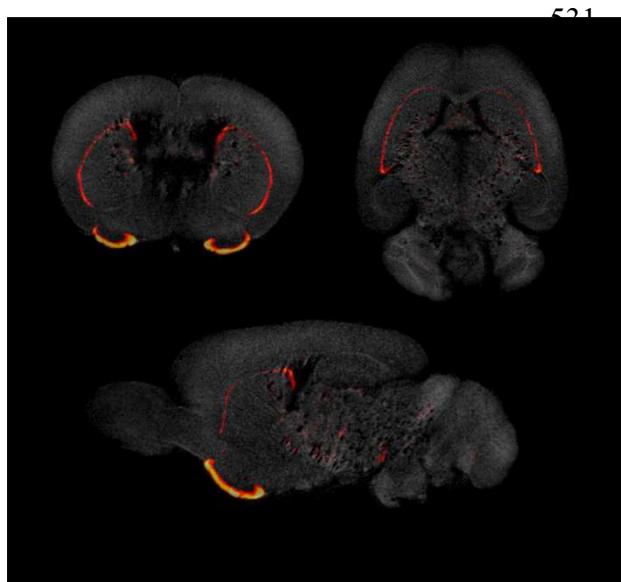
510 31 Eriksson, A. U. *et al.* Near infrared optical projection tomography for assessments of beta-
511 cell mass distribution in diabetes research. *J Vis Exp*, e50238, doi:10.3791/50238 (2013).

512 32 Yushkevich, P. A. *et al.* User-guided 3D active contour segmentation of anatomical
513 structures: significantly improved efficiency and reliability. *Neuroimage* **31**, 1116-1128,
514 doi:10.1016/j.neuroimage.2006.01.015 (2006).

515

516 Acknowledgements

517 The research leading to this publication has received funding from the Umeå University Medical
518 Faculty (D.M. and U.A.), the Kempe Foundations (U.A.), the Swedish Research Council (A.K.Ö. and
519 P.O.B), the Laboratory for Molecular Infection Medicine Sweden (MIMS) (A.K.Ö), the Novo Nordisk
520 Foundation (M.V. and P.O.B) and the Family Erling Persson Foundation (P.O.B). S.M.A.W, is the holder
521 of a Marie Curie Actions postdoctoral fellowship funded by the European Commission. N.C is the
522 holder of a stipend from the MIMS Excellence by Choice Postdoctoral Program, funded by the Knut
523 and Alice Wallenberg Foundation (KAW2015.0284). We thank the Small Animal Research and Imaging
524 Facility (SARIF) at Umeå University for providing equipment and technical support for performing parts
525 of the study. We thank Dr. C. Nord for technical support in advanced image reconstruction.


526

527 Additional information

528 Supplementary information accompanies this paper.

529 The authors declare that there are no competing interests.

530 Figures and Figure legends

542

543 **Figure 1: Insufficient anatomical mapping based on brain autofluorescence.** Co-registration of DAT
544 signal acquired by OPT with the anatomy, reconstructed based on the tissues autofluorescence,
545 provides insufficient anatomical detail for brain.

