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Abstract 
 
Increased availability of multi-omics data has facilitated the characterization of metabolic 

phenotypes of cellular organisms. However, devising genetic interventions that drive cellular 

organisms toward the desired phenotype remains challenging in terms of time, cost, and 

resources. Kinetic models, in particular, hold great potential for accelerating this task since 

they can simulate the metabolic responses to environmental and genetic perturbations. 

Although the challenges in building kinetic models have been well-documented, there exists 

no consensus on how to use these models for strain design in a computationally tractable 

manner. A straightforward approach that exhaustively simulates and evaluates putative 

designs would be impractical, considering the intensive computational requirements when 

targeting multiple enzymes. We address this issue by introducing a framework to efficiently 

scout the space of designs while respecting the physiological requirements of the cell. The 

framework employs mixed-integer linear programming and nonlinear simulations with large-

scale nonlinear kinetic models to devise genetic interventions in a scalable manner while 

accounting for the network effects of these perturbations. More importantly, the framework 

ensures the engineered strain's robustness by maintaining its phenotype close to that of the 

reference strain. We use the framework to improve the production of anthranilate, a 

precursor for pharmaceutical drugs, in E. coli. The devised strategies include eight previously 

experimentally validated targets and also novel designs suitable for experimental 

implementation. As an essential part of the future design-build-test-learn cycles, we 

anticipate that this novel framework will enable high throughput designs and accelerated 

turnover in biotechnological processes. 
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Introduction 
 
Advances in gene editing techniques and the ever-increasing availability of omics data have 

spawned intense efforts in metabolism research. Within the biomedical domain, this has 

enabled us to glean broader insights into the metabolic phenotypes of various diseases, 

allowing for more informed therapeutic interventions1–3. In biotechnology, these advances 

have led to the creation of environmentally friendly, cost-effective bio-foundries using 

genetically engineered cellular organisms for optimal production of valuable compounds4. 

These metabolic engineering undertakings are typically implemented as a design-build-test-

learn cycle, involving multiple experimentation stages and fine-tuning strain designs5. 

While technological advances have facilitated the genetic manipulation of organisms, 

significant challenges remain in determining the targets, and the extent, of such 

manipulations. Since robustness to changing environmental conditions is essential for the 

viability of designed strains, we need to ensure that the genetic interventions maintain critical 

cell properties such as the energy charge and redox potentials6–9. To achieve this, it is typically 

necessary to develop strategies targeting more than one reference strain enzyme. 

Unfortunately, devising such multi-target strategies by direct experimentation requires 

considerable time and resources. One approach to reducing these costs is to conduct rational 

metabolic engineering using computational models to narrow down the range of strategies 

to be experimentally verified. 

In particular, dynamic metabolic models are well suited for this task since they can capture 

the temporal evolution of the metabolic states to environmental and genetic perturbations 

under real-world fermentation conditions. However, the lack of available information about 

the values of kinetic parameters hampers the development of these models. Indeed, even for 

well-studied organisms such as E. coli or S. cerevisiae, we can find experimentally obtained 

values for only a few parameters in the literature and databases10,11. To infer the values of 

missing kinetic parameters, researchers have traditionally employed parameter estimation12–

14 and Monte Carlo techniques15–19. Recently, there have been numerous efforts to use 

machine learning to accelerate the building of these models20–23. 

Even when a high-quality kinetic model is available, it is computationally challenging to 

determine targets for metabolic engineering that meet desired design specifications because 
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it requires simulating the metabolic network's responses for many putative designs. For 

example, one would need to perform more than 2.5 ∙ 10! simulations to exhaustively explore 

all possible strategies for manipulating five enzyme activities within a middle-sized metabolic 

network of 200 reactions (catalyzed by 200 enzymes). Additionally, for all these simulations, 

we would need to analyze whether or not the designed strains meet the specifications and 

preserve the robustness of wild-type strains exposed to long-term evolutionary pressure24. 

Hence, to perform reliable and comprehensive strain designs, the research community needs 

systematic, resource-efficient approaches that leverage the predictive capabilities of 

nonlinear kinetic models. 

In this work, we report NOMAD (NOnlinear dynamic Model Assisted rational metabolic 

engineering Design), a computational framework that scouts the space of candidate 

metabolic engineering strategies and then proposes those that satisfy the desired design 

specifications while maintaining the robustness of the engineered strain. NOMAD preserves 

the robustness of the engineered strains by maintaining their physiology close to the original 

phenotype shaped through the course of evolutionary pressure and selection. As it has been 

hypothesized and shown earlier25,26, we also found here that this can be achieved by 

maintaining their metabolite concentrations and fluxes close to those of the reference strain. 

The rationale of trying to ensure a minimal deviation of the engineered strain phenotype from 

that of the reference strain has also been put forth in a constraint-based modeling approach 

called MOMA24. The departure in this work is that kinetic models couple metabolite 

concentrations, metabolic fluxes, and enzyme levels, thus allowing us to represent the 

studied phenotype with higher fidelity and capture both steady-state and dynamic properties 

of the studied metabolic phenotype. Additionally, NOMAD proposes testing the sensitivity 

and performance of the designs in nonlinear dynamic bioreactor simulations that mimic real-

world experimental conditions. We can then suggest the best performers from these tests for 

experimental validation with high confidence. As a validation study, we use this method to 

propose engineering targets for the overproduction of anthranilate in a previously studied 

strain of E.coli27. NOMAD proposed four candidate designs that proved robust across 

phenotypic and expression uncertainty while also providing a superior in silico performance 

when compared with experimentally devised strategies27. 
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Through its conception, NOMAD lends itself well to the DBTL (design – build – test – learn) 

cycle, with every round of iteration improving the quality of the proposed strain designs. 

