

1 Brain-wide measurement of protein turnover with 2 high spatial and temporal resolution

3 Boaz Mohar¹, Jonathan B. Grimm¹, Ronak Patel¹, Timothy A. Brown¹, Paul Tillberg¹, Luke
4 D. Lavis¹, Nelson Spruston¹, Karel Svoboda^{1,2}

5 1: HHMI Janelia Research Campus, Ashburn, VA; 2: Allen Institute for Neural Dynamics,
6 Seattle, WA

7 Cellular functions are regulated by synthesizing and degrading proteins. This results in protein
8 turnover on time scales ranging from minutes to weeks, varying across proteins, cellular
9 compartments, cell types, and tissues. Current methods to track protein turnover lack the spatial
10 and temporal resolution needed to investigate these processes, especially in the intact brain, which
11 presents unique pharmacokinetic challenges. We describe a pulse-chase method (DELTa) to
12 measure protein turnover with high spatial and temporal resolution throughout the body, including
13 the brain. DELTa relies on the rapid covalent capture by HaloTag of fluorophores that were
14 optimized for bioavailability *in vivo*. The nuclear protein MeCP2 showed brain region- and cell
15 type-specific turnover. The synaptic protein PSD95 was shown to be destabilized in specific brain
16 regions by behavioral enrichment. A novel variant of expansion microscopy enabled turnover
17 measurements at individual synapses. DELTa will enable studies of adaptive and maladaptive
18 plasticity in brain-wide neural circuits.

19 Introduction

20 Cellular functions are regulated by tuning transcription and translation to produce new
21 proteins. Protein synthesis is balanced by protein degradation, which results in dynamic protein
22 turnover¹. In the brain, protein lifetimes range from tens of minutes for immediate early gene
23 proteins² to months in the case of synaptic structural proteins³. Turnover rates vary by protein
24 location or function, cell type, and brain region⁴⁻⁶. This dynamic process changes with
25 environmental and behavioral conditions^{6,7} and is modulated in neurodegenerative diseases⁸.
26 Protein turnover is also necessary for animals to learn cognitive and motor tasks⁹⁻¹¹. For example,
27 learning is supported by long-term changes in synaptic strength that require both protein

28 synthesis^{12,13} and degradation^{14–16}. Protein turnover is regulated at multiple spatial scales in the
29 brain. During learning and behavior, activity-dependent gene regulation is distributed throughout
30 brain-wide neural circuits^{17–19}, but changes in synaptic strength are limited to active synapses^{20–24},
31 suggesting subcellular regulation of protein turnover. This combination of brain-wide and
32 subcellular regulation calls for multiscale measurements of protein turnover *in vivo*.

33 Metabolic incorporation of modified amino acids followed by mass spectrometry allows the
34 measurement of many proteins in parallel²⁵, but spatial resolution is limited to the level of brain
35 regions (e.g., cortex vs. cerebellum) or homogenate fractions (e.g., cytoplasm vs. synaptosomes).
36 Furthermore, results vary between individual studies depending on the cellular fraction selected
37 and other experimental conditions (e.g. *in vitro* vs *in vivo*; for a review see Alvarez-Castelao &
38 Schuman²⁶). Alternatively, fluorescent imaging methods allow for labeling with different
39 fluorophores at specific time points by fusing a tag with a protein of interest. This approach offers
40 better spatial resolution, but remains difficult to deploy in the brain due to the need for epitope
41 tags and labeled antibodies^{27,28} or the self-labeling SNAP-tag²⁹ system and existing associated
42 substrates, which do not cross the blood-brain barrier^{30,31}.

43 Here, we overcome these issues by using the HaloTag system (HT)³² and cognate fluorescent
44 ligands optimized for bioavailability, allowing the measurement of protein lifetime in the whole
45 brain and other tissues *in vivo*. We first develop procedures for efficient labeling of HT with a
46 panel of Janelia Fluor (JF) dyes attached to the HaloTag ligand (HTL)^{33–35} in the mouse brain.
47 Using spectrally separable dyes, we then developed a pulse-chase protocol to estimate protein
48 lifetimes *in vivo*, which we named DELTA (Dye Estimation of the Lifetime of proTeins in the
49 brAin). We used simulations and calibration measurements to assess the theoretical sensitivity and
50 precision of DELTA. We then used DELTA with the HaloTag protein fused to the nuclear
51 transcriptional repressor protein MeCP2 and the synaptic scaffold protein PSD95 and measured
52 the brain-wide protein turnover of these proteins at subcellular resolution. DELTA allows the
53 measurement of protein turnover with unprecedented spatial and temporal resolution.

54 Results

55 Measuring protein turnover *in vivo* with high spatial and temporal resolution

56 We first modeled how a pulse-chase paradigm could be used to measure protein lifetime *in*
57 *vivo* (**Fig. 1a**). We define two populations of HaloTag fusion proteins (protein-HT). P denotes the
58 population labeled with the initial dye infusion (pulse), and C denotes the newly synthesized
59 protein labeled with a later spectrally separable dye (chase). We assume that: (1) dye
60 administrations are sufficient to saturate protein-HT, (2) dye clearance is much faster than protein
61 turnover, and (3) protein degradation is exponential. Given these assumptions, we can calculate
62 the mean lifetime of the protein: $\tau = \Delta T / \log(1/FP)$, where ΔT is the time interval between pulse
63 and chase dye administration and FP is the fraction of the pulse-labeled part ($FP = P/[P + C]$).
64 However, our assumptions may not be met in the context of real-life experiments, and the
65 consequences on turnover measurements must be evaluated. For example, incomplete labeling of
66 the protein during pulse dye injection, due to a more abundant target than the dye available to bind
67 in the brain, would introduce a systematic underestimate of protein lifetime. Alternatively, dye
68 excess and slow dye clearance (relative to the protein lifetime), would label newly synthesized
69 proteins and thus produce an overestimate of the lifetime.

70 To quantify errors arising from invalidation of these assumptions, our model (**Extended Data**
71 **Fig. 1**) included both dye kinetics (measured using *in vivo* imaging; **Supplementary Table 1**,
72 **Extended Data Fig. 2**) and the injected dye-protein ratio as a measure of undersaturation or excess
73 dye excess (dye/protein ratio of <1 or >1 , respectively; **Fig. 1b**). We compared the measured
74 lifetime and the simulated (true) lifetime using the following relation: $E = (\tau_{\text{estimated}} - \tau_{\text{true}}) / \tau_{\text{true}} \times$
75 100%. We found that undersaturation produces large errors, regardless of protein lifetime. In
76 contrast, dye excess produces small errors, except for proteins with very short lifetimes (on the
77 order of, or shorter than the extrusion time of ~ 82 min; **Extended Data Fig. 2**). These results show
78 that the estimation errors are expected to be small if the labeling is saturated and the protein
79 lifetime is longer than the mean dye clearance time. Furthermore, these biases would not change
80 the relative measurements of protein lifetime between cell types, brain regions, or individual
81 animals (see **Supplementary Note 1**).

82 To find dyes that efficiently bind protein-HT in mouse brains *in vivo* (**Methods; Extended**
83 **Data Fig. 3; Supplementary Fig. 1**) we screened different JF-HTL compounds^{33–35}. We expressed
84 green fluorescent protein tagged with HT (GFP-HT) in mouse brains *in vivo*. JF-HTL dyes
85 (**Supplementary Table 2**) were injected retro-orbitally, and after 12–18 hours we perfused the

86 brain with a spectrally orthogonal dye. With this approach, the unbound pulse dye has been cleared,
87 protein degradation and synthesis are expected to be minimal, and the second dye will bind to any
88 remaining unlabeled protein in the case of undersaturation. We used fraction pulse (FP) as a
89 measure of the dye's ability to saturate the protein-HT target. Two dyes, JF₆₆₉-HTL and JF₅₅₂-
90 HTL, were particularly bioavailable *in vivo* and displayed uniform labeling in the brain
91 (**Supplementary Note 2; Supplementary Fig. 2**).

92 Measuring cell type and brain region – specific turnover of the nuclear protein MeCP2

93 Next, we measure the lifetime of methyl-CpG binding protein 2 (MeCP2), an abundant
94 nuclear protein implicated in chromatin remodeling in neurons, and Rett syndrome^{36–38}. We
95 measured MeCP2 turnover by applying DELTA to MeCP2-HT knock-in mice³⁹. Previous MeCP2
96 lifetime measurements using metabolic pulse-chase labeling provide a point of comparison for our
97 method⁶. MeCP2 is a challenging case because it is expressed at high concentrations in all tissues.
98 To assess saturation, JF₆₆₉-HTL was injected retro-orbitally (*P*), followed by perfusion of another
99 dye ligand (*C*; JF₅₈₅-HTL) after one hour (**Extended Data Fig. 4a**). We imaged JF₆₆₉-HTL and
100 JF₅₈₅-HTL fluorescence with subcellular resolution and at a brain-wide level. The lack of *C*
101 staining indicated saturation with *P* dye in most harvested tissues, including most regions of the
102 brain (**Extended Data Fig. 4b–h**). However, some brain regions with very dense cell body layers,
103 were not saturated (*e.g.*, hippocampal CA1 region; **Extended Data Fig. 4i**). This is probably due
104 to dye depletion and clearance of the dye before it could saturate these dense, MeCP2-HT-rich
105 structures. Therefore, we excluded these brain regions from the analysis and focused on areas
106 where MeCP2-HT was saturated by the pulse dye.

107 We sequentially injected highly bioavailable dyes (JF₆₆₉-HTL, JF₅₅₂-HTL), followed by
108 perfusion of a third dye (JF₆₀₈-HTL) during tissue harvesting (**Fig. 1c**). This allowed us to compile
109 multiple estimates of protein lifetime from the same animal (Methods). After perfusion, the brain
110 was sectioned and stained with DAPI to identify all nuclei, and immunofluorescence (IF) was used
111 to classify cell types (**Fig. 1c–d**). We imaged JF₆₆₉-HTL, JF₆₀₈-HTL, and JF₅₅₂-HTL fluorescence
112 with subcellular resolution and calculated *FP* for all neuronal nuclei across the brain of five MeCP-
113 HT mice. We segmented MeCP2 nuclei using Ilastik⁴⁰ and converted the measurements to average
114 protein lifetime under the assumption of single exponential decay (**Methods; Fig. 1d**).

115 The lifetime of MeCP2 differed between brain regions. To assess the consistency of our
116 method, we looked at pairwise correlations across animals for all commonly imaged brain regions
117 (**Fig. 1e**, left and middle panel). The average mean correlation across pairs was high compared to
118 shuffled controls for three levels of region annotation representing different spatial scales (5, 10,
119 and 50 regions) based on the Allen Brain Reference common coordinate framework (CCFv3;
120 **Extended Data Fig. 5a-c**)⁴¹. The largest outlier was the high stability of MeCP2 in the cerebellum
121 (**Fig. 1e**, right panel), in agreement with a previous study⁶. Imaging consecutive coronal slices of
122 the same cortical region, we also saw similar lifetimes of MeCP2-HT in neurons to those in
123 oligodendrocytes and microglia when looking at consecutive coronal slices of the same brain
124 region (**Extended Data Fig. 5d-f**) contrary to other reports⁷. These results demonstrate that the
125 pulse-chase paradigm enables measurements of protein lifetime at subcellular resolution and brain-
126 wide scales. The lifetime of MeCP2-HT varied between the brain regions but was consistent
127 between animals under the same conditions and between different types of cells in the same
128 cortical region.

129 **PSD95 turnover is accelerated by behavioral enrichment**

130 Next, we investigate the brain-wide dynamics of PSD95, a synaptic scaffold abundant in
131 postsynaptic densities of excitatory synapses⁴², using knock-in mice expressing PSD95 fused with
132 HT (PSD95-HT)⁴³. Because our goal is analysis down to the level of individual synapses, we
133 developed an improved dye ligand: JFX₆₇₃-HTL (**Fig. 2a** and **Extended Data Fig. 6**). This dye is
134 structurally similar to JF669-HTL, but contains deuterated pyrrolidine substituents instead of
135 azetidines, an alteration that improves fluorophore brightness and photostability³⁵. We discovered
136 that this modification maintained the high bioavailability of its parent dye ligand, which is thought
137 to be governed by chemical properties that are not affected by deuteration³⁴. JFX₆₇₃-HTL saturated
138 the HaloTag protein in the PSD95-HT knock-in mouse line (**Extended Data Fig. 6**).

139 Next, we measured the effects of behavioral manipulations on the half-life of PSD95-HT (**Fig.**
140 **2b**), using dye injection formulations optimized to saturate abundant PSD95-HT (**Supplementary**
141 **Note 3** and **Methods**). Mice were separated into two groups: animals in the control group (n=2)
142 were housed in isolation and animals in the second group (n=4) were housed in pairs in an enriched
143 environment (EE)^{44,45}. At the time of separation into groups, all mice received pulse dye (JFX₆₇₃-

144 HTML) and after two weeks, mice were perfused with a spectrally orthogonal chase dye (JF₅₅₂-
145 HTML). The brains were sectioned, imaged, registered to the Allen Brain Reference (CCFv3), and
146 the lifetime of PSD95 was calculated (**Fig. 2c, Methods**). PSD95-HT lifetime differed between
147 brain regions in both control and EE mice, as seen for example, between cortical layers and
148 hippocampal subfields (**Fig. 2d**; 1-way ANOVA, 6, $F=105.91$ $p=6.7e-68$). Looking more broadly,
149 we observed significant variability across different brain regions regardless of behavioral
150 enrichment (**Fig. 2e**; 1-way ANOVA, $df=11$, $F=33.11$, $p=1.3e-51$). Averaging across all brain
151 regions, the brain-wide average half-life of PSD95 was more than a day shorter (~10%) in mice
152 housed for two weeks in EE (**Fig. 2f**; average of all regions based on conditions: EE, magenta:
153 12.5 ± 0.23 days $n=4$; control, green: 13.9 ± 0.33 days $n=2$; ANOVA $df=1$, $F=12.28$ $p=0.0248$;
154 individual animals in light colors).

155 To determine whether EE produced nonuniform effects across brain regions, we compared
156 the differences between EE and control animals. We observed that the isocortex had the largest
157 difference (**Fig. 2g**, 1-way ANOVA, $df=7$, $F=53.11$, $p=1.8e-55$). We then examined different
158 cortical layers and subfields of the hippocampus. Although the lifetime followed a smooth gradient
159 with less stable PSD95-HT, the degree of destabilization was maximal in layer 4 (**Fig. 2h**; 1-way
160 ANOVA, $df=6$, $F=3.4$ $p=0.003$).

161 As we hypothesize that single synapses form the basis of learning in the brain²³, we
162 investigated PSD95-HT turnover in individual synapses. This requires an approximately four-fold
163 better resolution than that allowed by the classical diffraction limit. Expansion microscopy
164 (ExM)⁴⁶ allows for this four-fold enhancement, but uniform expansion requires dissolving the
165 native tissue structure through proteolysis or strong denaturation, leading to loss of signal (~50%
166 for antibodies or fluorescent proteins)⁴⁷. Therefore, we developed an ExM protocol that would
167 enable twofold expansion without proteolysis or strong protein denaturation. We imaged the
168 expanded sample with Airyscan confocal microscopy⁴⁸, which provides another twofold
169 improvement in resolution, yielding an overall fourfold improvement in resolution (**Methods**).
170 Our use of bright and photostable small-molecule dyes, combined with the lack of any protein
171 disruption during expansion, enabled measurements of turnover at individual synapses. We applied
172 this method to different brain regions of one coronal section and were able to measure the turnover
173 in single synapses of cortical layer 1 and CA1, which had longer lifetimes than CA3 synapses (**Fig.**

174 **2i; Supplementary Movie 3,4).** This shows that DELTA has both brain-wide coverage and up to
175 single-synapse resolution.

176 Discussion

177 DELTA enables the measurement of protein lifetime with unprecedented temporal and spatial
178 precision throughout the body, including the brain, which presented special pharmacokinetic
179 challenges. Using *in vivo* calibration measurements and *in situ* modeling, we defined the
180 appropriate conditions for this pulse-chase paradigm in mice. We also introduced a new dye,
181 JFX₆₇₃-HTL, with improved photophysical properties without compromising pharmacokinetics.
182 Consistent with previous measurements using metabolic labeling, we found that MeCP2-HT
183 protein turnover is slower in the cerebellum compared to other areas of the brain. We then
184 measured the lifetime of the major excitatory synaptic scaffold protein PSD95 at a range of spatial
185 scales from brain regions to single synapses. We found that PSD95-HT is destabilized by enriched
186 experience, with cortical layers 2 to 5 as a major locus of plasticity.

