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Abstract

Increased availability of multi-omics data has facilitated the characterization of metabolic
phenotypes of cellular organisms. However, devising genetic interventions that drive cellular
organisms toward the desired phenotype remains challenging in terms of time, cost, and
resources. Kinetic models, in particular, hold great potential for accelerating this task since
they can simulate the metabolic responses to environmental and genetic perturbations.
Although the challenges in building kinetic models have been well-documented, there exists
no consensus on how to use these models for strain design in a computationally tractable
manner. A straightforward approach that exhaustively simulates and evaluates putative
designs would be impractical, considering the intensive computational requirements when
targeting multiple enzymes. We address this issue by introducing a framework to efficiently
scout the space of designs while respecting the physiological requirements of the cell. The
framework employs mixed-integer linear programming and nonlinear simulations with large-
scale nonlinear kinetic models to devise genetic interventions in a scalable manner while
accounting for the network effects of these perturbations. More importantly, the framework
ensures the engineered strain's robustness by maintaining its phenotype close to that of the
reference strain. We use the framework to improve the production of anthranilate, a
precursor for pharmaceutical drugs, in E. coli. The devised strategies include eight previously
experimentally validated targets and also novel designs suitable for experimental
implementation. As an essential part of the future design-build-test-learn cycles, we
anticipate that this novel framework will enable high throughput designs and accelerated

turnover in biotechnological processes.
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Introduction

Advances in gene editing techniques and the ever-increasing availability of omics data have
spawned intense efforts in metabolism research. Within the biomedical domain, this has
enabled us to glean broader insights into the metabolic phenotypes of various diseases,
allowing for more informed therapeutic interventions™3. In biotechnology, these advances
have led to the creation of environmentally friendly, cost-effective bio-foundries using
genetically engineered cellular organisms for optimal production of valuable compounds®.
These metabolic engineering undertakings are typically implemented as a design-build-test-

learn cycle, involving multiple experimentation stages and fine-tuning strain designs®.

While technological advances have facilitated the genetic manipulation of organisms,
significant challenges remain in determining the targets, and the extent, of such
manipulations. Since robustness to changing environmental conditions is essential for the
viability of designed strains, we need to ensure that the genetic interventions maintain critical
cell properties such as the energy charge and redox potentials®™. To achieve this, it is typically
necessary to develop strategies targeting more than one reference strain enzyme.
Unfortunately, devising such multi-target strategies by direct experimentation requires
considerable time and resources. One approach to reducing these costs is to conduct rational
metabolic engineering using computational models to narrow down the range of strategies

to be experimentally verified.

In particular, dynamic metabolic models are well suited for this task since they can capture
the temporal evolution of the metabolic states to environmental and genetic perturbations
under real-world fermentation conditions. However, the lack of available information about
the values of kinetic parameters hampers the development of these models. Indeed, even for
well-studied organisms such as E. coli or S. cerevisiae, we can find experimentally obtained
values for only a few parameters in the literature and databases!®!!. To infer the values of
missing kinetic parameters, researchers have traditionally employed parameter estimation?-
14 and Monte Carlo techniques®°. Recently, there have been numerous efforts to use

machine learning to accelerate the building of these models?®-2,

Even when a high-quality kinetic model is available, it is computationally challenging to

determine targets for metabolic engineering that meet desired design specifications because
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it requires simulating the metabolic network's responses for many putative designs. For
example, one would need to perform more than 2.5 - 10° simulations to exhaustively explore
all possible strategies for manipulating five enzyme activities within a middle-sized metabolic
network of 200 reactions (catalyzed by 200 enzymes). Additionally, for all these simulations,
we would need to analyze whether or not the designed strains meet the specifications and
preserve the robustness of wild-type strains exposed to long-term evolutionary pressure??,
Hence, to perform reliable and comprehensive strain designs, the research community needs
systematic, resource-efficient approaches that leverage the predictive capabilities of

nonlinear kinetic models.

In this work, we report NOMAD (NOnlinear dynamic Model Assisted rational metabolic
engineering Design), a computational framework that scouts the space of candidate
metabolic engineering strategies and then proposes those that satisfy the desired design
specifications while maintaining the robustness of the engineered strain. NOMAD preserves
the robustness of the engineered strains by maintaining their physiology close to the original
phenotype shaped through the course of evolutionary pressure and selection. As it has been
hypothesized and shown earlier?>?6, we also found here that this can be achieved by
maintaining their metabolite concentrations and fluxes close to those of the reference strain.
The rationale of trying to ensure a minimal deviation of the engineered strain phenotype from
that of the reference strain has also been put forth in a constraint-based modeling approach
called MOMA?*, The departure in this work is that kinetic models couple metabolite
concentrations, metabolic fluxes, and enzyme levels, thus allowing us to represent the
studied phenotype with higher fidelity and capture both steady-state and dynamic properties
of the studied metabolic phenotype. Additionally, NOMAD proposes testing the sensitivity
and performance of the designs in nonlinear dynamic bioreactor simulations that mimic real-
world experimental conditions. We can then suggest the best performers from these tests for
experimental validation with high confidence. As a validation study, we use this method to
propose engineering targets for the overproduction of anthranilate in a previously studied
strain of E.coli?’”. NOMAD proposed four candidate designs that proved robust across
phenotypic and expression uncertainty while also providing a superior in silico performance

when compared with experimentally devised strategies?’.
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Through its conception, NOMAD lends itself well to the DBTL (design — build — test — learn)
cycle, with every round of iteration improving the quality of the proposed strain designs.
Overall, NOMAD has the potential to accelerate the pace at which strain design
breakthroughs are achieved, representing a potent disruptor within the biomedical and

biotechnological domains.