546

547

548

549

550

551

552

553

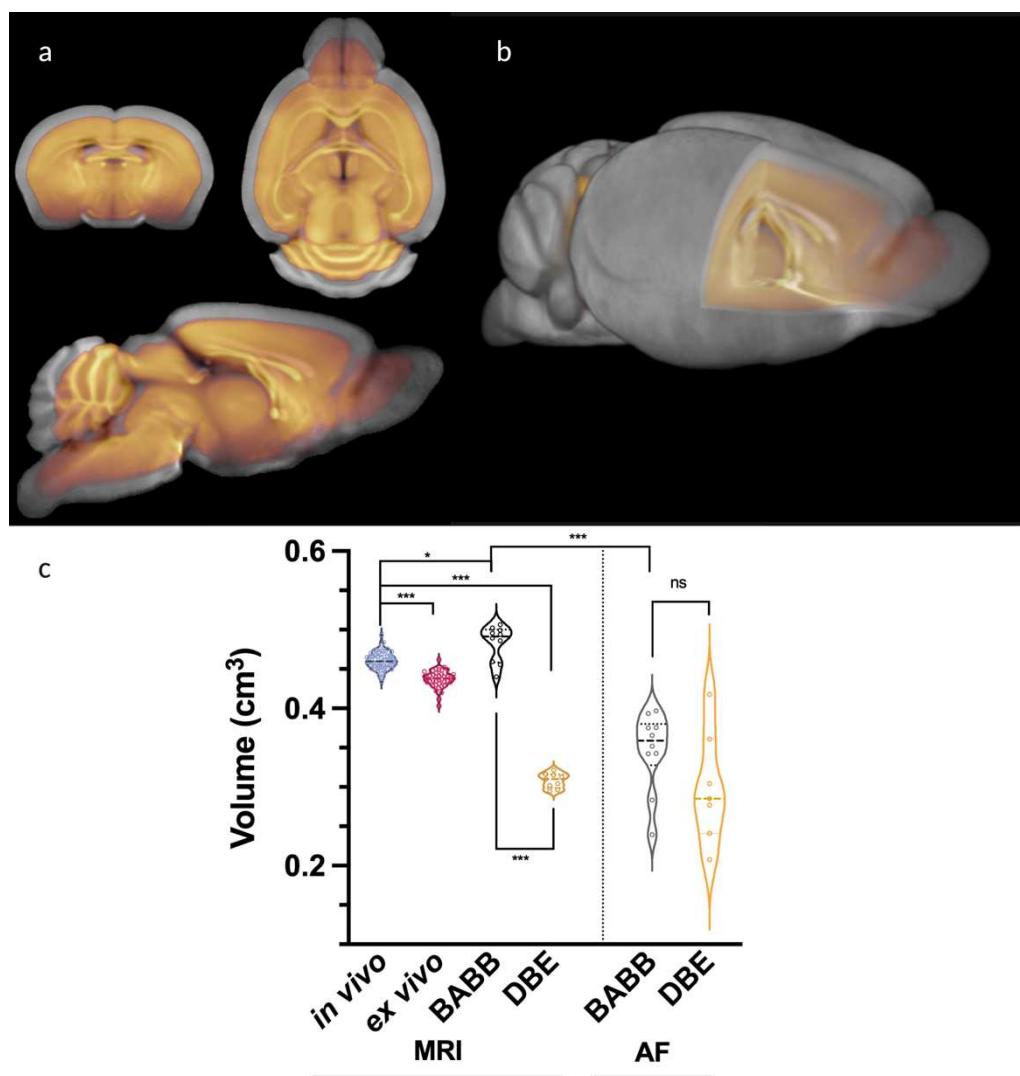
554

555

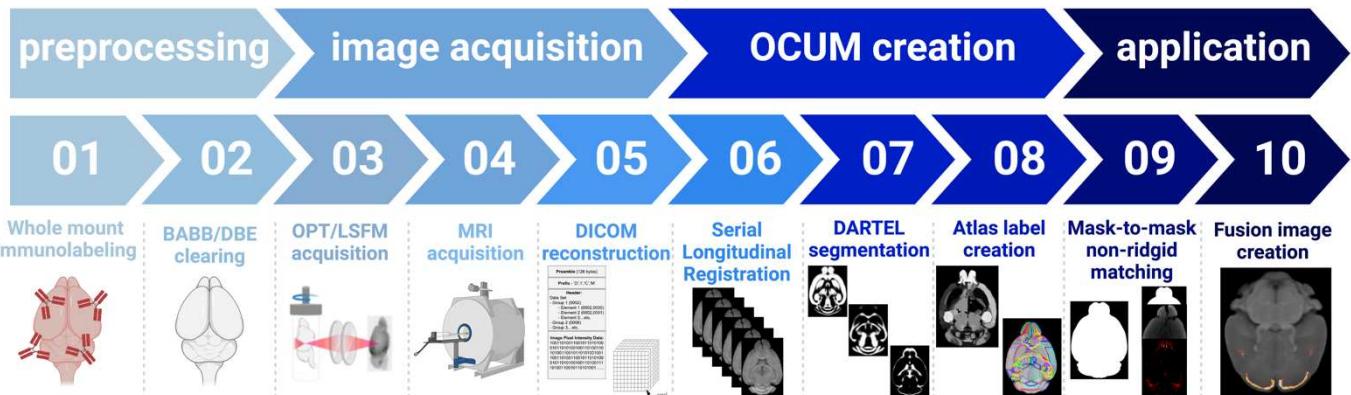
556

557

558

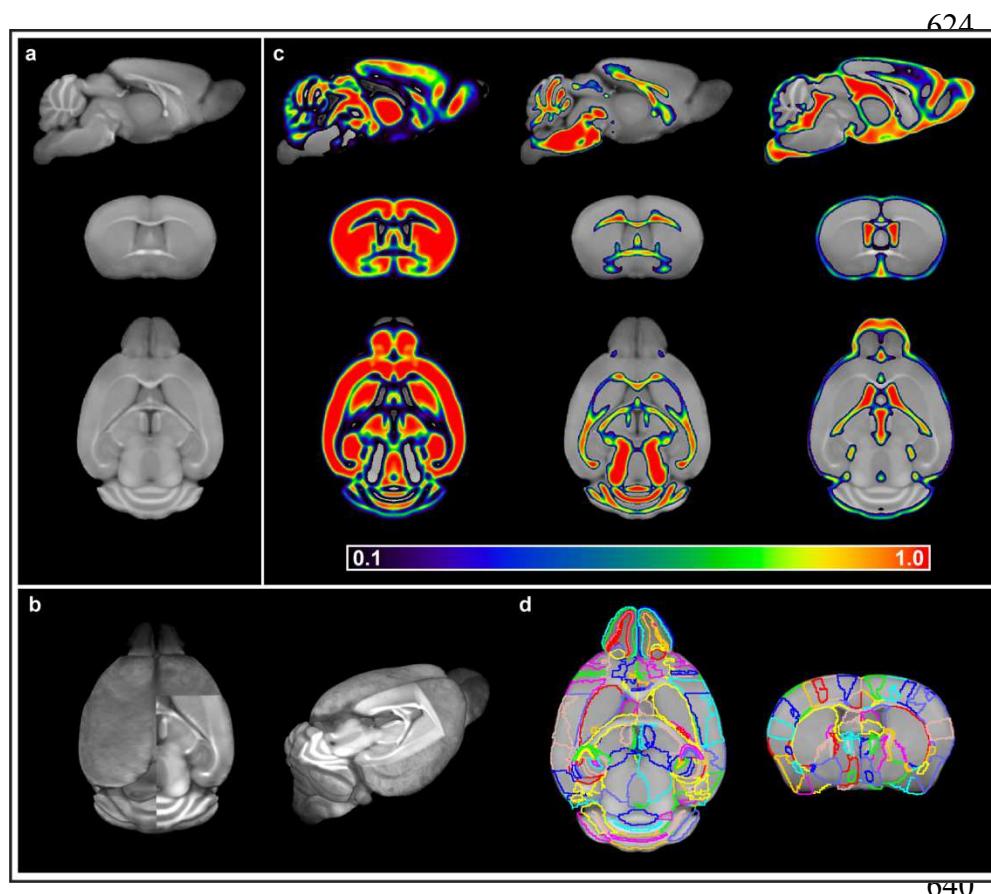

559

560


561

562

563



584 **Figure 2: Differential effects of clearing methods on brain volume.** a) Overlay of the average BABB
585 template (n=10) (grey) and DBE template (n=9) (orange), indicating a clear difference in brain size. b)
586 3D overlay of the average BABB (grey) and DBE (orange) templates wherein the DBE template lies
587 completely within the average BABB brain. c) Brain volume calculations of the average BABB and DBE
588 brains with average *in vivo* and *ex vivo* *in situ* brain volumes, as well as with their respective
589 autofluorescence volumes. All values are expressed in cm³. The average brain volume was significantly
590 lower (***p<0.001) for DBE cleared brains (0.308 ± 0.009 cm³) as compared to BABB cleared brains
591 (0.483 ± 0.023 cm³). The *in vivo* brain volume showed significant differences (***p<0.001; *p=0.03)
592 with all other calculated brain volumes. Comparison of the average BABB and DBE brain sizes, based
593 on autofluorescence, indicated no difference in brain size after optical clearing. Comparison of these
594 volumes with their respective volumes after rehydration for MR-acquisition, indicated that the BABB
595 brain volume was significantly larger when calculated based on T1-weighted images (0.483 ± 0.023
596 cm³) as when calculated from tissue (p<0.001) autofluorescence (0.343 ± 0.0517 cm³), which was not
597 the case for the DBE cleared brains (p=0.94).