187 DELTA is complementary to mass spectroscopy (MS)-based methods for measuring protein
188 lifetime, with each method having distinct advantages and disadvantages. MS can measure 1000s
189 of proteins in parallel but provides only low spatial resolution and works in homogenates. DELTA
190 provides much higher spatial resolution but can only be used to analyze one protein at a time,
191 limiting throughput and making simultaneous multiprotein measurements challenging. MS
192 requires expensive equipment, while DELTA is cheaper. However DELTA requires genetically
193 engineered animals and protein saturation tests (**Fig. 1b**) for each new knock-in mouse.

194 DELTA presents several advantages over previous methods and opportunities for extensions.
195 The first is the spatial resolution range, from millimeters to ~100 nanometers—that can be
196 achieved with a *post hoc* imaging-based approach. Second, the ability to combine turnover
197 measurements with other imaging-based molecular methods such as fluorescence *in situ*
198 hybridization (FISH)⁴⁹ or immunofluorescence (IF), which we have demonstrated for the
199 identification of cell types. IF could also be used to identify other proteins to determine synaptic
200 types or other subcellular compartments. Furthermore, DELTA could be combined with *in vivo*
201 approaches such as the expression of indicators or actuators of neural activity to examine the
202 relationship between neural activity and protein turnover.

203 DELTA could also be used to examine learning-related changes in synaptic proteins in the
204 brain, including turnover measurements at the level of brain regions, cell types, specific input
205 pathways, and individual synapses. This could also be done in both healthy mice and animal
206 models of neurological disorders such as depression. Another application could involve
207 measurements of activity *in vivo* with *ex vivo* protein lifetime measurements in the same cells to
208 understand the effect of the history of activity on the changes in protein lifetime. Thus, this new
209 method could help identify brain-wide changes involved in adaptive and maladaptive processes in
210 an unbiased and high-throughput manner.

211 **Methods**

212 **Materials**

213 The purified HaloTag protein (#G4491) was purchased from Promega (Madison, Wisconsin).
214 Pluronic F127 (# P3000MP), anhydrous DMSO (# D12345), TEMED (N,N,N',N'-
215 tetramethylethylenediamine; #15524010), APS (Ammonium Persulfate; #AAJ7632209), and AcX
216 (Acryloyl-X SE; #A20770) were purchased from Thermo Fisher Scientific (Rockville, MD).
217 Acrylamide (#1610140) and bis-acrylamide (#1610142) were purchased from Bio-rad (Hercules,
218 CA). To obtain sodium acrylate, we neutralize acrylic acid purchased from TCI (Portland, OR;
219 #A0141) with sodium hydroxide as previously described⁵⁰. 4HT (4-Hydroxy-TEMPO; #176141-
220 5G) was purchased from Sigma (Saint Louis, MO).

221 **Animals**

222 All procedures were carried out according to protocols approved by the Janelia Institutional
223 Animal Care and Use Committee. Wild-type mice (C57Bl/6J RRID:IMSR_JAX:000664; both
224 male and female) were housed in a 12:12 reverse light: dark cycle. MeCP2-HT⁵¹ and PSD95-HT⁴³
225 knock-in mice of either sex were used. However, no comparisons were made between males and
226 females for MeCP2-HT mice.

227 **Virus, dye injections, and tissue processing**

228 To evaluate the ability of JF dyes to saturate HT proteins in the brain, we needed sparse
229 expression of an HT-labeled protein. We chose to express HaloTag-EGFP (HT-GFP) as many JF
230 dyes are red or far red. Sparse brain expression and dye delivery were achieved using retroorbital

231 (RO) injections (Yardeni et al., 2011). Dye preparation⁵², dye injections⁵³, and the histological
232 preparations⁵⁴ are also described on protocols.io . HT-GFP virus was prepared using a PHP.eB
233 AAV capsid (Chan et al. 2017) and a synapsin promoter. 100 μ l of virus (titer of 4e11 GC/mL)
234 was injected RO. An mKate-HaloTag was used to avoid cross- talk between the GFP and the JF₅₂₅-
235 HTL dye. RO dye injections (pulse) were performed 3-5 weeks after virus injection. Most
236 injections were prepared by dissolving 100 nmol of dye in 20 μ l DMSO followed by 20 μ l of 20%
237 Pluronic F127 in DMSO and 60 μ l of PBS, except when otherwise noted (Supplemental Table 2).
238 Twenty-four hours after dye injection, animals were perfused with 50 ml of 4% PFA in 0.1 M
239 sodium phosphate, pH 7.4 (PB) and 50 nmol of orthogonal dye. The brains were post-fixed in 4%
240 PFA in 0.1 M PB overnight at 4 °C and washed three times in PBS for 15 minutes. 100 μ m coronal
241 sections were cut and floated in 24-well plates followed by 4 h of DAPI staining (0.6 μ M in PBS)
242 and washed 3 times for 15 minutes in PBS. For animals with visible fluorescence from in vivo
243 injection, every fourth slice was mounted for imaging; for animals where no fluorescence was
244 observed, every 24th slice was mounted and imaged. See Supplementary Table 2 for details of the
245 dyes and mounting of each of the animals in the study.

246 **Expansion Microscopy**

247 After sectioning, coronal sections were anchored with AcX (0.033 mg/ml; 1:300 from 10
248 mg/ml stock in DMSO) in PBS for one hour. Then they were moved to gelation solution
249 containing: 2.7 M acrylamide, 0.2 M sodium acrylate, 200 μ g/mL bis, PBS (1 \times), 2 mg/ml APS, 2
250 mg/ml TEMED, and 20 μ g/mL 4HT. They were incubated on ice, shaking, for 30 minutes before
251 being mounted in gelation chambers and moved to 37 °C for one hour. After gelation, excess gel
252 was trimmed, and the tissue was recovered in pure water. With three one-hour washes in pure
253 water, the slices expanded ~2x without disruption or cracks. These sections were moved to a 6-
254 well glass bottom plate (Cellvis #P06-1.5H-N, Mountain View, CA). To flatten and immobilize
255 the sections, 4 dabs of silicon grease were applied around each section and a 22x22 mm square #2
256 coverslip (Corning #2855-22, Corning, NY) was pressed from above. If needed, poly-L-lysine 0.2
257 mg/ml (Sigma #P1524-25MG) with Photo-Flo 200 (1:500 from stock; #74257 Electron
258 Microscopy Sciences, Hatfield, PA) were applied to the bottom of the well before the sections are
259 placed to better immobilize the gels.

260 **Whole-brain coronal section imaging**

261 To image 6-20 coronal sections of tens of animals (i.e., hundreds of sections), we needed a
262 high-throughput imaging platform. We used a confocal slide scanner consisting of a TissueFAXS
263 200 slide feeder (Tissuegnostics, Germany) and a SpectraX light engine (Lumencor) with the
264 following peak powers and excitation filters: V – 395nm-400mW (395nm/25nm), C – 475nm-
265 480mW (475nm/34nm), G/Y – lightpipe (585nm/35nm), R – 619nm-629mW (635nm/22nm).
266 These were delivered by a lightguide to a Crest X-Light V2 confocal spinning disc microscope
267 (Crestoptics; 60um pinhole spinning disk) with the following dichroics: T425lpxr, T495lpxt,
268 T600lpxr, T660lpxr and emission filters: ET460nm/50nm, ET525nm/50nm, ET625nm/30nm,
269 ET700nm/75nm. The emission light was collected with Zeiss objectives: EC Plan-Neofluar
270 2.5x/0.085 M27 for tissue detection, EC Plan-Neofluar 10x/0.3 M27 for MeCP2 and PSD95
271 animals (**Fig. 2c-h; Extended Data Fig. 4; Supplementary Fig. 5**) and a Plan-APOCHROMAT
272 20x/0.8 M27 for virally injected animals (**Extended Data Fig. 3; Supplementary Fig. 1,2**).
273 Detection was performed using a Zyla 5.5 sCMOS camera (Andor). The acquisition of the coronal
274 sections was carried out after semi-automated tissue detection and by using multiple autofocusing
275 points per section (5x5 and 3x3 grids for objective acquisitions of 20x and 10x accordingly). For
276 virally transfected animals, three z-planes were imaged and z-projected with a 7 μ m spacing. For
277 MeCP2 and PSD95 animals, a single plane was imaged.

278 **High-resolution imaging**

279 To segment individual nuclei of MeCP2-HT-expressing cells (**Fig. 1d-f; Extended Data Fig.**
280 **5**) or single synapses expressing PSD95-HT (**Fig. 2i**), higher resolution imaging was needed. For
281 MeCP2 imaging we used a Zeiss LSM 880 (Blackwood, NJ) with an EC Plan-Neoflour 40x/1.3NA
282 oil objective and a voxel size of 0.25x0.25x0.5 μ m. We acquired 21 z planes and 5 channels in 3
283 tracks. Detection [excitation] wavelengths were as follows (all in nm): Track 1 - DAPI: 410-489
284 [405]- DAPI, JF₆₁₂: 624-668 [594]; Track 2 IF: 493-551nm [488], JF₆₆₉: 680-758 [633]; Track 3
285 JF₅₅₂: 553-588 [561]. For PSD95 imaging we used a Zeiss LSM 980 with Airyscan and a C-
286 APOCHROMAT 40x/1.2 water dipping objective. The resulting pixel size after Airyscan processing
287 was 57x57x230 nm. We acquired 23 z sections with two channels, 561 nm illumination for JF₅₅₂

288 and 633 nm illumination for JFX₆₇₃. A full z-stack was acquired for the far-red channel followed
289 by the red channel.

290 **Image analysis**

291 *JF Dye screening*

292 We wanted to determine the amount of saturation for each dye injected *in vivo* (**Extended**
293 **Data Fig. 3; Supplemental Figs. 1-3**). However, saturation must consider the amount of total
294 protein (total = C+P), so the fraction pulse (FP) was used as a measure of saturation: FP = P/(C+P).
295 Doing a pixel-wise analysis would not be sufficient, as there are background signals that would
296 change depending on the imaged channel and brain region. Here, unlike knock-in animals, there
297 is variability in the expression pattern across animals that could also affect the background
298 (neruopil) in which the cells reside. Therefore, we chose to do a mask-based analysis for the cells
299 along with a local background component that would avoid these confounding effects. To set
300 masks, we imported 2x downsampled images with 3 channels (GFP-HT/P/C) into Ilastik's pixel
301 classification workflow (Berg et al., 2019). The workflow was manually trained to segment cell
302 bodies, dendrites, different types of neuropil signal, and different imaging and tissue artifacts. The
303 pixel probabilities maps for cells, combined with the raw data, were then imported to a second
304 object-classification workflow in Ilastik. This workflow was used to classify each mask as a GFP-
305 HT-expressing cell or not. A Matlab script was used to calculate the value of each mask in the
306 three channels and also to calculate a local background. The local background estimation excluded
307 pixels that belonged to other non-neuropil trained categories (other cells, dendrites, etc.) from the
308 first Ilastik workflow (**Extended Data Fig. 3c; Supplemental Fig. 1**). For each mask, a
309 background subtracted value was calculated for each dye and converted to μM dye concentration
310 using an independent calibration obtained under the same imaging conditions (**Supplemental Fig.**
311 **3**). FP was calculated after conversion to μM dye, where FP values closer to 1 indicate saturation.

312 *MeCP2*

313 To segment MeCP2-HT nuclei and categorize them into cell types using immunofluorescence
314 (IF), a modified Ilastik classification pipeline was used (**Fig. 1c,d; Extended Data Fig. 5**). First,
315 the five imaged channels (DAPI, Pulse, Chase1, Chase2, IF) were each normalized from 0 to 1
316 using the top and bottom 0.3% of the histogram. Second, a mean of all three imaged JF dyes was

317 used to make a 3-channel image (DAPI, mean of all JF dyes, IF). This was used in the Ilastik pixel
318 classification workflow. We used training data from all three types of IF used (NeuN, Iba1 and
319 SOX10). The resulting nuclei probability maps in combination with the 3-channel images were
320 used by three independent object classification workflows in Ilastik, one for each IF type. The
321 output of these three workflows was a set of masks indicating IF-positive nuclei for each cell type.
322 These were used as described above to extract FP. Next, a mean lifetime (τ) was calculated with
323 the assumption of a single exponential decay given our pulse-chase interval (ΔT): $\tau = \Delta T / \log(\frac{1}{FP})$.

324 *Brain-wide PSD95 analysis*

325 To assign PSD95 lifetimes across the brain, we performed a pixel-based analysis (**Fig. 1b-h**),
326 as there is no way to segment individual objects (synapses) from our low-resolution imaging. As
327 with MeCP2, we converted our images to 3-channel images (DAPI/P/C) after 2x downsampling
328 and normalization to saturate the 0.3% top and bottom of each channel's histogram. These were
329 then imported to an ilastik pixel-classification workflow that was trained to detect places where
330 synapses are a meaningful signal (i.e., excluding non-tissue, artifacts, ventricles). The result was
331 used as a mask on the original data. As in MeCP2 analysis, each pixel was converted to a lifetime
332 estimate with the assumption of a single exponential decay after conversion to μM dye
333 concentration using calibration curves imaged under the same conditions.

334 *Expansion microscopy*

335 After acquisition using the Airyscan detector array, we used Zen Blue software (Zeiss) to
336 process the images using a 3d reconstruction of each channel with automated deconvolution
337 strength. The Airyscan-processed images were registered across channels as they were acquired
338 sequentially. Shifts between channels were under 3 pixels. The resulting 2-channel image was
339 normalized and used as input to an Ilastik pixel classification pipeline trained to separate synapses
340 from the background. The resulting probability images with the normalized data were used in a
341 second Ilastik object segmentation pipeline. Here synapses were classified as simple (single line)
342 or complex (rings, multiple curves). Both classes were used (**Fig. 2i**). As we had segmented
343 objects, we could subtract a local background, use a calibration to convert the values to μM dye,
344 and get an estimated lifetime assuming a single exponential decay.

345 **Alignment to the Allen CCF**

346 To align both MeCP2 and PSD95 lifetime measurements with the Allen CCF, a two-step
347 procedure was used. First, a 24-bit downsampled (max 1.5Mb with png) 24-bit RGB image of each
348 section was generated. It was loaded with QuickNII⁵⁵ and aligned with version 3 of Allen CCF at
349 a resolution of 25 μ m resolution. This was able to account for the cutting angle, a global scaling
350 factor in the DV and ML axis, and the AP location of each section. QuickNII output was used for
351 a manual non-rigid alignment with VisuAlign⁵⁶. The main markers for alignment were the edges
352 of the section, the ventricles, and the fiber tracks. The VisuAlign output was another RGB image
353 in which each color was assigned to an Allen Institute CCF id. These images were loaded and
354 interpolated to the original size of each section, allowing the assignment of each MeCP2 nucleus
355 and PSD95 pixel to a CCF id. As the PSD95 analysis was pixel based, we excluded any pixel
356 belonging to the root or any part of the CCF tree under fiber tracks or ventricular system.

357 **Dye clearance**

358 Cranial windows were made on ALM or V1 (centered on - 2.5 mm lateral, + 0.5 mm anterior
359 from lambda) and a headbar was attached posterior to the window as previously described⁵⁷. The
360 animals were anesthetized in 1% isoflurane and kept at 37 °C with a heating pad. The optical setup
361 was the same as previously described⁵⁸, with a custom wide-field fluorescence microscope
362 (Thorlabs) and a sCMOS camera (Hamamatsu Orca Flash 4.0 v3). Details of illumination,
363 objectives, and filters are presented in Supplementary Table 1. A baseline image was acquired
364 before dye injection. Both the baseline and subsequent timepoints were acquired as movies of 40-
365 50 frames at 5 Hz. This was done to reduce the chances of saturating pixels on the camera at the
366 peak on the injection while still being above electrical noise under baseline conditions. The animal
367 was then removed from head fixation and injected with dye. After dye injection, it was quickly
368 returned to head fixation; the field of view was compared to a baseline image under room lights
369 and then imaged for up to four hours in intervals of 2 minutes to 20 minutes to cover the fast decay
370 part of the dye clearance. The animal was then recovered and reimaged for up to 24 h at 4-12 h
371 intervals.

372 The images were analyzed using a custom Matlab script ([Github](#)). Briefly, each movie was
373 averaged and a manual ROI was defined (**Extended Data Fig. 2b**). The pixel-averaged mean was

374 fitted to a double exponential: $F = a * e^{-1/\tau_1} + b * e^{-1/\tau_2} + c$. Population averages were
375 computed by binning all 11 experiments together. In cases where the injection phase was captured,
376 an offset was used to start the fitting from the highest time point.