Overall, NOMAD has the potential to accelerate the pace at which strain design 

breakthroughs are achieved, representing a potent disruptor within the biomedical and 

biotechnological domains. 

Results 

NOMAD for reliable strain designs 

The NOMAD workflow consists of three steps (Figure 1). Briefly, it starts by generating a 

population of putative kinetic models consistent with experimentally observed omics and 

cultivation data, physicochemical laws, network topology, and regulatory interactions. These 

kinetic models consist of a system of nonlinear ordinary differential equations (ODEs) 

characterized by a set of kinetic parameters. To generate such models, we can use traditional 

kinetic modeling approaches such as MASSPy17, Ensemble Modeling19, ORACLE15,18,28,29, and 

machine learning empowered methods such as REKINDLE21 and iSCHRUNK20,22.  

In the second step of NOMAD, we perform several quality checks on the kinetic models and 

identify those that will ensure reliable in silico strain design strategies30. In this screening 

process, we retain kinetic models that are (i) consistent with experimentally observed steady-

state values of metabolic fluxes and metabolite concentrations, (ii) locally stable around that 

steady state; (iii) able to reproduce the dynamic behavior of metabolic responses under 

industrial production conditions; (iv) consistent with any available information on studied 

phenotype or a piece of expert knowledge; and (v) robust, meaning that these models resist 

change and are capable of coping with various genetic and environmental perturbations.  

In the final step, we use the screened models to design engineering strategies for achieving a 

chosen metabolic objective, such as the overproduction of high-value biochemicals. We use 

Network Response Analysis26 (NRA) to perform the strain design. NRA casts the strain design 

process as an optimization problem that uses the outputs of the kinetic models (Methods) 

and integrates design constraints ranging from the allowable fold changes in concentrations 

and fluxes to the extent and number of enzymatic interventions. This way, we obtain a 

computationally efficient modus operando to enumerate designs and maintain the  
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Figure 1: Steps of the NOMAD workflow. We first build a set of putative kinetic models, represented by a 
system of ODEs, by integrating different types of data. Next, we choose models based on dynamic 
characteristics such as their stability, ability to reproduce experimental fermentation data, and 
robustness to enzymatic interventions. In the final step, we use the chosen models to conduct strain 
design. This involves solving a MILP optimization problem and enumerating designs that maintain the 
engineered strains close to the reference strain, evaluating the performance of these designs, and 
verifying the top designs in silico before sending them to experimentalists. 
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physiology of the engineered strain close to the reference physiology through various 

constraints. 

After enumerating alternate strategies, we test their performance and sensitivity to 

phenotype and expression variability in fermentation simulations that mimic real-life 

conditions. We finally propose the best-performing designs to experimental partners for 

implementation. 

NOMAD is described in more detail in the Methods section. 

Improving anthranilate production in E. coli 

As a case study for testing and validating the NOMAD workflow, we designed strategies for 

increasing anthranilate production in E. coli strain W3110 trpD9223. In an earlier 

experimental study, the strain was used as a scaffold for overproducing anthranilate through 

several genetic manipulations27. 

Kinetic models representative of E. coli W3110 trpD9923 

We used ORACLE15,16,28,31, implemented in the SKiMPy toolbox32, to generate a population of 

800,000 putative kinetic models that satisfied the experimentally observed steady-state 

behavior of the reference strain (Methods). However, not all of these models were necessarily 

suitable for strain design due to poor dynamic characteristics or poor responses to 

engineering interventions, necessitating the process of model screening. We first screened 

the population of kinetic models for those with dominant time constants, quantified by the 

inverse eigenvalues at the steady state, at least 5x faster than the doubling time of the cell 

(Methods). This meant that all metabolic processes were expected to settle into their steady 

states within the doubling time of the cell (Methods). More than 11% of the generated models 

(91,852) showed such dynamic characteristics.  

Whereas the inverse eigenvalues are a good indicator of the dynamic of metabolic responses 

in close vicinity of the steady state, due to the nonlinear nature of the system, not all models 

will exhibit the same dynamic behavior in a batch setting where metabolic states change 

intensely. Therefore, we tested if these models could reproduce experimentally observed 

behavior in a batch reactor. Out of 91,852 models, 212 captured experimentally observed 

temporal evolutions of growth, anthranilate, and glucose (Figure 2B-D). 
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Next, we evaluated the suitability of these 212 models for strain design by testing their 

responses to naturally occurring random perturbations in enzyme activities. 10 out of the 212 

models proved to be robust and consistent with the studied strain, exhibiting at least 50% of 

the growth of the reference strain (Methods) when subjected to these perturbations. The 

responses of these 10 models in a batch fermentation setup show qualitative and quantitative 

agreement with the experimentally observed time evolutions of growth, anthranilate 

production, and glucose consumption (Figure 2).  

Closeness to the reference physiology is essential for the performance of designed strains 

Extensive metabolic engineering might steer the engineered strain towards metabolic states 

with impeded growth or performance as, too often, the objective of overproduction of a 

metabolite has a major tradeoff with the organism growth and global biosynthetic processes. 

