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Abstract

Microbiomes interact dynamically with their environment to perform exploitable functions
such as production of valuable metabolites and degradation of toxic metabolites for a wide range
of applications in human health, agriculture, and environmental cleanup. Developing computa-
tional models to predict the key bacterial species and environmental factors to build and opti-
mize such functions are crucial to accelerate microbial community engineering. However, there
is an unknown web of interactions that determine the highly complex and dynamic behaviors
of these systems, which precludes the development of models based on known mechanisms. By
contrast, entirely data-driven machine learning models can produce physically unrealistic predic-
tions and often require significant amounts of experimental data to learn system behavior. We
develop a physically constrained recurrent neural network that preserves model flexibility but is
constrained to produce physically consistent predictions and show that it outperforms existing
machine learning methods in the prediction of experimentally measured species abundance and
metabolite concentrations. Further, we present an experimental design algorithm to select a set
of experimental conditions that simultaneously maximize the expected gain in information and
target microbial community functions. Using a bioreactor case study, we demonstrate how the
proposed framework can be used to efficiently navigate a large design space to identify optimal
operating conditions. The proposed methodology offers a flexible machine learning approach
specifically tailored to optimize microbiome target functions through the sequential design of in-
formative experiments that seek to explore and exploit community functions.
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1 Author summary

The functions performed by microbiomes hold tremendous promise to address grand challenges
facing society ranging from improving human health to promoting plant growth. To design their
properties, flexible computational models that can predict the temporally changing behaviors of mi-
crobiomes in response to key environmental parameters are needed. When considering bottom-up
design of microbiomes, the number of possible communities grows exponentially with the number of
organisms and environmental factors, which makes it challenging to navigate the microbiome func-
tion landscape. To overcome these challenges, we present a physically constrained machine learning
model for microbiomes and a Bayesian experimental design framework to efficiently navigate the
space of possible communities and environmental factors.

2 Introduction

Microbial communities have the potential to perform a variety of functions, including the ability
to convert carbon-rich waste products into valuable compounds[1, 2], perform biological nitrogen
fixation to improve agricultural yields[3], detoxify waste from the environment [4], and modulate
vertebrate host phenotypes [5]. However, designing microbial communities from the bottom-up to
perform desired functions is a major challenge due to unknown mechanisms of interaction, limited
ability to observe and quantify all aspects of such systems (e.g. metabolites utilized and produced by
constituent community members). Further, the design space of species and environmental factors for
optimizing a microbiome target function is large and difficult to systematically navigate. Develop-
ing models that predict the temporal behaviors of communities from data and identify environmen-
tal conditions and combinations of species predicted to have optimized functions has emerged as a
promising avenue to direct microbiome engineering|6].

Since microbiomes have large design spaces, high-throughput experiments coupled to compu-
tational modeling can be powerful for understanding and engineering microbial communities from
the bottom-up[7, 8, 9]. Mathematical models that predict system behavior have become essential
tools to understand complex biological processes [10], and recent studies have successfully applied a
model guided approach to understand and optimize microbial community functions [9, 5]. Develop-
ing models of the microbiome from first principles is difficult due to unknown interactions as well as
a limited understanding of the mechanisms that underlie these interactions [11]. Machine learning
methods that can learn how microbial species interact in different environments from experimental
data are thus compelling approaches to address this limitation. Neural networks are flexible machine
learning models that can predict complex behavior for a broad class of systems [12]. Recurrent neural
networks (RNNs), in particular, are powerful neural network architectures that can exploit multivari-
ate time series data to learn dynamic behaviors [13]. For example, Baranwal et al. [14] showed that
RNNSs could model microbial community dynamics with greater accuracy than standard ecological
models that are confined by a strict set of assumptions, such as the generalized Lotka-Volterra (gLV)
model. In addition to improved prediction performance of species growth dynamics, the model was
able to accurately forecast the production of health relevant metabolites given an initial profile of
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species abundances (i.e. species presence or absence). In addition, an RNN model trained on time
series measurements of human gut microbiome composition data tailored for classification of food
allergy achieved the best prediction accuracy compared to other machine learning methods [15].

While highly flexible, key limitations of applying machine learning models such as RNNs to
physical systems is that they can produce unrealistic predictions (e.g. negative species abundances)
and that they can require significant amounts of experimental data for training. Machine learning
models are capable of making unrealistic predictions when the training data set (i.e. data used to
build the model) is insufficient to constrain the model to match system behavior. When some mecha-
nistic insights are known, embedding physical constraints into machine learning models can reduce
the amount of data required for training and can result in improved prediction performance [16, 17].
Physically constrained machine learning models are especially promising for modeling biological
systems [18] because these constraints can potentially improve a model’s ability to extrapolate be-
yond the regime explored in the training set despite limited or noisy data [19, 20]. In the computa-
tional biology field, for instance, neural networks have been used in concert with mechanistic ordi-
nary differential equation (ODE) models to infer complex non-linear dynamics of partially observ-
able biological systems [21]. In addition to incorporating physical constraints, experimental design
strategies that optimize the information content of experimental data can reduce the amount of data
needed to train a predictive model.