377 **Carotid artery dye infusion**

378 To measure the infusion kinetics of JF dyes, we needed a way to control the rate of infusion
379 while imaging dye accumulation in the brain through a cranial window (**Supplemental Fig. 4**).
380 We used two C57BL/6j animals with common carotid artery vascular catheterization. These were
381 ordered from Charles Rivers as a surgical service. They were flushed with saline and 50% sucrose
382 lock solution every 7 days. A cranial window was performed 7 days after catheterization as
383 described above. 7 days after cranial window surgery, a JF dye pump was connected to the carotid
384 artery line. The initial pump rate was 20 μ l/min followed by 40 μ l/min and 80 μ l/min. The imaging
385 conditions were the same as for the dye clearance experiments (0.2 s exposure) but imaged
386 continuously for each injection speed. Data were time averaged at 1 s (5 timepoints) and a manual
387 ROI was drawn. The time-averaged fluorescence values were trimmed to the times the pump was
388 running and fit with a linear fit (including intercept). The values reported are the slopes of the fit.

389 **Modeling dye clearance effects on saturation**

390 Given our results on dye infusion (**Supplementary Note 3; Supplementary Fig.4**), we
391 wanted to test the hypothesis that given a fixed amount of dye to inject, faster injections would
392 lead to more dye captured in the brain. We considered a simple model where a single position in
393 space (x position 1) is a blood vessel from which dye can enter the system and diffuse in 1D
394 simulated by a time march (using Fourier's equation). To avoid edge conditions (Dirichlet
395 boundary conditions were simulated) care was taken to simulate all relevant dye diffusion away
396 from the edge. Both dye injection and clearance were simulated at the same arbitrary rate (dt). All
397 simulations had the same total amount of dye injected, and a constant amount of dye was cleared
398 from the vessel at a rate of $1\text{AU}/dt$. Different simulations had different injection rates ($2-10\text{ AU}/dt$)
399 and the width of the dye distribution was measured as the width in dx at 90% of the known
400 saturation value. Code is available online ([GitHub](#)).

401 **Modeling protein turnover measurements with DELTA**

402 Pulse-chase experiments were modeled using the SimBiology package in Matlab (Mathworks;
403 GitHub link). Briefly, lifetimes of the target HT-protein synthesis were simulated. Each new
404 protein could either degrade (at the same rate of synthesis modeled) or attach to a HaloTag ligand
405 dye molecule (Pulse or Chase, dye collectively). The dye binding kinetics were set to be nearly
406 instantaneous, as they are several orders of magnitude higher than those for synthesis/degradation.
407 Binding kinetics were identical for both the Pulse and Chase. The degradation rates of the HT
408 protein with dye complexes were the same as for the protein alone.

409 The dye injection kinetics were neglected (i.e., instantaneous injection). Dye clearance
410 kinetics were modeled as two compartments (named Brain & Lipids) with degradation from the
411 Brain compartment. This was done to account for the multiexponential decay measured *in vivo*.
412 The Brain compartment was set to have a volume of 1 ml; the equilibrium constant between the
413 compartments, the volume of the Lipids compartment and the degradation time constant were
414 fitted using the JF-dyes clearance data (**Extended Data Fig. 1,2**). This fitting was done in the
415 absence of a HT-protein.

416 **Dye solubility**

417 Formulations for the solubility measurements of the JF dyes were prepared in the following
418 manner. (i) 30% Captisol formulation was made with 300 mg Captisol® (β-Cyclodextrin
419 Sulfoxbutyl Ethers, sodium salts) (NC-04A-180186, Cydex Pharmaceuticals) dissolved in 1 ml of
420 sterile water (Molecular Biology Grade Water, Corning) to make a 30% solution. 100 µl of this
421 solution was added to 100 nmol of dry JF dye. (ii) A 30% Captisol + Pluronic formulation was
422 made by mixing a 30% Captisol solution with Pluronic F-127 (P3000MP, Invitrogen) in a 80:20
423 ratio. 100 µl of the prepared solution was added to 100 nmol of dry JF dye. (iii) The DMSO +
424 Pluronic formulation was made with DMSO (D2650, Sigma Aldrich), Pluronic F-127, and sterile
425 saline (0.9 % sodium chloride) mixed in a 20:20:60 ratio. 100 µl from the prepared solution was
426 added to 100 nmol of dry JF dye. (iv) A formulation of DMSO only was made by adding 100 µl
427 of DMSO to 100 nmol of dry JF dye to bring it to a final concentration of 1 mM.

428 The prepared JF dye formulations were briefly vortexed followed by bath sonication (Branson
429 1200 model) for 5 minutes. The dye solutions were placed on the agitator for 72 h to ensure
430 solubilization. Absorbance measurements of dye solutions were performed using a spectrometer

431 (Cary 100 UV-Vis, Agilent Technologies), and the final concentration was determined from
432 known extinction coefficients of JF dyes as defined by Grimm et al. ^{33–35}.

433 **Data and Code availability**

434 Both metadata and raw data are available through the Open Science Foundation project
435 associated with this paper. The protocols are available as a collection on protocols.io. The code
436 used for the analysis is available on [GitHub](https://github.com).

437

References

- 438 1. Alberts, B. *et al.* *Essential cell biology*. (W. W. Norton & Company, 2019).
- 439 2. Soulé, J. *et al.* Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein
440 expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor
441 stimulation. *J. Biol. Chem.* **287**, 22354–22366 (2012).
- 442 3. Heo, S. *et al.* Identification of long-lived synaptic proteins by proteomic analysis of synaptosome
443 protein turnover. *Proc. Natl. Acad. Sci.* **115**, E3827–E3836 (2018).
- 444 4. Alvarez-Castelao, B., Schanzenbächer, C. T., Langer, J. D. & Schuman, E. M. Cell-type-specific
445 metabolic labeling, detection and identification of nascent proteomes in vivo. *Nat. Protoc.* **14**, 556–
446 575 (2019).
- 447 5. Cohen, L. D. & Ziv, N. E. Neuronal and synaptic protein lifetimes. *Curr. Opin. Neurobiol.* **57**, 9–16
448 (2019).
- 449 6. Fornasiero, E. F. *et al.* Precisely measured protein lifetimes in the mouse brain reveal differences across
450 tissues and subcellular fractions. *Nat. Commun.* **9**, 1–17 (2018).
- 451 7. Dörrbaum, A. R., Kochen, L., Langer, J. D. & Schuman, E. M. Local and global influences on protein
452 turnover in neurons and glia. *eLife* **7**, e34202 (2018).
- 453 8. Paterson, R. W. *et al.* SILK studies — capturing the turnover of proteins linked to neurodegenerative
454 diseases. *Nat. Rev. Neurol.* **15**, 419–427 (2019).

455 9. Flexner, J. B., Flexner, L. B. & Stellar, E. Memory in Mice as Affected by Intracerebral Puromycin.
456 *Science* **141**, 57–59 (1963).

457 10. Luft, A. R., Buitrago, M. M., Ringer, T., Dichgans, J. & Schulz, J. B. Motor Skill Learning Depends
458 on Protein Synthesis in Motor Cortex after Training. *J. Neurosci.* **24**, 6515–6520 (2004).

459 11. Park, H. & Kaang, B.-K. Balanced actions of protein synthesis and degradation in memory formation.
460 *Learn. Mem.* **26**, 299–306 (2019).

461 12. Kelleher, R. J., Govindarajan, A., Jung, H.-Y., Kang, H. & Tonegawa, S. Translational Control by
462 MAPK Signaling in Long-Term Synaptic Plasticity and Memory. *Cell* **116**, 467–479 (2004).

463 13. McGaugh, J. L. Memory--a Century of Consolidation. *Science* **287**, 248–251 (2000).

464 14. Fioravante, D. & Byrne, J. H. Protein degradation and memory formation. *Brain Res. Bull.* **85**, 14–20
465 (2011).

466 15. Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T. & Nägerl, U. V. A Balance of Protein
467 Synthesis and Proteasome-Dependent Degradation Determines the Maintenance of LTP. *Neuron* **52**,
468 239–245 (2006).

469 16. Lee, S.-H. *et al.* Synaptic Protein Degradation Underlies Destabilization of Retrieved Fear Memory.
470 *Science* **319**, 1253–1256 (2008).

471 17. DeNardo, L. A. *et al.* Temporal evolution of cortical ensembles promoting remote memory retrieval.
472 *Nat. Neurosci.* **22**, 460–469 (2019).

473 18. Roy, D. S. *et al.* Brain-wide mapping reveals that engrams for a single memory are distributed across
474 multiple brain regions. *Nat. Commun.* **13**, 1799 (2022).

475 19. Ye, L. *et al.* Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct
476 Experiences. *Cell* **165**, 1776–1788 (2016).

477 20. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the
478 anaesthetized rabbit following stimulation of the perforant path. *J. Physiol.* **232**, 331–356 (1973).

479 21. Frey, U. & Morris, R. G. M. Synaptic tagging and long-term potentiation. *Nature* **385**, 533–536 (1997).

480 22. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites.
481 *Nature* **450**, 1195–1200 (2007).

482 23. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term
483 potentiation in single dendritic spines. *Nature* **429**, 761–766 (2004).

484 24. Nabavi, S. *et al.* Engineering a memory with LTD and LTP. *Nature* **511**, 348–352 (2014).

485 25. Chen, X., Wei, S., Ji, Y., Guo, X. & Yang, F. Quantitative proteomics using SILAC: Principles,
486 applications, and developments. *PROTEOMICS* **15**, 3175–3192 (2015).

487 26. Alvarez-Castelao, B. & Schuman, E. M. The Regulation of Synaptic Protein Turnover. *J. Biol. Chem.*
488 **290**, 28623–28630 (2015).

489 27. Butko, M. T. *et al.* Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and
490 electron microscopy. *Nat. Neurosci.* **15**, 1742–1751 (2012).

491 28. Lin, M. Z., Glenn, J. S. & Tsien, R. Y. A drug-controllable tag for visualizing newly synthesized
492 proteins in cells and whole animals. *Proc. Natl. Acad. Sci.* **105**, 7744–7749 (2008).

493 29. Keppler, A. *et al.* A general method for the covalent labeling of fusion proteins with small molecules
494 in vivo. *Nat. Biotechnol.* **21**, 86–89 (2003).

495 30. Bojkowska, K. *et al.* Measuring In Vivo Protein Half-Life. *Chem. Biol.* **18**, 805–815 (2011).

496 31. Hawkins, B. T. & Egleton, R. D. Fluorescence imaging of blood-brain barrier disruption. *J. Neurosci.*
497 *Methods* **151**, 262–267 (2006).

498 32. Los, G. V. *et al.* HaloTag: a novel protein labeling technology for cell imaging and protein analysis.
499 *ACS Chem. Biol.* **3**, 373–382 (2008).

500 33. Grimm, J. B. *et al.* A general method to fine-tune fluorophores for live-cell and in vivo imaging. *Nat.*
501 *Methods* **14**, 987–994 (2017).

502 34. Grimm, J. B. *et al.* A general method to optimize and functionalize red-shifted rhodamine dyes. *Nat.*
503 *Methods* **17**, 815–821 (2020).

504 35. Grimm, J. B. *et al.* A General Method to Improve Fluorophores Using Deuterated Auxochromes. *JACS Au* **1**, 690–696 (2021).

505 36. Ehrhart, F. *et al.* Rett syndrome – biological pathways leading from MECP2 to disorder phenotypes. *Orphanet J. Rare Dis.* **11**, (2016).

506 37. Qiu, Z. *et al.* The Rett Syndrome Protein MeCP2 Regulates Synaptic Scaling. *J. Neurosci.* **32**, 989–994 (2012).

507 38. Zimmermann, C. A., Hoffmann, A., Raabe, F. & Spengler, D. Role of Mecp2 in Experience-Dependent Epigenetic Programming. *Genes* **6**, 60–86 (2015).

508 39. Piccolo, F. M. *et al.* Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High Affinity Chromatin Interactions. *SSRN Electron. J.* (2019) doi:10.2139/ssrn.3376659.

509 40. Berg, S. *et al.* ilastik: interactive machine learning for (bio)image analysis. *Nat. Methods* **16**, 1226–1232 (2019).

510 41. Wang, Q. *et al.* The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. *Cell* **181**, 936-953.e20 (2020).

511 42. Cho, K.-O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein. *Neuron* **9**, 929–942 (1992).

512 43. Masch, J.-M. *et al.* Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling. *Proc. Natl. Acad. Sci.* **115**, E8047–E8056 (2018).

513 44. Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. *Nat. Rev. Neurosci.* **7**, 697–709 (2006).

514 45. Rosenzweig, M. R. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. *Dev. Psychobiol.* **2**, 87–95 (1969).

515 46. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. *Science* **347**, 543–548 (2015).

516 47. Tillberg, P. W. *et al.* Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. *Nat. Biotechnol.* **34**, 987–992 (2016).

529 48. Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and
530 super-resolution. *Nat. Methods* **12**, i–ii (2015).

531 49. Wang, Y. *et al.* EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization.
532 *Cell* **184**, 6361–6377.e24 (2021).

533 50. Damstra, H. G. *et al.* Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion
534 Microscopy (TREx). *eLife* **11**, e73775 (2022).

535 51. Piccolo, F. M. *et al.* Mecp2 Nuclear Dynamics in Live Neurons Results from Low and High Affinity
536 Chromatin Interactions. *SSRN Electron. J.* (2019) doi:10.2139/ssrn.3376659.

537 52. Mohar, B. Preparation of JF dye for retro-orbital injection in mice. *protocols.io*
538 <https://www.protocols.io/view/preparation-of-jf-dye-for-retro-orbital-injection-5u4g6yw> (2019).

539 53. Mohar, B. *Retro-orbital injection of virus or dye in mice v1*. <https://www.protocols.io/view/retro->
540 orbital-injection-of-virus-or-dye-in-mice-5udg6s6 (2019) doi:10.17504/protocols.io.5udg6s6.

541 54. Mohar, B. & Copeland, M. *Protocol for mouse perfusion with dye, DAPI staining, and slide*
542 *preparation v1*. <https://www.protocols.io/view/protocol-for-mouse-perfusion-with-dye-dapi-stainin->
543 59jg94n (2019) doi:10.17504/protocols.io.59jg94n.

544 55. QuickNII; RRID:SCR_016854; <http://www.nitrc.org/projects/quicknii/>. (2022).

545 56. VisuAlign; RRID:SCR_017978; <http://www.nitrc.org/projects/visualign/>. (2021).

546 57. Ashby, M. C. *et al.* Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient
547 Endocytosis of Extrasynaptic AMPARs. *J. Neurosci.* **24**, 5172–5176 (2004).

548 58. Abdelfattah, A. S. *et al.* Bright and photostable chemogenetic indicators for extended in vivo voltage
549 imaging. *Science* **365**, 699–704 (2019).

550 59. Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S. Retro-orbital injections
551 in mice. *Lab Anim.* **40**, 155–160 (2011).

552 60. Holtmaat, A. *et al.* Long-term, high-resolution imaging in the mouse neocortex through a chronic
553 cranial window. *Nat. Protoc.* **4**, 1128–1144 (2009).

554 61. Trachtenberg, J. T. *et al.* Long-term in vivo imaging of experience-dependent synaptic plasticity in
555 adult cortex. *Nature* **420**, 788–794 (2002).

556 62. Walther, D. M. & Mann, M. Accurate Quantification of More Than 4000 Mouse Tissue Proteins
557 Reveals Minimal Proteome Changes During Aging *. *Mol. Cell. Proteomics* **10**, S1–S7 (2011).

558 63. Zhao, Y., Denner, L., Haidacher, S. J., LeJeune, W. S. & Tilton, R. G. Comprehensive analysis of the
559 mouse renal cortex using two-dimensional HPLC – tandem mass spectrometry. *Proteome Sci.* **6**, 15
560 (2008).