598 **Figure 3: Schematic overview of the applied pipeline to obtain the OCUM brain template with its**
599 **associated tissue priors and atlas labels.**

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

641 **Figure 4: OCUM brain template and atlas.** a) Sagittal, coronal and axial brain slice of the OCUM
642 template (n=19). b) 3D representation of OCUM showing high GM and WM contrast in the template.
643 c) GM, WM and CSF tissue probability maps associated with OCUM. d) Volume of interest (VOI)
644 delineation exemplified in a sagittal and coronal slice of OCUM.

645

646

647

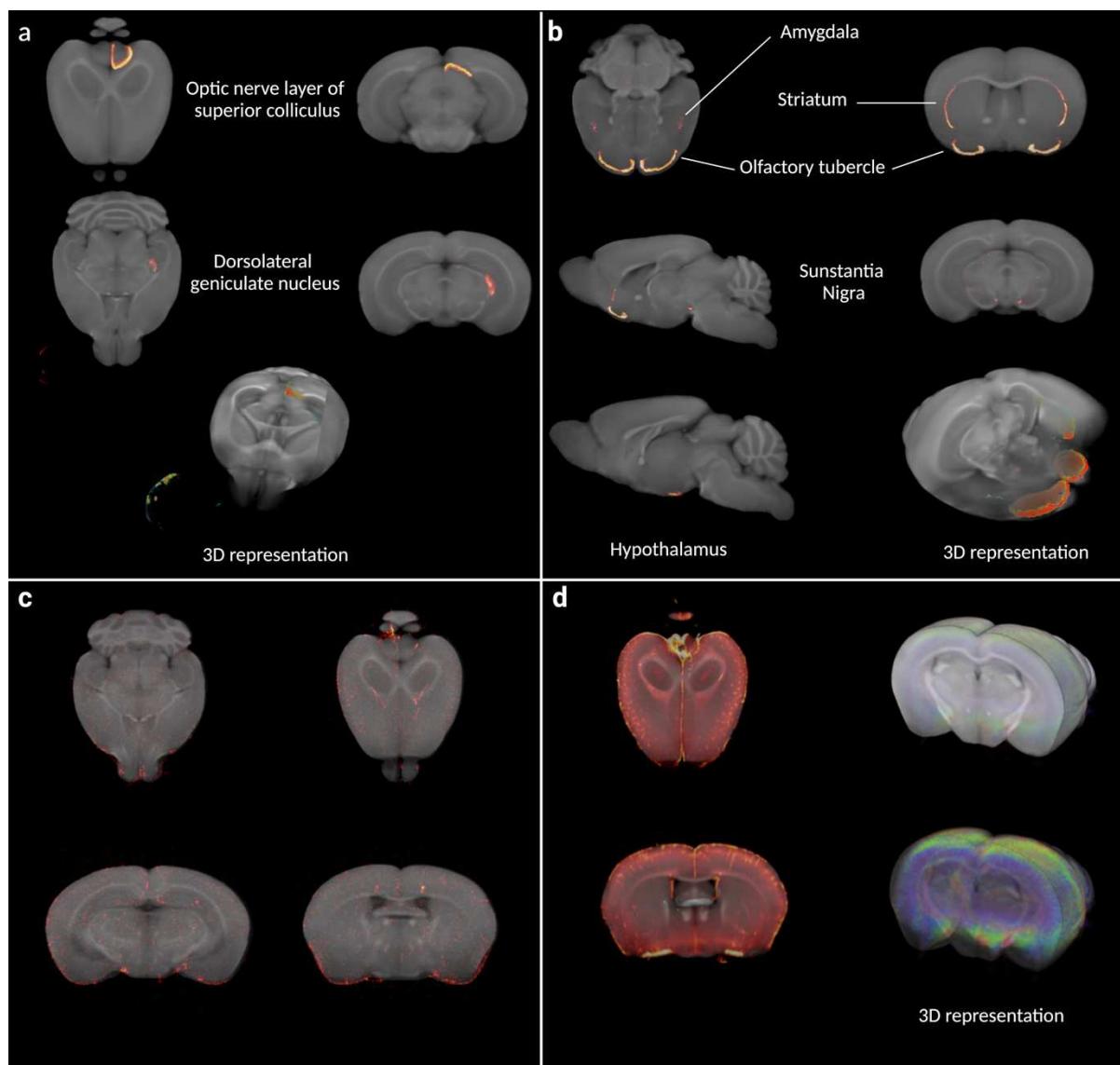
648

649

650

651

652


653

654

655

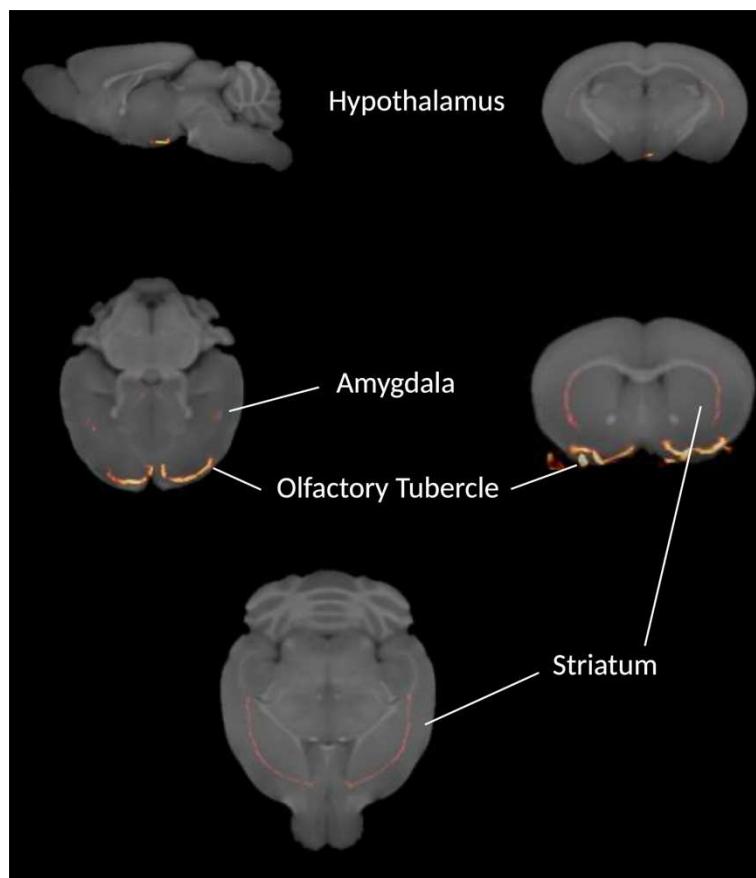
656

657

658

659 **Figure 5: Fusion images of 3D optical signal with the OCUM template.** a) Fusion images of OPT signal
660 of cholera toxin B with OCUM displaying clear optical signal in distinct parts of the visual system after
661 intraocular injection. b) Fusion images of OPT signal from typical dopamine transporter expressing
662 brain regions and OCUM. c) Fusion images of OPT signal from TSPO, targeting microglia, and OCUM.
663 d) Fusion images of LSFM signal from TSPO and OCUM showing high optical signal in cortical layer 4
664 and intense vessel staining due to TSPO expression in endothelial cells.

