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Abstract
Single cell genomics is a powerful tool to distinguish altered cell states in disease tissue
samples, through joint analysis with healthy reference datasets. Collections of data from
healthy individuals are being integrated in cell atlases that provide a comprehensive view of
cellular phenotypes in a tissue. However, it remains unclear whether atlas datasets are
suitable references for disease-state identification, or whether matched control samples
should be employed, to minimise false discoveries driven by biological and technical
confounders. Here we quantitatively compare the use of atlas and control datasets as
references for identification of disease-associated cell states, on simulations and real
disease scRNA-seq datasets. We find that reliance on a single type of reference dataset
introduces false positives. Conversely, using an atlas dataset as reference for latent space
learning followed by differential analysis against a matched control dataset leads to precise
identification of disease-associated cell states. We show that, when an atlas dataset is
available, it is possible to reduce the number of control samples without increasing the rate
of false discoveries. Using a cell atlas of blood cells from 12 studies to contextualise data
from a case-control COVID-19 cohort, we sensitively detect cell states associated with
infection, and distinguish heterogeneous pathological cell states associated with distinct
clinical severities. Our analysis provides guiding principles for design of disease cohort
studies and efficient use of cell atlases within the Human Cell Atlas.

Introduction
High-dimensional tissue profiling of healthy and disease samples with single-cell genomics
enables the characterization of cellular phenotypes that are altered in disease (Lindeboom,
Regev and Teichmann, 2021). Precise identification of such phenotypes can yield new
mechanistic insights into pathogenesis, novel biomarkers and potential drug targets
(Reyfman et al., 2019; Velmeshev et al., 2019; Adams et al., 2020; Elmentaite et al., 2020;
Reichart et al., 2022; Richard K. Perez et al., 2022), with drugs against targets first identified
using single-cell analysis starting to enter clinical trials (Eisenstein, 2022).
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To identify altered cell states, joint analysis of single-cell RNA-sequencing (scRNA-seq) data
of diseased tissues and a healthy reference is the standard practice. Typically, cellular
profiles from different conditions are first integrated into a common phenotypic latent space,
matching common cell types and minimising technical differences (Hao et al., 2021;
Lotfollahi et al., 2022). Then, healthy and diseased cells in matched cell states are
contrasted in differential analysis, to identify differences in gene expression patterns or in
cellular composition (Burkhardt et al., 2021; Skinnider et al., 2021; Zhao et al., 2021; Dann et
al., 2022). While the choice of method used for both steps can be impactful, appropriate
selection of the healthy reference dataset is crucial for precise identification of true
disease-associated states.

The profiling of collections of healthy tissue samples by the research community has
enabled the generation of large, harmonised collections of data from multiple organs, leading
to the rapid expansion of the Human Cell Atlas (http://data.humancellatlas.org/). Indeed, for
certain tissues (e.g., lung and blood) there now exist millions of cells profiled using a variety
of technologies from hundreds to thousands of individuals. Computational analyses allow
these datasets to be meaningfully integrated, thus providing a comprehensive view of cell
phenotypes in a tissue, while effectively minimising variation driven by experimental
protocols. Nevertheless, the biological and technical characteristics of the samples included
in an atlas might differ greatly from those of the disease cohort of interest. This could lead to
false discoveries in differential analysis, if confounding factors are unknown or not
appropriately handled in statistical testing.

Instead of using externally-generated atlases as a reference against which to compare
disease samples, a matched control dataset could be used, where healthy tissue samples
are selected to ‘match’ the disease samples in terms of cohort size, demographics, sample
collection and processing protocols (ideally with healthy and diseased samples processed in
parallel). This choice of reference minimises the risk of false positives driven by confounding
effects. However, collection of a large number of healthy control samples is not always
practical or possible, especially in human studies. Moreover, using a relatively small number
of samples for the integration step increases the risk of missing rare cell states, and
over-interpreting sample-specific noise. Understanding how the features of the reference
dataset affect the ability to identify disease-associated cell states will guide effective data
re-use, design of disease studies, and future cell atlasing efforts.

Here we compare the use of atlas and control datasets as references for identification of
disease-associated cell states, showing that reliance on a single type of reference dataset
introduces false positives. In contrast, combined use of an atlas dataset as reference for
latent embedding and of a control dataset as reference for differential analysis leads to
precise and sensitive identification of putative disease cell states, with important implications
for both experimental design and utilisation of single-cell disease cohorts.
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Results

Reference design for identification of disease-associated cell states
To optimize the selection of a reference dataset for identification of disease-associated cell
states, we considered the attributes of the disease and reference datasets that are
commonly jointly analysed in scRNA-seq studies (figure 1A). Throughout this study we use
the term “cell state” to define a group of cells that are more transcriptionally similar to each
other than to other cells in the same tissue - in practice a cell state might represent a
neighbourhood of cells, the output of a clustering algorithm or cell type annotation. In a
disease dataset, biological samples typically originate from tens of individuals from a
relatively homogeneous population (e.g. recruited from the same hospital), the same
experimental protocol is used across samples for dissociation, library prep and sequencing
(or experiments are designed to minimise confounding with cohort-specific variables). We
define a healthy reference dataset as a control if it matches the disease dataset in terms of
cohort characteristics and experimental protocols. We define a reference dataset as an atlas
if it aggregates data from hundreds to thousands of individuals from multiple cohorts, profiled
with a variety of experimental protocols. Typically, such integrated datasets capture a larger
variety of healthy cell states compared to smaller cohorts.

We consider the following workflow to identify disease-associated cell states (figure 1B).
First, a dimensionality reduction model is trained on the dataset from healthy tissues
(embedding reference dataset), to minimise batch effects while learning a latent space
representative of cellular phenotypes in the tissue. Then, the model trained on the
embedding reference is used to map the query dataset, including the disease samples, to
the same latent space using transfer learning (TL) (Hao et al., 2021; Lotfollahi et al., 2022).
Finally, differential analysis comparing cells between disease samples and healthy samples
(differential analysis reference) is used to distinguish disease-associated states. With this
workflow, we identify three alternatives for selection of a reference dataset (reference
design) (figure 1C): i) the atlas reference design (AR design) or ii) the control reference
design (CR design), where either is used as embedding reference and as differential
analysis reference, and iii) a design where an atlas and a control dataset are used in
different steps of the workflow (ACR design). In this analytical design, the atlas dataset is
used as the embedding reference; subsequently, both the disease and the control datasets
are mapped to the same latent space; finally, differential analysis is performed contrasting
the disease dataset to the control dataset only.

In the following sections, we quantitatively assess the ability of these three designs
(illustrated in Fig 1C) to identify disease-specific cell states in simulations and real data.
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Figure 1: Using healthy reference datasets to discover disease-associated cell states.
(A) Schematic of attributes of disease, control and atlas datasets, with regards to
population-level variation, experimental protocols, and heterogeneity of cell states captured.
(B) Schematic of analysis workflow to detect disease-associated cell states: a dimensionality
reduction model is trained on a healthy reference dataset (step 1), then the query dataset,
including the disease dataset, is mapped to the reference model with transfer learning (step
2), finally differential analysis is performed to contrast matched cell states from healthy and
disease samples. (C) Schematic of reference design options tested in this study, following
the workflow in (B): using the atlas dataset as reference (light blue), the control dataset as
reference (dark blue) or both.