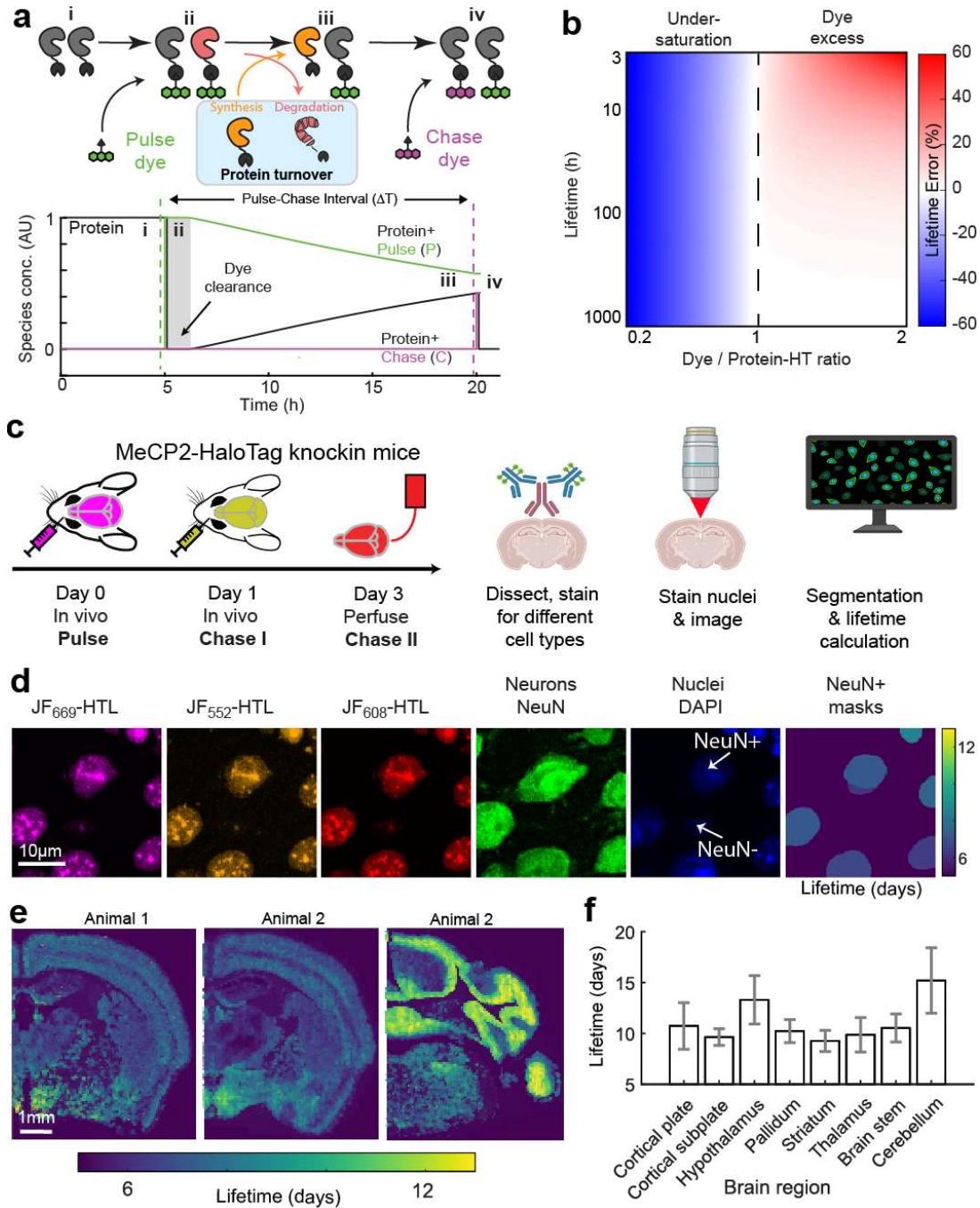
561 64. Chan, K. Y. *et al.* Engineered AAVs for efficient noninvasive gene delivery to the central and
562 peripheral nervous systems. *Nat. Neurosci.* **20**, 1172–1179 (2017).

563 65. Verkhusha, V. V. *et al.* High Stability of Discosoma DsRed As Compared to Aequorea EGFP.
564 *Biochemistry* **42**, 7879–7884 (2003).

565 66. Caujolle, F., Caujolle, D., Bouyssou, H. & Calvet, M. M. Toxicity and pharmacological aptitudes of
566 Dimethylsulfoxide. *Comptes Rendus Hebd. Seances Acad. Sci.* **258**, 2224–2226 (1964).

567 67. Krenzlin, H., Lorenz, V., Danckwardt, S., Kempski, O. & Alessandri, B. The Importance of Thrombin
568 in Cerebral Injury and Disease. *Int. J. Mol. Sci.* **17**, 84 (2016).

569

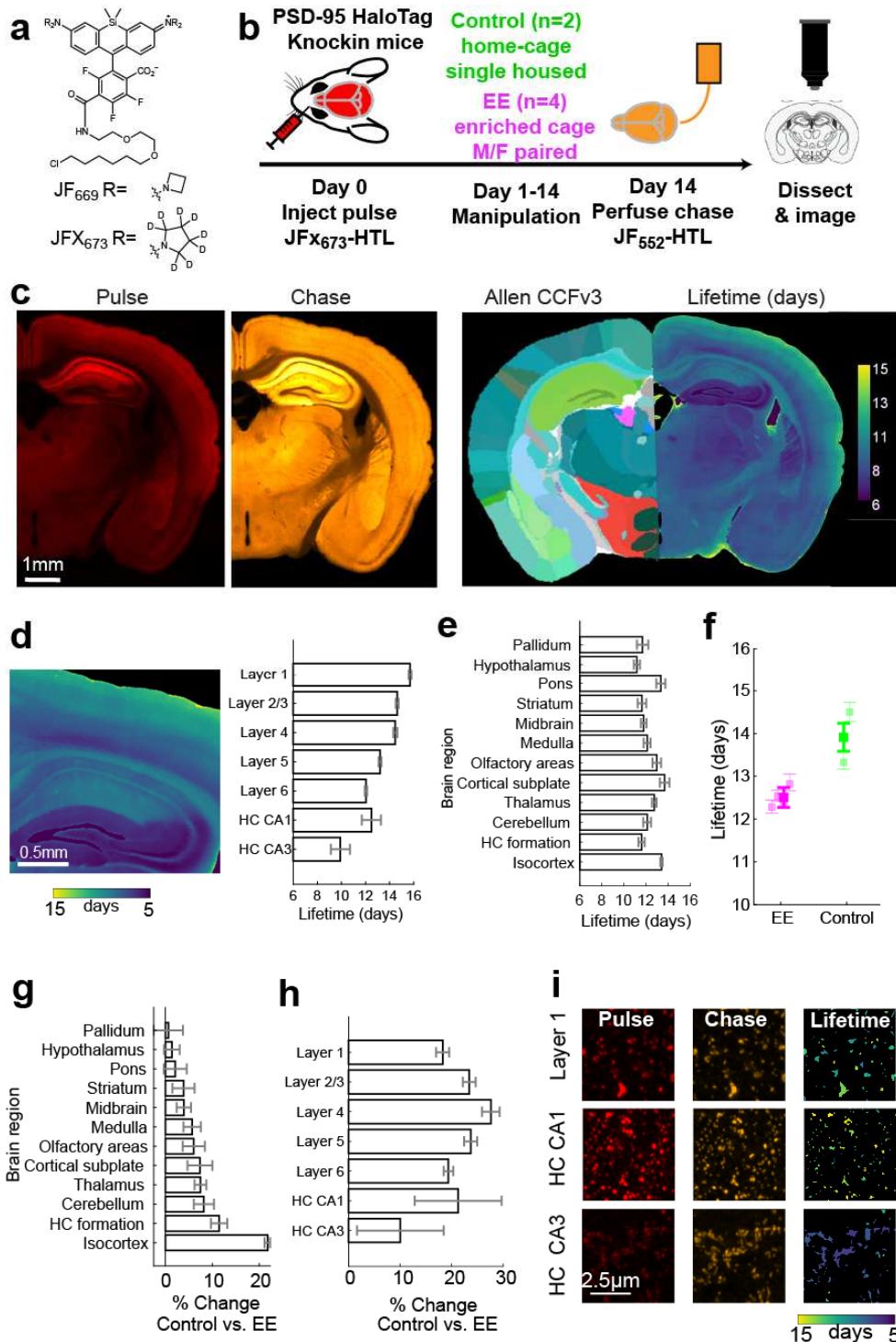

Acknowledgments

570 Histology: Benjamin Foster, Monique Copeland, Amy Hu, Susan Michael; Imaging core:
571 Michael DeSantis, Damien Alcor; Vivarium: Gillian Harris, Mariam Rose, Sarah Lindo; Viral
572 core: PHP virus; T3 (bleaching): Ariana Tkachuk; Open chemistry: Anastasia Osowski, Katie
573 Holland; GFP-HT virus: Eric Schreiter; MeCP2-HT animal: James Liu; PSD95-HT animal: Seth
574 Grant; Clearance imaging: Amrita Singh

575

Figures

576 **Figure 1 – Measurement of protein turnover *in vivo*,**
577 **demonstrated with MeCP2**


578

579 **a**, Schematics showing dye capture by a protein modified with a HaloTag (HT). (i) Before the
580 injection of the first dye ligand (pulse), there is no label on the protein (black line). (ii) After
581 injection of the first dye (dashed green line at 5 h), all proteins are labeled with the pulse (solid
582 green line). (iii) During the pulse-chase interval, some proteins degrade, and others are synthesized
583 (termed protein turnover) but are unlabeled. (iv) Injection of a spectrally separate dye (dashed
584 magenta line at 20 h) captures the newly synthesized fraction (solid magenta line). The arrow and
585 gray shaded area indicate where excess dye delays the onset of turnover measurement, leading to
586 an overestimation error. **b**, Simulation with different dye-protein ratios (x-axis) and true lifetimes
587 (y-axis). The estimated lifetime is colored. Undersaturation (left side <1 dye/protein ratio) causes
588 worse errors than dye excess (right side >1 dye/protein ratio) and longer-lived proteins (>10 h) are
589 better estimated than short-lived ones. **c**, Schematic of the procedure to measure the turnover of
590 the nuclear MeCP2-HT protein in a knock-in mouse model. Three dyes were used to measure
591 multiple protein-turnover intervals. After perfusion and dissection, coronal sections were stained
592 with IF to identify different cell types, while DAPI was used as a nuclear marker. **d**, Example field
593 of view showing all JF dyes (left 3 panels) imaged with an example NeuN stained coronal section
594 (4th panel) to identify neurons alongside all nuclei (DAPI; 5th panel). After segmentation of NeuN
595 positive nuclei (6th panel), segmented nuclei were colored by lifetime using the sum of the two *in*
596 *vivo* injections as the pulse (JF₆₆₉+JF₅₅₂ / JF₆₆₉+JF₅₅₂+JF₆₀₈). **e**, Example coronal sections from 2
597 animals showing the consistency of the lifetime estimate for the same AP section (compare left
598 and middle panel) and differences across brain regions, most notably the longer lifetime in the
599 cerebellum (compare middle and right panels). **f**, lifetime means, and bootstrap confidence
600 intervals for CCF-aligned brain regions of MeCP2.

601

602

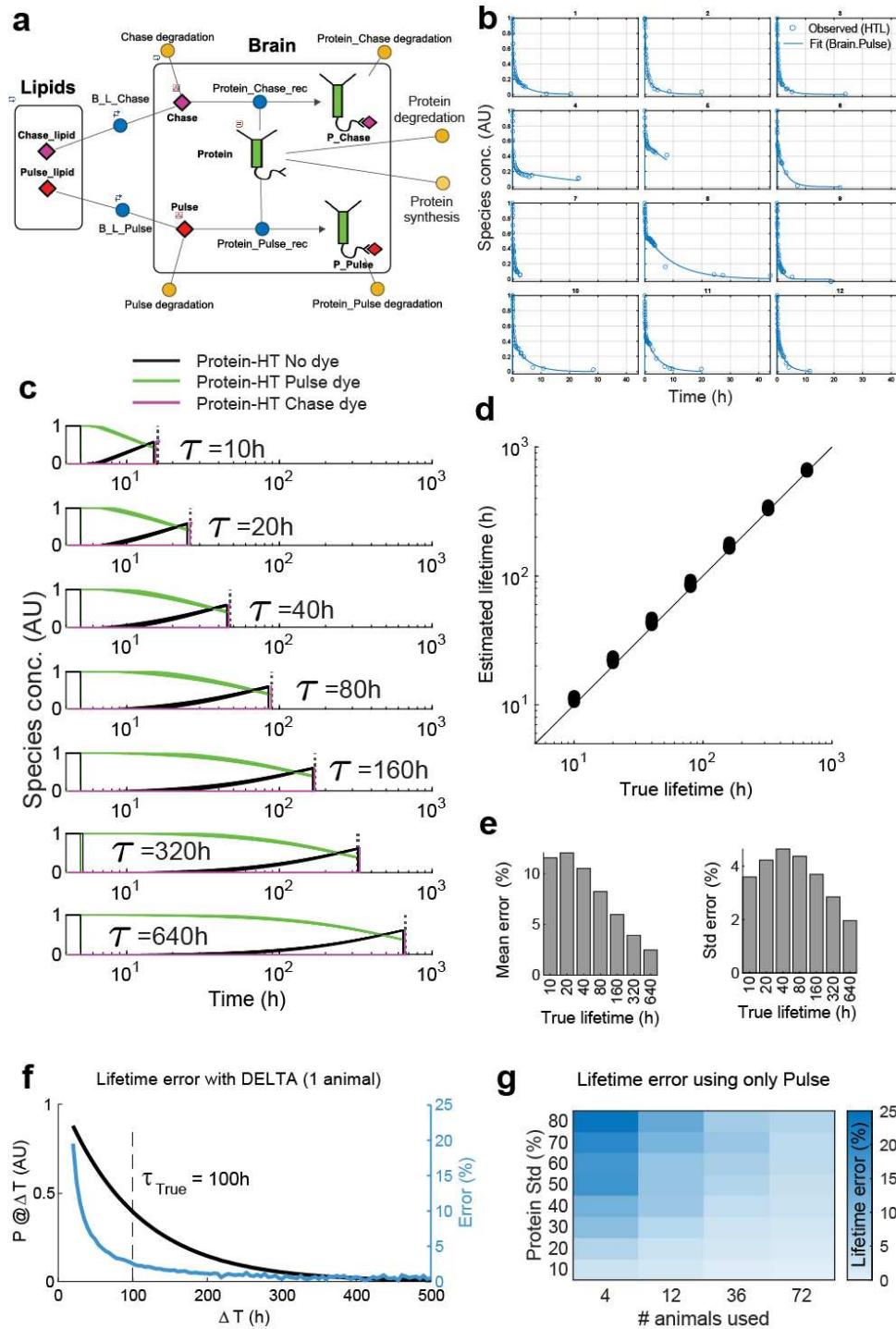
Figure 2 – PSD95 turnover depends on experience

603

604

a, Structure of JF669-HTL and the new JFX₆₇₃-HTL. Note the replacement of deuterium and

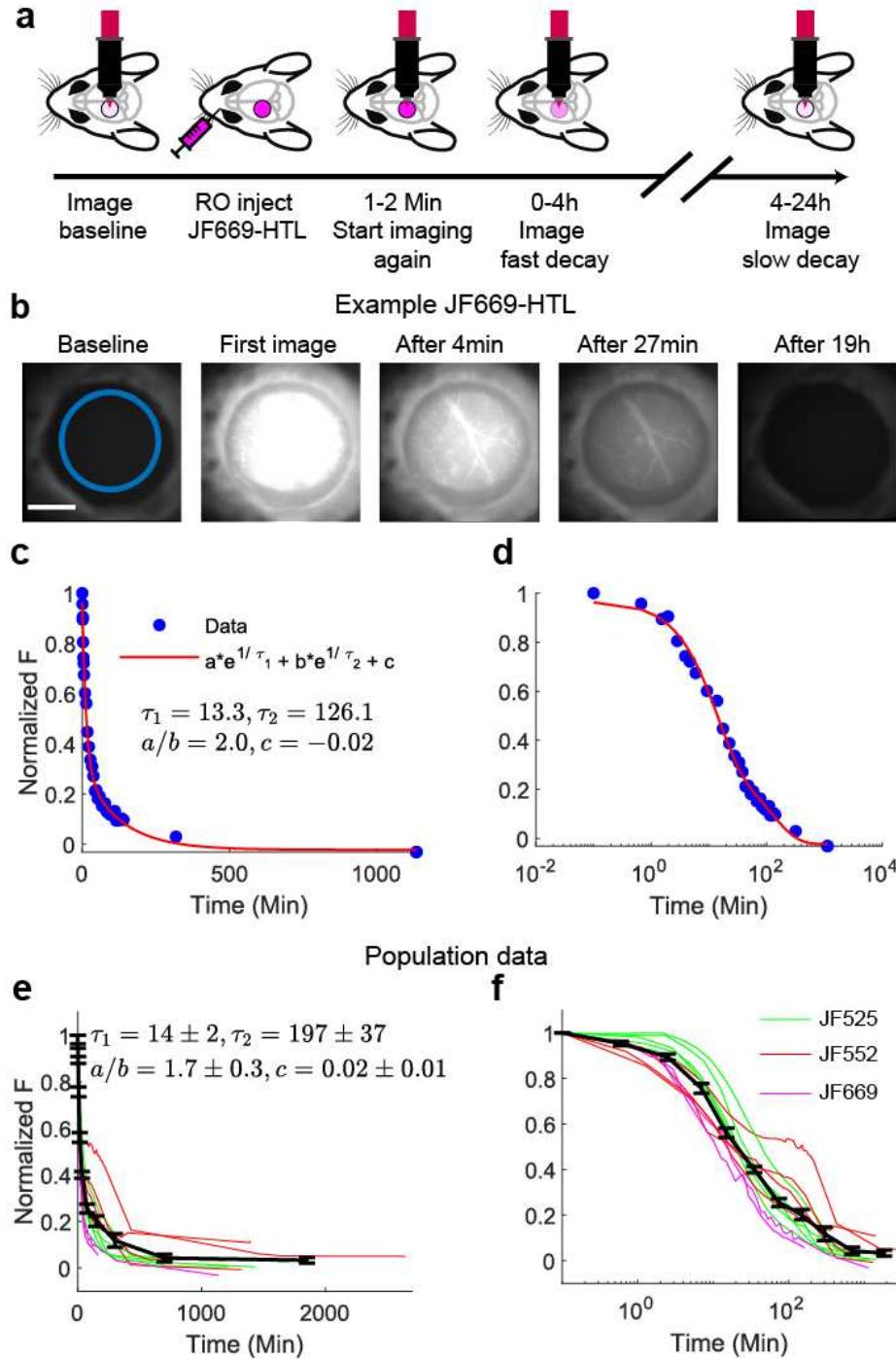
605 additional carbon in the R position. **b**, Schematic of the procedure to measure the turnover of


606 synaptic PSD95-HT protein in a knock-in mouse. After initial injection of the new JFX₆₇₃ animals
607 were separated to be single housed (n=2) or male/female paired in an enriched environment (EE,
608 n=4) for 14 days. At the end of 2 weeks, the animals were perfused with JF552, sectioned, imaged,
609 and aligned with the Allen Institute CCFv3 mouse brain atlas. **c**, Example coronal section showing
610 the pulse (left panel), chase (middle panel), and calculated lifetime aligned to the Allen CCFv3
611 (right panel). **d**, Left: zoom-in of the image from panel c. Note the lifetime gradient that separates
612 the CA1 *stratum radiatum* (long lifetime) and CA1 *stratum lacunosum moleculare*, dentate gyrus
613 *stratum moleculare*, and hilus (all short lifetime). Right: Average lifetime of different cortical
614 layers and subfields of the hippocampus (HC). **e**, Average lifetime for 12 large brain regions. **f**,
615 Average lifetime of the 4 animals under EE (magenta) and control conditions (green). EE increased
616 protein turnover and shortened the average lifetime of PSD95. Individual animals in lighter colors.
617 **g**, Percent change in control vs. EE animals in the cortical layers. **h**, same as **g** for 12 different
618 brain regions. **i**, Example images using Airyscan imaging of ExM tissue (max projection of 5 z
619 planes 0.3 um apart) from layer 1 (top row), HC CA1 subfield (middle row) and basal dendrites of
620 CA3 (bottom row) showing both pulse (left columns), chase (middle columns) and lifetime (left
621 columns).