The collection of data used to inform machine learning models requires taking measurements of
system properties, which is often time-consuming and expensive. Consequently, the selection of an
informative set of experiments is crucial for developing models that capture system properties, while
minimizing time and resources spent on performing experiments [22]. To achieve this goal, determin-
ing an optimal set of experiments that minimizes either model prediction uncertainty or uncertainty
in parameter estimates has been widely used to optimize the information content of experiments
for studying biological systems [23, 24, 25, 26]. Bayesian experimental design naturally integrates
previously observed data to inform the selection of new experimental conditions. This enables a se-
quential strategy that uses all previously collected data to inform future iterations of model fitting,
experimental design, and data acquisition. These approaches use acquisition functions that aim to
quantify information content and predict system performance under potential sets of experiments.
A widely used acquisition function is called the expected information gain (EIG), which quantifies
how well an experimental design is expected to constrain estimates of model parameters [27, 26, 28].
While the EIG provides a principled acquisition function to design new experimental conditions, it is
typically intractable to compute analytically for non-linear models and is slow to evaluate even when
approximate approaches are used.

While most applications of Bayesian experimental design have focused on conducting experi-
ments to refine a model, experimental design strategies have rarely been used in the field of systems
biology for the purpose of seeking conditions that optimize properties of the system (e.g. production
of a valuable compound or pathogen inhibition) for target applications. However, Bayesian exper-
imental design can be tailored to provide a powerful goal-oriented framework that can leverage a
flexible class of models to propose experimental conditions that have the dual objective of mitigating
model uncertainty and optimizing system performance [27, 29]. For example, Bayesian optimiza-
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tion is an experimental design technique whose purpose is to efficiently optimize system properties
and has been used in many fields ranging from synthetic biology [30] to aerospace engineering [31].
Bayesian optimization typically uses a Gaussian process to model system performance directly from
experimental data. While Gaussian process models provide a natural and computationally-tractable
approach to construct acquisitions functions [32], they cannot easily model the dynamic behavior of
multivariate systems [33]. Another widely used goal-oriented experimental design strategy is called
response surface methodology, which proposes experiments to build a performance function that is
then optimized to find the best operating conditions. However, this approach is typically limited to
linear models that use certain types of performance functions [34]. In addition, updated experimental
designs need to be defined manually, as opposed to selected by the model.

We address gaps in model guided experimental design of microbial communities by developing
and applying a physically constrained RNN architecture tailored to predict microbial community
dynamics and target functions (e.g. production of specific metabolites) in response to environmen-
tal inputs. The proposed model outperforms other representative machine learning methods in the
prediction of species abundances and metabolite concentrations using experimental data composed
of unique human gut communities (> 10 species). Equipped with this model, we present an experi-
mental design framework to optimize microbial community functions that leverages an information
theoretic approach to select a set of experimental conditions that collectively exploit system func-
tions and fill knowledge gaps in the model. We demonstrate the capability of the overall framework
to minimize the number of experiments necessary to identify optimal operating conditions that max-
imize production of a desired metabolite using a mechanistic multi-species microbial community
model. In sum, our framework uniquely integrates sequential Bayesian experimental design with a
RNN tailored to predict and optimize dynamic microbial community behaviors.

3 Results

3.1 Design of microbial communities using a physically constrained recurrent neural
network

Machine learning models can generate physically unrealistic predictions for physical systems. To
address this limitation, we present the Microbiome Recurrent Neural Network (MiRNN), a modified
RNN architecture that eliminates the possibility of predicting physically unrealistic species abun-
dances and metabolite concentrations. We leverage a Bayesian inference method for parameter esti-
mation, hyper-parameter optimization, and quantification of prediction uncertainty. A model-guided
approach is used to identify a set of experimental conditions that collectively maximize information
content of different experimental designs and design objectives. Our framework allows for the selec-
tion of an optimal set of experimental conditions that are collectively informative, as opposed to the
selection of a single experimental condition, which can be applied to high-throughput experimen-
tal designs. The proposed methodology is illustrated in Figure 1. In the design phase, the MiRNN
is combined with an acquisition function, f, to rank experimental designs based on predicted out-

comes and the expected information gain (EIG) from a space of all possible experimental conditions,
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denoted as Q. The acquisition function is composed of two parts, one that quantifies the expected
profit of an experimental design and one that quantifies the information content of an experimental
design. The highest ranked design, q* C O, is tested to generate experimental data in the test phase.
The resulting data is used to update the MiRNN model in the learn phase. The updated model is
used to design the next experiment, completing the design, test, learn (DTL) cycle. DTL cycles can be

repeated until convergence or until a desired objective is achieved.
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Figure 1: The Microbiome Recurrent Neural Network (MiRNN) learns system dynamics and
proposes new designs. (Design) An experimental design space, denoted as Q, is a set of individual
experimental conditions, q, where a particular condition could, for example, be a set of species in a
community or the initial concentrations of resources. MiRNN predictions of outcomes for a set of
experimental conditions, q, are evaluated by an acquisition function, f, which balances the expected
information gain (EIG) of an experimental design and its expected profit to evaluate the optimality
of experimental designs. (Test) The optimal experimental design, q*, defines a set of experimental
conditions to be observed experimentally. Measurements of these conditions are collected in the test
phase. (Learn) Data collected in the test phase, and all previously collected data, are used to fit an
updated MiRNN model. Once fit to the newly acquired data, the updated MiRNN model can be

used again in the design phase to complete the design, test, learn cycle.
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3.2 Comparison of the Microbiome Recurrent Neural Network (MiRNN) model to an
unconstrained recurrent neural network

Microbiomes produce and degrade a myriad of metabolites, which mediate interactions with con-
stituent community members and can be exploited to our benefit. To test the ability of the MiRNN to
predict species abundance and metabolite concentration over time, we evaluated the model’s predic-
tion performance on experimental data in which the absolute abundances of 25 diverse and preva-
lent human gut species and the concentrations of four major health-relevant metabolites (acetate,
butyrate, lactate and succinate) were measured over time[9, 14] (Fig. 2a). In particular, butyrate
produced by gut microbiota has beneficial effects on human health and disease, including promot-
ing homeostasis in the colon [35, 36] and protecting against metabolic disorders [37]. The ability to
predict metabolite concentrations such as butyrate as a function of the presence and absence of in-
dividual species could inform the design of next-generation defined bacterial therapeutics. To test
our model’s predictive capability, we used an experimental data set consisting of 95 unique subsets
of the 25 member community that were inoculated in equal species proportions in vitro. Species
abundances and metabolite concentrations were measured every 16 hours for a total of 48 hours to
characterize community assembly and metabolite dynamics.