For example, in efforts to optimize the specific productivity or yield of target chemicals, 

metabolic engineering interventions could inadvertently reduce other cell capabilities such as 

 
 

Figure 2: Results of the model screening process. (A) We gradually filter the models from 800,000 
putative kinetic models to 212 that could reproduce experimentally observed fermentation curves. 
10 of these 212 models also proved to be robust to enzymatic perturbations. The median (solid 
line) and spread (shaded region) of the growth (B), anthranilate (C) and glucose (D) time evolution 
of these 10 models (solid line) show close match with experimentally obtained data. 
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ATP production or redox potential by redirecting carbon and biosynthetic resources towards 

the target pathways and products. Because reference strains have evolved to maintain 

healthy and robust physiology, we postulate that we can engineer a productive strain by 

redirecting the flux to the desired objective while remaining as close to the reference state as 

possible. Thus, we use the proximity of the metabolic and fluxomic profile of the engineered 

strain as a proxy for maintaining a vigorous phenotype25,26,33. A related concept was also 

studied in the context of steady-state flux analysis.24 Here, NOMAD uses nonlinear kinetic 

models and network response analysis (NRA, see Methods) to implement this concept and 

constrain the phenotype perturbation while maximizing productivity.  

To verify the postulated hypothesis, we used NRA for the 10 chosen kinetic models to design 

several groups of strains with an improved yield of anthranilate on glucose. The groups 

differed by how much the engineered strains could deviate from the reference strain, 

quantified through a fold-deviation of the intracellular metabolite concentrations and 

metabolic fluxes from their values at the reference state. The group of strains closest to the 

reference strain could have the intracellular concentrations deviating 2-fold from the 

reference strain. In contrast, the less constrained group could have the intracellular 

concentrations deviating 20-fold from the reference strain. For all the groups, we allowed up 

to three enzyme modifications with a maximum of 5-fold change in their activities.  

Current approaches to strain design using kinetic modeling perform a metabolic control 

analysis (MCA)34,35 around the reference state and rank the target enzymes using the absolute 

value of the product flux or yield control coefficient with respect to each enzyme in the 

network. This approach does not take into account constraints that could maintain the 

healthy physiology we discussed above. To understand the implications of using 

unconstrained MCA for strain design, we also applied a 5-fold change in enzyme activities to 

the enzymes corresponding to the top 3 anthranilate yield control coefficients for each kinetic 

model, without any constraints on concentration and flux perturbations.  

The nonlinear responses of all these engineered strains showed that the closeness to the 

reference strain impacted performance. Indeed, for the groups closest to the reference 

phenotype (2-fold and 3-fold deviations), the engineered strains retained the dynamic 

characteristics of the reference strain while producing higher anthranilate titers (>15%) at a 

modest cost to growth (<16%). Moreover, the titers achieved by these strains (~0.38 g/L) are 
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only attained by the designs with 10-fold and 20-fold deviations after more than double (~40 

hours) their fermentation time. 

 In contrast, the designs with 10-fold and 20-fold deviations demonstrated slower dynamics 

than the reference strain, with lower mean titers and growth at the end of the production 

period for the latter (Figure 3). In a similar vein, the unconstrained designs ('MCA' in Figure 3) 

consistently failed to achieve any semblance of growth or production of anthranilate. The 

likely explanation for this is that, by not constraining the phenotype perturbation, we pushed 

the engineered strains far away from the reference strain while disregarding the network 

effects of the enzyme modifications. Even when we considered the targets that had a non-

negative impact on growth, the resulting responses were inferior to the designs generated 

using NRA (Supplementary note V). 

These results suggest that for the cost-effective production of valuable biochemicals, it is 

judicious to generate designs that minimize phenotype perturbation while respecting other 

design specifications such as maximal titer and specific productivity.  

 

 
Figure 3: Results of the phenotype perturbation study showing mean anthranilate and biomass 
responses of engineered strains under different allowable fold changes in concentrations with respect 
to the reference strain (wt). As we permit a greater deviation from the reference physiology, from 2-
fold (solid blue) to 20-fold (dotted blue) changes in concentrations, we observe a decrease in the titers 
of anthranilate and biomass across the 10 models at the end of the fermentation period of the 
reference strain (18 hours). Furthermore, the completely unconstrained approach to strain design that 
uses the top-3 control coefficients alone (MCA) stifles growth as well as anthranilate production. 
These results underline the importance of adhering to the reference physiology when conducting 
strain design.   

wt 2-fold 
change

3-fold 
change

10-fold 
change

20-fold 
change MCA
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NOMAD designs encompass experimentally validated targets around shikimate 
metabolism 

We employed NRA26 to engineer strains with a maximized yield of anthranilate with respect 

to glucose uptake for each of the 10 kinetic models (Methods). Using the results of the 

phenotype perturbation study, we permitted no more than a 3-fold change in concentrations 

to ensure we adhered to the phenotype of the reference strain. In addition, we allowed three 

enzyme modifications with a maximum 5-fold upregulation, and unrestricted 

downregulation. There were multiple designs for each model within 5% of the maximal 

anthranilate yield. The number of such design alternatives for each model ranged from 2 – 

12. In total, we obtained 70 designs involving 37 enzymes across the 10 models predicting a 

90-158% increase in anthranilate yield. Out of the 70 designs, 41 were unique by membership, 

meaning that they contained a unique set of three enzymes to be targeted (Figure 4). 

Remarkably, 8 out of the 37 enzymes involved in the designs were validated experimental 

targets for increasing the flux through the shikimate pathway36–38. Three out of the 8 

enzymes, DDPA, DHQS, and SHKK, belonged to the shikimate pathway, three belonged to 

glycolysis, PGI, PPS, and PYK, and two belonged to the pentose phosphate pathway, TALA and 

G6PDH2r (Figure 4). More specifically, Patnaik et al. increased the carbon flow through the 

shikimate pathway by overexpressing DDPA (aroG) alone and DDPA along with PPS (ppsa)38. 