622

Extended Data Figures

623

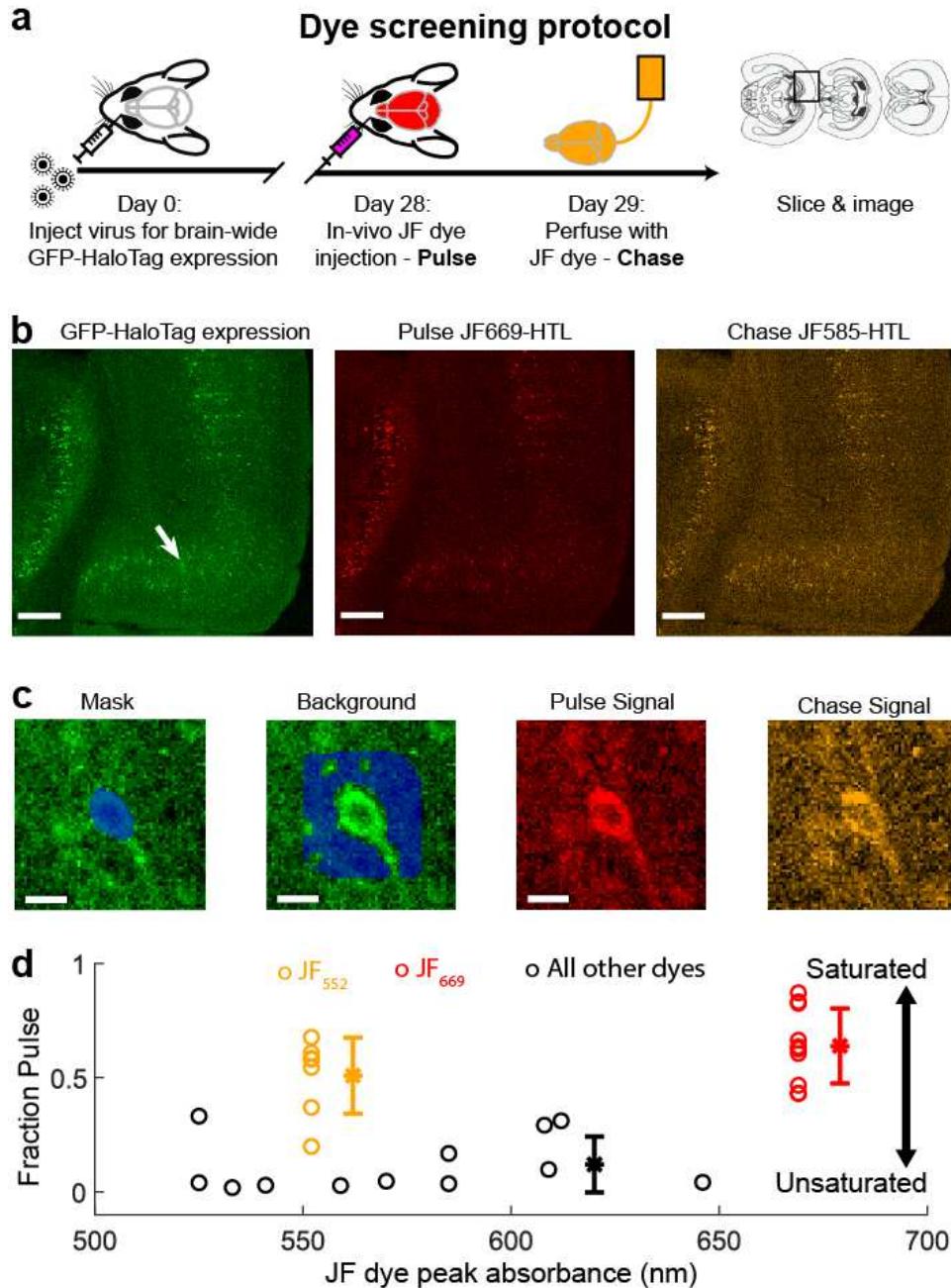

Extended Data Figure 1 – Modeling pulse-chase experiments *in vivo* constrained by dye clearance measurements

625

626 **a**, Schematic showing model compartments, reactions, and species for investigating the effects
627 of dye clearance in protein turnover measurements. **b**, Fitting of the *in vivo* dye clearance data to
628 generate model variants. 12 experiments (data in blue circles) and the fitted response (black line)
629 are shown. **c-e**, Example model simulations with 7 lifetimes (**c**: 10-640h) and in each simulating
630 all 12 variants. There is a very good correlation between the simulated and calculated lifetimes (**d**).
631 The mean errors (**e**; left) are reduced as a function of lifetime, while the standard error between
632 model variants (simulating variability in dye clearance) peaks around the mean dye clearance rate
633 (**e**; right panel). **f**, Error in the lifetime estimate as a function of the pulse-chase interval (ΔT). The
634 error (blue line) decreases faster than the pulse concentration (black line). **g**, Error in lifetime
635 estimation using only pulse measurements given ideal dye injection delivery. Here, protein
636 expression variability (standard deviation y-axis) could be countered only by averaging between
637 animals (number of animals x-axis). Error rates (color-coded) are higher than in DELTA where
638 the chase dye and the FP calculation normalizes for expression variability.

639 Extended Data Figure 2 - JF-HTL dyes are cleared from the
640 brain in hours

641

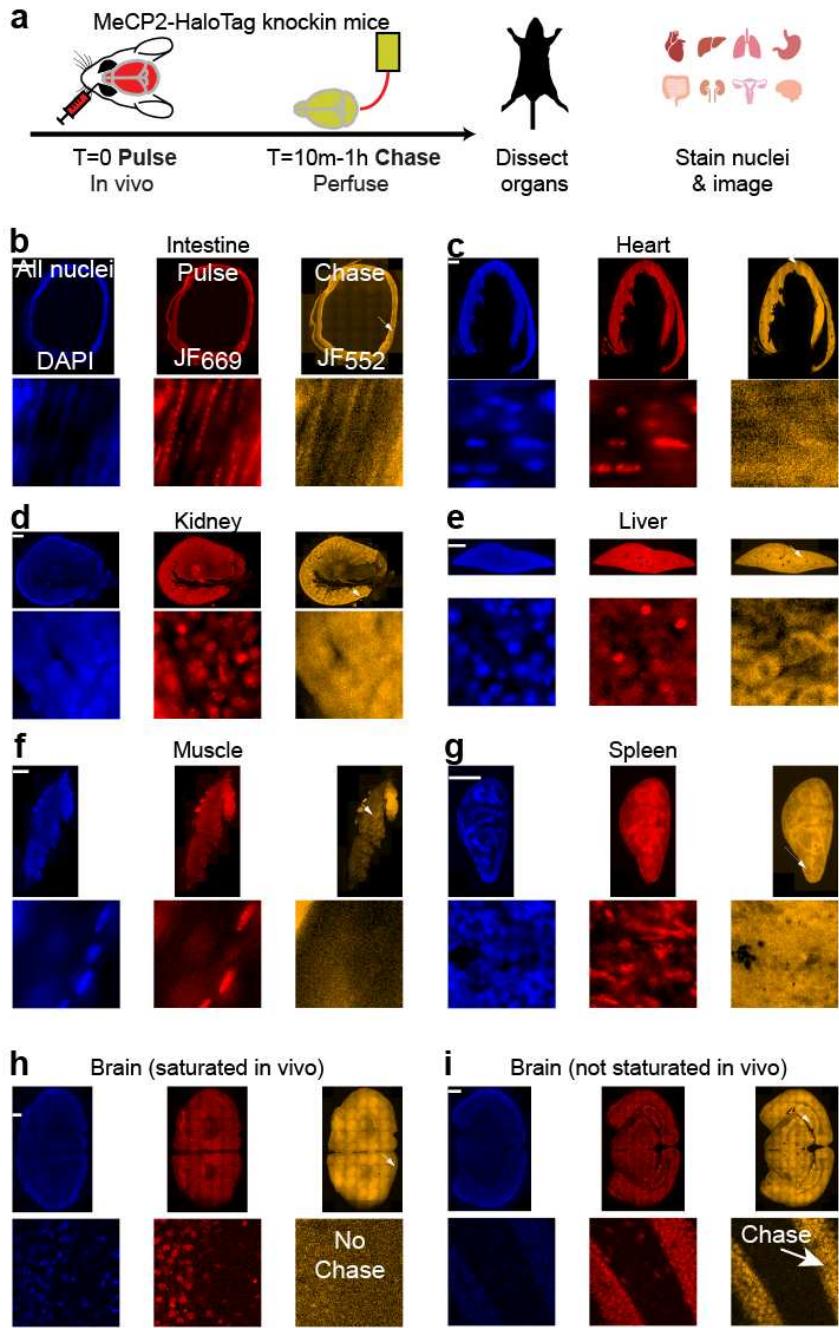

642 **a**, Schematic experimental procedure to measure dye clearance. Note that the injection
643 kinetics are not captured as the animal is injected prior to imaging. **b**, Example images for a JF669-

644 HTL injection. The blue circle represents the region for which fluorescence was quantified in c
645 and d. The scale bar is 2mm. **c-d**, Linear (c) and log (d) scale values (peak normalized and baseline
646 subtracted - blue circles) of JF₆₆₉-HTL dye clearance. Fit to a double exponential fit in red, τ_1 and
647 τ_2 are in minutes. **e-f**, Data from 12 experiments showing clearance of 3 dyes (JF₅₂₅ in green, JF₅₅₂
648 in red, and JF₆₆₉ in magenta). The black trace is a binned average with standard error of all twelve
649 experiments. The values in E represent the mean \pm standard error of double exponential fits for the
650 12 experiments.

651

652

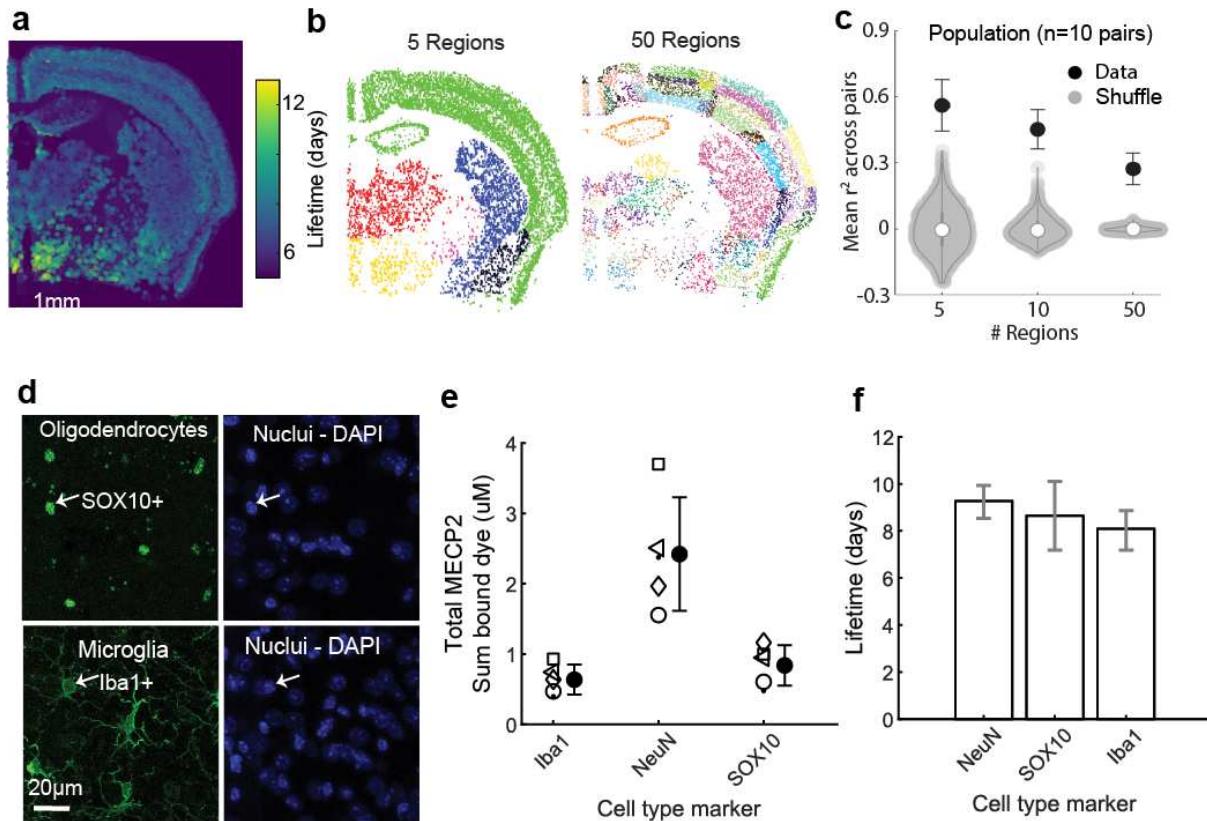
653 Extended Data Figure 3 – JF₅₅₂ and JF₆₆₉ are bioavailable in the
654 brain