We use a conventional RNN (left) and the MiRNN (right) to predict species abundance and
metabolite concentrations at each time interval given an initial condition (Fig. 2b). The MiRNN
is constrained such that species and metabolite concentrations cannot be negative and species ab-
sent from the given inoculum cannot be present at later time points. In contrast, an unconstrained
model could predict negative species abundances or metabolite concentrations or spontaneous ap-
pearance of species that were not initially present (Fig. S1). To investigate differences in prediction
performance of the MiRNN and RNN models, we performed 20-fold cross-validation by randomly
partitioning the data into 20 unique sets of samples, training on 19 subsets, testing on the remain-
ing subset, and then repeating for each combination of training and testing data so that all samples
were subject to held-out testing. Because the partitioning of the data subsets is random, we repeated
20-fold cross-validation over 10 trials to evaluate the variation in prediction performance. On held-
out data, predictions of species abundances using the MiRNN displayed a higher median Pearson
correlation than the unconstrained RNN for 23 of the 25 species (Fig 2c), indicating that the incorpo-
ration of a physical constraint improved the model’s ability to predict species abundance. Although
the constraint does not directly impact predictions of metabolite concentrations, the MiRNN outper-
formed the RNN in predictions of acetate and succinate. The MiRNN and RNN displayed similar
prediction performance of lactate and butyrate, which displayed the highest prediction performance
of the four metabolites (Fig. 2d,e). A representative trajectory shows the predicted distribution (mean
+ 1 standard deviation) of each metabolite compared to measured values (Fig. 2e).

We compared the prediction performance of the MiRNN and RNN models to a Long-Short-Term-
Memory (LSTM) model developed by Baranwal et al. [14] that was shown to accurately predict com-
munity dynamics and metabolite profiles. Similar to the MiRNN and RNN, the flexibility of the
LSTM is governed by the dimension of the hidden layer, which was chosen to have 4096 hidden
units in order to predict both species abundances and metabolite concentrations. For all analyses in
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Figure 2: The predictive capability of the MiRNN outperforms unconstrained RNN model. (a.)
Schematic of experiment in which 95 unique microbial consortia were selected from a set of 25 health
relevant human gut bacteria. After inoculation, species abundances and metabolite concentrations
were measured at 16 hour intervals over a course of 48 hours. (b.) A comparison of the MiRNN
architecture to a standard RNN, where the constraint highlighted in blue prevents the model from
predicting the spontaneous emergence of a species. (c.) Comparison RNN and MiRNN performance
in species predictions according to the coefficient of determination between predictions and mea-
sured values. The height of the bars and error bars correspond to the median and interquartile range
in prediction performance after running 20-fold cross-validation over 10 trials, where samples were
randomly shuffled in each trial. (d.) Same as in panel (c.), except that metabolite prediction perfor-
mance is shown. (e.) Representative temporal changes in MiRNN predicted metabolite concentra-
tions, where measured values are shown as dots, the mean predicted value is shown as a line, and
the uncertainty region shows £ 1 standard deviation.

this study, the hidden layer in the MiRNN and RNN contained 16 hidden units. Consequently, the
LSTM proposed by Baranwal et al. contains orders of magnitude more parameters (ng = 67,735, 581)
than the MiRNN and RNN (ng = 1, 245), and thus offers greater flexibility. However, the large num-
ber of model parameters in the LSTM model makes it challenging to perform the Bayesian parameter
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inference method used to train the MiRNN and RNN models [38], since this requires the compu-
tationally expensive task of inverting a matrix with dimension equal to the square of the number
of parameters [12]. Although the LSTM significantly outperformed the RNN when comparing to
the median prediction performance of species (Fig. S2a) and metabolites (Fig. S2b) (paired t-test
p < 1x1073, n = 29), the deficit in prediction performance of the RNN was recovered by the MiRNN
(Fig. S2c). In sum, the MiRNN prevents physically unrealistic predictions and enables the use of
a model with substantially fewer parameters without sacrificing prediction performance. Reducing
the number of parameters makes Bayesian inference methods more tractable, which provides a sys-
tematic method to determine model prediction uncertainty and optimize experimental designs.

We evaluated the quality of MiRNN prediction uncertainty on held-out data, since the ability to
identify poorly understood conditions is crucial for selecting informative experimental designs that
aim to fill knowledge gaps in the model. Evaluation of the log-likelihood of held-out testing data
is a widely used approach to demonstrate a model’s ability to use prediction uncertainty to capture
the variation in prediction error [39, 40]. Briefly, the log-likelihood (Eq. 5.3) of held-out data will be
higher when model predicted uncertainty is small for predictions that are close to measured values
and when model prediction uncertainty is large for predictions that are further away from measured
values (Fig. S3a,b). We compared the log-likelihood of held-out data using a null model where the
uncertainty in each prediction was estimated using a fixed variance, X, to the log-likelihood using
the condition-dependent model predicted variance given by Eq. 5.9.