Results

NOMAD for reliable strain designs

The NOMAD workflow consists of three steps (Figure 1). Briefly, it starts by generating a
population of putative kinetic models consistent with experimentally observed omics and
cultivation data, physicochemical laws, network topology, and regulatory interactions. These
kinetic models consist of a system of nonlinear ordinary differential equations (ODEs)
characterized by a set of kinetic parameters. To generate such models, we can use traditional
kinetic modeling approaches such as MASSPy!’, Ensemble Modeling®, ORACLE!>182829 and

machine learning empowered methods such as REKINDLE?! and iSCHRUNK?%22,

In the second step of NOMAD, we perform several quality checks on the kinetic models and
identify those that will ensure reliable in silico strain design strategies®’. In this screening
process, we retain kinetic models that are (i) consistent with experimentally observed steady-
state values of metabolic fluxes and metabolite concentrations, (ii) locally stable around that
steady state; (iii) able to reproduce the dynamic behavior of metabolic responses under
industrial production conditions; (iv) consistent with any available information on studied
phenotype or a piece of expert knowledge; and (v) robust, meaning that these models resist

change and are capable of coping with various genetic and environmental perturbations.

In the final step, we use the screened models to design engineering strategies for achieving a
chosen metabolic objective, such as the overproduction of high-value biochemicals. We use
Network Response Analysis?® (NRA) to perform the strain design. NRA casts the strain design
process as an optimization problem that uses the outputs of the kinetic models (Methods)
and integrates design constraints ranging from the allowable fold changes in concentrations
and fluxes to the extent and number of enzymatic interventions. This way, we obtain a

computationally efficient modus operando to enumerate designs and maintain the


https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.14.516382; this version posted November 30, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

e Building putative kinetic models

Omics Stoichiometry Thermodynamics Rate laws
& & regulation
I A; % ; .
Jb}\/\/ A‘ Y ey % products |
[ reactants ‘f,'f
GLC P

N

¥

GiP S b6 T dx “ ‘
—=5-v(x,p,t)
N d J

l Putative BEBBEEREEEES
kinetic models CLC

¢ Q9

— Model screening

Linearized Nonlinear Fermentation
dynamics responses simulations

P

Robustness

unstable

¢(x- t, Pref + Apl)

y(t)

L

y(t)

Growth

¢(x, L, pre[ + Apn)
too slow

\ Time Time Time Time Y,
Screened b%Eb%%\EEEE‘EB\
kinetic models \s B s B B b\,ﬁ\gigsg\
—~ Strain design ~
Design enumeration Performance evaluation Design verification
design 1
g © wt
& [Aiiowabie 7 ® | =
9 |flux fold [ ¢ T :
X crl::n;e A ’ 'qé g design 2
T (=
(T =
Allowable
concentration
fold change

\ Concentration space Desugns

Time /
Figure 1: Steps of the NOMAD workflow. We first build a set of putative kinetic models, represented by a
system of ODEs, by integrating different types of data. Next, we choose models based on dynamic
characteristics such as their stability, ability to reproduce experimental fermentation data, and
robustness to enzymatic interventions. In the final step, we use the chosen models to conduct strain
design. This involves solving a MILP optimization problem and enumerating designs that maintain the
engineered strains close to the reference strain, evaluating the performance of these designs, and
verifying the top designs in silico before sending them to experimentalists.
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physiology of the engineered strain close to the reference physiology through various

constraints.

After enumerating alternate strategies, we test their performance and sensitivity to
phenotype and expression variability in fermentation simulations that mimic real-life
conditions. We finally propose the best-performing designs to experimental partners for

implementation.

NOMAD is described in more detail in the Methods section.

Improving anthranilate production in E. coli

As a case study for testing and validating the NOMAD workflow, we designed strategies for
increasing anthranilate production in E. coli strain W3110 trpD9223. In an earlier
experimental study, the strain was used as a scaffold for overproducing anthranilate through

several genetic manipulations?’.

Kinetic models representative of E. coli W3110 trpD9923

We used ORACLE!>16:2831 'implemented in the SKiMPy toolbox3?, to generate a population of
800,000 putative kinetic models that satisfied the experimentally observed steady-state
behavior of the reference strain (Methods). However, not all of these models were necessarily
suitable for strain design due to poor dynamic characteristics or poor responses to
engineering interventions, necessitating the process of model screening. We first screened
the population of kinetic models for those with dominant time constants, quantified by the
inverse eigenvalues at the steady state, at least 5x faster than the doubling time of the cell
(Methods). This meant that all metabolic processes were expected to settle into their steady
states within the doubling time of the cell (Methods). More than 11% of the generated models

(91,852) showed such dynamic characteristics.