All our designs target DDPA, and one in particular targets both DDPA and PPS, along with 

SHKK (aroK). Rodriguez et al. reviewed strategies that sought to increase the production of 

aromatic amino acids by either increasing the availability of the precursors to the shikimate 

pathway or enhancing the activity within the pathway37. The reviewed strategies directly 

targeting the shikimate pathway included the deregulation of DDPA, DHQS (aroB), or SHKK. 

Among the experimental strategies that targeted phosphoenolpyruvate (pep) or erythrose-4-

phosphate (e4p) availability were those that inactivated the pyruvate kinases (pykAF), 

increased the activity of PPS, knocked out PGI (pgi), or redirected carbon to the pentose 

phosphate pathway (PPP) through the upregulation of TALA (talB), TKT (tktA), or G6PDH2r 

(zwf). NOMAD designs contained all previously mentioned interventions, except for TKT. 
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Figure 4: Clustering of the 41 unique NRA designs. Each design contains a unique set of enzymes to 
be targeted. This clustering analysis revealed 5 distinct manners for overproducing anthranilate. 
Abbreviations: SHKK: Shikimate kinase, CHORS: Chorismate synthase, DHQS: 3-dehydroquinate 
synthase, CHORM: Chorismate mutase, ANS: Anthranilate synthetase, ANPRT: Anthranilate 
phosphoribosyltransferase, DDPA: 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, GND: 
Phosphogluconate dehydrogenase, PFK_3: Phosphofructokinase (s7p), RPI: Ribose-5-phosphate 
isomerase, G6PDH2r: Glucose 6-phosphate dehydrogenase, NADH5: NADH dehydrogenase, SUCDi: 
Succinate dehydrogenase (irreversible), HEX1: Hexokinase, PGK: Phosphoglycerate kinase, PYK: 
Pyruvate kinase, PGM: Phosphoglycerate mutase, PGI: Glucose-6-phosphate isomerase, PPS: 
Phosphoenolpyruvate synthase, GAPD: Glyceraldehyde-3-phosphate dehydrogenase, FBA: Fructose-
bisphosphate aldolase, PFK: Phophofructokinase, TPI: Triose-phosphate isomerase, FBP: Fructose-
bisphosphatase, ENO: Enolase, PSERT: Phosphoserine transaminase, GLUDy: Glutamate 
dehydrogenase, GLNS: Glutamine synthetase, ACONTa: Aconitase, AKGDH: 2-Oxogluterate 
dehydrogenase, ICDHyr: Isocitrate dehydrogenase, FUM: Fumarate mutase, ICL: Isocitrate lyase, 
ME2: Malic enzyme (NADP) 
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Interestingly, although one of the generated designs proposes PYK downregulation in line 

with the experimental approach (Figure 4, DDPA↑, SHKK↑, PYK↓), another design proposes 

its upregulation instead (DDPA↑, PYK↑, GLUDy↓), suggesting the possibility of alternative 

regulation patterns when targeting multiple enzymes simultaneously.  

In addition to encompassing several reported experimental interventions, NOMAD also 

suggested novel targets that can achieve the same impact on anthranilate production as the 

expert-proposed candidates. Some of them frequently appeared in our designs, such as the 

downregulation of GLUDy (11/41 designs) and the upregulation of GLNS (8/41 designs). In 

contrast, the upregulation of ENO and ICL appeared only in one design each. 

NOMAD performs well compared to experimental strategies for anthranilate production 

To evaluate the performance of NOMAD designs against those reported experimentally, we 

implemented two of the engineered strains reported by Balderas-Hernandez et al.27 in a 

bioreactor setup. For the experimental implementation of the first strain, W3110 

trpD9923/pJLaroGfbr, the authors used a feedback resistant version of 𝑎𝑟𝑜𝐺 to redirect 

carbon into the Shikimate pathway, resulting in an increase in anthranilate titers from 0.31g/L 

to 0.4g/L. For the second strain, W3110 trpD9923/pJLaroGfbrtktA, they additionally increased 

the availability of e4p through the overexpression of transketolase (associated with TKT1 and 

TKT2), resulting in titers of 0.7g/L.  

We used the 10 kinetic models to simulate the feedback-resistant version of aroG by 

removing the inhibition of DDPA by phenylalanine. For transketolase overexpression, we 

applied a 5-fold increase in the enzyme activities of TKT1 and TKT2. Although our models 

provided lower median titers of anthranilate than those reported experimentally, they 

captured the performance trends of both interventions – trpD9923/pJLaroGfbrtktA produced 

a better median titer (0.36g/L) than trpD9923/pJLaroGfbr (0.33g/L) which was in turn superior 

to trpD9923 (0.31g/L) (Figure 5). The obtained time evolutions for the glucose uptake and 

growth reached their final values faster than the experimental observations (Supplementary 

note IV). Interestingly, although we did not integrate information about the two engineered 

strains in the model-building process, our models could reproduce the experimental 

observation that the difference in anthranilate titers between the two engineered strains was 

greater than the difference between the wild-type and trpD9923/pJLaroGfbr.  
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To benchmark the engineering strategies suggested by NOMAD, we also compared the 

simulated responses of the experimental strains to the top 5 designs applied using the NRA 

suggested fold changes specific to each model. We found that the NOMAD designs resulted 

in superior median anthranilate titers (0.4g/L) compared to the simulated experimental 

approaches, suggesting that the strains W3110 trpD9923/pJLaroGfbr and W3110 

trpD9923/pJLaroGfbrtktA could be further improved (Figure 5).  