The fixed estimate of 3, was computed using the expectation-maximization algorithm (SI ap-
pendix), which reflects the covariance in model prediction error on the training data. In this sense,
3, is the best guess of the variance that can be attributed to measurement noise. Uncertainty due
to measurement noise cannot be reduced by collecting more data and is sometimes referred to as
aleatory uncertainty, while uncertainty that could be minimized by collecting more data is referred
to as epistemic uncertainty [41], both of which are captured by the model predicted uncertainty. The
predicted uncertainty therefore reflects the degree of uncertainty associated with each experimen-
tal condition (e.g. the model could have varying levels of certainty about metabolite concentrations
based on information from different consortia of microbial species). For the 10 randomized k-fold
trials, the log-likelihood of held-out data using predicted variance was, on average, greater than the
log-likelihood using the fixed variance (Fig. S3c). The increase in the log-likelihood using model pre-
dicted uncertainty suggests that accounting for both aleatory and epistemic uncertainty improved es-
timates of the distribution of model predictions compared to a model that only accounted for aleatory
uncertainty. The ability to assign greater uncertainty to less understood experimental conditions is a
key attribute that enables efficient exploration of a high-dimensional experimental design space.

3.3 Optimization of the production of a key metabolite by a microbial community in a
bioreactor

Mixed microbial communities cultured in bioreactors have many bioprocessing applications, includ-
ing valorization of agricultural waste[42], production of medium chain fatty acids from carbon rich

waste streams [1], and production of bioplastics as an alternative to petroleum-based plastics [43, 44].
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Optimizing these functions requires manipulation of process control variables such as substrate feed
rates, feed composition, pH, and gas exchange [45]. Although most bioprocessing applications have
involved single organisms, microbial consortia have several advantages. These advantages include
the ability to transform a wider range of available nutrients into valuable compounds by exploiting
different metabolic niches and division of labor [46, 47] and robustness of target functions to envi-
ronmental perturbations such as invasion [48, 49, 50].

Resources (i.e. nutrients) are key control knobs for manipulating microbial community metabolism.
Therefore, we consider selection of different combinations of resources and the rate at which the
feed containing these resources is added to a fed-batch bioreactor containing a 5-member micro-
bial community to maximize the production of a valuable metabolite (e.g. medium or long chain
fatty acid [1]). Although our modeling framework is generally applicable to other reactor operation
modes, such as continuous culture, we chose to study fed-batch operation to highlight the model’s
ability to capture strong time-dependent changes in resources and biomass. Fed-batch operation in-
volves a feed of substrates to the reactor without any discharge from the reactor. This in turn yields
time-dependent variation in reactor volume, cell density, and product concentrations. This example
demonstrates the ability of the MiRNN to optimize a multidimensional system with respect to con-
trol inputs that are both static (selection of resources) and dynamic (selection of the feed rate). As the
ground truth system, we simulate a modified consumer-resource model[51] embedded in a fed-batch
bioreactor model that assumes growth-associated kinetics for metabolite production (i.e. the rate of
metabolite production is proportional to species growth rate) [52]. Species interactions are governed
by competition for a limited set of resources. The governing equations of the ground-truth model are
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where r is a vector of resource concentrations in the reactor, r f is a vector of resource concentra-
tions in the feed, s is a vector of species that utilize a subset of the resources, d is a vector of resource
degradation rates, g is a vector of minimum growth rates needed for each species to survive, m is
the metabolite concentration, y,, /s is a vector of yield coefficients, k; is the metabolite degradation
rate, [C];; is the rate species i consumes resource j, and u(t) represents the rate at which the feed is
added to the bioreactor. Details on the specification of ground truth model parameters are provided
in the SI appendix. Due to competition for limiting resources, introducing different combinations of
resources will determine the temporal changes in species abundance. The objective for the MiRNN
was to model species growth, s(t), and metabolite production, m(t), and identify the optimal com-
bination of 7 resources, r}, and the rate that the feed should be added over time, u*(¢), in order to
maximize the total amount of target metabolite at the end of a 130 hour batch operation (Fig. 3a,b).
We considered 20 possible feed profiles for each possible combination of resources, which resulted in
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20 x (27 — 1) = 2,540 possible experimental conditions (SI appendix). This number of possible ex-
perimental conditions would not be feasible to exhaustively explore using generally low throughput
bioreactor systems.

We compared the effectiveness of four different experimental design strategies (random chance,
pure exploration, pure exploitation, and exploration + exploitation) to find the bioreactor operating
condition that maximized metabolite production. A pure exploration strategy seeks a set of exper-
imental conditions that maximize the EIG, while the exploration + exploitation strategy evaluates
experimental designs based on both the EIG and predicted outcomes. The variables subject to opti-
mization included the resources in a feed stream and the rate at which the feed is added to a biore-
actor over time (Fig. 3a,b). Starting with a randomly selected experimental design with five experi-
mental conditions (DTL 0), each experimental design method was used to select the next set of five
experimental conditions that would compose the next experimental design (DTL 1). Data collected
from the next DTL cycle was used to update the model, which was then used to design the next DTL
cycle, until five DTL cycles were completed. This process was repeated 30 times each with a different
randomly selected set of five experimental conditions in DTL 0.