665


666

667

668

669

670

671

672 **Supplementary Figure 1: Fusion images of 3D optical signal with the iOCUM template.** Fusion images
673 of OPT signal from typical dopamine transporter expressing brain regions in DBE cleared brains with
674 iOCUM.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690 **Supplementary Table 1: OCUM and iOCUM atlas labels**

	Structure	Right Label	Left Label
1	Amydala	51	151
2	Anterior commissure: Olfactory Limb	115	215
3	Anterior Commissure: Temporal Limb	23	103
4	Ventral Pallidum (basal forebrain)	52	152
5	Bed nucleus of stria Terminalis	176	76
6	Inferior cerebellar peduncle	123	223
7	Middle cerebellar peduncle	45	245
8	Superior cerebellar peduncle	242	222
9	Cerebral aqueduct	119	119
10	Cerebral peduncle	114	14
11	Inferior colliculus	143	43
12	Superior colliculus	9	109
13	Corpus callosum	8	68
14	Corticospinal tract	218	18
15	Cuneate nucleus	166	168
16	Facial nerve	19	219
17	Fasciculus retroflexus	25	125
18	Fimbria	211	11
19	Fornix	122	22
20	Fourth ventricle	118	118
21	Fundus of striatum	54	154
22	Dorsal pallidum (globus pallidus)	44	144
23	Habenular commissure	99	199
24	Hypothalamus	250	150
25	Inferior olfactory complex	113	2013
26	Internal capsule	112	12
27	Interpeduncular nucleus	157	157
28	Lateral olfactory tract	101	102
29	Lateral septum	207	207
30	Lateral ventricle	57	77
31	mammillary bodies	161	61
32	mammillothalamic tract	210	212
33	Medial Lemniscus	20	120
34	Medial septum	53	153
35	Medulla	174	174
36	Midbrain	194	194
37	Nucleus Accumbens	55	155
38	Olfactory peduncle	5	105
39	Olfactory tubercle	95	145
40	Optic tract	216	116
41	Periaqueductal grey	10	10
42	Pons	187	187
43	Pontine nucleus	85	185
44	Posterior commissure	100	100
45	Subiculum	133	131

46	Stria medullaris	225	205
47	Stria terminalis	59	159
48	Striatum	7	17
49	Subpendymale zone	240	140
50	Superior olfactory complex	124	214
51	Thalamus	204	4
52	Third ventricle	146	146
53	Ventral tegmental decussation	156	156
54	Cerebellar vermis lobules 1-2 Lingula and ventral central	32	32
55	Cerebellar vermis lobule 3: Dorsal central	233	233
56	Cerebellar vermis lobules 4-5: culmen	34	34
57	Cerebellar vermis lobule 6: declive	36	36
58	Cerebellar vermis lobule 7: tuber/folium	237	237
59	Cerebellar vermis lobule 8: pyramus	38	38
60	Cerebellar vermis lobule 9: uvula	239	239
61	Cerebellar vermis lobule 10: nodulus	40	40
62	Cerebellar paravermis lobules 4-5: anterior lobule	90	148
63	Cerebellar hemisphere lobule 6: simple lobule	191	91
64	Cerebellar hemisphere lobule 6: ansiform lobule (crus 1)	92	192
65	Cerebellar hemisphere lobule 7: ansiform lobule (crus 2)	193	93
66	Cerebellar hemisphere lobule 7: paramedian lobule	94	200
67	Cerebellar hemisphere lobule 8: copula pyramidis	196	96
68	Flocculus	97	197
69	Paraflocculus	198	98
70	Trunk of arbor vita	47	47
71	Cerebellar vermis WM: lobules 1-2	232	232
72	Cerebellar vermis WM: lobule 3	33	33
73	Cerebellar vermis WM: trunk of lobules 1-3	253	253
74	Cerebellar vermis WM: lobules 4-5	234	234
75	Cerebellar vermis WM: lobules 6-7	236	236
76	Cerebellar vermis WM: lobule 8	238	238
77	Cerebellar vermis WM: trunk of lobules 6-8	254	254
78	Cerebellar vermis WM: lobule 9	139	139
79	Cerebellar vermis WM: lobule 10	252	252
80	Cerebellar paravermis WM: anterior lobule	21	31
81	Cerebellar WM: simple lobule	241	251
82	Cerebellar WM: crus 1	220	170
83	Cerebellar WM: trunk of simple and crus 1	226	246
84	Cerebellar WM: crus 2	229	249
85	Cerebellar WM: paramedian lobule	228	248
86	Cerebellar WM: trunk of crus 2 and paramedian	175	195
87	Cerebellar WM: copula	224	244
88	Paraflocculus WM	183	243
89	Flocculus WM	167	177
90	Dentate nucleus	1	201
91	Nucleus interpositus	203	3
92	Fastigial nucleus	15	206
93	Cingulate cortex: area 24a	24	169