Simulations show precise detection of out-of-reference cell states with
combined use of atlas and control datasets
To compare reference designs in a scenario with ground-truth, we simulated the attributes of
atlas, control and disease datasets by splitting scRNA-seq data from real studies (figure 2A).
We collected publicly available data from 13 studies that profiled healthy peripheral blood
mononuclear cells (PBMCs), comprising profiles from 1248 donors, which we harmonised to
obtain a consistent cell type annotation (see Methods). We select cells from one study (29
donors) and randomly split the donors to simulate the disease dataset (16 donors) and the
control dataset (13 donors). Using different donors from the same study ensures that cohort
demographics and experimental protocols are matched between disease and control
datasets, while donor and library effects present in real data are maintained. The cells from
the 12 remaining studies (1219 donors) form the atlas dataset. To simulate the presence of a
cell population specific to the disease dataset - which we define as an out-of-reference
(OOR) state, we select an annotated cell type and remove cells with that label in the control
and atlas dataset. Overall, we tested the ability to identify 15 different cell types as the OOR
state.

We apply the following workflow to identify the OOR state: we learn a latent space
embedding on the reference of choice (atlas or control) using the scVI model (Lopez et al.,
2018) (figure 2B, left). Then, we use transfer learning with scArches (Lotfollahi et al., 2022)
to map the query dataset(s) to the trained scVI model. This places cells from the disease
and reference datasets in the same latent space, which captures common cell states
(figure 2B, centre). Of note, with the ACR design, the atlas dataset is used only to train the
latent embedding model, but after mapping with scArches only disease and control datasets
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are used for differential analysis. This reduces the computational burden of handling a
dataset of hundreds of thousands of cells. Finally, we use neighbourhood-level differential
abundance (DA) testing with Milo (Dann et al., 2022) to identify cell states enriched in cells
from the disease dataset (Figure 2B, right), where neighbourhoods with SpatialFDR < 10%
and a log-Fold Change (logFC) in abundance > 0 are defined as predicted OOR cell states.

Across simulations with different OOR states, we found that combining the use of the atlas
and control dataset (ACR design) led to sensitive detection of neighbourhoods with a high
fraction of OOR cells (Figure 2C-D, suppl. figure 1). Conversely the AR design led to an
inflated number of false positives, where significant enrichment was also detected when the
fraction of unseen cells is low or 0. Using only the control dataset led to more balanced
logFCs, but still a higher false positive rate compared to the ACR design. Only the ACR
design maintained FDR control across simulations (i.e. it rarely identifies enriched
neighbourhoods with a small fraction of unseen cells) (Figure 2D). The ACR design also
performs better when using just the logFC as a metric to prioritize neighbourhoods
containing OOR cells, regardless of the p-value, by quantifying the area under the
precision-recall curve (AUPRC) (Figure 2D, right). The overall variance in sensitivity across
different simulations is mostly explained by the number of cells in the OOR state
(suppl. figure 2). Notably, we found no significant difference in the quality of integration with
different designs, in terms of conservation of cell types and batch removal (suppl. figure 3).

Studies that use atlas datasets to identify disease-associated states (Hao et al., 2021;
Lotfollahi et al., 2022, Sikkema et al. 2022) often omit differential testing and define OOR
cells using two criteria. Firstly, OOR cells are expected to segregate from atlas cells in the
latent space. In our simulations the OOR cell state is not consistently distinguished by
clustering or by distance to reference cells in the latent space (figure 2B, suppl. figure 4).
Secondly, different cell-level metrics for query-to-reference mapping quality are used to flag
OOR cells, such as reconstruction error or uncertainty over a cell type classifier trained on
the atlas. The assumption is that, if the disease-specific cell state was not seen during
training of the dimensionality reduction model, mapping quality metrics should be low. In our
hands, mapping quality metrics failed to distinguish ground-truth OOR cells (Suppl. figure
5A) or neighbourhoods with high fraction of OOR cells (Suppl. figure 5B). When using an
ACR design, we could increase the sensitivity by prioritising neighbourhoods where the
mapping quality was noticeably worse for the disease dataset cells compared to the control
dataset cells (suppl. figure 5C). However, overall we found that using mapping quality
metrics to identify OOR populations performed significantly worse than using the logFC
estimated from differential analysis.

We tested whether using the healthy atlas in the ACR design reduces the number of control
donors needed for detection of disease-specific states. Specifically, we repeated the
simulations contrasting cells in a pseudo-disease dataset of 7 donors with a control dataset
of increasing numbers of donors (from 3 to 12). We found that across simulations with
different OOR cell populations, the true positive rate and especially the false discovery rate
varied with the number of control donors with the CR design (Figure 2E). In contrast,
OOR-detection outcomes were only marginally affected by the number of control donors
when the ACR reference design was used, suggesting that the ACR design can minimise
the number of independent control samples required. We also tested how OOR state
detection is affected by the size of the atlas dataset used. We expect that if certain normal
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cell states are undersampled in the atlas dataset, these states might be wrongly predicted to
be out-of-reference. We measured the rate of false positives with AR and ACR design when
including an increasing number of PBMC studies in the atlas dataset, from 1 to 12 studies,
ordered by number of cells in the study (see Methods). While for both designs sensitivity was
significantly decreased when using just 1 or 2 studies in the atlas dataset, we observed that
the false positive rate increased with smaller atlas datasets with AR design. Conversely
almost no false positives were called with ACR design, even with the smallest atlas dataset
(suppl. figure 6).

In summary, combining the use of an atlas dataset and of a control dataset for identification
of disease-specific cell states significantly reduced the rate of false discoveries compared to
using only an atlas or only a control dataset, and led to robust detection of putative disease
states, even with a varying number of samples in the control or the atlas dataset.

Matched controls allow the most sensitive out-of-reference detection
Our results indicate that mapping matched pseudo-disease and control datasets to an atlas
dataset enhances the sensitivity to detect OOR states. However in practice there are cases
where collecting matched control samples is especially challenging (e.g. brain tumour
studies, or studies of osteosarcoma). Therefore, we tested whether selecting a subset of
samples from the atlas to use as control dataset in ACR design performed as well as using
matched control samples. Specifically, we run the disease-state detection workflow with ACR
design defining as control dataset either (a) donors from the same study (matched control),
(b) a random subsample of donors from the atlas dataset (random control) or (c) a subset of
donors selected by similarity in cell abundances to the disease dataset donors (close
control) (suppl. figure 7A, see Methods). In all cases, the control donors are excluded from
the atlas dataset used for scVI training. We found that using the matched control always
outperformed subsampling from the atlas, and using the close control only marginally
reduced the FDR compared to random subsampling (suppl. figure 7B-C). While using any
type of control always outperformed differential analysis on the full atlas dataset, these
results highlight that comparison against a set of matched controls is always advantageous,
likely minimizing false positives driven by hidden confounding factors.