After each round of training, model predictions of end-point metabolite concentrations were com-
pared to ground truth values for all 2,540 experimental conditions to gauge how well the model
learns system behavior (Fig. 3c). A pure exploration strategy results in the most accurate model per-
formance after training on data from the first experimental design, while a pure exploitation strategy
results in a decrease in model prediction performance due to sampling of redundant experimental
conditions in a narrow region of the design space. The production levels from each experimental
design strategy shows that all model guided approaches (exploitation+exploration, exploitation, and
exploration) navigate to higher metabolite producing operating conditions than a random sampling
strategy. The model guided experimental design strategy that combines exploitation and exploration
outperforms pure exploitation (Fig. 3d), with significantly higher metabolite production in design
cycles 1 (p = .0017), 2 (p = .0128), 3 (p = .0024), 4 (p = .0031), and 5 (p = .0203) according to a
two-tailed paired t-test (n=30). The median prediction performance of end-point metabolite concen-
tration of the exploitation+exploration strategy after training on all data collected up to DTL 2 was
not the highest across different strategies (R = .735). Nevertheless, the median identified metabolite
production in the next design cycle (DTL 3) was nearly optimal (.227 g). This implies that the model
does not have to be highly accurate over the entire design space in order to be useful for seeking
optimal conditions.

The ability of the MiRNN to predict both metabolite concentrations and species abundance over
time can provide useful insight into the relationship between species abundances and system func-
tions. This is in contrast to conventional Bayesian optimization approaches where a model (e.g. a
Gaussian process) would be used to predict only metabolite production directly from the selection
of resources and feed profile. To see how prediction of species abundances can provide insight, we
can analyze MiRNN predictions of species abundances and metabolite production for the condition
that was predicted to maximize metabolite production. The MiRNN predicted both high metabolite
production and relatively high growth of species sy (Fig. S4d), suggesting that species s, produces
the metabolite. This matches the ground truth model where the only species that produces the target
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Figure 3: Optimization of resources and feed rate to maximize product. (a.) A schematic of the
fed-batch bioreactor to be optimized, where the rate of a feed stream and the presence of resources in
the feed (depicted as yellow and pink shapes) can both be adjusted in order to maximize production.
Species (green shapes) that produce a valuable metabolite (orange star) compete for resources with
species that do not produce the metabolite. (b.) A diagram that shows the inputs to the MiRNN
model including species abundances, metabolite concentration, resource concentrations, and feed
rate at time point ¢t — 1. The model predicts species abundances and metabolite concentration at
the next time step, t. Predicted species abundances and metabolite concentration are used as inputs
to predict the next time step until the model has predicted the entire time course of the reaction.
(c.) A comparison of prediction performance of end-point metabolite concentration between the
proposed experimental design strategy that combines exploration and exploitation (blue) to pure
exploitation (green), pure exploration (orange), and random sampling (purple). Solid lines show the
median of the best recorded production (y-axis) up to each DTL cycle (x-axis) and uncertainty regions
show the interquartile range computed over 30 trials each with random initial experimental designs.
(d.) A comparison of metabolite maximization between proposed experimental design strategy that
combines exploration and exploitation (blue) to pure exploitation (green), pure exploration (orange),
and random sampling (purple). Solid lines show the median of the best recorded production (y-axis)
up to each DTL cycle (x-axis) and uncertainty regions show the interquartile range computed over 30
trials each with random initial experimental designs.
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metabolite is s, (y~

mjs = [0,.5,0,0,0]). This agreement between model predictions and the ground

truth system suggests that, when ground truth is not known, analyzing MiRNN predictions of system
behavior under different experimental conditions can provide meaningful insights.

4 Discussion

Despite their potential, the bottom-up design of microbiomes remains a challenge due to the mas-
sive design space of possible microbial consortia and environmental inputs (e.g. resources). Further,
mechanisms driving community behaviors are typically not known precluding the development of
predictive computational models based on first principles. In this work, we present the Microbiome
Recurrent Neural Network (MiRNN); a physically constrained RNN model tailored to predict the
dynamics of species interactions from data and predict target community functions. We use an ap-
proximate Bayesian inference strategy to compute a posterior parameter distribution, which enables
the quantification of model prediction uncertainty and the evaluation of the information content of
potential experimental designs. The ability of the MiRNN to learn microbial community dynamics
from previously acquired data and evaluate the information content of experimental designs enables
a sequential design-test-learn strategy to efficiently seek experimental conditions that optimize com-
munity functions (Fig. 1).

Recent studies have underscored the need for an iterative design-test-learn strategy to build com-
putational models that enable efficient exploration and exploitation of biological systems[53, 54], and
in particular, microbial communities[55, 56]. Toward this end, we introduce the first physically con-
strained machine learning model to predict the dynamics of microbial communities and show that
incorporating a physical constraint significantly improved the model’s ability to predict species abun-
dances and metabolite concentrations using experimental data. Further, the model yielded compara-
ble prediction performance to a previously developed LSTM model [14] despite more than a 50,000
fold reduction in the number of model parameters (Fig. S2). The reduction in model parameters
makes the use of Bayesian inference techniques more tractable for the purpose of quantifying model
prediction uncertainty and evaluating the information content of experimental designs. Model pre-
diction uncertainty is used in active learning [57, 58], Bayesian optimization [32], and reinforcement
learning [45]. The framework differs from most previous work on optimal experimental design of
biological systems [23, 24, 26] since it leverages model uncertainty to select a set of experimental
conditions for the purpose of optimizing a function of interest (exploitation and exploration), as op-
posed to designing experiments for the sole purpose of refining a model (exploration). Our results
demonstrate that while a pure exploration strategy is the best approach for improving model predic-
tions, it does not efficiently seek conditions that optimize a system objective. However, the proposed
experimental design strategy that combines exploration with exploitation reduces the number of ex-
periments needed to find optimal conditions compared to exploitation alone (Fig. 3c,d).