94	Cingulate cortex: area 24a'	26	171
95	Cingulate cortex: area 24b	27	172
96	Cingulate cortex: area 24b'	28	173
97	Cingulate cortex: area 25	29	178
98	Cingulate cortex: area 29a	30	179
99	Cingulate cortex: area 29b	35	182
100	Cingulate cortex: area 29c	37	184
101	Cingulate cortex: area 30	39	186
102	Cingulate cortex: area 32	41	188
103	Amygdalopiriform transition area	42	189
104	Primary auditory cortex	46	208
105	Dorsal Secondary auditory cortex	48	217
106	Ventral Secondary auditory cortex	49	221
107	Caudomedial entorhinal cortex	50	227
108	Cingulum	56	231
109	Clastrum	58	235
110	Piriform area	60	255
111	Dorsal Claustrum	62	256
112	Dorsal Endopiriform nucleus	65	257
113	Dorsal intermediate entorhinal cortex	67	258
114	Dorsolateral entorhinal cortex	69	259
115	Dorsolateral orbital cortex	70	260
116	Dorsal tenia tecta	71	261
117	Ectorhinal cortex	72	262
118	Frontal cortex: area 3	73	263
119	Frontal association cortex	74	264
120	Intermediate nucleus of endopiriform claustrum	75	265
121	Insular region: not subdivided	78	266
122	Lateral orbital cortex	79	267
123	Lateral parietal association cortex	80	268
124	Primary motor cortex	81	269
125	Secondary motor cortex	82	270
126	Medial entorhinal cortex	83	271
127	Medial orbital cortex	84	272
128	Medial parietal association cortex	86	273
129	Piriform cortex	87	274
130	Posterolateral cortical amygdaloid area	88	275
131	Posteromedial cortical amygdaloid area	89	176
132	Perirhinal cortex	104	277
133	arietal cortex: posterior area: rostral part	108	278
134	Rostral amygdalopiriform area	110	279
135	Primary somatosensory cortex	111	280
136	Primary somatosensory cortex: barrel field	117	281
137	Primary somatosensory cortex: dysgranular zone	121	282
138	Primary somatosensory cortex: forelimb region	126	283
139	Primary somatosensory cortex: hindlimb region	127	284
140	Primary somatosensory cortex: jaw region	128	285
141	Primary somatosensory cortex: shoulder region	129	286

142	Primary somatosensory cortex: trunk region	132	287
143	Primary somatosensory cortex: upper lip region	134	288
144	Secondary somatosensory cortex	135	289
145	Temporal association area	136	290
146	Primary visual cortex	137	291
147	Primary visual cortex: binocular area	138	292
148	Primary visual cortex: monocular area	141	293
149	Secondary visual cortex: lateral area	142	294
150	Secondary visual cortex: mediolateral area	147	295
151	Secondary visual cortex: mediomedial area	149	296
152	Ventral Claustrum	158	297
153	Ventral nucleus of the endopiriform claustrum	160	298
154	Ventral intermediate entorhinal cortex	162	299
155	Ventral orbital cortex	163	300
156	Ventral tenia tecta	165	301
157	Hippocampal region: CA10r	336	305
158	Hippocampal region: LMol	306	307
159	Hippocampal region: CA1Rad	308	309
160	Hippocampal region: CA2Py	310	311
161	Hippocampal region: CA20r	312	313
162	Hippocampal region: CA2Rad	314	315
163	Hippocampal region: CA3Py Inner	316	317
164	Hippocampal region: CA3Py Outer	318	319
165	Hippocampal region: CA30r	320	321
166	Hippocampal region: CA3Rad	322	323
167	Hippocampal region: SLu	324	325
168	Hippocampal region: MoDG	326	327
169	Hippocampal region: GrDG	328	329
170	Hippocampal region: PoDG	330	331
171	Hippocampal region: CA1Py	334	335
172	Olfactory bulb: glomerular layer	337	345
173	Olfactory bulb: external plexiform layer	338	346
174	Olfactory bulb: mitral cell layer	339	347
175	Olfactory bulb: internal plexiform layer	340	348
176	Olfactory bulb: granule cell layer	341	349
177	Accessory olfactory bulb: glomerular, external plexiform and mitral cell layer	342	350
178	Accessory olfactory bulb: granule cell layer	343	351
179	Anterior olfactory nucleus	344	352
180	subiculum	332	333
181	Medial amygdala	353	355
182	Medial preoptic nucleus	354	356