Whereas the inverse eigenvalues are a good indicator of the dynamic of metabolic responses
in close vicinity of the steady state, due to the nonlinear nature of the system, not all models
will exhibit the same dynamic behavior in a batch setting where metabolic states change
intensely. Therefore, we tested if these models could reproduce experimentally observed
behavior in a batch reactor. Out of 91,852 models, 212 captured experimentally observed

temporal evolutions of growth, anthranilate, and glucose (Figure 2B-D).
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Next, we evaluated the suitability of these 212 models for strain design by testing their

responses to naturally occurring random perturbations in enzyme activities. 10 out of the 212
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Figure 2: Results of the model screening process. (A) We gradually filter the models from 800,000
putative kinetic models to 212 that could reproduce experimentally observed fermentation curves.
10 of these 212 models also proved to be robust to enzymatic perturbations. The median (solid
line) and spread (shaded region) of the growth (B), anthranilate (C) and glucose (D) time evolution
of these 10 models (solid line) show close match with experimentally obtained data.

models proved to be robust and consistent with the studied strain, exhibiting at least 50% of
the growth of the reference strain (Methods) when subjected to these perturbations. The
responses of these 10 models in a batch fermentation setup show qualitative and quantitative
agreement with the experimentally observed time evolutions of growth, anthranilate

production, and glucose consumption (Figure 2).

Closeness to the reference physiology is essential for the performance of designed strains

Extensive metabolic engineering might steer the engineered strain towards metabolic states
with impeded growth or performance as, too often, the objective of overproduction of a
metabolite has a major tradeoff with the organism growth and global biosynthetic processes.
For example, in efforts to optimize the specific productivity or yield of target chemicals,

metabolic engineering interventions could inadvertently reduce other cell capabilities such as
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ATP production or redox potential by redirecting carbon and biosynthetic resources towards
the target pathways and products. Because reference strains have evolved to maintain
healthy and robust physiology, we postulate that we can engineer a productive strain by
redirecting the flux to the desired objective while remaining as close to the reference state as
possible. Thus, we use the proximity of the metabolic and fluxomic profile of the engineered
strain as a proxy for maintaining a vigorous phenotype?>2%33, A related concept was also
studied in the context of steady-state flux analysis.2* Here, NOMAD uses nonlinear kinetic
models and network response analysis (NRA, see Methods) to implement this concept and

constrain the phenotype perturbation while maximizing productivity.

To verify the postulated hypothesis, we used NRA for the 10 chosen kinetic models to design
several groups of strains with an improved yield of anthranilate on glucose. The groups
differed by how much the engineered strains could deviate from the reference strain,
guantified through a fold-deviation of the intracellular metabolite concentrations and
metabolic fluxes from their values at the reference state. The group of strains closest to the
reference strain could have the intracellular concentrations deviating 2-fold from the
reference strain. In contrast, the less constrained group could have the intracellular
concentrations deviating 20-fold from the reference strain. For all the groups, we allowed up

to three enzyme modifications with a maximum of 5-fold change in their activities.

Current approaches to strain design using kinetic modeling perform a metabolic control
analysis (MCA)**3 around the reference state and rank the target enzymes using the absolute
value of the product flux or yield control coefficient with respect to each enzyme in the
network. This approach does not take into account constraints that could maintain the
healthy physiology we discussed above. To understand the implications of using
unconstrained MCA for strain design, we also applied a 5-fold change in enzyme activities to
the enzymes corresponding to the top 3 anthranilate yield control coefficients for each kinetic

model, without any constraints on concentration and flux perturbations.

The nonlinear responses of all these engineered strains showed that the closeness to the
reference strain impacted performance. Indeed, for the groups closest to the reference
phenotype (2-fold and 3-fold deviations), the engineered strains retained the dynamic
characteristics of the reference strain while producing higher anthranilate titers (>15%) at a

modest cost to growth (<16%). Moreover, the titers achieved by these strains (~0.38 g/L) are
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only attained by the designs with 10-fold and 20-fold deviations after more than double (~40
hours) their fermentation time.

In contrast, the designs with 10-fold and 20-fold deviations demonstrated slower dynamics
than the reference strain, with lower mean titers and growth at the end of the production
period for the latter (Figure 3). In a similar vein, the unconstrained designs ('MCA' in Figure 3)
consistently failed to achieve any semblance of growth or production of anthranilate. The
likely explanation for this is that, by not constraining the phenotype perturbation, we pushed
the engineered strains far away from the reference strain while disregarding the network
effects of the enzyme modifications. Even when we considered the targets that had a non-
negative impact on growth, the resulting responses were inferior to the designs generated

using NRA (Supplementary note V).

These results suggest that for the cost-effective production of valuable biochemicals, it is
judicious to generate designs that minimize phenotype perturbation while respecting other

design specifications such as maximal titer and specific productivity.
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Figure 3: Results of the phenotype perturbation study showing mean anthranilate and biomass
responses of engineered strains under different allowable fold changes in concentrations with respect
to the reference strain (wt). As we permit a greater deviation from the reference physiology, from 2-
fold (solid blue) to 20-fold (dotted blue) changes in concentrations, we observe a decrease in the titers
of anthranilate and biomass across the 10 models at the end of the fermentation period of the
reference strain (18 hours). Furthermore, the completely unconstrained approach to strain design that
uses the top-3 control coefficients alone (MCA) stifles growth as well as anthranilate production.
These results underline the importance of adhering to the reference physiology when conducting
strain design.
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NOMAD designs encompass experimentally validated targets around shikimate
metabolism

We employed NRA?® to engineer strains with a maximized yield of anthranilate with respect
to glucose uptake for each of the 10 kinetic models (Methods). Using the results of the
phenotype perturbation study, we permitted no more than a 3-fold change in concentrations
to ensure we adhered to the phenotype of the reference strain. In addition, we allowed three
enzyme modifications with a maximum 5-fold upregulation, and unrestricted
downregulation. There were multiple designs for each model within 5% of the maximal
anthranilate yield. The number of such design alternatives for each model ranged from 2 —
12. In total, we obtained 70 designs involving 37 enzymes across the 10 models predicting a
90-158% increase in anthranilate yield. Out of the 70 designs, 41 were unique by membership,

meaning that they contained a unique set of three enzymes to be targeted (Figure 4).