Mapping to a reference cell atlas improves detection of IFN-stimulated
states in COVID-19 patients
We next assessed the benefit of using a healthy atlas for identification of altered states in a
real disease cohort. Specifically, we applied our workflow to detect immune cells responding
to viral infection in blood from COVID-19 patients. We used a published dataset of single-cell
transcriptomes from PBMCs from 90 patients with varying severities of COVID-19 and 23
healthy volunteers (Stephenson et al., 2021). As atlas dataset, we used harmonised
scRNA-seq profiles from 12 studies that collected PBMCs from a total of 1219 healthy
individuals (figure 3A). We applied our workflow to identify disease-associated states, using
the healthy PBMC atlas for joint latent embedding (ACR design) or using only the COVID-19
and control datasets (CR design). Also in this case, the atlas dataset is used for scVI model
training, but only model weights are used for mapping with scArches and all downstream
analysis is performed solely on COVID-19 and control datasets.
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Figure 2: Combined use of atlas and control datasets as references for precise and
sensitive detection of out-of-reference cell states. (A) Schematic of the strategy used to
simulate ground-truth out-of-reference (OOR) cell states in real data from healthy human
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peripheral blood mononuclear cells (PBMCs), splitting in atlas dataset (513565 cells), control
dataset (5671 cells) and pseudo-disease dataset (7505 cells). We tested simulations
alternatively using 15 annotated cell states as OOR cell state. (B) Example outcome of
query-to-reference mapping and differential analysis with different reference designs: (left)
UMAP embedding of scVI latent space learnt on embedding reference dataset, points are
colored by cell type clusters (as in A) and the icons in the top left corner indicate the type of
embedding reference dataset used; (center) UMAP embedding of cells from differential
analysis reference and disease datasets on scVI latent space learnt from embedding
reference dataset, colored by type of dataset and to highlight (in pink) the OOR cell state;
(right) Milo neighbourhood graph visualisation of differential abundance testing results: each
point represents a neighbourhood, points are colored by the log-Fold Change (logFC) in cell
abundance between disease and reference cells. Only neighbourhoods where significant
enrichment in disease cells (10% SpatialFDR and log-Fold Change > 0) was detected are
colored. Points are positioned based on the coordinates in UMAP embedding of the
neighbourhood index cell, the size of points is proportional to the number of cells in the
neighbourhood. (C) Scatterplot of differential abundance log-Fold Change against fraction of
perturbation-specific cells for each neighbourhood for the simulation shown in C. Each plot
represents a different reference design. Colored points indicate neighbourhoods where
significant enrichment in disease cells (10% SpatialFDR and log-Fold Change > 0) was
detected. (D) Quantitative comparison of performance of reference designs in detection of
OOR cell states (neighbourhoods where the fraction of OOR cells is higher than 20% of the
maximum fraction for that simulation). To compare performance considering the logFC and
confidence (10% SpatialFDR), we measured the false discovery rate (FDR), false positive
rate (FPR) and true positive rate (TPR). To compare performance using logFC only as a
metric for prioritization, we measure the Area Under the Precision-Recall Curve (AUPRC).
Points represent simulations with different OOR states. Tests on the same simulated data
are connected. (E) Robustness to size of control cohort with ACR and CR designs: mean
true positive rate (TPR) and false discovery rate (FDR) for simulations with increasing
number of donors in the control dataset (x-axis), using atlas to control reference design
(ACR, green) or control reference design (CR, orange). The error bar shows the standard
deviation over five simulations using a different sample of donors. In these simulations 7
donors were used in the disease dataset. Results from simulations with five different OOR
cell states are shown, selected by top mean TPR across designs in (D).

To quantify the ability of different reference designs to identify disease-associated states, we
tested whether amongst the COVID-19-enriched neighborhoods we could detect cells with
activated interferon (IFN) signalling, which is a key pathway involved in antiviral response
and a recognized hallmark of COVID-19. We define IFN-stimulated cells by expression of
the gene signature defined by (Yoshida et al., 2022) (figure 3B, see Methods).

We observed a stronger correlation between the DA logFC and the mean IFN response
signature when using the ACR design compared to just using the control as reference (ACR
pearson R = 0.63, CR pearson R = 0.51, Fisher’s z transformation p-value < 2.2e−16)
(figure 3C). Stratifying by cell type, the correlation is especially strong in the myeloid
compartment, where the strongest IFN-stimulation is observed (suppl. figure 8A). Amongst
the IFN-low states identified as enriched in COVID-19 with the ACR design, we found
primarily plasmablasts and plasma cells (suppl. figure 8B), which are expected to expand in
response to COVID-19 (Sette and Crotty, 2021). The CR design additionally detected a
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strong enrichment in COVID-19 cells in neighbourhoods of IFN-low naive B and T cells,
which is in contrast with the widely reported lymphopenia in COVID-19 patients (Chen and
John Wherry, 2020), and this enrichment is not explained by expression of proliferation
genes (suppl. figure 8C). We also compared reference designs on the ability to distinguish
disease-specific phenotypes by clusters and similarity in the latent space: both designs
performed equally well in the separation of fine-grained cell types annotated by the original
authors (suppl. figure 9A). However, looking into cell annotations where classification
performance was different between the two designs, we found that using the ACR design led
to more accurate distinction of cell states with known disease-specific phenotypes, including
proliferating CD8+T cells, which over-express exhaustion markers, early CD38+ HSCs,
exhausted B cells and, notably, a small subset of malignant B cells originating from a
COVID-19 patient diagnosed with leukaemia (suppl. figure 9B) (Stephenson et al., 2021).

Of note, the number of cells in the control dataset (used for scVI model training with the CR
design) is about 3 times smaller than the number of cells in the query dataset. Since
Lotfollahi et al. reported robust TL performance with equal sized reference and query
datasets, we asked whether using TL might be a suboptimal choice for joint latent
embedding with CR design on this dataset. To test this, we compared the disease-state
detection workflow using TL with scArches to de novo integration, using scVI on the
concatenated reference and query datasets. We found that regardless of the latent
embedding model used, the integration leveraging the healthy reference atlas leads to more
precise detection of IFN-stimulated states (figure 3D). Notably, when using the ACR design,
transfer learning performs as well as de novo integration. This shows that transfer learning is
an effective integration strategy for disease-state identification, and supports the practice of
model sharing to overcome the practical hurdles of human data sharing and to reduce the
computational burden of atlas-based analysis.