A limitation of the proposed methodology is that it relies on several approximations to enable
fast selection of an experimental design, such as the assumption of Gaussian posterior parameter

and predictive distributions. However, our model is an approximation of the ground truth system
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and despite imperfect predictions of system outcomes, the model is still able identify optimal experi-
mental conditions (Fig. 3). We therefore expect an approximate estimate of the information content of
experimental designs to be sufficient in most applications. However, determining the effectiveness of
our proposed experimental design framework to optimize systems where conditional distributions
are known to be non-Gaussian could be an area of future work. A limitation of the MiRNN, and
any neural network based model, is that it offers limited interpretability for extracting new knowl-
edge about the system. To tackle this problem, methods to extract meaning from a trained model
such as Local Interpretable Model-agnostic Explanations (LIME)[59] have been used to derive rela-
tionships between variables in a similar modeling framework applied to microbial communities [14].
Alternatively, model predictions under different experimental conditions can be useful for gleaning
mechanistic insights. For example, analyzing model predictions under the experimental condition
that resulted in optimized metabolite production in our bioreactor case study correctly suggested
that species s2 was responsible for producing the target metabolite (Fig. S4). Additionally, a limi-
tation of discrete time models such as RNNs is that they require time series data to be sampled at
consistent time intervals, which is often not the case in biological data sets where time series mea-
surements are taken at different time resolutions. To overcome this limitation, the time interval can
be included as an additional feature to the model or continuous time models such as neural ordinary
differential equations [60] could be explored in future work.

Our framework enables the optimization of microbial community functions using a sequential
Bayesian experimental design strategy. Our approach is capable of incorporating time dependent
inputs (e.g. feed rate of a bioreactor) as potential controls to modulate system behavior. We note
that although the constraint was incorporated for the purpose of modeling physically consistent bac-
terial growth, the same model could be applied to other chemical reaction networks that exhibit
autocatalytic behaviors. For optimization of synthetic microbial communities, we envision future
applications of this framework to include the selection of microbial species and resources (e.g. fibers)
to accelerate the discovery of bacterial therapeutics that produce beneficial metabolites and display
robustness, the selection of microbial species and environmental conditions to increase biological
nitrogen fixation for enhancing plant growth, and the design of microbial consortia with improved
productivity of valuable chemicals such as medium chain fatty acids and bioplastics.

5 Methods

5.1 Microbiome Recurrent Neural Network (MiRNN) Model

RNNSs are flexible machine learning models that can be applied to learn complex dynamical models
directly from multivariate time series data. In this work, we present the Microbiome Recurrent Neu-
ral Network (MiRNN)), illustrated in Fig 4, which is a modified RNN that aims to learn and predict
the dynamic behavior of microbial communities. A more detailed description of the model architec-
ture is shown in Fig. S5. Specifically, the MiRNN architecture aims to learn dynamic trajectories for
species abundances and metabolites given a set of potentially time dependent inputs and encodes
constraints that prevent prediction of negative species abundance or metabolite concentration and
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prevents the spontaneous emergence of a species.

)

4

# | Constraint )

@[ﬂ(st—11>0)]

)

s := species abundances °o

m := metabolite concentrations f

u := system inputs MIRNN| T~ L h
1

h := hidden state

.1 ~hy ;4= RNN Cell

. :
G 4 -

s o Uiy !

- St—1

uy Design variables .

Uiy

Figure 4: Microbiome Recurrent Neural Network architecture Inputs to the RNN at time step ¢ — 1
include the state of species abundances, metabolite concentrations, control inputs, and a latent vector
that stores information from previous steps and whose dimension determines the flexibility of the
model. The output from each MiRNN block is the predicted system state and the latent vector at
the next time step, t. To avoid the physically unrealistic emergence of previously absent species, a
constrained feed-forward neural network (FFNN) outputs zero valued species abundances if species
abundances at the previous time step were zero.

We define a time horizon given by the index ¢ = 0, ..., n,. The concentration of species at time ¢ is
denoted as s; € R'}*. The concentration of metabolites at time ¢ is denoted by m; € R’™. The value of
the controls (inputs) at ¢ is given by u; € R™*. The dynamic evolution of the MiRNN model is given
by a mapping of the form:

(st;m¢, hy) = MiRNN (s;—1,my_1, w1, u;,hy_1,0), t =1,....n,. (5.1)

Here, hy € R™ is a vector of latent variables at time ¢ and § € R™ is a vector of model parameters.
The latent variables propagate information from previous states in time. Increasing the dimension
of the latent variable vector increases model complexity and flexibility, and can be selected using
training data by maximizing the model evidence. For all analyses in this study, we set n;, = 16. We
note that the controls at step t — 1 and ¢ are both fed into the model evolution to account for the
possibility of encountering strong time dependent variations in the control. The outputs of the RNN
are the predicted system state and the latent vector at step ¢.