Remarkably, 8 out of the 37 enzymes involved in the designs were validated experimental
targets for increasing the flux through the shikimate pathway3*38. Three out of the 8
enzymes, DDPA, DHQS, and SHKK, belonged to the shikimate pathway, three belonged to
glycolysis, PGI, PPS, and PYK, and two belonged to the pentose phosphate pathway, TALA and
G6PDH2r (Figure 4). More specifically, Patnaik et al. increased the carbon flow through the
shikimate pathway by overexpressing DDPA (aroG) alone and DDPA along with PPS (ppsa)3®.
All our designs target DDPA, and one in particular targets both DDPA and PPS, along with
SHKK (aroK). Rodriguez et al. reviewed strategies that sought to increase the production of
aromatic amino acids by either increasing the availability of the precursors to the shikimate
pathway or enhancing the activity within the pathway?’. The reviewed strategies directly
targeting the shikimate pathway included the deregulation of DDPA, DHQS (aroB), or SHKK.
Among the experimental strategies that targeted phosphoenolpyruvate (pep) or erythrose-4-
phosphate (ed4p) availability were those that inactivated the pyruvate kinases (pykAF),
increased the activity of PPS, knocked out PGI (pgi), or redirected carbon to the pentose
phosphate pathway (PPP) through the upregulation of TALA (talB), TKT (tktA), or GGPDH2r

(zwf). NOMAD designs contained all previously mentioned interventions, except for TKT.

11
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Figure 4: Clustering of the 41 unique NRA designs. Each design contains a unique set of enzymes to
be targeted. This clustering analysis revealed 5 distinct manners for overproducing anthranilate.
Abbreviations: SHKK: Shikimate kinase, CHORS: Chorismate synthase, DHQS: 3-dehydroquinate
synthase, CHORM: Chorismate mutase, ANS: Anthranilate synthetase, ANPRT: Anthranilate
phosphoribosyltransferase, DDPA: 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, GND:
Phosphogluconate dehydrogenase, PFK_3: Phosphofructokinase (s7p), RPI: Ribose-5-phosphate
isomerase, G6PDH2r: Glucose 6-phosphate dehydrogenase, NADH5: NADH dehydrogenase, SUCD::
Succinate dehydrogenase (irreversible), HEX1: Hexokinase, PGK: Phosphoglycerate kinase, PYK:
Pyruvate kinase, PGM: Phosphoglycerate mutase, PGl: Glucose-6-phosphate isomerase, PPS:
Phosphoenolpyruvate synthase, GAPD: Glyceraldehyde-3-phosphate dehydrogenase, FBA: Fructose-
bisphosphate aldolase, PFK: Phophofructokinase, TPI: Triose-phosphate isomerase, FBP: Fructose-
bisphosphatase, ENO: Enolase, PSERT: Phosphoserine transaminase, GLUDy: Glutamate
dehydrogenase, GLNS: Glutamine synthetase, ACONTa: Aconitase, AKGDH: 2-Oxogluterate
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Interestingly, although one of the generated designs proposes PYK downregulation in line
with the experimental approach (Figure 4, DDPA/N, SHKK, PYK\ ), another design proposes
its upregulation instead (DDPA1, PYK, GLUDy4, ), suggesting the possibility of alternative

regulation patterns when targeting multiple enzymes simultaneously.

In addition to encompassing several reported experimental interventions, NOMAD also
suggested novel targets that can achieve the same impact on anthranilate production as the
expert-proposed candidates. Some of them frequently appeared in our designs, such as the
downregulation of GLUDy (11/41 designs) and the upregulation of GLNS (8/41 designs). In

contrast, the upregulation of ENO and ICL appeared only in one design each.

NOMAD performs well compared to experimental strategies for anthranilate production

To evaluate the performance of NOMAD designs against those reported experimentally, we
implemented two of the engineered strains reported by Balderas-Hernandez et al.?’ in a
bioreactor setup. For the experimental implementation of the first strain, W3110
trpD9923/pJLaroGfbr, the authors used a feedback resistant version of aroG to redirect
carbon into the Shikimate pathway, resulting in an increase in anthranilate titers from 0.31g/L
to 0.4g/L. For the second strain, W3110 trpD9923/pJLaroGfbrtktA, they additionally increased
the availability of e4p through the overexpression of transketolase (associated with TKT1 and

TKT2), resulting in titers of 0.7g/L.

We used the 10 kinetic models to simulate the feedback-resistant version of aroG by
removing the inhibition of DDPA by phenylalanine. For transketolase overexpression, we
applied a 5-fold increase in the enzyme activities of TKT1 and TKT2. Although our models
provided lower median titers of anthranilate than those reported experimentally, they
captured the performance trends of both interventions — trpD9923/pJLaroG™"tktA produced
a better median titer (0.36g/L) than trpD9923/pJLaroG™" (0.33g/L) which was in turn superior
to trpD9923 (0.31g/L) (Figure 5). The obtained time evolutions for the glucose uptake and
growth reached their final values faster than the experimental observations (Supplementary
note IV). Interestingly, although we did not integrate information about the two engineered
strains in the model-building process, our models could reproduce the experimental
observation that the difference in anthranilate titers between the two engineered strains was