With precise distinction of cell states enriched in COVID-19, we can examine the phenotypic
heterogeneity within disease-associated states. In many case-control scRNA-seq studies,
cell subtypes are distinguished by iterative rounds of dataset subsetting and subclustering,
then differential expression and differential abundance analysis is used to characterise
whether subtypes are associated with disease. In blood COVID-19 scRNA-seq studies this
procedure frequently leads to a split between an IFN-stimulated COVID-19-associated
subcluster and a IFN-low subtype enriched in healthy controls in several PBMC
compartments (Ren et al., 2021; Yoshida et al., 2022). However, IFN-activation is not global,
and transitional or alternative pathological phenotypes might be present in PBMCs from
COVID-19 patients. In our neighbourhood-level analysis with ACR design, we observe a
strong enrichment in cells that express high IFN signature. However, neighbourhoods with
relatively low IFN signature are significantly associated with disease, for example amongst
classical (CD14+) monocytes (figure 3E), which are notably expanded in the blood of
COVID-19 patients. Based on the assignment of cells to neighbourhoods, we separate 3
phenotypes of CD14+ monocytes: normal classical monocytes, COVID-associated IFN-low
monocytes and COVID-associated IFN-high monocytes (figure 3F). We observed that the
proportion of CD14+ monocytes of different phenotypes changed significantly in patients with
different disease severity: the IFN-high state was most prominent in mild and asymptomatic
cases, while the IFN-low state became predominant in patients with moderate, severe and
critical disease (figure 3G). This observation is in line with the notion that interferon
stimulation acts as a protective pathway in the acute phase of infection (Hadjadj et al.,
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2020). In contrast, when defining IFN-high and IFN-low states after differential analysis with
CR design, we found the distinction between severity status to be significantly less
pronounced (suppl. figure 10A-C). In particular, we find a high fraction of IFN-low
COVID-enriched monocytes also in healthy and asymptomatic individuals, indicating that this
design wasn’t able to distinguish IFN-low normal monocyte cells from the IFN-low phenotype
in severe COVID-19. To characterise the distinct COVID-19 specific phenotypes, we
performed differential expression analysis between IFN-high and IFN-low COVID-associated
monocytes. Together with IFN-associated genes, IFN-high monocytes showed higher
expression of HLA genes, leukocyte-recruiting chemokines (CCL8, CXCL10, CXCL11) and
markers of activation (FCGR3A) (suppl. figure 10D, suppl. table 2). In contrast, the IFN-low
cells enriched in severe disease over-express S100 genes, previously identified as key
markers of COVID-19 severity (Ren et al., 2021, Singh and Ali, 2022). This HLA-DRlo
S100hi phenotype corresponds to a subset of dysfunctional monocytes associated with
severe COVID-19, previously described in an independent cohort through direct comparison
of mild and severe cases (Schulte-Schrepping et al., 2020).

In summary, using atlas and control reference on a COVID-19 cohort led to precise detection
of blood cell states associated with response to infection, without requiring subclustering
analysis, while still distinguishing phenotypically distinct pathological cell states.

Discussion
In this study we quantitatively examine the impact of the choice of reference dataset on the
task of identification of altered cell states from scRNA-seq data of diseased tissues.
Currently, single-cell genomics datasets on patient cohorts include data from tens of
individuals, processed with uniform experimental protocols. Many disease studies collect
matched controls alongside the disease samples, with similar demographic and
experimental protocol characteristics (e.g. Nehar-Belaid et al., 2020; Schulte-Schrepping et
al., 2020; Stephenson et al., 2021; R. K. Perez et al., 2022; Yoshida et al., 2022). In parallel,
the single-cell community is moving towards the generation of large, harmonised collections
of data from the same tissue, with the explicit aim to serve as maps for contextualization of
altered cellular conditions, and several studies use these datasets as references for
discovery of disease-states, also in the absence of controls (Guo et al., 2020; Jardine et al.,
2021; Szabo et al., 2021; Reichart et al., 2022; Sikkema et al., 2022). The option to use
large curated datasets is amenable to efficient data re-use and especially for tissues where
collection of matched healthy controls is challenging, such as studies of the brain (Olah et
al., 2020; Leng et al., 2021). In this work we demonstrate on simulations and real disease
datasets that atlas datasets are not a substitute for control samples, but they should be used
to increase the sensitivity and precision of disease-state discovery.
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Figure 3: Detection of cell states associated with COVID-19 in a case-control cohort
with a healthy atlas. (A) Overview of composition of disease, control and atlas dataset. (B)
UMAP embedding of cells from COVID-19 and healthy datasets integrated with CR design
(top) or ACR design (bottom). Cells are colored by disease condition (left), broad annotated
cell type (middle) and expression of interferon (IFN) signature (right). (C) Scatterplot of
neighbourhood differential abundance log-Fold Change (DA logFC) against the mean
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expression of IFN signature with ACR design (left) and CR design (right). Colored points
indicate neighbourhoods where the enrichment in COVID-19 cells was significant (logFC > 0
and 10% SpatialFDR). (D) Precision-recall curves for detection of IFN-activated
neighbourhoods with DA logFC for alternative designs (ACR or CR) and using de novo
integration of reference and disease datasets (scVI) or transfer learning (scArches scVI).
The area under the PR curve (AUPRC) is reported in the legend. The dotted lines denote the
baseline value for the AUPRC, indicating the case of a random classifier. (E) Scatterplot of
neighbourhood differential abundance log-Fold Change (DA logFC) against the mean
expression of IFN signature with ACR design for neighbourhoods of CD14+ monocyte cells.
Colored points indicate neighbourhoods where the enrichment in COVID-19 cells was
significant (10% SpatialFDR). Neighbourhoods are colored by IFN phenotype. (F)
Distribution of IFN signature score for cells belonging to neighbourhoods assigned to 3
alternative CD14+ phenotypes. (G) Distribution of COVID-19 enriched CD14+ phenotypes
across patients with varying disease severity: each point represents a donor, the y-axis
shows the fraction of all CD14+ monocytes in that donor showing IFN-high COVID-19
enriched phenotype (orange), and IFN-low COVID-19 enriched phenotype (yellow). The
remaining fraction are monocytes with healthy phenotype (not shown).

We present a quantitative benchmark for the task of detection of out-of-reference cell states.
We used these in silico experiments to compare reference selection choices, but also to
highlight shortcomings of mapping quality-control metrics that have been used as heuristics
to prioritise disease-specific cell states (suppl. figure 5). We designed evaluation
experiments and chose methods for integration and differential analysis with the specific
use-case of disease datasets in mind. We believe our results will extrapolate beyond to other
types of case-control studies, as long as certain assumptions apply: we assume that all the
cell states observed in the control dataset are also found in the atlas dataset and that only a
fraction of cell types are altered in the disease datasets. We believe these are reasonable
assumptions when comparing healthy and pathological states in the same human tissue.
However, cellular phenotypes might be different with alternative case-control designs, for
example when measuring the effect of genetic perturbations in cell lines, where we expect
less diversity of cellular phenotypes in the wild-type control and all perturbed cells might be
affected to an extent (Replogle et al., 2022).