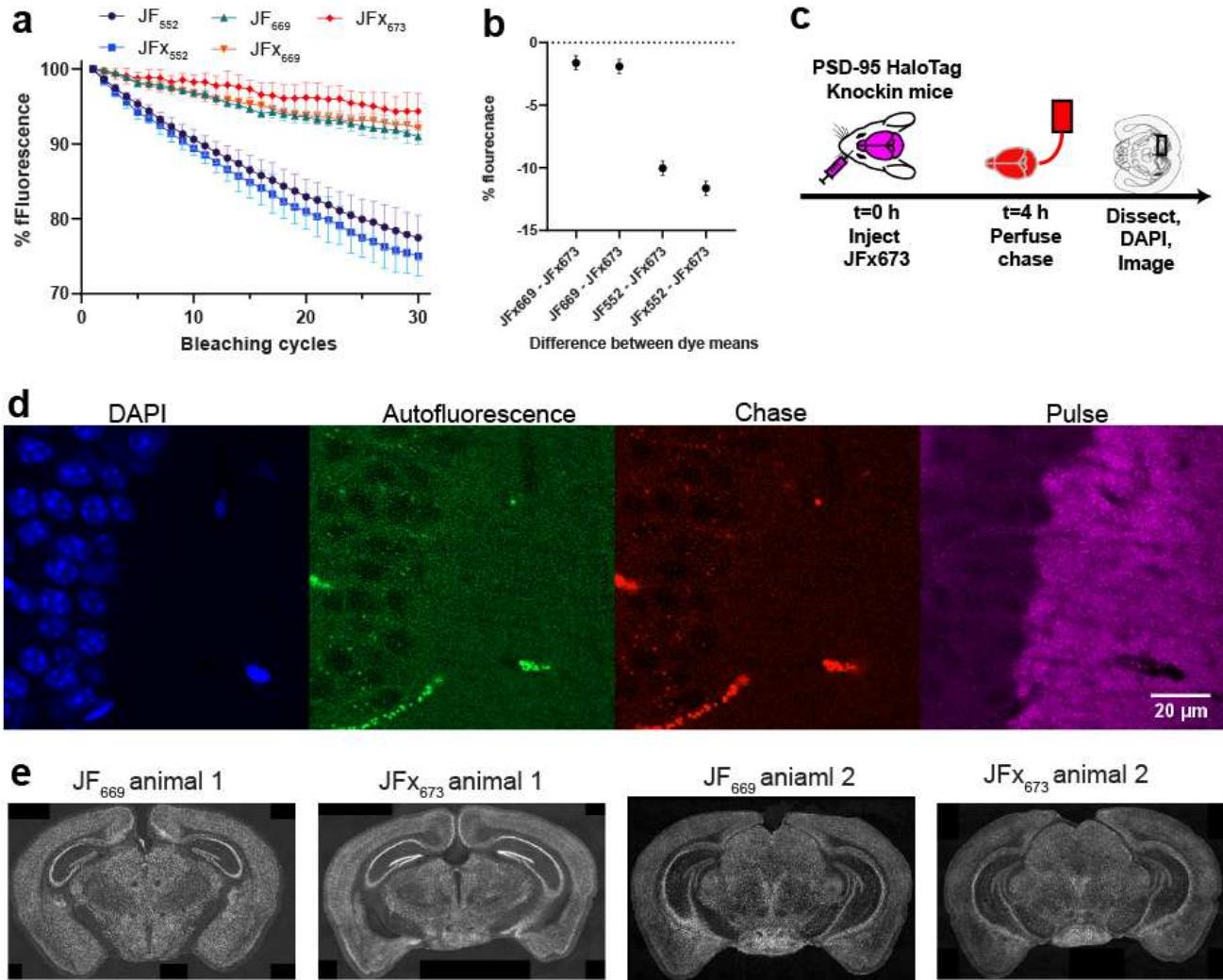
656 **a**, Schematic of the experimental procedures for dye screening *in vivo*. **b**, Example coronal
657 sections imaged from an animal 3 weeks after viral injection of GFP-HT (left panel) injected *in*
658 *vivo* with JF₆₆₉ (middle panel) and perfused with JF₅₈₅-HTL (right panel). Scale bars, 200 μ m . **c**,
659 Example cell (Arrow in B, left panel) overlaid with the mask used to extract signal (first panel), a

660 local background (second panel) and the images of the *in vivo* injected dye (third panel) and
661 perfused dye (fourth panel). FP is 0.65 in this example. Scale bars are 10 μm . **d**, Mean FP for each
662 animal (n=31) injected as a function of the dye excitation wavelength. JF669-HTL (n=10, fraction
663 *in vivo*: 0.64 +- 0.16) is in magenta and JF552-HTL (n=7; fraction *in vivo* 0.51 +- 0.17) in red. Other
664 dyes in black (n=14, 0.12 +- 0.12).

665


666 Extended Data Figure 4 – Systemic injection of ligand dye
667 saturates the abundant protein MeCP2-HT in most organs

668


669 **a**, Schematic of the experimental procedures to test the saturation of MeCP2-HT. **b-i**, Organs
670 harvested and imaged for pulse dye saturation (red), as evident by the lack of chase dye (orange)
671 in the nuclei (blue) where MeCP2-HT is expressed.

672 Extended Data Figure 5 - The lifetime of MeCP2-HT is
673 consistent between individual mice and cell-types

676 **a**, Example coronal section of the lifetime of MeCP2-HT after segmentation of neuronal
677 positive nuclei. **b**, Example assignment of nuclei to brain regions based on CCF at different levels
678 (left 5 regions, right 50 regions). **c**, Protein lifetime measurements were consistent between mice
679 as assessed by looking at pairwise correlations between all possible pairs of animals (n=5 animals,
680 10 pairs). For each level of the CCF (5, 10, and 50 regions) the correlation between regions was
681 higher than for a shuffled control. **d**, Two additional sections were stained in each of the five
682 animals for oligodendrocytes (SOX10, top) and microglia (Iba1, bottom). **e**, MeCP2 was more
683 abundant in the nuclei of neurons (Iba1: 0.63 ± 0.21 , NeuN: 2.42 ± 0.8 SOX10: 0.84 ± 0.28 μM total
684 dye signal; ANOVA $F=27.22$, $df=2$, $p=2e-4$). **f**, Lifetimes were similar for all cell types, since
685 confidence intervals overlapped between all cell types (mean [CI] of Iba1: 9.2 [8.5, 9.9], NeuN:
686 8.6 [7.1 10.0], SOX10: 8.1 [7.2, 8.9] days of MeCP2 lifetime).

687 Extended Data Fig. 6 – Development of JFX₆₇₃-HTL for optimal
688 *in vivo* dye delivery

689
690 **a**, Bleaching curves of JF dyes showing normalized fluorescence over 30 bleaching cycles. **b**,
691 JFX₆₇₃-HTL was significantly more photostable than the other dyes tested. **c**, Experimental
692 procedures for testing saturation in a PSD95-HT mouse. **d**, Example section of the animal in (c)
693 showing the basal dendrite section of the CA1 region of the hippocampus (DAPI shows the nuclei
694 in the leftmost panel). The autofluorescence seen in the green channel (2nd panel from left) explains
695 all the fluorescence in the chase channel (JF₅₅₂-HTL; 3rd panel), while the far-red channel shows
696 the expected pattern of synapses (JFX₆₇₃-HTL; 4th panel). **e**, Example sections of MeCP2-HT mice
697 do not show significant differences in brain availability of JF669-HTL versus JFX₆₇₃-HTL.

698 Supplementary note 1: Simulations of pulse-chase 699 experiments

700 To understand the conditions under which DELTA would provide accurate measurements of
701 protein lifetime, we turned to simulations. We investigated possible sources of error, including dye
702 pharmacokinetics, amount of dye injected, variability in dye clearance, and pulse-chase interval
703 (ΔT). While the dye amount and ΔT are experimentally controlled, a crucial unknown is the
704 pharmacokinetics of the HaloTag ligand (HTL) dyes. For example, if the free HTL dye is not
705 cleared quickly, new HT-protein could be labeled by the pulse dye instead of the chase dye, thus
706 biasing the measurement to longer lifetimes.

707 We first measured the rate of dye clearance in the brains of wild-type mice. HTL JF dyes were
708 injected into the retroorbital sinus (**Extended Data Figure 2a; Methods**)⁵⁹ and imaging was
709 subsequently performed with a wide-field fluorescence microscope⁵⁸ through a cranial glass
710 window^{60,61}, for up to 24 hours after injection (**Extended Data Fig. 2b** for example imaging
711 session). Dye concentration decayed with a dominant fast component (14 ± 2 min), in addition to a
712 slower component (197 ± 37 min; **Extended Data Fig. 2c-d** and **Supplementary Table 1**; fast/slow
713 ratio: 1.7 ± 0.3 ; $n=12$; corresponding to a geometric average dye lifetime of 82 min). We
714 incorporated dye clearance kinetics into our model (**Extended Data Fig. 1a**). Dye in a “Brain”
715 compartment could either bind to the free protein-HT, directly clear out (corresponding to the fast
716 component), or partition into a second compartment (“Lipids” corresponding to the slow
717 component). As we measured dye clearance 12 times, and it had some variability in its clearance
718 kinetics, we could fit model parameters to each *in vivo* dye clearance experiment’s data (**Extended**
719 **Data Fig. 1b**). This leads to 12 model variants that are different in the three parameters that impact
720 dye clearance kinetics (Lipids compartment volume, fast clearance rate constant, and Brain to
721 Lipids equilibrium constant).

722 Because each HT-protein exists at different concentrations *in vivo*, it is difficult to inject the
723 precise amount of HTL JF dye to saturate the HT-protein. Should we aim to under-saturate or
724 provide dye excess? To address this question, we varied the ratio of dye to protein-HT target and
725 estimated the error in estimating protein turnover for a broad range of average protein lifetimes
726 (**Fig. 1b**). The dependence of the error on protein lifetime has three regimes. First, under saturated

727 labeling (**Fig. 1b** - dye/protein ratio < 1) has large errors regardless of protein lifetime. Second is
728 dye saturating (**Fig. 1b** - dye/protein ratio > 1) where the protein lifetime is short, and the errors
729 are large and mirror the under-saturating regime. Third, where we have both dye saturation and
730 long protein lifetime (>40h), here error is quite small. The main factor contributing to this effect
731 in the dye saturating regime is the time of dye clearance relative to the measurement time. As the
732 dye clears in an hour (**Extended Data Fig. 2**), the relative contribution to the error increases for
733 shorter lived proteins, which entail shorter pulse-chase intervals. Specifically, in the saturating
734 regime (>1.2 dye/protein ratio), dye clearance kinetics would bias the lifetime estimate towards
735 longer lifetimes, as slower dye clearance delays the onset of unlabeled protein production (see
736 arrow in **Fig. 1a**). This would increase P at the expense of C and would inflate the lifetime
737 estimation. In a noncomplete saturation regime (1-1.2 dye/protein ratio) during dye injection, more
738 protein is made for shorter-lived proteins, thus more dye is consumed during the dye clearing
739 window, this reduces the error introduced by dye excess. These competing factors create a
740 nonmonotonic relationship between the estimation error and the protein lifetime (**Extended Data**
741 **Fig. 1e**). Thus, two of the necessary conditions for reliably measuring the protein lifetime using
742 DELTA is saturation of the target protein with pulse dye injection while avoiding very short-lived
743 proteins. This is not very limiting as even immediate early gene proteins have hours long lifetimes².

744 We next measured the effect of model variants (combination of the Lipids compartment
745 volume, fast dye clearance rate, and Brain to Lipids equilibrium constant) on the estimation of
746 protein lifetime across a wide range of simulated lifetimes (**Extended Data Fig. 1c**). These
747 variants capture the uncontrolled variable corresponding to the variance in dye clearance that
748 would lead to variance (not bias) in our measurements. Using a pulse-chase interval equal to the
749 average protein lifetime ($\Delta T = \tau$) and a pulse dye amount in the saturating regime (1.2 dye/protein
750 ratio), we compared the estimated lifetime with the true one and found a good correspondence
751 (**Extended Data Fig. 1d**; $r^2=0.9996$ $n=84$, 12 variants \times 6 lifetimes). We noticed a nonmonotonic
752 relationship between bias and protein lifetime (Mean of error as defined above; **Extended Data**
753 **Fig. 1e** – left panel), as expected from the single-model variant simulation. Of note, while bias
754 would lead to an overestimation of the lifetime, it does not affect our ability to make comparisons
755 between brain regions in the same animal or between animals. Dye injection variability (Standard
756 deviation of Error; **Extended Data Fig. 1e** – right) would affect our ability to compare the lifetime

757 and has a nonmonotonic shape as well. However, in all cases these were small (less than 5%). We
758 then turn to estimating the effects of the pulse-chase interval (T) on the lifetime estimation error.
759 While the protein decayed exponentially (**Extended Data Fig. 1f** – green line), error decreased
760 faster as function of ΔT (**Extended Data Fig. 1f** – red line). This decay of error again supported
761 the idea that the main bias in this measurement is the relative time of dye clearance.

762 Last, we used modeling to compared our pulse-chase method to measurements using pulse
763 only³⁰. Here, we assumed the same lifetime (100 h), a perfect measurement of the pulse, and the
764 only variability would come from the expression of the protein. We assumed that different animals
765 would have on average 1 AU and varied the width of the distribution (uniform from ± 0.05 to ± 0.45
766 AU; **Extended Data Fig. 1g** – y axis). The range was selected conservatively according to the
767 values seen in mass spectroscopy (MS) for biological replicates. That is, the variability of the
768 amount of protein between animals^{62,63}. This variability could be reduced by averaging over
769 multiple animals. We calculated the error in estimating the lifetime as a function of the number of
770 animals used (**Extended Data Fig. 1g – x axis**; 4-72). These were distributed over four time points
771 (0, 10, 30, 100h) in which a single exponential decay was fitted after averaging across animals
772 (average #animals per time point of 1, 3, 6, 12 animals). The estimation error increased with
773 increasing protein expression variability and decreased with averaging over animals, as expected.
774 However, for most operating regimes of DELTA, there would be no error under these conditions,
775 as the fraction pulse calculation normalizes for the total protein amount.

776 Supplementary note 2: Screening for bioavailable 777 JF dyes

778 We screened HaloTag ligand (HTL) dyes that would be able to saturate abundant proteins in
779 the brains of mice by measuring bioavailability in the brain (**Extended Data Fig. 3**). Our target
780 was a green fluorescent protein tagged with HT (GFP-HT). AAV-PHP.eB expressing GFP-HT
781 was introduced by retroorbital injection⁶⁴, which led to sparse and brain-wide expression
782 (**Extended Data Fig. 3a**, **Supplementary Figs. 1,2**). Four weeks after viral transduction, HTL
783 dyes (**Supplementary Table 2**) were injected retroorbitally (Methods; **Supplementary Note 3**).

784 After 12-18 hours, we perfused the brain with a spectrally orthogonal dye. Given that GFP has a
785 lifetime of several days⁶⁵, FP is a measure of the dye's ability to saturate the protein-HT target.

786 The brain was sectioned coronally and imaged with a confocal slide scanner (methods).
787 Example images from an injection show the target protein in green (**Extended Data Fig. 3b**, left
788 panel), the *in vivo* delivered dye in red (JF₆₆₉-HTL; **Extended Data Fig. 3b**, middle panel) and
789 perfusion dye (JF₅₈₅-HTL; **Extended Data Fig. 3b**, right panel) in orange (**Supplementary Fig.**
790 **1** for more example injections). This procedure enabled analysis of single cells (**Methods**;
791 **Extended Data Fig. 3c**). The fluorescence values of individual cells were background corrected
792 and converted to dye concentration using calibration curves (**Supplementary Fig. 3a**). These
793 calibrations are needed to determine the total protein amount (P + C) correctly as the illumination
794 and detection sensitivities of the dyes vary.

795 We identified two dyes that saturated GFP-HT in the brain: JF₆₆₉-HTL (n=10, FP: 0.64 +-
796 0.16) and JF₅₅₂-HTL (n=7; FP: 0.51 +- 0.17). These dyes were significantly better than the other
797 dyes tested (**Extended Data Fig. 3d** 1-way ANOVA F=35.96, df=2, p =3.2e-08; post-hoc JF₆₆₉
798 vs. Others p=3.8e-8, JF₅₅₂ vs. others p=2.7e-5). Variability in GFP-HT expression did not account
799 for the variability in these dyes, as the number of detected cells or virus signals did not correlate
800 with FP (**Supplementary Fig. 3b-c**; Virus signal correlation: $r^2=0.02$, p=0.45, n=28; #cells
801 correlation: $r^2=0.005$, p=0.717, n=28). Another check we can do is to look at the correlation
802 between FP and the GFP/P ratio. We expect that a higher FP would correlate with a higher P/GFP
803 ratio. Here, a large difference would implicate issues with the perfusion and complete saturation
804 of the GFP-HT target with the chase. However, FP did correlate with the P/GFP ratio as expected
805 if the perfusion dye saturates the remaining GFP-HT proteins (**Supplementary Fig. 3d**).