greater than the difference between the wild-type and trpD9923/pJLaroG™".
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To benchmark the engineering strategies suggested by NOMAD, we also compared the
simulated responses of the experimental strains to the top 5 designs applied using the NRA
suggested fold changes specific to each model. We found that the NOMAD designs resulted
in superior median anthranilate titers (0.4g/L) compared to the simulated experimental
approaches, suggesting that the strains W3110 trpD9923/pJLaroG™ and W3110
trpD9923/pJLaroG™ tktA could be further improved (Figure 5).
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Figure 5: A comparison of simulated (A) vs experimentally observed (B) responses for
W3110 trpD9923 (orange), W3110 trpD9923/pJ/LBaroG'P" (black) and W3110 trpD9923/
pJLBaroG' T tktA (red). The median (solid) and 1° and 3 quartiles (shaded) of the responses over
the 10 kinetic models captures the trends reported experimentally, with the overexpression of tktA
resulting in a superior titer of anthranilate when compared to the targeting of aroG alone. With the
NOMAD designs (blue) we obtain a superior titer of anthranilate when compared with the in silico
implementation of the experimental designs.

Alternative routes for producing anthranilate

To detect common patterns and routes toward producing anthranilate across the designs, we
conducted a clustering analysis of the 41 unique designs (Figure 4). This revealed the presence
of five clusters of alternative enzymatic interventions satisfying the imposed design
specifications. All the designs redirect carbon to the shikimate pathway by increasing the
activity of DDPA which serves as the entry point to the pathway. The clusters differed by the
choice of the other two target enzymes. Cluster | consists of two designs, one of which
concentrates the flow of carbon through the shikimate pathway (CHORS and DHQS), while
the other increases the activity of anthranilate synthase (ANS) and the activity of NADHS5 in
the electron transport chain (ETC). Cluster Il has three designs, all of which reduce the activity
in the Krebs cycle (FUM). Two of the designs also increase the availability of glutamine, which

is a substrate for ANS, either by increasing its synthesis (GLNS) or decreasing the conversion

14


https://doi.org/10.1101/2022.11.14.516382
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.14.516382; this version posted November 30, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

of glutamate to a-ketoglutarate (GLUDy) so that it is available for glutamine synthesis. The

third design increases the activity of SHKK in the shikimate pathway.

Cluster Il contains designs that all target the availability of glutamate for glutamine synthesis
by reducing its degradation (GLUDy). Some of the designs also balance the availability of the
precursor metabolites, e4p and pep, by targeting enzymes in the PPP or glycolysis. The others
target either the activity in the shikimate pathway (SHKK, ANS) or the availability of glutamine
(GLNS).

The largest cluster, cluster IV, has designs that focus on the shikimate pathway by increasing
the activity of SHKK. Additionally, in a manner similar to cluster Ill, some designs in this group
ensure the balance between the two shikimate pathway precursors by targeting glycolysis
(ENO, FBA, etc.) or PPP (TALA, RPI). The remaining designs target either growth, through the
ETC (SUCDi), the Krebs cycle (ICDHyr, AKGDH), or anaplerotic reactions (ME2, ICL), or the

production of anthranilate through the shikimate pathway (DHQS) (Figure 4).

Finally, cluster V is an agglomeration of designs that focus on glutamine synthesis with all but
one of the designs targeting GLNS. Additionally, the designs target enzymes in the shikimate
pathway (SHKK, SHK3Dr), the ETC chain (SUCDi, ADK1), the Krebs cycle (ACONTa) and

glycolysis (FBA).

NOMAD identified a set of multiple alternative designs that would improve anthranilate
production to a similar extent. In the next section, we showcase a procedure for identifying
this set's most robust and implementation-suitable designs. Further expert knowledge can be
used to perform a comparative analysis of the alternative routes and select which designs to

implement experimentally.

Robust and implementation-suitable designs

As we cannot know, a priori, which among the population of kinetic models best represents
the physiology of the cell, it is judicious to ensure that the proposed engineering strategies
are reliable and consistent across the range of phenotypes spanned by the 10 kinetic models.
To this end, we implemented the 41 unique designs (Methods) in each kinetic model and
evaluated the mean increase in anthranilate yield predicted by NRA across all the models. The

five designs with the highest predicted mean increase (~93%) all belonged to Cluster Il (Figure
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6A). They all suggest redirecting carbon to the shikimate pathway by upregulating DDPA, and
increasing the availability of glutamate for glutamine synthesis by downregulating GLUDy
(Figure 6B). Four of the designs also balance the availability of pep and edp by targeting
glycolysis (HEX1, PYK, PGIl) or the pentose phosphate pathway (GND). The fifth design

increases the enzyme activity of ANS which is responsible for anthranilate synthesis.

Before recommending any design for experimental implementation, we must test and
validate them in nonlinear simulations that closely mimic real-world conditions (Methods).
Hence, we applied these designs to all 10 models in a batch fermentation setting, using the
fold changes suggested by NRA for each combination of model and design (Figure 7A and 7B).
Four out of the five designs (d-1 — d-4) performed well across the phenotypic uncertainty
covered by the 10 models. They remained close to the phenotype of the reference strain
while providing >25% increases in anthranilate titers, as shown by the mean of their
responses across the 10 models (Figure 7). Design d-5 (DDPA, GLUDy, ANS) was discarded due
to its poor performance across the models - it displayed significantly slower dynamics and

only reached the anthranilate titers of the reference strain after 40 hours.