With the disease analysis scenario in mind, we use a transfer learning (TL) method for joint
dimensionality reduction (Lotfollahi et al., 2022), as an efficient alternative to integration of
the concatenated disease and reference datasets. We made this choice envisioning that in
the future the single-cell community would be sharing trained models for fast re-use or
integrated atlases, which do not require downloading and reprocessing data from millions of
cells. We expect our reference design analysis results to be robust to the use of de novo
integration, as shown on the COVID-19 application (figure 3D), or to other TL-based
methods for query-to-reference mapping (Hao et al., 2021; Kang et al., 2021). To date, these
and other integration methods have been primarily benchmarked on the tasks of batch
correction, automatic cell type annotation and fast analysis of new data generated from the
same biological condition (Tran et al., 2020; Chazarra-Gil et al., 2021; Luecken et al., 2022).
While the systematic comparison of different integration methods on disease datasets is
beyond the scope of this study, the benchmarking set-up and python package presented in
this study (https://github.com/MarioniLab/oor_benchmark) could serve as groundwork for
future comparisons focused on alternative integration methods.
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The results from our analyses have important implications for experimental design of
single-cell genomics studies of diseased tissues. We show that, when an atlas dataset is
available, it is possible to reduce the number of control samples without introducing false
discoveries and minimal impact on sensitivity (figure 2E). In addition, our analyses indicate
that matched controls are always to be preferred over selecting a subset of samples from
published data to use as control (suppl. figure 7). To an extent, accounting for confounding
covariates in differential analysis based on available metadata might reduce the false
discovery rate when no matched controls are available. However, it is to be expected that
comparing uniformly processed healthy and disease samples from a similar population will
minimise variability associated with known and hidden confounders. Selecting samples from
published data based on phenotypic similarity led to a small improvement in performance
compared to selection of samples at random. While here we applied a naive approach to
define sample similarity (suppl. figure 7A), novel methods to model sample-level
heterogeneity in scRNA-seq data are being explored (Chen et al., 2020; Boyeau et al., 2022;
Mitchel et al., 2022). These could improve the matching of disease samples to optimal
controls, and provide new insights into which technical and demographic variables are likely
to affect disease-to-healthy comparisons.

Having demonstrated the advantages of atlas-based analysis of disease and control cohorts,
this work emphasises the importance of meta-analysis to build population-scale cell atlases
of human tissues. For certain tissues the wealth of available data has reached the scale of
cell atlases, such as for blood, lung (Sikkema et al., 2022), heart (Litviňuková et al., 2020;
Hocker et al., 2021; Koenig et al., 2022) or gastro-intestinal tract (Elmentaite et al., 2021).
However, efforts for integration and harmonisation are still in progress and we expect these
integrated datasets to be frequently updated, to incorporate data from more individuals.
While this process is underway, false positives might arise in atlas-based analysis of disease
datasets if normal cell states are missed in the atlas dataset because of insufficient
sampling. We show that joint mapping of disease and control samples can help to maintain a
low rate of false positives with smaller atlas datasets (suppl. figure 6), making disease
analysis more robust to atlas updates. We hope this encourages early sharing of beta
versions of integrated tissue atlases (as exemplified by the Azimuth developers
https://azimuth.hubmapconsortium.org/), as these could already provide a valuable resource
for the study of human pathologies.

Our analysis on a COVID-19 cohort highlights how using a cell atlas to contextualise data
from a case-control study leads to more sensitive detection of cell states associated with
infection (figure 3). While the simulated OOR cases exemplify a case where a single cluster
of transcriptionally distinct cells are disease-specific, the activation of the interferon signalling
in response to infection represents an example of a common response across cell types,
which is rarely captured as a principal source of variation, when performing a cluster-centric
analysis. With precise distinction of cell states enriched in COVID19, we can examine the
phenotypic heterogeneity within disease-associated states. In many case-control scRNA-seq
studies, cells with the same annotation from the disease and healthy condition are
contrasted with DE analysis, but this procedure might dilute the disease-specific signature if
diseased tissue contains cells with both the normal phenotype and the pathological
phenotype, or several distinct pathological subtypes. Alternatively, distinct cell subtypes are
distinguished by iterative rounds of dataset subsetting and subclustering, then differential
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abundance analysis is used to characterise whether subtypes are associated with disease.
In blood COVID-19 scRNA-seq studies, this procedure leads to a binary distinction between
an IFN-high COVID-19-associated subcluster and an IFN-low subtype enriched in healthy
controls (Yoshida et al., 2022). With subpopulation-level differential abundance analysis
(Dann et al., 2022) we capture heterogeneous COVID-19 enriched states in several cell
types, including CD14+ monocytes (figure 3E-G). While the original study reported relative
increase in IFN-activated CD14+ monocyte abundance with COVID-19, we identify distinct
IFN-high and IFN-low pathological subtypes, associated with distinct disease severities.
These subtypes correspond to subsets of dysfunctional monocytes previously described in
an independent cohort, through explicit comparison of mild and severe cases (suppl. figure
10D) (Schulte-Schrepping et al., 2020). This example demonstrates that precise
disease-state detection with ACR design enables the study of transitional and
heterogeneous pathological cell states.

In conclusion, we demonstrate that the combined use of a cell atlas and matched controls as
references enables the most precise identification of affected cell states in disease
scRNA-seq datasets. We envision our analysis will instruct the design of new cohort studies,
guide efficient data re-use and provide guiding principles for analysis of disease dataset and
construction of cell atlases.
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Methods

PBMC data preprocessing
We collected raw gene expression counts and cell type annotations from healthy peripheral
blood mononuclear cell (PBMC) 10X Genomics scRNA-seq data from 13 publications,
available via the cellxgene portal (https://cellxgene.cziscience.com/collections) (Suppl. Table
1). During harmonisation, we sampled 500 cells for each sample to reduce the
computational burden of this analysis, while maintaining sample-level diversity, and we
excluded samples for which less than 500 cells were detected, retaining in total 1268
samples from 1248 individuals. We subsequently filtered cells where at least 1000 mRNA
molecules were detected and genes that were expressed in at least one cell. This resulted in
a dataset of 599379 high-quality cells.

To generate a unified cell type annotation, we integrated all normal cells from different
studies in a common latent space using the scVI model, as implemented in the python
packages scvi-tools (Lopez et al., 2018; Gayoso et al., 2022). Briefly, we selected the 5000
most highly variable genes (HVGs) based on dispersion of log-normalised counts, as
implemented in scanpy. We trained the scVI model on raw counts, subsetting to HVGs,
considering the library ID as batch (model parameters: n_latent = 30,
gene_likelihood = ‘nb’, use_layer_norm = "both", use_batch_norm =
"none", encode_covariates = True, dropout_rate = 0.2, n_layers =
2; training parameters: early_stopping=True,train_size=0.9,
early_stopping_patience=45, max_epochs=200,
batch_size=1024,limit_train_batches=20). We constructed a k-nearest neighbor
graph based on similarity in the scVI latent dimensions, using k=50. Cells were clustered
using the leiden algorithm with resolution=1.5. Subsequently, clusters were annotated by
majority voting using the harmonised cell type labels available via cellxgene. During this
process, one cluster of cells was excluded as potentially containing doublets. After this final
filtering the dataset included 597321 cells annotated into 16 cell types.