preprocessing

image acquisition

OCUM creation

application

01

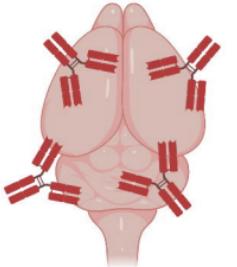
02

03

04

05

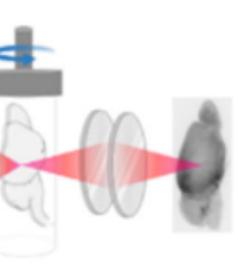
06

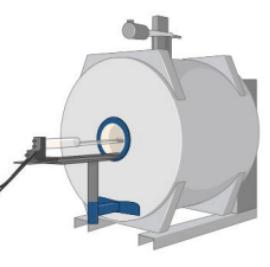

07

08

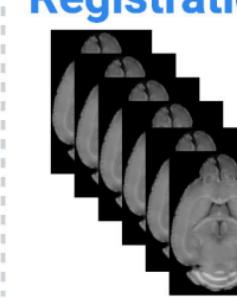
09

10

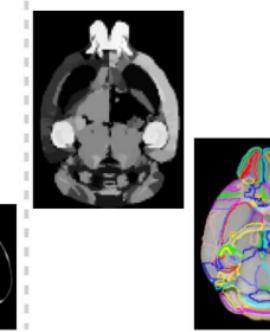

Whole mount
Immunolabeling

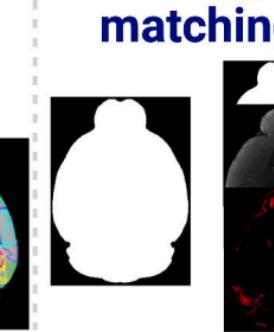

BABB/DBE
clearing

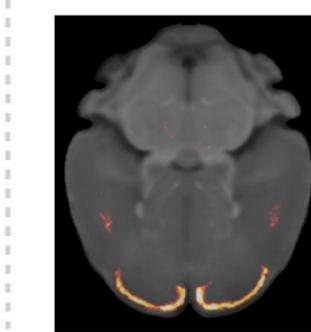
OPT/LSFM
acquisition

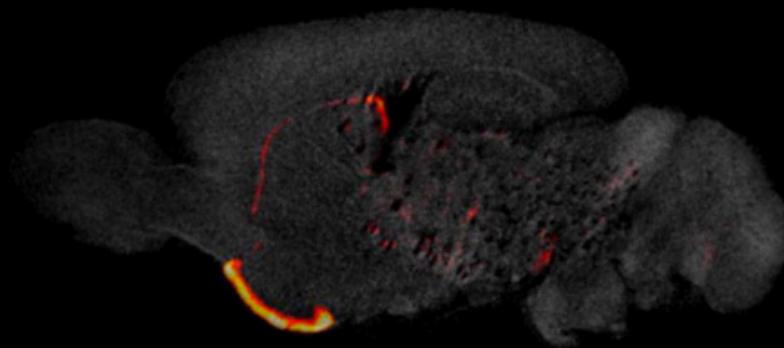
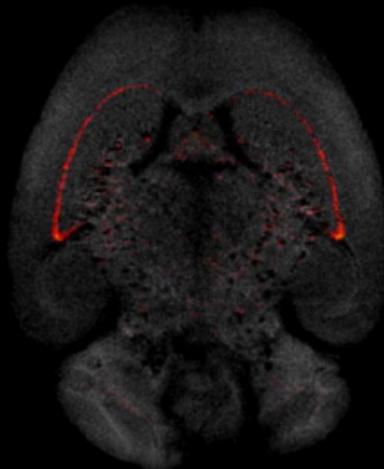
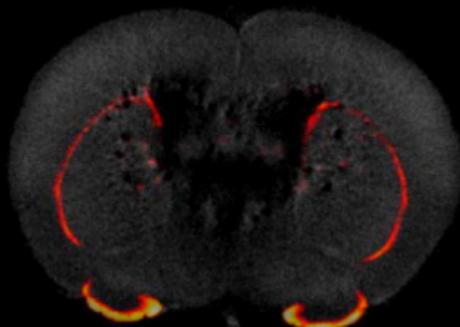