The outcome of the experimental implementation of these designs while in agreement with
the predicted trends, it will most likely deviate from the NRA-predicted responses to the
corresponding fold changes in enzyme activities. Hence, in order to quantify the expected
deviations, we conducted a global sensitivity analysis by applying perturbations to the mean
NRA-proposed fold changes in enzyme activity (Supplementary note Il), and we computed the
margin for error afforded by each of the four robust designs. We found that all these designs
could withstand errors in experimental implementation, retaining their performance even
when we applied +50% perturbation to all three enzymes together (Figure 7C and
Supplementary note Ill) and to each enzyme individually while keeping the others at the mean
NRA-suggested values (Figures 7D-F and Supplementary note Ill). By retaining their
performance across a range of models, and a spread of enzyme expression levels, the four
screened designs, DDPA + GLUDy + PGI/GND/HEX1/PYK, proved to be robust to physiological
and expression level uncertainties and can thus be confidently passed on for experimental

validation.
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Figure 6: Design evaluation and pruning. (A) A heat map of the predicted increase in
anthranilate yield when each of the 41 designs (columns) is applied to the 10 kinetic models
(rows). The five designs with the highest mean NRA solution are marked in black rectangular
frames. (B) A schematic of the metabolic network containing the target enzymes from these
five designs. The designs target the activity of DDPA and GLUDy, while differing by the third
target enzyme.
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The results of the in silico validation studies underline one of the key features of NOMAD: it
is only through the use of nonlinear simulations that we could conduct such quality checks

and glean insights into the applicability of the different designs.

Sensitivity of designs to choice of model
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Figure 7: Validation and sensitivity analysis of the top five designs in a fermentation setting. The mean
responses across the 10 kinetic models when the five designs are applied using the NRA suggested fold
changes specific to each model (A and B). Four out of the five designs retained their performance across
the models, with only d-5, targeting DDPA, GLUDy, and ANS, demonstrating significantly altered
dynamics. These four designs also proved to be robust to errors in experimental implementation,
maintaining their performance when subjected to a +50% perturbation applied to their mean
suggested NRA fold changes for all the enzymes (C), and for each enzyme individually while keeping
the other fold changes at the mean NRA suggested values (D, E, F).
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Discussion

Rational strain design using kinetic models is one of the holy grails of metabolic engineering
since it obviates the need for expensive high-throughput experiments and provides a
structured approach to strain design. NOMAD provides a systematic framework to achieve
this by using a first-principles led approach to build quality kinetic models and then conduct

rational strain design using a judicious choice of design specifications and constraints.

Although several frameworks exist to produce kinetic models that are representative of
steady-state behavior, we demonstrate the need for carefully choosing models based on their
dynamics as well. Through our multi-step screening process, we use fundamental engineering
principles to obtain high quality kinetic models that not only reproduce the dynamics of the
reference strain but also capture the trends observed during the implementation of

experimental engineering strategies.

Using the provided case study, we have also shown that it is crucial to maintain the phenotype
of the engineered strains close to the reference strain. Small phenotype perturbation ensures
the reliability of the obtained engineered strains and provides superior titers of the desired
biochemical. One way to minimize perturbations manually through MCA would be to choose
combinations of enzymes that have strong control over the production pathway with
negligible negative impact on growth or other system critical pathways. However, such an
approach will still be unable to control the deviations in the individual concentrations, or
predict the impact of perturbing multiple enzymes together. By using NRA, we circumvent
these issues and provide a scalable and computationally efficient way to use the information
contained in the control coefficients to constrain the network effects of the proposed changes

while achieving the desired metabolic objective.

With high-quality models, it is tempting to assume that the strain design process is seamless.
On the contrary, we have shown that avoiding the inherent combinatorial explosion when
conducting unguided and unbiased rational strain design is not trivial. We achieve this by
judiciously framing an optimization problem around control coefficients to efficiently
enumerate multiple routes to achieve the design objective. We then provide a systematic way
to validate these designs, highlighting the need for rigorous robustness evaluation and

sensitivity analysis to ensure that the proposed designs perform well across phenotype and
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expression uncertainties. Lastly, the models provided in this study can also be used for strain

design through nonlinear optimization.

Overall, NOMAD presents a versatile, modular framework whose concepts are applicable
regardless of the size of the model, the type of kinetic mechanisms used, or the framework
used to build the putative models. In doing so, it paves the way for accelerating the use of

kinetic models in strain design endeavors.

Methods

Generating putative kinetic models of E. coli W3110 trpD9923 using ORACLE

As a case study, we use kinetic models to propose rational design strategies for the
overproduction of anthranilate in a strain of E. coli W3110 trpD9923. This is a strain that
accumulates anthranilate due to a loss of anthranilate phosphoribosyltransferase (ANPRT)
activity leading to tryptophan auxotrophy. To build such kinetic models, we require
knowledge of the reaction mechanisms, and the parameters that characterize each
mechanism. The complexity of the metabolic network coupled with physiological and
parametric uncertainty, renders this a challenging task. To overcome these challenges, we
used the ORACLE framework!>16:283940 to develop a set of putative kinetic models that

represent the strain.