Simulation experiments

Data splitting into atlas/control/perturbation
To simulate the attributes of disease, atlas and control datasets, we select donors from one
study (query study, 29 healthy donors, Stephenson et al. 2021) and we split these at random
with equal probabilities into a disease subset (16 donors) and a control subset (13 donors).
The data from the remaining 12 studies comprises the atlas dataset (1219 donors). To
simulate the presence of an out-of-reference cell state, we select one cell type label and
remove all cells with that label from the control and atlas dataset. We repeat this simulation
with 15 annotated cell types in the PBMC dataset (neutrophils were excluded, as they were
under-represented in the Stephenson study).

Latent space embedding
For each simulated atlas/control/disease dataset assignment, we embed the reference and
query datasets into a common latent space using transfer learning with scArches (Lotfollahi
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et al., 2022) on scVI models (Lopez et al., 2018), using the implementation in the python
package scvi-tools v0.17.4 (Gayoso et al., 2022). Briefly, we selected the 5000 most highly
variable genes (HVGs) in the reference dataset based on dispersion of log-normalised
counts, as implemented in scanpy. We trained the scVI model on raw counts of the reference
dataset, subsetting to HVGs, considering the sample ID as batch and specifying the
recommended parameters to enable scArches mapping (use_layer_norm = "both",
use_batch_norm = "none", encode_covariates = True, dropout_rate = 0.2, n_layers = 2).
Models were trained for 400 epochs or until convergence. Next, we perform transfer learning
on the query dataset(s) from the model trained on the reference, running the model for 200
epochs and setting the weight_decay parameter to 0. Reference and query dataset for latent
space embedding are defined as follows for the three reference designs:

Reference design Reference dataset (scVI
training)

Query dataset (scArches
mapping)

Atlas reference (AR design) Atlas dataset Disease dataset

Control reference (CR
design)

Control dataset Disease dataset

Atlas to control reference
(ACR design)

Atlas dataset Disease dataset and control
dataset

Differential abundance analysis with Milo
To find cell states enriched in the disease dataset we use the Milo framework for differential
abundance analysis on cell neighbourhoods (Dann et al., 2022) using the implementation in
the package milopy (https://github.com/emdann/milopy, v0.1.0). Briefly, we compute the
k-nearest neighbor (KNN) graph of cells in the reference and disease dataset based on the
latent embedding. The reference datasets for differential analysis are defined as follows for
the three reference designs:

Reference design Reference dataset (differential analysis)

Atlas reference (AR design) Atlas dataset

Control reference (CR design) Control dataset

Atlas to control reference (ACR design) Control dataset

Of note, for the ACR design the atlas dataset is not considered when constructing the KNN
graph. We set the value of k to be the equal to the total number of samples times 5, up to a
maximum of k = 200 (this upper limit is set for memory efficiency reasons), following the
indications in Dann et al. We assigned cells to neighborhoods (milopy.core.make_nhoods,
parameters: prop = 0.1) and counted the number of cells belonging to each sample in each
neighborhood (milopy.core.count_cells). We assigned to each neighborhood a cell type label
based on majority voting of the cells belonging to that neighborhood. To test for enrichment
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of cells from the disease dataset, we model the cell count in neighborhoods as a negative
binomial generalised linear model, using a log-linear model to model the effects of disease
status on cell counts (log-Fold Change, logFC). Although the split between control and
disease samples was balanced in terms of available metadata, in the query study there is a
known batch effect between the three sites from which samples were collected (Stephenson
et al., 2021). Therefore we included the site identity as a confounding covariate in the
differential abundance model when using the ACR and CR design, although we found the
results presented here were robust even without modelling this confounder (data not shown).
We control for multiple testing using the weighted Benjamini-Hochberg correction as
described in Dann et al. (SpatialFDR correction). Unless otherwise specified,
neighbourhoods were considered enriched in disease cells if the SpatialFDR < 0.1 and
logFC > 0.

Sensitivity analysis
For each simulation (i.e. with different OOR cell state and reference design) we define a
neighbourhood as an OOR state (true positive) if the percentage of OOR cells in the
neighbourhood is more than 20% of the maximum percentage observed in that simulation.
This threshold selection aims to quantify the ability to detect the neighbourhoods where the
largest number of OOR cells is found, even when the atlas dataset is included in the KNN
graph (AR design), and the majority of cells in neighbourhoods always belong to the atlas
dataset. The selected thresholds for each experiment are shown in suppl. figure 1. We
calculate true positive rates, false positive rates and false discovery rates considering
neighborhoods where the SpatialFDR < 0.1 and logFC > 0 as predicted positives.

With precision-recall curve analysis, we quantify the ability to detect true positive OOR states
with different thresholds of logFC, without considering the significance estimated with the
SpatialFDR, using the implementation in scikit-learn (Pedregosa, Varoquaux and Gramfort,
2011).

Mapping quality control metrics
We compare quality control (QC) metrics for scArches on the mapping of disease dataset
onto the atlas dataset (mapping QC score), quantifying whether OOR cells and cell states
are detectable by low QC score (i.e. higher uncertainty during query-to-reference mapping).
For the label transfer uncertainty, we use the method presented by (Lotfollahi et al., 2022).
Briefly, we train a weighted KNN classifier for cell type labels on the latent embedding of the
scVI reference dataset, setting the number of neighbors to k=100. For each cell in the query
dataset, we extract its k nearest neighbors in the reference and the corresponding Euclidean
distances, adjusted by a Gaussian kernel. We compute the probability of assigning𝑃(𝑦|𝑐)
each label to the query cell by normalising across all adjusted distances. The label𝑦 𝑐
uncertainty corresponds to .1 − 𝑚𝑎𝑥

𝑦
(𝑃(𝑦|𝑐))

For the reconstruction error metric, we take samples from the posterior of the𝑠 =  50

scArches model to generate profiles of predicted gene expression counts for the highly𝑥
^

𝑖,𝑐

variable genes used in training. We define the reconstructed gene expression profile for𝑥
𝑐

‾

each query cell as:𝑐
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𝑥
𝑐

‾ = 1
𝑠

𝑖=1

𝑠

∑ 𝑙𝑛(𝑥
^

𝑖,𝑐
 +  1)

Given the true log-normalised gene expression profile for each cell , we define the𝑥
𝑐

reconstruction error as the cosine distance between and .𝑥
𝑐

𝑥
𝑐

‾

For both label uncertainty and reconstruction error, higher values correspond to lower
mapping quality. To compare the mapping QC metrics to the differential abundance logFC on
neighbourhoods defined with the ACR design (suppl. figure 5B) we calculate the average
mapping QC score over all disease cells in the same neighbourhood. For the comparison
between mapping QC scores in control and disease cells with ACR design (suppl. figure
5C), for each neighbourhood we compute the difference between the average QC scores
over disease cells and over control cells.