MRI
acquisition

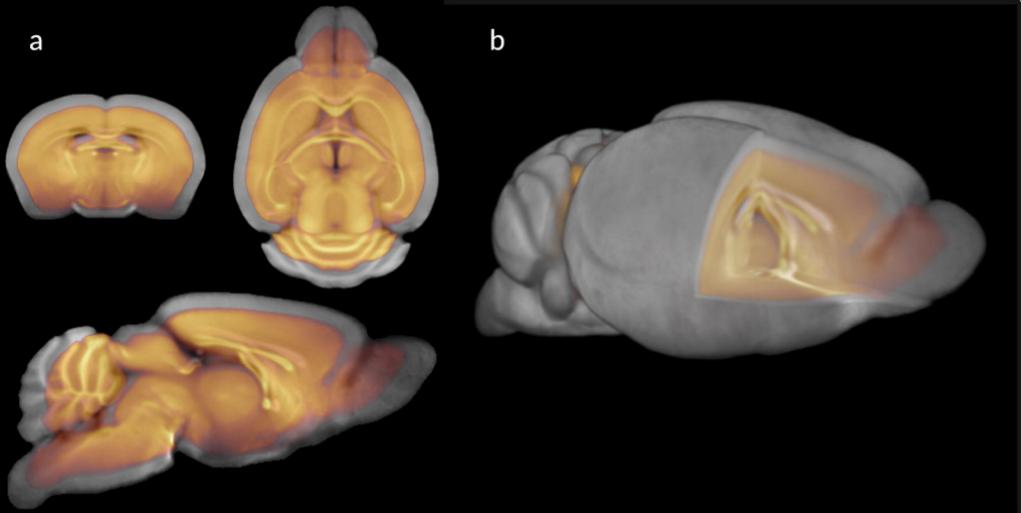
DICOM
reconstruction

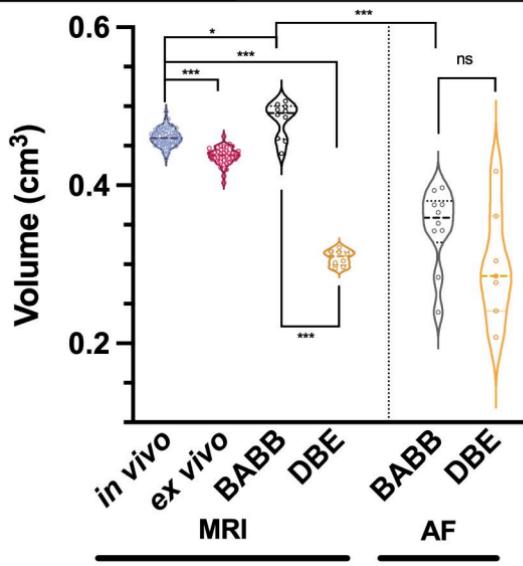

Serial
Longitudinal
Registration

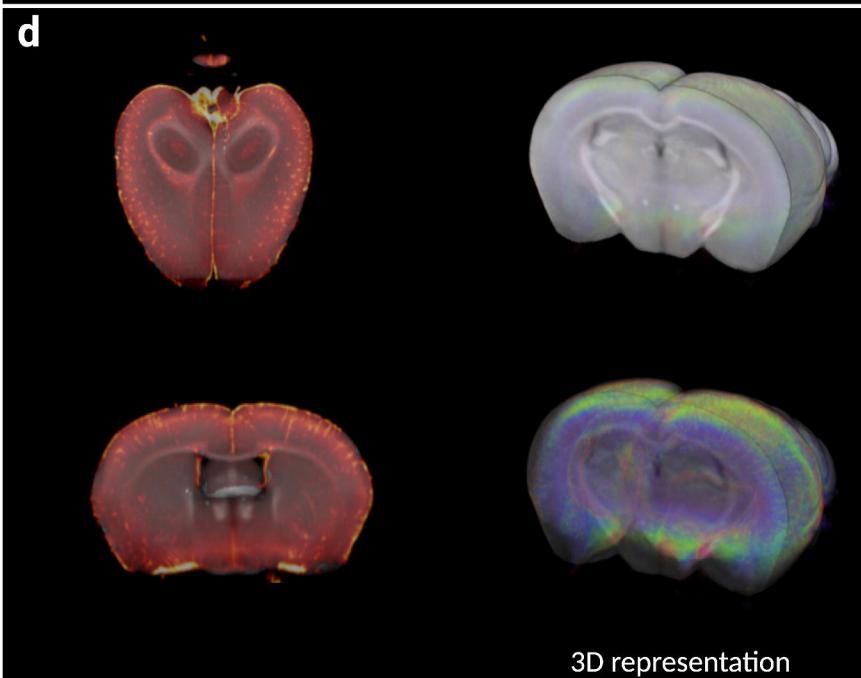
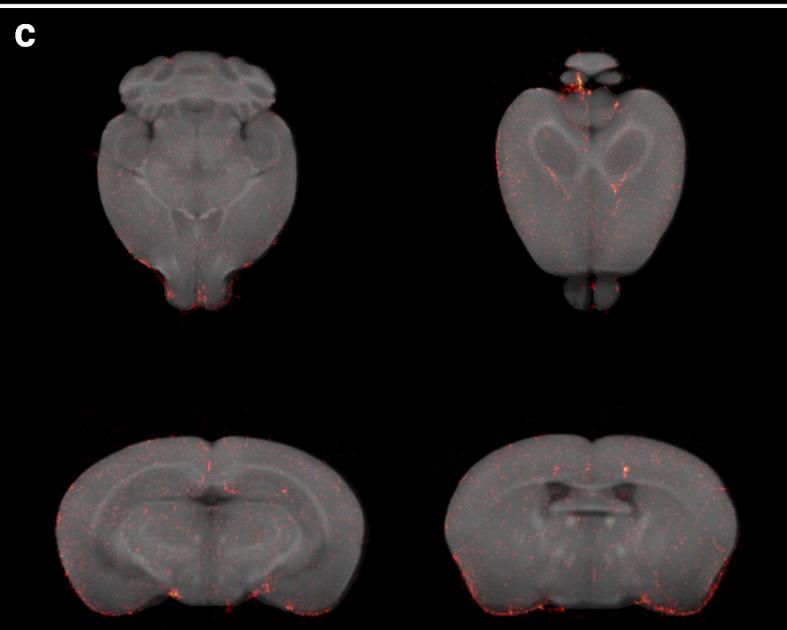
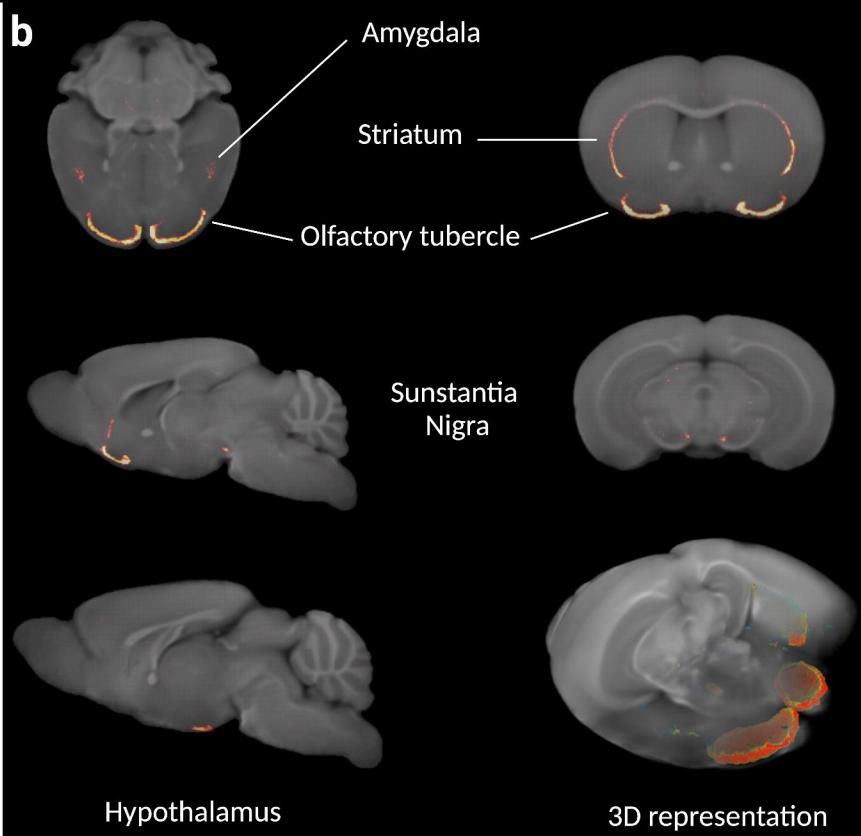
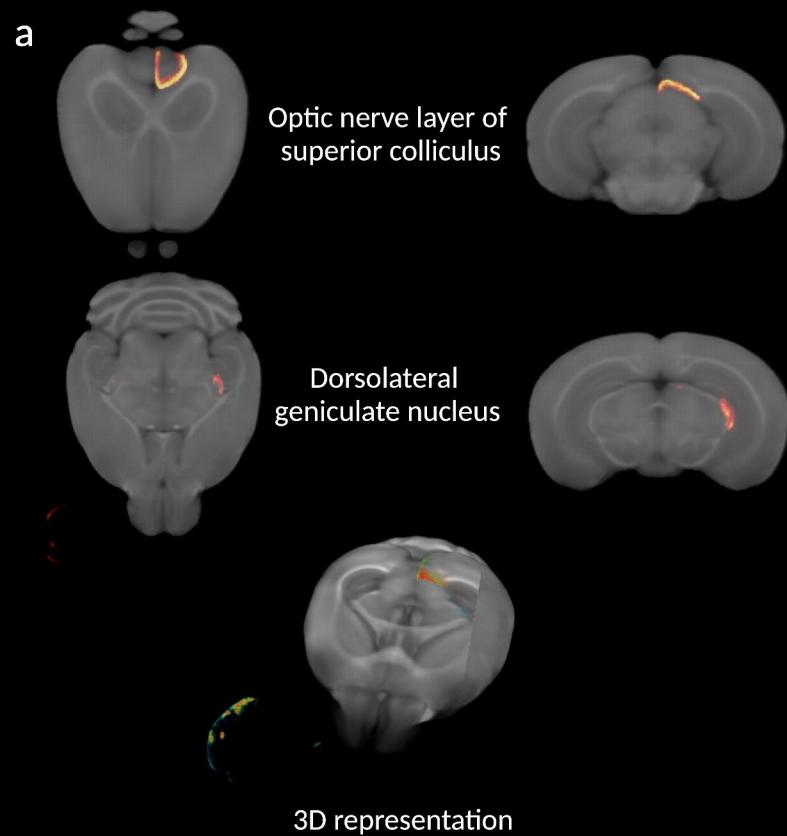