Alternative routes for producing anthranilate 

To detect common patterns and routes toward producing anthranilate across the designs, we 

conducted a clustering analysis of the 41 unique designs (Figure 4). This revealed the presence 

of five clusters of alternative enzymatic interventions satisfying the imposed design 

specifications. All the designs redirect carbon to the shikimate pathway by increasing the 

activity of DDPA which serves as the entry point to the pathway. The clusters differed by the 

choice of the other two target enzymes. Cluster I consists of two designs, one of which 

concentrates the flow of carbon through the shikimate pathway (CHORS and DHQS), while 

the other increases the activity of anthranilate synthase (ANS) and the activity of NADH5 in 

the electron transport chain (ETC). Cluster II has three designs, all of which reduce the activity 

in the Krebs cycle (FUM). Two of the designs also increase the availability of glutamine, which 

is a substrate for ANS, either by increasing its synthesis (GLNS) or decreasing the conversion 

 
Figure 5: A comparison of simulated (A) vs experimentally observed (B) responses for 
𝑊3110	𝑡𝑟𝑝𝐷9923 (orange), 𝑊3110	𝑡𝑟𝑝𝐷9923/𝑝𝐽𝐿𝐵𝑎𝑟𝑜𝐺!"#(black) and 𝑊3110	𝑡𝑟𝑝𝐷9923/
𝑝𝐽𝐿𝐵𝑎𝑟𝑜𝐺!"#𝑡𝑘𝑡𝐴 (red). The median (solid) and 1st and 3rd quartiles (shaded) of the responses over 
the 10 kinetic models captures the trends reported experimentally, with the overexpression of tktA 
resulting in a superior titer of anthranilate when compared to the targeting of aroG alone. With the 
NOMAD designs (blue) we obtain a superior titer of anthranilate when compared with the in silico 
implementation of the experimental designs.   
 

A B

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.14.516382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/


 15 

of glutamate to 𝛼-ketoglutarate (GLUDy) so that it is available for glutamine synthesis. The 

third design increases the activity of SHKK in the shikimate pathway. 

Cluster III contains designs that all target the availability of glutamate for glutamine synthesis 

by reducing its degradation (GLUDy). Some of the designs also balance the availability of the 

precursor metabolites, e4p and pep, by targeting enzymes in the PPP or glycolysis. The others 

target either the activity in the shikimate pathway (SHKK, ANS) or the availability of glutamine 

(GLNS). 

The largest cluster, cluster IV, has designs that focus on the shikimate pathway by increasing 

the activity of SHKK. Additionally, in a manner similar to cluster III, some designs in this group 

ensure the balance between the two shikimate pathway precursors by targeting glycolysis 

(ENO, FBA, etc.) or PPP (TALA, RPI). The remaining designs target either growth, through the 

ETC (SUCDi), the Krebs cycle (ICDHyr, AKGDH), or anaplerotic reactions (ME2, ICL), or the 

production of anthranilate through the shikimate pathway (DHQS) (Figure 4). 

Finally, cluster V is an agglomeration of designs that focus on glutamine synthesis with all but 

one of the designs targeting GLNS. Additionally, the designs target enzymes in the shikimate 

pathway (SHKK, SHK3Dr), the ETC chain (SUCDi, ADK1), the Krebs cycle (ACONTa) and 

glycolysis (FBA).  

NOMAD identified a set of multiple alternative designs that would improve anthranilate 

production to a similar extent. In the next section, we showcase a procedure for identifying 

this set's most robust and implementation-suitable designs. Further expert knowledge can be 

used to perform a comparative analysis of the alternative routes and select which designs to 

implement experimentally.  

 
Robust and implementation-suitable designs  
 
As we cannot know, a priori, which among the population of kinetic models best represents 

the physiology of the cell, it is judicious to ensure that the proposed engineering strategies 

are reliable and consistent across the range of phenotypes spanned by the 10 kinetic models. 

To this end, we implemented the 41 unique designs (Methods) in each kinetic model and 

evaluated the mean increase in anthranilate yield predicted by NRA across all the models. The 

five designs with the highest predicted mean increase (~93%) all belonged to Cluster III (Figure 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.14.516382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/


 16 

6A). They all suggest redirecting carbon to the shikimate pathway by upregulating DDPA, and 

increasing the availability of glutamate for glutamine synthesis by downregulating GLUDy 

(Figure 6B). Four of the designs also balance the availability of pep and e4p by targeting 

glycolysis (HEX1, PYK, PGI) or the pentose phosphate pathway (GND). The fifth design 

increases the enzyme activity of ANS which is responsible for anthranilate synthesis. 

Before recommending any design for experimental implementation, we must test and 

validate them in nonlinear simulations that closely mimic real-world conditions (Methods). 

Hence, we applied these designs to all 10 models in a batch fermentation setting, using the 

fold changes suggested by NRA for each combination of model and design (Figure 7A and 7B). 

Four out of the five designs (d-1 – d-4) performed well across the phenotypic uncertainty 

covered by the 10 models. They remained close to the phenotype of the reference strain 

while providing >25% increases in anthranilate titers, as shown by the mean of their 

responses across the 10 models (Figure 7). Design d-5 (DDPA, GLUDy, ANS) was discarded due 

to its poor performance across the models - it displayed significantly slower dynamics and 

only reached the anthranilate titers of the reference strain after 40 hours.  