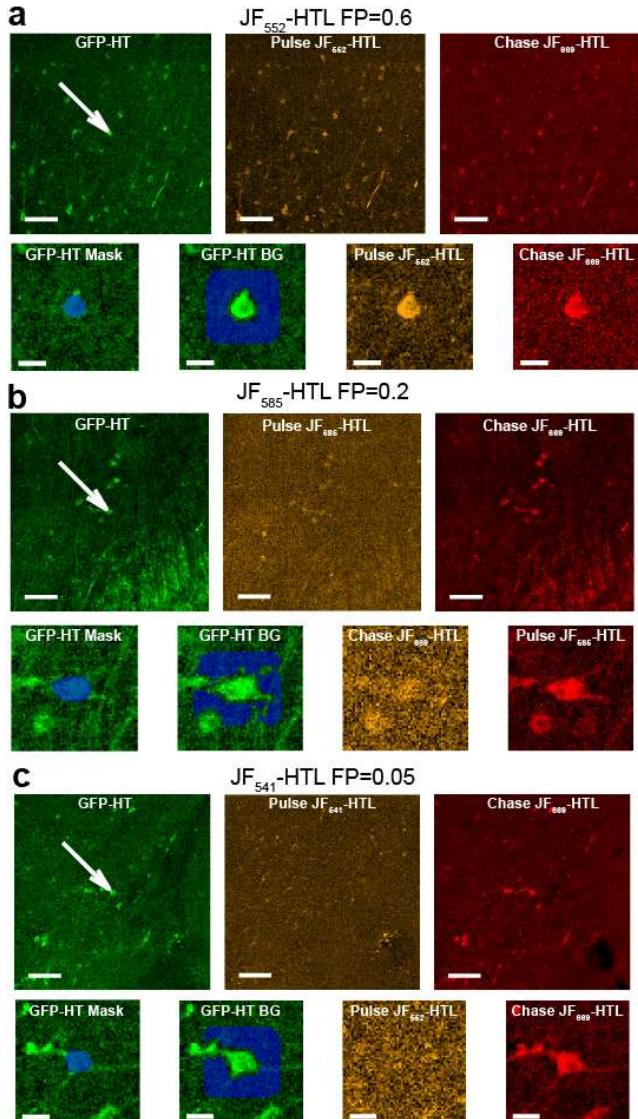
806 We next quantified the amount of variability across brain regions in the delivery of the dye
807 under these under-saturation conditions. We therefore looked at individual cells along all coronal
808 sections imaged (examples in **Supplementary Figures 2a, b**). These injections produced low
809 variability along the AP axis (**Supplementary Fig. 2c**) as indicated by normalizing the average
810 FP in the front of the brain and the lack of any trend toward the back of the brain (**Supplementary**
811 **Fig. 2d**). Looking at individual coronal sections (**Supplementary Fig. 2e**), we see a low CV for
812 each slice for our bioavailable dyes (**Supplementary Fig. 2f**). This indicates low variability in dye

813 delivery across the brain for JF₆₆₉-HTL and JF552-HTL, which would help uncover variability in
814 protein lifetime across brain regions.

815 **Supplementary note 3: Injection and formulation for**
816 **bioavailability of JF dyes**

817 JF-HTL dyes are a key reagent for DELTA. We characterize JF-HTL dyes in terms of infusion
818 kinetics, formulation, solubility, and the brain's reaction in terms of inflammation. We first wanted
819 to understand whether the injection rate can affect the dye's ability to saturate proteins in the brain.
820 However, due to the retroorbital injection procedure, we were unable to capture the dye dynamics
821 during injection as the mouse headbar physically interfered with the retroorbital injection.
822 Additionally, it is difficult to precisely control the rate of delivery in retroorbital injections, as they
823 are performed manually. To perform these types of experiments we needed a precise i.v. dye
824 delivery method that would enable simultaneous brain imaging. We choose to use carotid artery
825 perfusion to deliver JF₆₆₉-HTL at different rates during continuous imaging through a cranial
826 window (Methods; **Supplementary Fig. 4a**). In these experiments, if doubling the rate of dye
827 delivery exactly doubles the rate of dye increase in the brain, this would indicate that the dye
828 clearance is linearly proportional to the dye injection rate. This would tell us that the dynamics of
829 dye injection would not dramatically change the total amount of dye delivered to the brain.
830 However, if the slope of dye accumulation in the brain increases more than twofold, it would
831 indicate a saturation of the dye clearance mechanism. This would favor faster dye injections
832 leading to higher peak concentrations and total dye delivery to the brain. In the first mouse
833 (**Supplementary Fig. 4b**) we perfused dye at 20ul/min (**Supplementary Movie 1**) and 40ul/min
834 (**Supplementary Movie 2**) and observed a more than twofold increase in the slope of dye
835 accumulation in the brain (1.9 to 6.3 AU/min). We repeated this experiment with another animal
836 (**Supplementary Fig. 4c**) and saw similar over two-fold increases in slope (**Supplementary Fig.**
837 **4d**). We validated our intuition about the effects of a constant clearing rate using simulations
838 (methods). Using the same amount of dye (20AU) and a constant clearance rate (1AU/dt), we
839 simulated different injection rates (2-10AU/dt). We observed saturation further away from the
840 injection center for faster injection rates (**Supplementary Fig. 4e**). These results favor an injection
841 method that delivers the dye faster given a constrained amount of dye.

842 To understand our dye constraints, we checked the dye solubility. We validated that our JF-
843 HTL dyes are soluble at our desired concentration (1mM; **Methods**) and stable over time. We used
844 the published formulation for injection⁵⁸ adding 20ul DMSO, 20ul Pluronic F127 and 60ul PBS.
845 If we are near the solubility limit, the amount of dye post-resuspension would decrease. This was
846 not the case for all dyes injected *in vivo* (**Supplementary Fig. 5a**; 2way ANOV [Dye x Time]
847 p<0.05; Time: F = 0.66, DFn=3, DFd=20, p=0.5835; Dye: F=149.21, DFn=4, DFd=20, p<0.0001;
848 Interaction: F=1, DFn=12, DFd=20, p=0.4794). The only dye that did not reach our solubility goal
849 was JF585-HTL and was not used *in vivo*. It was used during perfusion at a much lower
850 concentration (1uM) well below the solubility limit (~250uM).

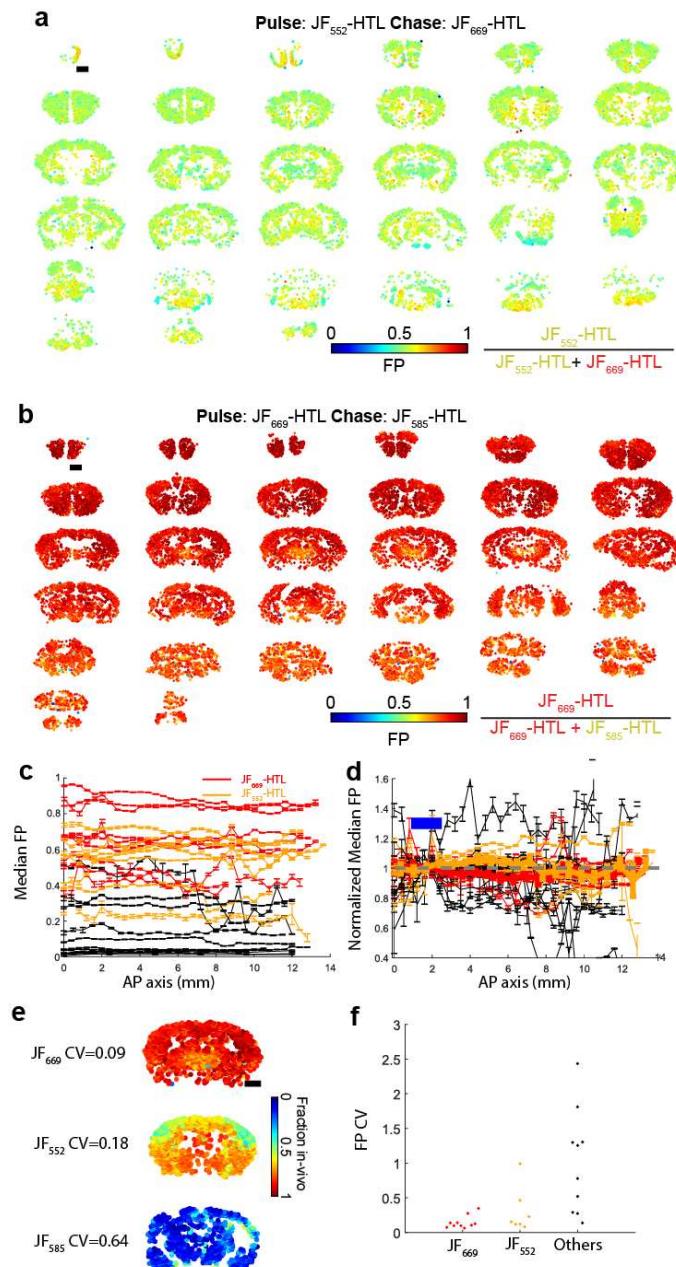

851 We then wanted to know if the ratio of DMSO to Pluronic F127 (1:1 or 20ul/20ul) was optimal
852 for dye availability. We tested both increasing and reducing the ratio, but the original ratio was the
853 best (**Supplementary Fig. 5b**). As we were injecting 40-80ul (~2-4g/kg) of DMSO which is lower
854 than the LD50 (>10g/kg)⁶⁶ but not a small amount. We tried to replace DMSO with Captisol as
855 cosolvent and evaluated both the solubility and the *in vivo* injections. We saw mixed effects of
856 dyes and formulations by looking at solubility after a 3-day incubation with DMSO, Captisol and
857 a combination of Pluronic F127 and Captisol (**Supplementary Fig. 5c**; 2-way ANOVA,
858 interaction: F = 13.31. DFn = 6, p<0.0001; Dye: F = 67.35. DFn = 3, p<0.0001; Formulation: F =
859 46.91. DFn=2, p<0.0001). We tested both JF669 and JFx673 using retroorbital injections with the
860 different formulations. As expected from the solubility data, JF669 in other formulations was less
861 bioavailable (**Supplementary Fig. 5d** – left column). However, although JFx673 was soluble in all
862 formulations, it was still less bioavailable in the brain using Captisol (**Supplementary Fig. 5d** –
863 Right column).

864 Lastly, we validated that there were no signs of brain inflammation using GFAP and Iba1
865 markers that we validated with a cortically lesioned animal (**Supplementary Fig. 5e** - panel i) and
866 a naïve animal (**Supplementary Fig. 5e** - panel ii). Both retro-orbital virus injections
867 (**Supplementary Fig. 5e** - panel iii) and our chosen dye injection formulation (**Supplementary**
868 **Fig. 5e** - panel iv) were as the naïve animal. This indicates that there is no major breach of the
869 brain blood barrier, as it is known to induce this type of inflammation⁶⁷.

870

871 **Supplementary Figures**

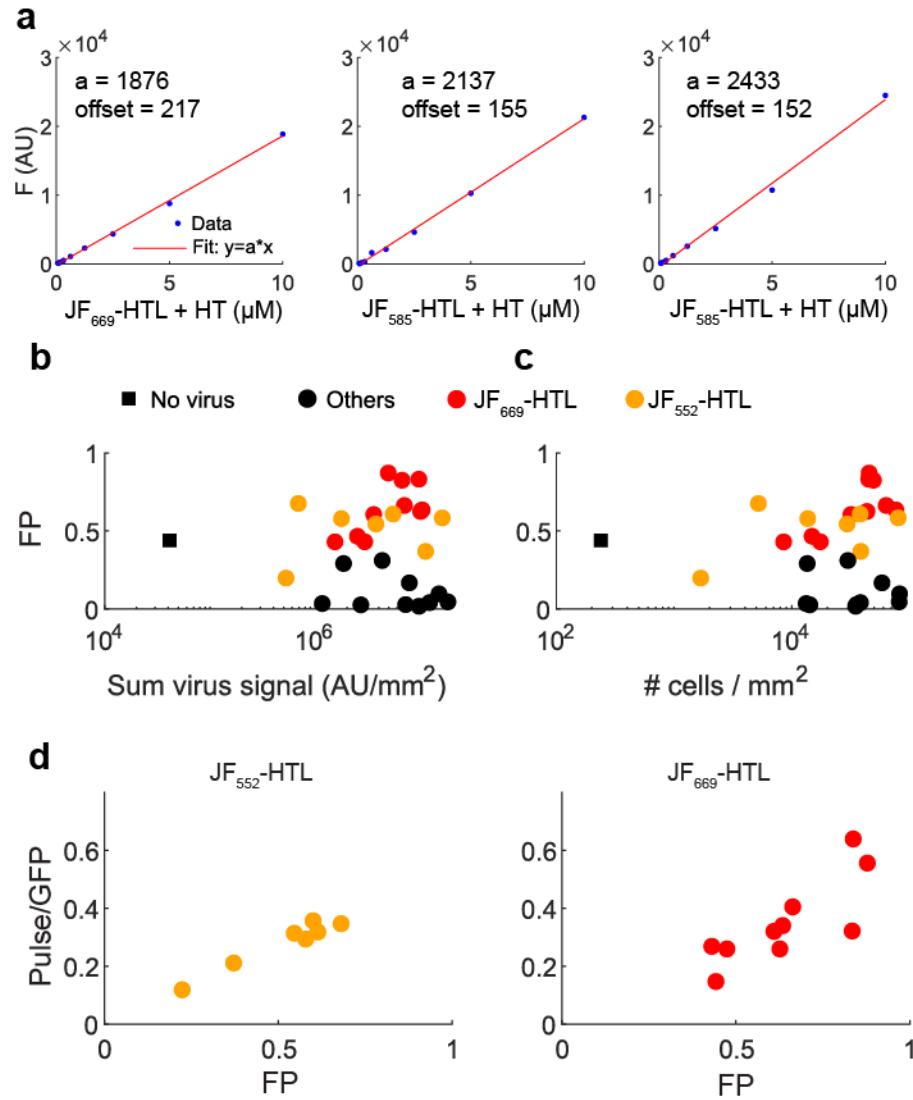
872 **Supplementary Figure 1 – Additional raw data from dye**
873 **screening**



874

875 **a**, Example coronal section imaged from an animal 3 weeks after viral injection of GFP-HT
876 (top left panel) injected *in vivo* with JF₅₅₂-HTL (top middle panel) and perfused with JF₆₆₉-HTL
877 (top right panel). The bottom panels show an example cell (Arrow in the top left panel) overlaid
878 with the mask used to extract signal (first bottom panel), a local background (second bottom panel),
879 and images of the *in vivo* injected dye (third bottom panel) and perfused dye (fourth bottom panel).

880 FP is 0.6 in this example. **b**, same as (a) for JF₅₈₅-HTL with FP=0.2. **c**, same as (a) for JF₅₄₁-HTL
881 with FP=0.05.

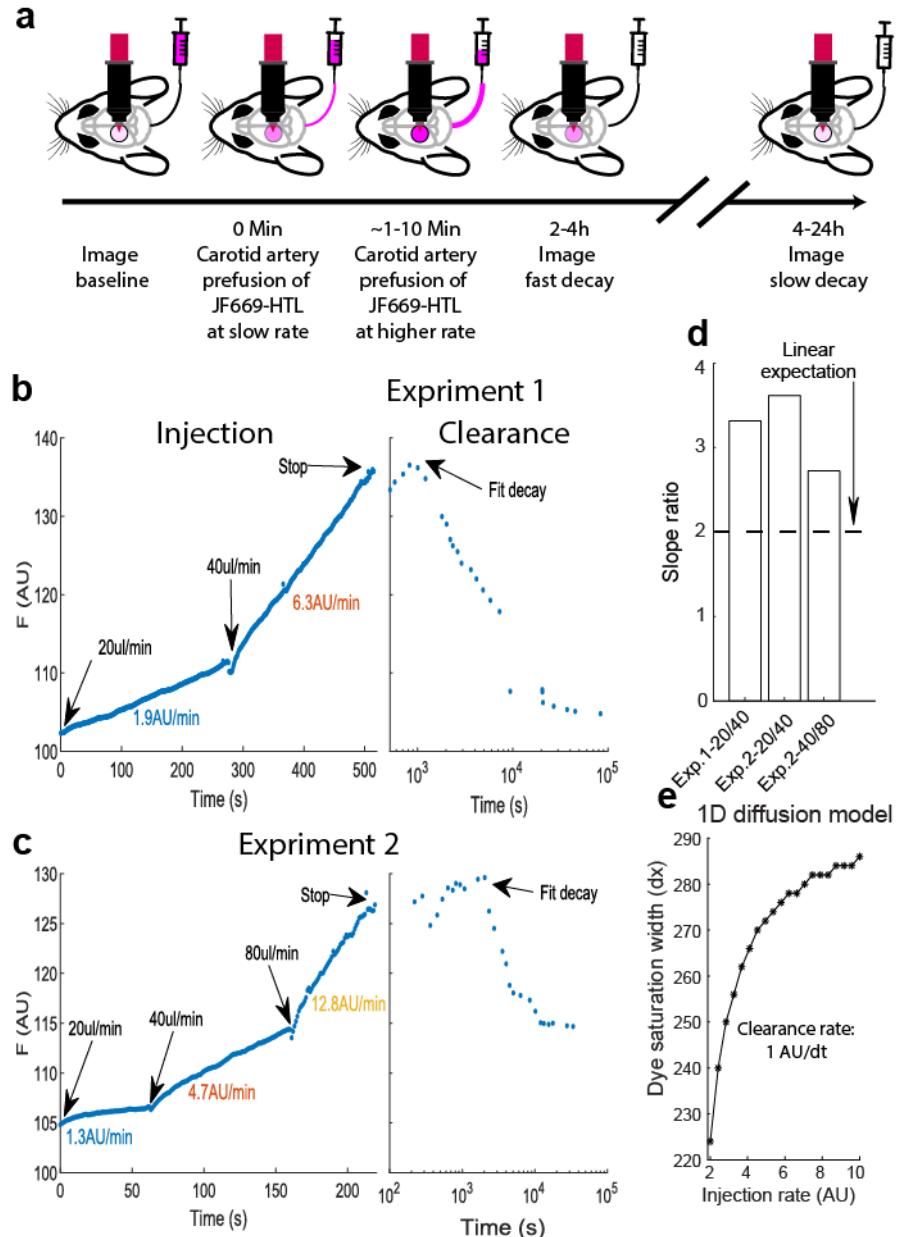

882 **Supplementary Figure 2 – Brain dye capture was uniform across**
883 **the brain**

884

885 **a**, Coronal slices of GFP-HT injected mouse brain after JF₅₅₂-HTL dye injections. Each dot is
886 a cell colored by FP. The scale bar is 1mm. **b**, same as (a) for JF₆₆₉-HTL **c**, Median FP as a function
887 of AP position (of coronal slices). JF₆₆₉-HTL is in red and JF₅₅₂ is in orange. Error bars are
888 standard errors. **d**, After normalization (Mean of the median fraction in vivo under the blue line is
889 set to 1), there is no significant deviation from 1 suggesting uniformity of dye distribution in this
890 axis (One-way ANOVA, df=19, F=1.46, p=0.0913). **e**, For each coronal section of each animal, a
891 coefficient of variation (CV) was calculated. Three examples of coronal sections are shown. **F**, CV
892 of FP for JF₆₆₉-HTL injections (Red, CV=0.15±0.03, n=10), JF₅₅₂-HTL (Orange, CV=0.31±0.12,
893 n=7) and the other dyes (Black, CV=2.2±0.81, n=14).