The set of model parameters of the architecture is composed of the weights and biases § =
{Win, bun, Win, Wi, bro, ho}, which are learned from data. The MiRNN architecture is designed
to prevent the physically unrealistic emergence of previously absent microbial species; this is done
by introducing a logic block that sets the species abundances to zero if the abundances at the previ-
ous time step were zero. By applying the rectified linear unit activation function to model outputs,
the state vector is strictly non-negative. Because the data are scaled to values between zero and one
based on the maximum values in the training data, the ReLU activation eliminates the possibility of
negative valued model outputs after applying the inverse scaling transformation.
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In the context of experimental design, the control trajectories u¢, t = 0, ..., n, and the initial states
so and my are variables that we can manipulate to influence the evolution of the state trajectories,
s; (species) and m; (metabolites) for ¢ = 1,...,n,. Observed (measured) variables are referred to
as outputs or observables; here, we assume that species abundances and metabolite concentrations
can be measured and we encapsulate the entire set of output variables in the vector y € R™. The
manipulated variables are called design variables in an experimental design context. We refer to a
particular choice of design variables as an experimental condition, which is denoted by the variable
¢i- We define an experimental design as a set of n experimental conditions, q = {q1,...,qn}. We
denote the entire set of m > n possible experimental conditions as Q = {q1, ..., gm }-

5.2 Bayesian Estimation and Uncertainty Quantification

We use a Bayesian framework to estimate the parameters of the model from designed experiments
and to quantify the uncertainty of the model predictions given such experiments. We assume that
we have an initial experimental design q with associated experimental conditions ¢; indexed by ¢ =
1,...,n each with corresponding observed outputs y(¢;). The entire set of available data from an
experimental design, q, is defined as the set D(q) = {y(¢1),...,y(gn)}. We assume that the output
observations are contaminated by random noise as:

where M (6, ¢;) is the MiRNN output prediction at experimental condition ¢;, § € R™ are the MiRNN
parameters, and ¢ is a noise random variable with probability density p(¢) = A(0,X,). The matrix
3., describes the variance of the noise (this is a hyper-parameter that can be defined manually or can
be inferred from data (SI appendix). We assume that the random noise over the multiple experiments
is independent and identically distributed (i.i.d) and thus the model likelihood is given by:

p(D(Q)]6,%,) H/\/ y(@)|M(0,4),%,). (5.3)

The prior over parameters is given by p(f|a) = N (0, Xy(«)), where Xy(a) € R™*" is the prior co-
variance (a diagonal matrix) and o € R’ is a tunable hyper-parameter vector that inflates/deflates
this covariance (SI appendix). From Bayes’ theorem, the posterior parameter distribution is propor-
tional to the product of the likelihood and the prior. The mode of the posterior density provides
the maximum a posteriori (MAP) estimate of model parameters and is obtained by minimizing the
negative log of the posterior density with respect to 0,

n

.1 _ 1 _
Omap(a) = argmin = > (y(a:) — M(0,0)) S, (y(a:) — M(0,:) + 56" Sp(0) 710, (5.4)
0 i=1
which we solve numerically using Newton’s method. The addition of the prior in the likelihood
function encourages sparsity of the parameter estimates if « is made sufficiently large [61, 12].
In order to quantify the uncertainty of the parameter estimates, it is necessary to obtain their pos-
terior density. Here, we use the so-called Laplace approximation; this assumes the posterior density
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is a Gaussian centered at f\ap(q) and with covariance given by the inverse of the Hessian matrix of

the negative log posterior, which is approximated as:

H(q) = Zp(a) ' + ) G(a,4) =, ' G(a, @), (5.5)
i=1

where G € R™*" is a matrix of derivatives of the model with respect to its parameters (referred to

as the sensitivity matrix) and given by:

G(q,q;) := Vg M(0,q;) i=1,..,n. (5.6)

‘9:9MAP(Q) ’

We note here that the Hessian matrix given by Eq. 5.5 is full rank due to the inclusion of the diagonal
prior precision matrix. The posterior predictive distribution of the outputs for any experimental
condition ¢ € Q is found by marginalization over the posterior parameter distribution as:

p(y(0)|D(@), 0, 5,) = / p(y(0)10. ,)p(01D(q), a)do. (5.7)

Obtaining an analytical expression for (5.7) requires linearization of the model prediction with respect
to the parameters around 6yiap(q) to obtain a linear-Gaussian model [12],

p(y(@)|D(a), o, By) = N (M(Omar(Q), gi), Zy(ai)), (5.8)
with
3y (q) =2y + G(q,9)H(a) ' G(q,q)". (5.9)

These expressions highlight how the design variables q propagate through the data D(q), the calcu-
lation of the estimate f\iap(q), and ultimately influence the uncertainty of the model predictions. As
such, it is important to derive systematic procedures to determine such experiments.

5.3 Fast Bayesian Experimental Design to optimize information content and system out-
comes

Bayesian experimental design methods use information from a previous experimental design, q'¥),
to inform the selection of the next experimental design, q*!). One commonly used strategy is to
find q+1) that maximizes the expected information gain (EIG), which is quantified by the expected
Kullback-Leibler divergence between the parameter posterior and the current parameter distribu-
tion [27, 58],

BIG(a®), a"*V) i= Epq) [KL((@D(a ) p(@1D(@®))) | (5.10)

Using the model predictive distribution given by Eq. 5.8 and assuming that the posterior distribution
is Gaussian, the EIG can be approximated as (SI appendix)

EIG(q®",q"™) ~ In det ( @) +ZG O ¢NTs G, “*”)) — In det (H(q(l))>.