DARTEL
segmentation

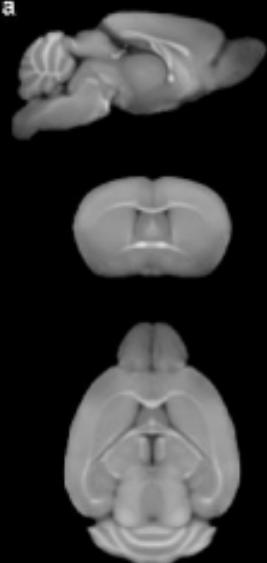
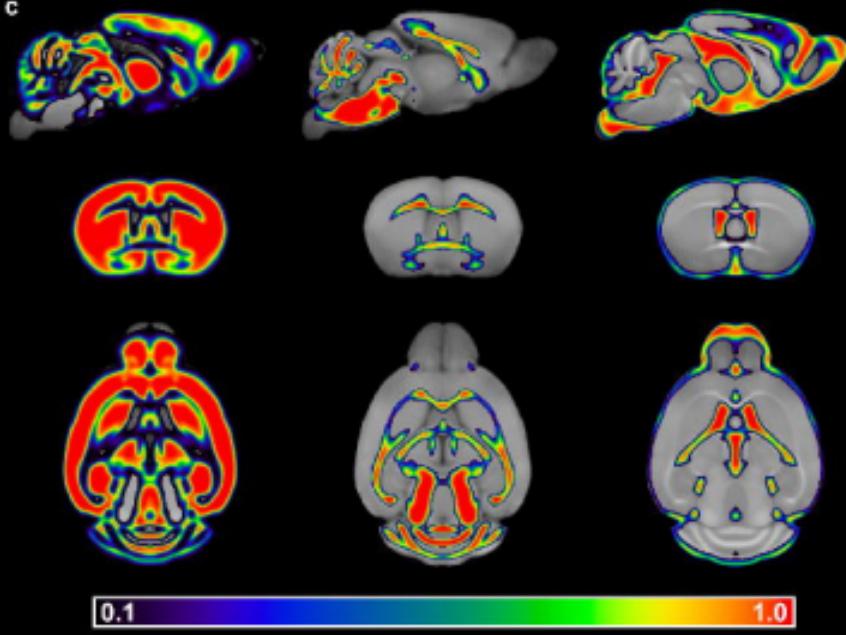
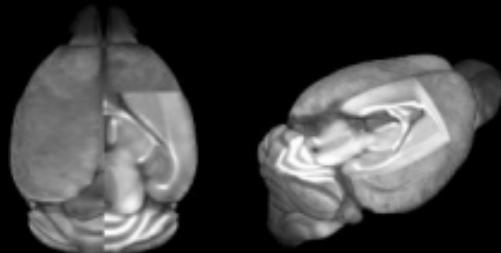
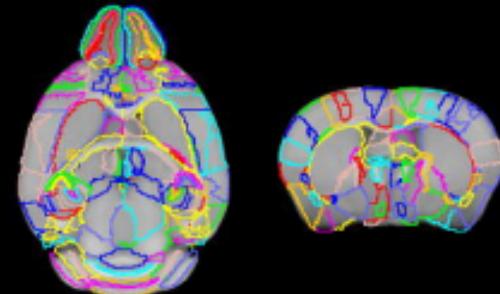

Atlas label
creation

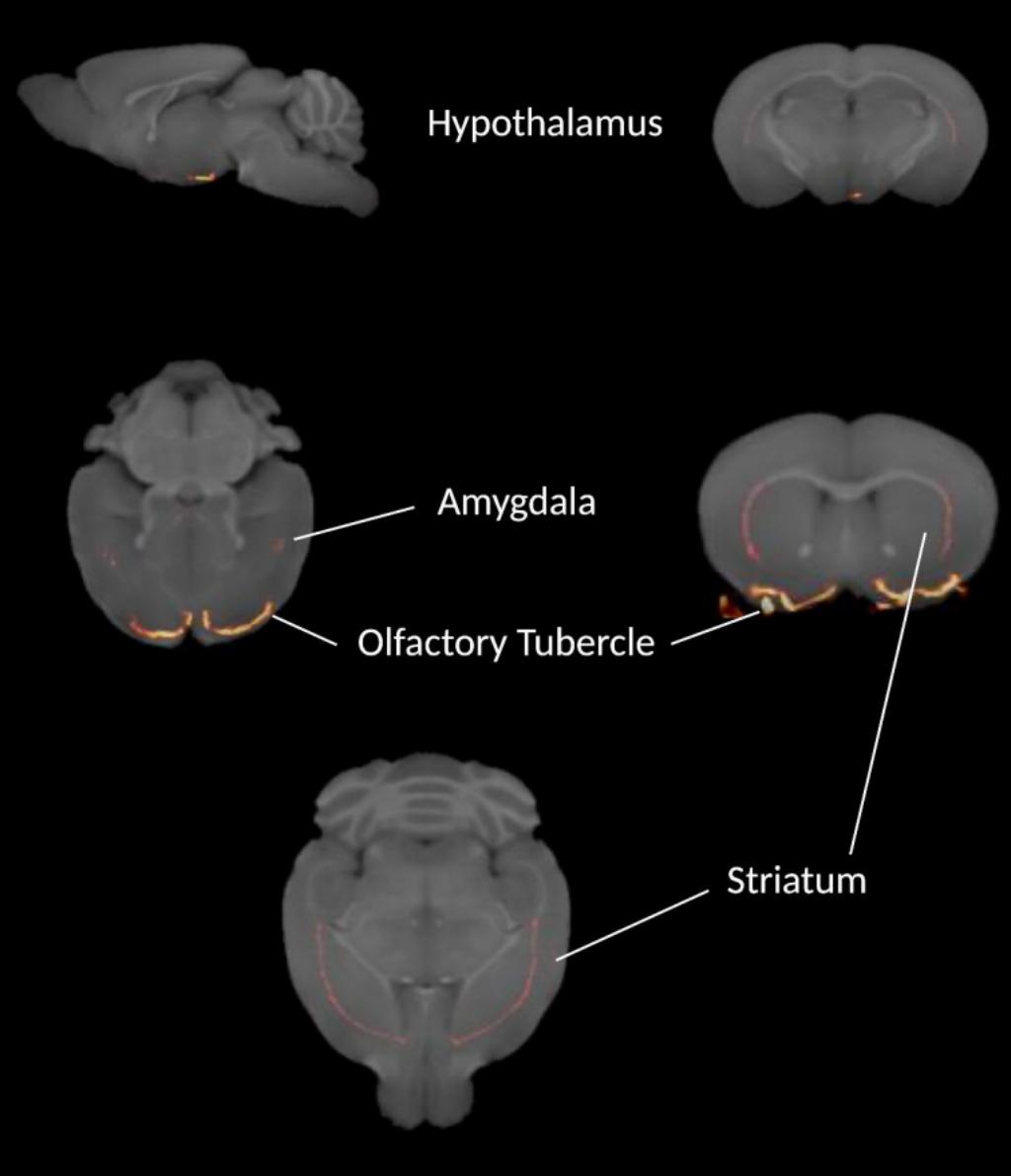





Mask-to-mask
non-rigid
matching


Fusion image
creation



c

a**c****b****d**