The outcome of the experimental implementation of these designs while in agreement with 

the predicted trends, it will most likely deviate from the NRA-predicted responses to the 

corresponding fold changes in enzyme activities. Hence, in order to quantify the expected 

deviations, we conducted a global sensitivity analysis by applying perturbations to the mean 

NRA-proposed fold changes in enzyme activity (Supplementary note II), and we computed the 

margin for error afforded by each of the four robust designs. We found that all these designs 

could withstand errors in experimental implementation, retaining their performance even 

when we applied ±50% perturbation to all three enzymes together (Figure 7C and 

Supplementary note III) and to each enzyme individually while keeping the others at the mean 

NRA-suggested values (Figures 7D-F and Supplementary note III). By retaining their 

performance across a range of models, and a spread of enzyme expression levels, the four 

screened designs, DDPA + GLUDy + PGI/GND/HEX1/PYK, proved to be robust to physiological 

and expression level uncertainties and can thus be confidently passed on for experimental 

validation. 
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Figure 6: Design evaluation and pruning. (A) A heat map of the predicted increase in 
anthranilate yield when each of the 41 designs (columns) is applied to the 10 kinetic models 
(rows). The five designs with the highest mean NRA solution are marked in black rectangular 
frames. (B) A schematic of the metabolic network containing the target enzymes from these 
five designs. The designs target the activity of DDPA and GLUDy, while differing by the third 
target enzyme. 
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The results of the in silico validation studies underline one of the key features of NOMAD: it 

is only through the use of nonlinear simulations that we could conduct such quality checks 

and glean insights into the applicability of the different designs. 

 
Figure 7: Validation and sensitivity analysis of the top five designs in a fermentation setting. The mean 
responses across the 10 kinetic models when the five designs are applied using the NRA suggested fold 
changes specific to each model (A and B). Four out of the five designs retained their performance across 
the models, with only d-5, targeting DDPA, GLUDy, and ANS, demonstrating significantly altered 
dynamics. These four designs also proved to be robust to errors in experimental implementation, 
maintaining their performance when subjected to a ±50% perturbation applied to their mean 
suggested NRA fold changes for all the enzymes (C), and for each enzyme individually while keeping 
the other fold changes at the mean NRA suggested values (D, E, F).  
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Discussion 

Rational strain design using kinetic models is one of the holy grails of metabolic engineering 

since it obviates the need for expensive high-throughput experiments and provides a 

structured approach to strain design. NOMAD provides a systematic framework to achieve 

this by using a first-principles led approach to build quality kinetic models and then conduct 

rational strain design using a judicious choice of design specifications and constraints.  

Although several frameworks exist to produce kinetic models that are representative of 

steady-state behavior, we demonstrate the need for carefully choosing models based on their 

dynamics as well. Through our multi-step screening process, we use fundamental engineering 

principles to obtain high quality kinetic models that not only reproduce the dynamics of the 

reference strain but also capture the trends observed during the implementation of 

experimental engineering strategies. 

Using the provided case study, we have also shown that it is crucial to maintain the phenotype 

of the engineered strains close to the reference strain. Small phenotype perturbation ensures 

the reliability of the obtained engineered strains and provides superior titers of the desired 

biochemical. One way to minimize perturbations manually through MCA would be to choose 

combinations of enzymes that have strong control over the production pathway with 

negligible negative impact on growth or other system critical pathways. However, such an 

approach will still be unable to control the deviations in the individual concentrations, or 

predict the impact of perturbing multiple enzymes together. By using NRA, we circumvent 

these issues and provide a scalable and computationally efficient way to use the information 

contained in the control coefficients to constrain the network effects of the proposed changes 

while achieving the desired metabolic objective. 

With high-quality models, it is tempting to assume that the strain design process is seamless. 

On the contrary, we have shown that avoiding the inherent combinatorial explosion when 

conducting unguided and unbiased rational strain design is not trivial. We achieve this by 

judiciously framing an optimization problem around control coefficients to efficiently 

enumerate multiple routes to achieve the design objective. We then provide a systematic way 

to validate these designs, highlighting the need for rigorous robustness evaluation and 

sensitivity analysis to ensure that the proposed designs perform well across phenotype and 
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expression uncertainties. Lastly, the models provided in this study can also be used for strain 

design through nonlinear optimization. 

Overall, NOMAD presents a versatile, modular framework whose concepts are applicable 

regardless of the size of the model, the type of kinetic mechanisms used, or the framework 

used to build the putative models. In doing so, it paves the way for accelerating the use of 

kinetic models in strain design endeavors. 

Methods 

Generating putative kinetic models of E. coli W3110 trpD9923 using ORACLE 

As a case study, we use kinetic models to propose rational design strategies for the 

overproduction of anthranilate in a strain of E. coli W3110 trpD9923. This is a strain that 

accumulates anthranilate due to a loss of anthranilate phosphoribosyltransferase (ANPRT) 

activity leading to tryptophan auxotrophy. To build such kinetic models, we require 

knowledge of the reaction mechanisms, and the parameters that characterize each 

mechanism. The complexity of the metabolic network coupled with physiological and 

parametric uncertainty, renders this a challenging task. To overcome these challenges, we 

used the ORACLE framework15,16,28,39,40 to develop a set of putative kinetic models that 

represent the strain.  

 
Reduced model generation: To build a kinetic model, we first need stoichiometric 

information about the metabolic network. We used redGEM41 and lumpGEM42 to create a 

reduced model of E.coli, and then removed the ANPRT reaction to mimic the nonsense 

mutation in trpD9923. We retained all reactions belonging to the core subsystems – glycolysis, 

pentose phosphate pathway (PPP), the Krebs cycle, anaplerotic reactions, the shikimate 

pathway, and glutamine synthesis, and added a single reaction for growth by lumping the 

biosynthetic reactions. The resulting network had 196 reactions (with 81 transport reactions) 

and 159 metabolites, spread across 2 compartments, the cytoplasm and the periplasm.  