Reduced model generation: To build a kinetic model, we first need stoichiometric
information about the metabolic network. We used redGEM*! and lumpGEM#*? to create a
reduced model of E.coli, and then removed the ANPRT reaction to mimic the nonsense
mutation in trpD9923. We retained all reactions belonging to the core subsystems —glycolysis,
pentose phosphate pathway (PPP), the Krebs cycle, anaplerotic reactions, the shikimate
pathway, and glutamine synthesis, and added a single reaction for growth by lumping the
biosynthetic reactions. The resulting network had 196 reactions (with 81 transport reactions)

and 159 metabolites, spread across 2 compartments, the cytoplasm and the periplasm.
Data integration — metabolomics, fluxomics & thermodynamics: Before generating samples

of steady-state concentrations and fluxes, we integrated exo-metabolomic and exo-fluxomic

information obtained at the start of the exponential phase for the reference W3110 trpD9223
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strain?’. Since no lag-phase was observed in this strain, this corresponded to the start of the
fermentation process itself. For the glucose uptake rate, and the growth rate, we fitted
analytical batch fermentation curves to the experimental data?’. We used information on the
M9 minimal medium content to constrain the extracellular metabolite concentrations. In

addition to this, we integrated general metabolomics and thermodynamics data®~%°.

Sampling of steady-state concentrations and fluxes: To ensure that the sampled steady-state
profiles had thermodynamically consistent reaction directionalities, we used
thermodynamics-based flux balance analysis (TFA)* implemented in pyTFA*’ to generate
4000 steady-state samples that resulted in at least 80% of the maximal growth. These samples
consist of fluxes, concentrations, and thermodynamic variables associated with each reaction

(AG'°, AG').

Data integration — kinetic reaction mechanisms: Depending on the stoichiometry of each
reaction in the metabolic network, we assigned a reaction mechanism (Supplementary note
). The primary mechanisms we used were the Generalized Reversible Hill*8, and Convenience
kinetics*®, both of which capture enzyme saturation. We used mass action kinetics to model
periplasm to extracellular transports.

Considering the importance of regulatory networks within the cell, we also modelled four
types of allosteric regulation: (i) competitive inhibition, (ii) uncompetitive inhibition, (iii)
mixed inhibition, and (iv) activation. We obtained regulatory information from an earlier
study®%>! . We then added the regulation of DDPA and ANS by end-product metabolites. In
total, we incorporated regulatory information for 31 reactions, including interactions for 5

reactions in the Shikimate pathway (Supplementary note I).

Kinetic model generation: With the stoichiometry and reaction mechanisms at hand, we
needed to determine the kinetic parameter sets that characterize the system of ODEs using
the ORACLE framework'®. For each of the 4000 steady-state samples, we sampled 200 sets of
kinetic parameters that were consistent with the concentrations and thermodynamic
displacements of each reaction. Each combination of a steady-state profile and its associated
kinetic parameter set constituted one kinetic model. Next, we pruned the kinetic models for

linear stability — only those models whose Jacobian matrix had all negative eigenvalues were
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retained. In this manner, we generated 800,000 kinetic models that were linearly stable

around the reference steady-states.

Screening kinetic models

Once the initial set of kinetic models is available, we screen them to find the ones that are
representative of the dynamic characteristics of the reference strain. The screening process
consists of several steps, with each step enhancing the quality of the models that satisfy the

requisite criteria.

Linearized dynamics: We built each kinetic model from the initial set around a steady-state
consistent with the integrated experimental data. However, not all of these models
necessarily capture the experimentally observed dynamics of the metabolic network. To
identify models with physiologically-relevant dynamic properties, we assume that: (i) any
experimentally observable steady-state is locally stable; and (ii) since metabolic reactions
occur at a timescale of seconds and milliseconds, metabolic processes should settle before

the cell division, which is at a timescale of minutes and hours.

To this end, we first linearize the models around their steady-states, and estimate the time
constants using the eigenvalues of the Jacobian. To compute the Jacobian, we need the
kinetic parameters computed by a kinetic modeling technique and the steady-state
concentrations in the metabolic network. These concentrations can be obtained by
integrating the set of ODEs till they reach a steady-state as done by MASSpy!’ or Ensemble
Modeling (EM)'°, or directly from the constraint-based models used to build the kinetic
models as in pyTFA*’. We then use these calculated time constants to screen the models.
Assuming aperiodic responses to perturbations, models returning to within 1% of their
original steady-states by the doubling time of the cell should have dominant time constants

at least five times smaller than the doubling time.

For the case study presented in this work, we chose models with a dominant time constant

of less than 25 minutes.

Nonlinear response to concentration perturbations: The above linear stability analysis

provides information on how the network will respond to infinitesimally small perturbations.
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However, in actual fermentation settings, the cell traverses different phases, such as the lag
and exponential phases, during which there are significant fluctuations in concentration
profiles. In the presence of experimental fermentation data, we can directly verify the
robustness of our models to these fluctuations by checking if they can reproduce the
fermentation curves. However, in the absence of such temporal data, we verify the
robustness of the models using their nonlinear responses to randomly applied concentration
perturbations instead. To do this, we apply a 'k-fold" perturbation to the steady-state
concentrations of each kinetic model and integrate the system of ODEs to verify whether or
not the perturbations are damped out before the cell's doubling time. We repeat this 'n-times'
and select those models for which all the perturbed models return to the original steady-state

within the physiological timescale of the cell.

This step was unnecessary for the current study since we had ample fermentation data to

compare against our results.

Reproduction of batch fermentation data: In this phase of model screening, we integrate
information about the inoculum, and the fermentation medium, and run batch fermentation
simulations using the models that are selected in the previous step. We then choose those
models that can accurately capture experimental fermentation data, which is available in the

form of growth curves, secretions, and uptakes.

For obtaining kinetic models representative of E.coli W3110 trpD9923, we integrated
inoculum information provided in the study?’” and ran batch fermentation simulations for
each of the screened models. We then chose those models within 5% and 10% of the final
steady-state values of growth and extracellular anthranilate, respectively, and whose

fermentation times were less than 20 hours.