894 **Supplementary Figure 3 – Calibration and validation of GFP-HT**
895 **based JF dye screening *in vivo***

896

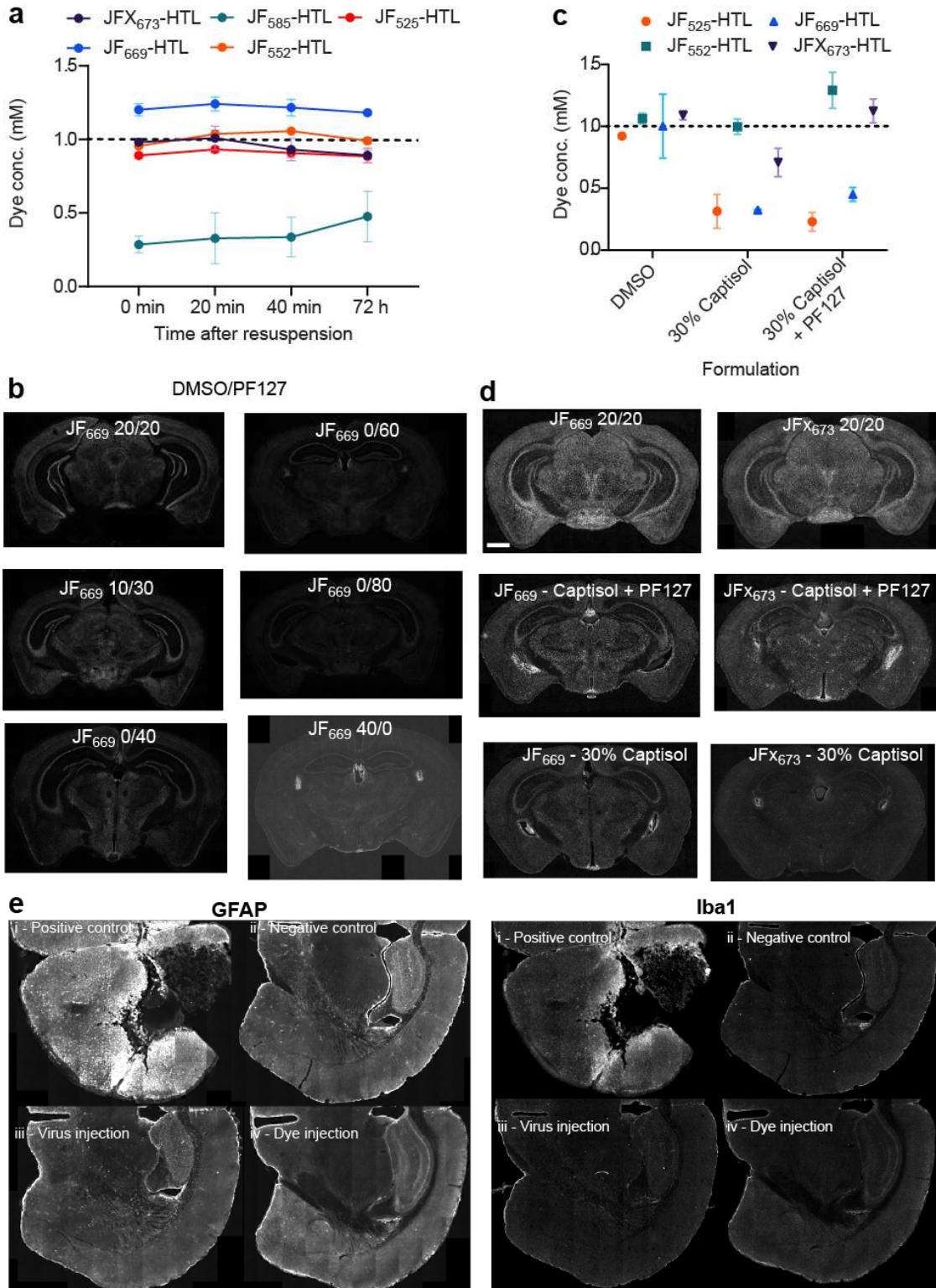

897 **a**, Purified HT was added at saturation to a HTL JF dye (left: JF_{669} -HTL, middle: JF_{585} -HTL,
898 right: JF_{552} -HTL) in a 8 well coverslip wells at 20 μL /well with the following concentrations (μM):
899 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.15625, 0. All 8 wells were imaged under the same conditions as
900 the fixed tissue slides (far red channel for JF_{669} and red channel for JF_{552} and JF_{585}). The offset at
901 zero was subtracted and is reported in each panel. A linear slope (a-red line) was fitted to the data
902 (blue circles) without an intercept term (JF_{669} -HTL: $R^2=0.998$; JF_{585} -HTL: $R^2=0.9982$; JF_{552} -HTL
903 $R^2=0.9963$). This calibration covers 20 out of the 30 animals used and a naive calibration was used

904 for the rest of the dyes (150 offset, 2000 slope). **b**, Mean fraction in vivo is not correlated with the
905 sum of the virus signal per animal (Magenta is JF₆₆₉-HTL, red is JF₅₅₂-HTL, black is other dyes).
906 An animal that was not injected with a virus (Black square) has at least an order of magnitude less
907 summed fluorescence ($r^2=0.02$, $p=0.45$, $n=28$). **c**, Mean fraction in vivo is not correlated with the
908 number of cells detected per animal (normalized by the area of tissue imaged). An animal that was
909 not injected with a virus (Black square) has at least an order of magnitude less detected cells
910 ($r^2=0.005$, $p=0.717$, $n=28$). **d**, As the FP increases, so is the ratio between the pulse dye and GFP,
911 indicating that variability in the chase cannot explain the increases in FP (JF₅₅₂-HTL: $N=7$, $df=5$
912 $R^2=0.945$, $F=85.5$, $p=0.00025$; JF₆₆₉-HTL: $N=10$, $df=8$, $R^2=0.65$, $F=14.7$, $p=0.00495$).

913

914

915 **Supplementary Figure 4 – Injection pharmacokinetics of JF**
 916 **dyes**



917

918 **a**, Design of experiment to measure dye injection pharmacokinetics. Continues imaging was
 919 performed during carotid artery perfusion of JF669-HTL at different rates. **b**, Experiment 1 in which
 920 20 μ l/min and 40 μ l/min infusion rates were used. **c**, Same as (b) but with another animal with 20,
 921 40 and 80 μ l/min infusion rates. **d**, Slope ratios for all transitions in infusion rates. If clearance was
 922 proportional to the amount of dye injected, a slope ratio of 2 is expected. A slope ratio of > 2

923 implies sublinear clearance or saturation of clearance mechanisms. **e**, 1D diffusion model shows
924 an increase in the area of saturation (y-axis) with increasing dye injection rate (x-axis).

925 **Supplementary Figure 5 - Effects of JF dye formulation on**
926 **bioavailability and solubility**

928 **a**, Solubility of JF-HTL dyes using DMSO (20ul) Pluronic F127 (20ul) and PBS (60ul)
929 formulation over time. No significant decrease in solubility was observed and all *in vivo* dyes used
930 reached the intended solubility of 1mM **b**, Example coronal slices from MeCP2-HT animals
931 injected with different ratios of DMSO and Pluronic F127. The original 1:1 ratio was the best, as
932 shown by the brighter pulse dye staining. **c**, Different formulation then (a) to test the replacement
933 of DMSO (left) with Captisol (middle) or a combination of Captisol and Pluronic F127 (right). We
934 saw mixed effects on solubility, while some dyes retained (JFX₆₇₃-HTL) solubility, and some did
935 not (JF₆₆₉-HTL). **d**, Example coronal slices from MeCP2-HT animals injected with solutions from
936 (c). Both dyes that were less soluble with Captisol/Captisol and Pluronic F127 (JF₆₆₉ left) or those
937 that were as soluble (JF₆₇₃ right) were less bioavailable without DMSO. **e**, Immunohistochemistry
938 against GFAP (left) and Iba1(right) for 4 conditions, i-positive control: a cortical lesion. ii-
939 Negative control: Naive animal without any manipulation. iii-Virus injection: An animal was
940 injected with the GFP-HT virus and perfused 3 weeks after injection. iv-Dye injection: An animal
941 was injected with JF₆₆₉-HTL and perfused 24 h after injection. Both dye injection and virus
942 injection do not increase GFAP or Iba1 levels.

943

944 **Supplementary Table 1 – Animals and filters used for dye**
945 **clearance experiments**

ID	Date	Animal#	JF Dye	Obj.	Light source	Window
1	2019-03-22	444570	525	16x	1.5A Mightex 525	ALM
2	2019-03-25	439476	525	4x	1.5A Mightex 525	ALM
3	2019-03-26	439476	525	4x	1.5A Mightex 525	ALM
4	2019-03-28	434848	525	4x	3A Mightex 525	V1
5	2019-05-14	434848	552	20x	100% 565 coolLED	V1
6	2019-07-16	452088	669	4x	X-Cite 120	ALM
7	2019-07-17	452088	552	4x	5A Mightex 525	ALM
8	2019-07-18	452088	669	4x	X-Cite 120	ALM
9	2019-07-19	454527	552	20x	5A Mightex 525	ALM
10	2019-07-20	454814	669	4x	X-Cite 120	ALM
11	2019-07-22	452932	525	20x	5A Mightex 525	ALM

946

947

948 **Supplementary Table 2: Animals and dyes used for ex vivo**
 949 **screening**

Batch	Animal number	DOB	Virus injection date	HT-Expression	Dye injection	In-vivo dye	DMSO/PF127/ Saline/Injection (μl)	Chase dye	Mount	Fractio n in vivo
2	439359	8/14/18	11/26/18	GFP	1/3/19	JF669	20/20/200/200	JF585	5th	0.47
2	439360	8/14/18	11/26/18	GFP	1/3/19	JF669	20/20/400/200	JF585	5th	0.43
3	444182	10/16/18	1/3/19	GFP	2/5/19	None	virus only	None	1	hist.
3	444185	10/16/18	1/3/19	GFP	2/5/19	JF585	30/10/200/200	JF669	5th	0.04
3	444186	10/16/18	1/3/19	GFP	2/5/19	JF585	10/30/200/200	JF669	5th	0.17
5	447231	12/4/18	4/5/19	GFP	5/1/19	JF669	20/20/200/200	JF585	4th	0.64
5	447232	12/4/18	4/5/19	GFP	5/1/19	JF669 2x	20/20/200/200	JF585	4th	0.66
5	447233	12/4/18	4/5/19	GFP	5/1/19	JF669 2x	20/20/200/200	JF585	4th	0.61
5	447234	12/4/18	4/5/19	GFP	5/1/19	JF669	10/30/200/200	JF585	4th	0.82
5	447235	12/4/18	4/5/19	GFP	5/1/19	JF669	10/30/200/200	JF585	4th	0.43
6	445766	12/5/18	4/12/19	GFP	5/8/19	JF552 2x	20/20/200/200	JF669	4th	0.54
6	445767	12/5/18	4/12/19	GFP	5/8/19	JF552 2x	20/20/200/200	JF669	4th	0.58
6	445768	12/5/18	4/12/19	GFP	5/8/19	JF552	20/20/200/200	JF669	4th	0.68
6	447239	12/4/18	4/12/19	None	5/8/19	JF552	20/20/200/200	JF669	4th	hist.
6	447240	12/4/18	4/12/19	GFP	5/8/19	JF552 2x	20/20/200/200	JF669	4th	0.61
7	452036	2/19/19	4/19/19	GFP	5/18/19	JF541	20/20/200/200	JF669	24th	0.03
7	452037	2/19/19	4/19/19	GFP	5/18/19	JF559	20/20/200/200	JF669	24th	0.03
7	452038	2/19/19	4/19/19	GFP	5/18/19	JF533	20/20/200/200	JF669	24th	0.02
7	452039	2/19/19	4/19/19	GFP	5/18/19	JF552	20/20/200/200	JF669	4th	0.37
8	452031	2/19/19	4/26/19	GFP	5/22/19	JF669	20/20/200/200	JF585	4th	0.87
8	452032	2/19/19	4/26/19	GFP	5/22/19	JFX612	20/20/200/200	JF585	4th	0.31
8	452033	2/19/19	4/26/19	GFP	5/22/19	552	20/20/200/200	JF669	4th	0.58
8	452034	2/19/19	4/26/19	GFP	5/22/19	608	20/20/200/200	JF552	4th	0.29
8	452035	2/19/19	4/26/19	GFP	5/22/19	Jfx608	20/20/200/200	JF552	4th	0.1
10	451116	3/11/19	7/15/19	mKate2	8/12/19	525	20/20/200/200	JF669	4th	0.33
10	451119	3/11/19	7/15/19	mKate2	8/12/19	525	20/20/200/200	JF669	4th	0.04
11	458564	5/21/19	8/8/19	GFP	11/11/19	JF669	20/20/200/200	JF585	4th	0.83
11	458565	5/21/19	8/8/19	GFP	10/24/19	JF669	20/20/200/200	JF552	4th	0.63
11	458566	5/21/19	8/8/19	GFP	10/24/19	JF646Bio	20/20/200/200	JF552	4th	0.04
11	458567	5/21/19	8/8/19	GFP	11/11/19	JF552	20/20/200/200	JF669	4th	0.2
11	458568	5/21/19	8/8/19	GFP	10/24/19	JF570	20/20/200/200	JF669	4th	0.05
13	460147	7/13/19		MeCP2-F	1/15/20	JF669	40/0/60/100	JF585	24th	
13	460149	7/13/19		MeCP2-F	1/15/20	JF669	20/20/60/100	JF585	24th	
13	467293	6/1/19		MeCP2-M	1/15/20	JF669	40/0/60/100	JF585	24th	
13	467294	6/1/19		MeCP2-M	1/15/20	JF669	20/20/60/100	JF585	24th	
13	467295	6/1/19		MeCP2-M	1/15/20	JF669	40/0/60/100	JF585	24th	
13	467296	6/1/19		MeCP2-M	1/15/20	JF669	20/20/60/100	JF585	24th	
14	456996	6/1/19		MeCP2-F	2/10/20	JF669	20/20/60/100	JF585	24th	
14	456997	6/1/19		MeCP2-F	2/10/20	JF669	0/40/60/100	JF585	24th	
14	456998	6/1/19		MeCP2-F	2/10/20	JF669	10/30/60/100	JF585	24th	

14	456999	6/1/19		MeCP2-F	2/10/20	JF669	0/60/40/100	JF585	24th	
14	457000	6/1/19		MeCP2-F	2/10/20	JF669	0/80/20/100	JF585	24th	

950

951 **Supplementary Movies**

952 **Supplementary Movie 1** – Injection of dye at a slow rate (20 μ l/min). See Supplementary
953 Fig. 4 and methods for details.

954 **Supplementary Movie 2** – Injection of dye at a faster rate (40 μ l/min). See Supplementary
955 Fig. 4 and methods for details.

956 **Supplementary Movie 3** – Imaging single synapses in layer 1 of cortex using ExM and
957 Airyscan imaging. See Figure 2i and Methods for details.

958 **Supplementary Movie 4** – Imaging single synapses in CA3 subfield of the hippocampus
959 using ExM and Airyscan imaging. See Figure 2i and methods for details.