Control and atlas size analysis
For the analysis with varying number of control donors (figure 2E), we selected the
simulations with the 5 OOR cell populations that had the highest average TPR between CR
and ACR design in the previous analysis (figure 2D). For each simulation, we selected the 7
donors from the disease dataset that had the highest fraction of cells in the OOR cell
population. Subsequently, we selected a random subset of donors (with )𝑛 3 <  𝑛 <  12 
from the control dataset and performed disease-state identification with the CR or ACR
design, as described above. For each we repeated the simulation with 5 different𝑛,
initializations of the control donor selection.

Atlas subsampling analysis
To assess whether a shallow atlas dataset introduces false discoveries in disease-state
identification (suppl. figure 6), we used all 29 donors from the query dataset in disease and
control datasets, and subsampled the atlas dataset removing data from 1 to 11 studies
(ordering studies by total number of cells), and performed disease-state identification with
AR and ACR design.

Control selection from atlas sampling analysis
We tested whether selecting a subset of samples from the atlas dataset to use as control
samples for disease-state identification with ACR design performs comparably to using
matched controls. We applied the following unsupervised selection strategy, based on
similarity between cell state proportions (suppl. figure 7A): we take latent dimensions learnt
by training scVI on the atlas dataset and mapping the disease dataset with scArches (i.e. as
described above for AR design). In this latent space, we construct Milo neighbourhoods and
the matrix of cell counts of dimension samples x neighbourhoods, as described in the
section “Differential abundance analysis with Milo”. We log-normalise cell counts per sample
(running scanpy.pp.normalize_total with parameters target_sum=10000, and
scanpy.pp.log1p) and perform principal component analysis on the matrix of log-normalised
cell counts. This generates a d-dimensional space (d=10) on which we compute Euclidean
distances between disease and atlas samples. In this space, for each disease sample we
take the closest atlas sample and we consider this set to be the “close controls”. If one atlas
sample is the nearest neighbor to multiple disease dataset samples, we look at the second
nearest neighbors for these samples and take those with the smallest Euclidean distance.
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We rerun the disease state identification workflow with ACR design using as control
datasets: (i) matched controls (samples from the same study), (ii) close controls and (iii)
randomly selected samples from the atlas dataset. The same number of control samples
was used in all three cases.

Design comparison on COVID dataset

Data preprocessing and model training
We downloaded data from COVID-19 and healthy PBMCs from (Stephenson et al., 2021),
via the cellxgene portal (collection ID: ddfad306-714d-4cc0-9985-d9072820c530). We
sampled 500 cells for each sample to reduce the computational burden of this analysis,
while maintaining sample-level diversity, and we excluded samples for which less than 500
cells were detected. We excluded cells where less than 1000 mRNA molecules were
detected and we excluded data from 3 samples that were profiled with the Smart-seq-2
protocol. As cell type annotations, we use the high-level annotation from the original authors.

As the atlas dataset we used the healthy PBMC data described above, excluding the healthy
PBMC profiles from Stephenson et al. 2021. Reference model training and query mapping
was performed as described above. After query-mapping, control and COVID-19 cells were
embedded in a KNN graph (k=100), which was used to build neighbourhoods and perform
differential abundance analysis with Milo as described above. For the comparison of de novo
integration and query-mapping (figure 3D), scVI training was performed as described above
on concatenated atlas, control and COVID-19 datasets (ACR design) or control and
COVID-19 datasets (CR design).

IFN signature calculation
To define IFN-stimulated cells, we aggregate expression of a set of IFN-associated genes
defined by Yoshida et al. 2021 (including BST2, CMPK2, EIF2AK2, EPSTI1, HERC5, IFI35,
IFI44L, IFI6, IFIT3, ISG15, LY6E, MX1, MX2, OAS1, OAS2, PARP9, PLSCR1, SAMD9,
SAMD9L, SP110, STAT1, TRIM22, UBE2L6, XAF1 and IRF7), using the scanpy function
scanpy.tl.score_genes() to quantify signature expression for each cell. A threshold of
IFN-signature > 0.05 was used for precision-recall analysis.

Label prediction with KNN classifier
To assess the difference between CR and ACR design on the latent space learnt with
transfer learning, we trained a k-nearest neighbor classifier to learn the original fine cell type
label from Stephenson et al. 2021. We used the implementation in scikit-learn (function:
KNeighborsClassifier, parameters: n_neighbors=30, metric=’euclidean’). The dataset was
split randomly into training (80% of cells) and testing sets (20% of cells) and the reported
performance was calculated on the test set for 10 different test-train splits (suppl. figure 9).

CD14+ monocyte disease-state analysis
For the analysis on COVID-19-associated monocyte subsets, we focused on the
neighbourhoods annotated as CD14+ monocytes based on majority voting, as described
above. We split CD14+ monocyte neighborhoods into IFN-high COVID-19 neighbourhoods
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(SpatialFDR < 0.1, logFC > 0 and IFN signature > 0.2), IFN-low COVID-19 neighbourhoods
(SpatialFDR < 0.1, logFC > 0 and IFN signature < 0.2) and healthy neighborhoods
(remaining neighborhoods). To assign cells to one of these 3 phenotypes, we computed, for
each cell, the number of neighborhoods of each phenotype to which that cell belongs (since
Milo neighborhoods can be partially overlapping) and we labelled the cell based on the most
representative phenotype (if the cell was found in at least 3 neighbourhoods of that
phenotype, otherwise the cell was annotated as mixed CD14+ monocyte phenotype).
For differential expression analysis, we aggregated gene expression profiles by summing
counts by sample and CD14+ monocyte phenotype and performed differential expression
testing using the edgeR quasi-likelihood test (Robinson and Oshlack, 2010) using the
implementation in the R package glmGamPoi (Ahlmann-Eltze and Huber, 2021), using 1%
FDR (suppl. table 2).

Code and data availability
The functions for benchmarking out-of-reference state detection, including code for
preprocessing, data splitting, integration, differential analysis and evaluation metrics, have
been made available as a python package at https://github.com/MarioniLab/oor_benchmark.
Notebooks and scripts to reproduce all analysis presented in the manuscript are available at
https://github.com/MarioniLab/oor_design_reproducibility.

All the data used for analysis is publicly available (see suppl. table 1). Processed data
objects and trained scVI models are available via figshare
(https://doi.org/10.6084/m9.figshare.21456645.v1).
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Supplementary Figures
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Supplementary figure 1: Out-of-reference recovery across simulations. Scatterplot of differential
abundance log-Fold Change (DA logFC) against fraction of out-of-reference (OOR) cells for each
neighbourhood, in simulations with different unseen cell populations (indicated in y-axis). Colored points
indicate neighbourhoods where the enrichment was significant (10% SpatialFDR, logFC > 0). The dotted
red line indicates the threshold used to define true positives (20% of the higher fraction in the
simulation).

Supplementary figure 2: Statistical power is dependent on the size of the OOR cell state across
reference designs. Scatterplot of number of cells in the simulated OOR state (x-axis) against the true
positive rate (TPR, y-axis) of OOR state detection with alternative reference designs.