 

Data integration – metabolomics, fluxomics & thermodynamics: Before generating samples 

of steady-state concentrations and fluxes, we integrated exo-metabolomic and exo-fluxomic 

information obtained at the start of the exponential phase for the reference W3110 trpD9223 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.14.516382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/


 21 

strain27. Since no lag-phase was observed in this strain, this corresponded to the start of the 

fermentation process itself. For the glucose uptake rate, and the growth rate, we fitted 

analytical batch fermentation curves to the experimental data27. We used information on the 

M9 minimal medium content to constrain the extracellular metabolite concentrations. In 

addition to this, we integrated general metabolomics and thermodynamics data43–45. 

 

Sampling of steady-state concentrations and fluxes: To ensure that the sampled steady-state 

profiles had thermodynamically consistent reaction directionalities, we used 

thermodynamics-based flux balance analysis (TFA)46 implemented in pyTFA47 to generate 

4000 steady-state samples that resulted in at least 80% of the maximal growth. These samples 

consist of fluxes, concentrations, and thermodynamic variables associated with each reaction 

(Δ𝐺"#, Δ𝐺"). 

 

Data integration – kinetic reaction mechanisms: Depending on the stoichiometry of each 

reaction in the metabolic network, we assigned a reaction mechanism (Supplementary note 

I). The primary mechanisms we used were the Generalized Reversible Hill48, and Convenience 

kinetics49, both of which capture enzyme saturation. We used mass action kinetics to model 

periplasm to extracellular transports.  

Considering the importance of regulatory networks within the cell, we also modelled four 

types of allosteric regulation: (i) competitive inhibition, (ii) uncompetitive inhibition, (iii) 

mixed inhibition, and (iv) activation. We obtained regulatory information from an earlier 

study50,51 . We then added the regulation of DDPA and ANS by end-product metabolites. In 

total, we incorporated regulatory information for 31 reactions, including interactions for 5 

reactions in the Shikimate pathway (Supplementary note I). 

 

Kinetic model generation: With the stoichiometry and reaction mechanisms at hand, we 

needed to determine the kinetic parameter sets that characterize the system of ODEs using 

the ORACLE framework15. For each of the 4000 steady-state samples, we sampled 200 sets of 

kinetic parameters that were consistent with the concentrations and thermodynamic 

displacements of each reaction. Each combination of a steady-state profile and its associated 

kinetic parameter set constituted one kinetic model. Next, we pruned the kinetic models for 

linear stability – only those models whose Jacobian matrix had all negative eigenvalues were 
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retained. In this manner, we generated 800,000 kinetic models that were linearly stable 

around the reference steady-states. 

Screening kinetic models  

Once the initial set of kinetic models is available, we screen them to find the ones that are 

representative of the dynamic characteristics of the reference strain. The screening process 

consists of several steps, with each step enhancing the quality of the models that satisfy the 

requisite criteria. 

Linearized dynamics: We built each kinetic model from the initial set around a steady-state 

consistent with the integrated experimental data. However, not all of these models 

necessarily capture the experimentally observed dynamics of the metabolic network. To 

identify models with physiologically-relevant dynamic properties, we assume that: (i) any 

experimentally observable steady-state is locally stable; and (ii) since metabolic reactions 

occur at a timescale of seconds and milliseconds, metabolic processes should settle before 

the cell division, which is at a timescale of minutes and hours.  

To this end, we first linearize the models around their steady-states, and estimate the time 

constants using the eigenvalues of the Jacobian. To compute the Jacobian, we need the 

kinetic parameters computed by a kinetic modeling technique and the steady-state 

concentrations in the metabolic network. These concentrations can be obtained by 

integrating the set of ODEs till they reach a steady-state as done by MASSpy17 or Ensemble 

Modeling (EM)19,  or directly from the constraint-based models used to build the kinetic 

models as in pyTFA47. We then use these calculated time constants to screen the models. 

Assuming aperiodic responses to perturbations, models returning to within 1% of their 

original steady-states by the doubling time of the cell should have dominant time constants 

at least five times smaller than the doubling time. 

For the case study presented in this work, we chose models with a dominant time constant 

of less than 25 minutes. 

 

Nonlinear response to concentration perturbations: The above linear stability analysis 

provides information on how the network will respond to infinitesimally small perturbations. 
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However, in actual fermentation settings, the cell traverses different phases, such as the lag 

and exponential phases, during which there are significant fluctuations in concentration 

profiles. In the presence of experimental fermentation data, we can directly verify the 

robustness of our models to these fluctuations by checking if they can reproduce the 

fermentation curves. However, in the absence of such temporal data, we verify the 

robustness of the models using their nonlinear responses to randomly applied concentration 

perturbations instead. To do this, we apply a 'k-fold' perturbation to the steady-state 

concentrations of each kinetic model and integrate the system of ODEs to verify whether or 

not the perturbations are damped out before the cell's doubling time. We repeat this 'n-times' 

and select those models for which all the perturbed models return to the original steady-state 

within the physiological timescale of the cell.  

This step was unnecessary for the current study since we had ample fermentation data to 

compare against our results. 

 

Reproduction of batch fermentation data: In this phase of model screening, we integrate 

information about the inoculum, and the fermentation medium, and run batch fermentation 

simulations using the models that are selected in the previous step. We then choose those 

models that can accurately capture experimental fermentation data, which is available in the 

form of growth curves, secretions, and uptakes.  

For obtaining kinetic models representative of E.coli W3110 trpD9923, we integrated 

inoculum information provided in the study27 and ran batch fermentation simulations for 

each of the screened models. We then chose those models within 5% and 10% of the final 

steady-state values of growth and extracellular anthranilate, respectively, and whose 

fermentation times were less than 20 hours. 