Robustness to enzymatic interventions: The end goal of the framework is to provide targets
for enzymatic interventions that enable us to achieve a given metabolic output. Not all the
models that are selected in the previous screening steps are equally robust to enzymatic
interventions - some can veer significantly from their behavior, showing little to no growth,
while others can retain their reference growth level. Hence, to determine the robustness of

each kinetic model to such interventions we apply a 'k-fold' perturbation to the maximal
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velocities of the different reactions and study the growth of the resulting strain. We repeat
this 'n' times and choose those models for which all the perturbed strains demonstrate

satisfactory growth.

In the presented case study, we applied a 10% normally distributed perturbation to the
maximal velocities of each reaction in the network and then integrated the system of ODEs in
a batch reactor setting. We repeated this process 50 times for each kinetic model and chose
those models that displayed at least 50% of the experimentally observed biomass for all the

50 perturbations.

The end product of this 4-step filtering process is a population of robust, representative

kinetic models that are adequate for rational strain design.

Robust strain design using kinetic models

We use the screened kinetic models to conduct rational strain design with a given objective
to be attained. For the presented case study, the objective was to maximize the yield of
anthranilate with respect to glucose uptake. The strain design process can be divided into the

following steps:

Generating design alternatives using Network Response Analysis: One approach to strain
design would be to exhaustively simulate all possible combinations of target enzymes along
with the degrees of up or down regulations applied to them. The arduous nature of this task
and the computational cost involved provide a strong case for a more judicious approach to

choosing enzymatic targets.

One possibility would be to use Metabolic Control Analysis (MCA)343°°2 i e, to calculate the
log-linear sensitivities of the production pathway to system parameters and to then use the
enzymes with the top control coefficients as the candidates to be tested in a nonlinear setting.
However, this approach has its drawbacks. An increase in enzyme activity affects not only the
target flux/metabolite but also other components of the network, potentially causing a
significant deviation from the reference physiology, or the accumulation of toxic metabolites.
This situation is further complicated when targeting multiple enzymes simultaneously. A

starting point to overcome such deleterious effects would be to use heuristics and expert
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knowledge and eliminate from contention those targets that are known to have undesirable

network effects.

To provide a more systematic and efficient approach to dictate such choices and constraints,
a constraint-based MCA method called Network Response Analysis (NRA) was developed?®.
In NRA, we frame the strain design objective as a mixed-integer linear optimization problem
built around the control coefficients, and the reference steady-state profiles of
concentrations and fluxes. In addition, we supply design constraints such as the allowable
fold-change in fluxes, concentrations, and enzyme activities, and the number of allowable
enzymatic interventions. In this way, NRA provides two distinct advantages. First, it ensures
the reliability and robustness of designs by controlling the deviation from the reference
phenotype through the imposed constraints. Second, by using an optimization problem, NRA
provides a computationally efficient and scalable approach to strain design by avoiding the

combinatorial explosion inherent when we seek multiple enzymatic targets.

With these features in mind, we use NRA to enumerate designs for each of the chosen kinetic
models that achieve the desired objective within a certain threshold. In this manner, we can

generate hundreds of designs across all the kinetic models.

In the current study, we imposed the following constraints: (i) a maximum of 3-fold change in
concentrations and 5-fold change in enzyme activities, (ii) a maximum of 3 enzymatic
interventions, and (iii) a maximum of 20% reduction in growth rate. We set the objective to
be the maximization of anthranilate yield with respect to glucose uptake and enumerated all

designs within 5% of the maximal objective for each kinetic model.

Design ranking: At the end of previous step, we have a list of putative designs generated using
each kinetic model. As we have a population of kinetic models as opposed to a single
representative model, we need to carefully choose those designs that are robust across the
entire population. Robustness can be characterized in many ways — the reappearance of the
same design by membership across different models, or the highest predicted objective when
the design is enforced across different models etc. The criteria to define robustness can vary

with the objective that we seek to attain.
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In this work, we first extracted those designs that were unique by membership and enforced
them in each of the kinetic models by setting the minimal log fold change in the enzyme
activity levels of the enzymatic targets to be 1le-6. We then ranked the designs by the mean
predicted increase in anthranilate yield with respect to glucose across all models, and selected

the top 5 designs as the most robust strategies.

In silico design verification and sensitivity analysis: Once we have ranked and chosen the
most robust designs, we verify them in silico in a batch fermentation setup and study the
sensitivity of the designs to vagaries in experimental implementation. This step is necessary
since the performance of the designs in the previous step was evaluated based on a log-linear
approximation of the system, taken at the reference steady-state. By verifying the proposed
designs in a nonlinear setup, we can understand how well the log-linear approximations fare
in a nonlinear setting. After the design verification and analysis, the most promising designs

are sent for experimental implementation and validation.

For the presented case study, we first analyzed the performance of the top 5 designs in a
batch fermentation setting, using the NRA predicted enzyme fold changes specific to each
model. For the inoculum and medium, we integrated the same information as was done in
the model screening step. For the sensitivity analysis, we first calculated the mean NRA-
suggested fold changes for each enzyme for a given design. We then applied a £50%
uniformly distributed perturbation to the mean fold changes for (i) all 3 enzymes, (ii) each
enzyme individually while keeping the other two enzymes at the mean NRA-suggested fold
changes. To obtain a statistical estimate of the sensitivities, we did this 10 times for each of

the 10 models and tracked the mean across the 100 responses for each design.
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