Supplementary figure 3: Batch correction and biological conservation is comparable between
latent dimensions learnt with different reference design: quantification of overlap between cell type
labels (as a measure of biological conservation, left) and sample IDs (as a measure of batch effect,
right) and clusters of disease cells on latent dimensions after scArches mapping with different designs
(color). The overlap between clusters and covariates is measured by the Normalised Mutual Information
(NMI), using the implementation in scikit-learn v1.1.2 (Pedregosa, Varoquaux and Gramfort, 2011). Each
box plot shows the median and interquartile range for simulations with different OOR cell populations.
NMI values for leiden clustering with increasing resolution (x-axis) are shown.
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Supplementary figure 4: The out-of-reference state is not always distinguished by position in the
latent space after scArches mapping. estimated precision (left) and recall (right) for simulations with
different OOR cell populations (y-axis) when training a KNN classifier on the latent space of disease
cells to distinguish the true OOR cells. Each box plot shows the median and interquartile range for 10
classifiers trained with a different split of cells into training and test set. Precision and recall on the test
set are shown. This analysis was performed only on simulations where at least 100 cells were found in
the OOR state in the disease dataset.
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Supplementary figure 5: Comparison to mapping quality control metrics. (A) Violin plots of
mapping QC scores for cells in OOR state (red) and all other cells (grey) across 15 simulations with
different OOR cell populations (x-axis). The top plot shows label uncertainty as mapping QC score, the
bottom plot shows reconstruction error as mapping QC score. (B) Boxplot of Area Under the
Precision-Recall Curve (AUPRC) for detection of OOR state neighbourhoods with 3 different metrics:
differential abundance log-Fold Change with ACR design (DA logFC, green), mean label uncertainty
(purple), mean reconstruction error (orange). Points represent simulations with different OOR
populations. Tests on the same simulated data are connected. (C) As in (B), but we compare DA logFC
and mean label uncertainty to the difference between mean label uncertainty of disease cells and mean
label uncertainty of control cells in the same neighbourhood (blue).

Supplementary figure 6: True positives and false positives with decreasing size of atlas dataset.
true positive rate (TPR, top y-axis) and false positive rate (FPR, bottom y-axis) of OOR state detection
for simulations with an increasing number of studies included in the atlas reference (x-axis) for AR and
ACR design (colour). Studies were ordered by total number of cells. Point size is proportional to the
number of cells in the atlas dataset. Results from simulations with five different OOR cell states are
shown, selected by top mean TPR across designs in (Figure 2D). The orange line denotes the TPR and
FPR values for the CR design (i.e. not using an atlas dataset).
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Supplementary figure 7: Comparison of matched controls and controls selected from the atlas
dataset. (A) Schematic of method used for unsupervised selection of “close controls'' from the atlas
samples: the latent space (Z) learnt from mapping of the disease dataset to the atlas dataset was used
to construct a KNN graph and neighbourhoods. We generated a count matrix storing the number of cells
from each sample in each neighbourhood (as used in Milo differential abundance analysis). We
projected samples over principal components (PCs) that explain the highest variance in the
neighbourhood count matrix and we computed euclidean distances between disease and atlas samples
in the top 10 PCs. For each disease sample we take the closest atlas sample and we consider this set of
samples to be the “close control” dataset. (B) Scatterplot of differential abundance log-Fold Change (DA
logFC) against fraction of out-of-reference (OOR) cells for each neighbourhood, in simulations with
different unseen cell populations (rows), with different control samples used for ACR design or no
controls (AR design). Colored points indicate neighbourhoods where the enrichment was significant
(10% SpatialFDR and logFC > 0). (C) Quantitative comparison of performance with different control
samples used for ACR design or no controls (AR design) in detection of OOR cell states
(neighbourhoods where the fraction of cells from the perturbation-specific state is higher than 20% of the
maximum fraction). To compare performance considering the logFC and confidence (10% SpatialFDR),
we measured the false discovery rate (FDR), false positive rate (FPR) and true positive rate (TPR).
Tests on the same simulated data are connected.
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Supplementary figure 8: Reference design comparison on COVID-19 cohort. (A) Scatterplot of
neighbourhood differential abundance log-Fold Change (DA logFC) against the mean expression of IFN
signature with ACR design (left) and CR design (right), stratified by cell type annotation. Colored points
indicate neighbourhoods where the enrichment was significant (10% SpatialFDR and logFC > 0). The
dotted line denotes the threshold for high-IFN used for precision-recall analysis. (B) Beeswarm plot of
DA logFC annotating neighbourhoods by fine annotation by Stephenson et al. Neighbourhoods where
the differential abundance was significant (10% SpatialFDR) are colored. (C) Scatterplot of
neighbourhood DA logFC against the mean expression of proliferation marker MKI67 in B and T cell
states with CR design.
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Supplementary figure 9: Latent space based classification of fine annotation labels. (A) Overall
accuracy and mean F1 score for a KNN classifier for fine cell type labels from Stephenson et al. The
classifier was trained on latent dimensions from ACR design and CR design. Cells from Stephenson et
al. dataset (COVID-19 dataset and control dataset) were split at random in the training and test set (80%
of cells in the training set). The mean performance on the test set over 10 different test-train splits is
shown. The error bars show the standard deviation of the mean. (B) Cell type wise F1 score for KNN
classifier trained on latent dimensions with different reference designs. Performance is shown only for
cell types where at least 100 cells were found between the disease and control datasets. Cell types are
ordered by the difference in median F1 score between designs.
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Supplementary figure 10: Heterogeneity in COVID-19 associated CD14+ monocyte states. (A)
Scatterplot of neighbourhood differential abundance log-Fold Change (DA logFC) against the mean
expression of IFN signature with CR design for neighbourhoods of CD14+ monocyte cells. Colored
points indicate neighbourhoods where the enrichment in COVID-19 cells was significant (10%
SpatialFDR and logFC > 0). Neighbourhoods are colored by IFN phenotype. (B) Distribution of IFN
signature score for cells belonging to neighbourhoods in CR design assigned to 3 alternative CD14+
phenotypes. (C) Distribution of COVID-19 enriched CD14+ phenotypes (from CR design) across
patients with varying disease severity: each point represents a donor, the y-axis shows the fraction of all
CD14+ monocytes in that donor showing IFN-high COVID-19 enriched phenotype (orange), and IFN-low
COVID-19 enriched phenotype (yellow). The remaining fraction are monocytes with healthy phenotype
(not shown). (D) Volcano plot of differential expression analysis results from comparison between
IFN-high and IFN-low COVID-19 specific CD14+ phenotypes identified with ACR design. Each point
represents a tested gene, the x-axis shows the log-Fold Change of the differential expression test and
the y-axis shows the adjusted p-value (using the Benjamini-Hochberg FDR correction). Genes where the
difference was considered significant (FDR < 1%) are colored in red. A subset of significant genes are
labelled.
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Supplementary Tables
Suppl. Table 1: References of studies included in healthy PBMC dataset used for simulations

Suppl. Table 2: Differential expression analysis results for comparison of CD14+ monocytes
COVID-19 phenotypes
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