 

Robustness to enzymatic interventions: The end goal of the framework is to provide targets 

for enzymatic interventions that enable us to achieve a given metabolic output. Not all the 

models that are selected in the previous screening steps are equally robust to enzymatic 

interventions - some can veer significantly from their behavior, showing little to no growth, 

while others can retain their reference growth level. Hence, to determine the robustness of 

each kinetic model to such interventions we apply a 'k-fold' perturbation to the maximal 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.14.516382doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/


 24 

velocities of the different reactions and study the growth of the resulting strain. We repeat 

this 'n' times and choose those models for which all the perturbed strains demonstrate 

satisfactory growth. 

In the presented case study, we applied a 10% normally distributed perturbation to the 

maximal velocities of each reaction in the network and then integrated the system of ODEs in 

a batch reactor setting. We repeated this process 50 times for each kinetic model and chose 

those models that displayed at least 50% of the experimentally observed biomass for all the 

50 perturbations. 

The end product of this 4-step filtering process is a population of robust, representative 

kinetic models that are adequate for rational strain design.  

Robust strain design using kinetic models 

We use the screened kinetic models to conduct rational strain design with a given objective 

to be attained. For the presented case study, the objective was to maximize the yield of 

anthranilate with respect to glucose uptake. The strain design process can be divided into the 

following steps: 

 

Generating design alternatives using Network Response Analysis: One approach to strain 

design would be to exhaustively simulate all possible combinations of target enzymes along 

with the degrees of up or down regulations applied to them. The arduous nature of this task 

and the computational cost involved provide a strong case for a more judicious approach to 

choosing enzymatic targets. 

One possibility would be to use Metabolic Control Analysis (MCA)34,35,52, i.e., to calculate the 

log-linear sensitivities of the production pathway to system parameters and to then use the 

enzymes with the top control coefficients as the candidates to be tested in a nonlinear setting. 

However, this approach has its drawbacks. An increase in enzyme activity affects not only the 

target flux/metabolite but also other components of the network, potentially causing a 

significant deviation from the reference physiology, or the accumulation of toxic metabolites. 

This situation is further complicated when targeting multiple enzymes simultaneously. A 

starting point to overcome such deleterious effects would be to use heuristics and expert 
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knowledge and eliminate from contention those targets that are known to have undesirable 

network effects.  

To provide a more systematic and efficient approach to dictate such choices and constraints, 

a constraint-based MCA method called Network Response Analysis (NRA) was developed26. 

In NRA, we frame the strain design objective as a mixed-integer linear optimization problem 

built around the control coefficients, and the reference steady-state profiles of 

concentrations and fluxes. In addition, we supply design constraints such as the allowable 

fold-change in fluxes, concentrations, and enzyme activities, and the number of allowable 

enzymatic interventions. In this way, NRA provides two distinct advantages. First, it ensures 

the reliability and robustness of designs by controlling the deviation from the reference 

phenotype through the imposed constraints. Second, by using an optimization problem, NRA 

provides a computationally efficient and scalable approach to strain design by avoiding the 

combinatorial explosion inherent when we seek multiple enzymatic targets.  

With these features in mind, we use NRA to enumerate designs for each of the chosen kinetic 

models that achieve the desired objective within a certain threshold. In this manner, we can 

generate hundreds of designs across all the kinetic models. 

In the current study, we imposed the following constraints: (i) a maximum of 3-fold change in 

concentrations and 5-fold change in enzyme activities, (ii) a maximum of 3 enzymatic 

interventions, and (iii) a maximum of 20% reduction in growth rate. We set the objective to 

be the maximization of anthranilate yield with respect to glucose uptake and enumerated all 

designs within 5% of the maximal objective for each kinetic model.  

 

Design ranking: At the end of previous step, we have a list of putative designs generated using 

each kinetic model. As we have a population of kinetic models as opposed to a single 

representative model, we need to carefully choose those designs that are robust across the 

entire population. Robustness can be characterized in many ways – the reappearance of the 

same design by membership across different models, or the highest predicted objective when 

the design is enforced across different models etc. The criteria to define robustness can vary 

with the objective that we seek to attain. 
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In this work, we first extracted those designs that were unique by membership and enforced 

them in each of the kinetic models by setting the minimal log fold change in the enzyme 

activity levels of the enzymatic targets to be 1e-6. We then ranked the designs by the mean 

predicted increase in anthranilate yield with respect to glucose across all models, and selected 

the top 5 designs as the most robust strategies. 

 

In silico design verification and sensitivity analysis: Once we have ranked and chosen the 

most robust designs, we verify them in silico in a batch fermentation setup and study the 

sensitivity of the designs to vagaries in experimental implementation. This step is necessary 

since the performance of the designs in the previous step was evaluated based on a log-linear 

approximation of the system, taken at the reference steady-state. By verifying the proposed 

designs in a nonlinear setup, we can understand how well the log-linear approximations fare 

in a nonlinear setting. After the design verification and analysis, the most promising designs 

are sent for experimental implementation and validation.  

For the presented case study, we first analyzed the performance of the top 5 designs in a 

batch fermentation setting, using the NRA predicted enzyme fold changes specific to each 

model. For the inoculum and medium, we integrated the same information as was done in 

the model screening step. For the sensitivity analysis, we first calculated the mean NRA- 

suggested fold changes for each enzyme for a given design. We then applied a ±50% 

uniformly distributed perturbation to the mean fold changes for (i) all 3 enzymes, (ii) each 

enzyme individually while keeping the other two enzymes at the mean NRA-suggested fold 

changes. To obtain a statistical estimate of the sensitivities, we did this 10 times for each of 

the 10 models and tracked the mean across the 100 responses for each design. 
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