(5.11)
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For linear-Gaussian models, experimental designs that maximize equation Eq. 5.11 are referred to as
Bayesian D-optimal [27], because they maximize the determinant of the expected posterior precision
matrix. Similarly, D-optimal experimental designs are often selected based on the determinant of the
Fisher information matrix (FIM) [62], given by

det FIM(q(Z), (z+1)) — det <Z G(q 0} (l+1))T2 1G(q 0} (l+1))> _ (5.12)

i=1
Although widely used in practice [63, 25, 64, 65], methods for experimental design based on maxi-
mizing either Eq. 5.11 or Eq. 5.12 can be computationally expensive since they require evaluating
the determinant of a matrix with dimensions ny x ny. If the experimental design is composed of a
single experimental condition, ¢+, it has been shown [27, 58] for linear-Gaussian models that the
condition that maximizes the EIG is equivalent to the condition that maximizes the determinant of
the prediction covariance due to the following identity (SI appendix),

In det (H(q(l)) + G(q(l)7q(l—&-l))TEy—lG(q(l)’q(l+l))) 1o det <H(q(l))) _
ndet (I, + 2, 'G(a®, ¢ ) H(®") ' G(q®, ¢¢)7). (5.13)

Since typically n, << ng, finding the experimental condition that maximizes prediction variance is
a computationally efficient means of finding a Bayesian D-optimal condition; however, it is often
desirable in experimental design applications to evaluate the information content of a set of n > 1
experimental conditions. We therefore present an expression that we show to be equivalent to Eq.
5.11 (SI appendix) and which generalizes Eq. 5.13 to compute the information content of » conditions,

n

EIG(q(l)’ q(l—l-l)) ~ In det (H(q(l)) + Z G(q(l), qgl‘H))TE;lG(q(l)’ QEHZ))) _In det <H(q(l)))

=1

:Zln det (ny+2 1G< () (l+l))Az 1G( () (l-‘rl)) ) (514)
where

A=A +GaP, " ta @, ¢"Y),  Ag=H(qD).

7

The matrix inverse in Eq. 5.14 can be efficiently computed using the Woodbury matrix identity,

-1
A7l=A7" — A;_llg(q(l)7ql(l+1))T (Ey + G(q?, Q§l+l))AZ31G(q(’), q§l+1))T) G(q®, q(l+1))A;_11'

(5.15)
Using Egs. 5.14 and 5.15, we can efficiently approximate the EIG of an experimental design with
n experimental conditions by avoiding computing the determinant of a matrix whose dimension is

ng X ng in favor of evaluating the determinant and inverse of n matrices each with dimension n, x n,

(Fig. S6).
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In this work, we aim to find experiments that maximize information content and optimize a profit
function of interest. As such, we define an acquisition function that accounts for the predicted profit
of experimental outcomes [27] as well as the expected information gain,

f@?,q") = fp(q”, q"*V) +w; -EIG(q", qY) (5.16)

where fp(q®),qt1)) quantifies the predicted profit of the next design (e.g., total amount of prod-
uct produced in each experiment). The profit function is an implicit function of the MiRNN model
M(Opap(q®), D) (i.e., the profit is predicted using the MiRNN model). The function EIG(q), q(+1))
quantifies the information content of the design q!*)) and is approximated using Egs. 5.14 and 5.15.
The parameter w; € R, modifies the emphasis given to either profit or information content, and
can be automatically adjusted to select for new experimental conditions as described in section 5.4.
Given previously observed experimental designs g and a set Q of all possible experimental condi-
tions that could be tested, our goal is to select the next design q(*!) C Q such that we maximize the
acquisition function:

q*™Y e argmax f(q®, q*Y). (5.17)

q+hco

We note that the optimal experiments q*(**1) are obtained based on best predicted performance (as
predicted by the model); as such, these need to be tested in the real experimental system to obtain
new outputs. This allows us to obtain a sequential experimental design framework in which we aim
to progressively refine the model to maximize the profit function of interest.

Require: D(q)), fp, Imax

l+0

while | < l,.x do
{Estimate model parameter mean and covariance}
Onap(a) < argmax, [—In p(6|D(qV))]
H(q") + 35! + ¥, G(a?, ¢")T2; 1 G(a?, ")
{Design next experiment}
qlth) argmax > fe(a®, ¢) + wy -EIG(q(l),q)]
{Collect new data, append to existing data}
D(a") + {D(a"),D(q"1)}
q¥ « {q®,q*D}
l«1+1

end while

Algorithm 1: Sequential Bayesian experimental design

5.4 Greedy algorithm to search for optimal experimental designs

Finding the optimal next design g+ requires an exhaustive search over the set Q (particularly
when the design variables are categorical). As expected, however, exhaustive enumeration would
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require evaluating f(q), q(*Y) for all q*1) C Q (which can be computationally prohibitive). As
such, we implement a greedy search algorithm that works satisfactorily well in practice. It is impor-
tant to emphasize that the experimental design framework has the final goal of maximizing the profit
function (as opposed to just refine the model); as such, it searches for experiments in a more targeted
manner and can improve profit without having a perfect prediction model. Greedy algorithms are
often used as an approximate approach to optimize experimental designs [24]. Given a total number
of conditions to include in the next design, nu+1), the search starts by finding an experimental condi-

tion that maximizes the profit function, ng'l) ¢ argmax f,(q, q). With qU*) initialized as {qglﬂ)}

9€@
the ¢ > 1 experimental condition is selected by determining

4

¢ = argmax fp(q?, ) + wr - EIG((q®, q**1), ) (5.18)
(S

where wy is set to a small initial value (e.g. .0001) and gradually increased until qz(lﬂ) ¢ q*tV). The
process continues until a desired number of conditions are selected.
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9 SI appendix

The SI appendix provides additional methodological details on data pre-processing, evaluation of
model prediction performance, hyper-parameter optimization, justification of the experimental de-
sign information function, fast evaluation of the experimental design information function, and gen-

eration of ground truth bioreactor model parameters.
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