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The tremendous advances in structural biology and the exponential increase of high-quality
experimental structures available in the PDB motivated numerous studies to tackle the grand
challenge of predicting protein structures. AlphaFold2 revolutionized the field of protein
structure prediction, by combining artificial intelligence with evolutionary information.

Antibodies are one of the most important classes of biotherapeutic proteins. Accurate
structure models are a prerequisite to advance biophysical property predictions and
consequently antibody design. Various specialized tools are available to predict antibody
structures based on different principles and profiting from current advances in protein
structure prediction based on artificial intelligence. Here, we want to emphasize the
importance of reliable protein structure models and highlight the enormous advances in the
field. At the same time, we want to raise the awareness that protein structure models—and
in particular antibody models—may suffer from structural inaccuracies, namely incorrect cis-
amid bonds, wrong stereochemistry or clashes. We show that these inaccuracies affect
biophysical property predictions such as surface hydrophobicity. Thus, we stress the
significance of carefully reviewing protein structure models before investing further
computing power and setting up experiments. To facilitate the assessment of model quality,

we provide a tool “TopModel” to validate structure models.
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Breakthroughs in Protein/Antibody Structure Prediction

Predicting the three-dimensional (3D) structure of a protein based solely on the amino-acid
sequence has been one of the grand challenges in the field of protein structure prediction.?
Accurate prediction of the 3D structure of a protein is critical to understand its function, as
the shape of the protein determines its properties and ultimately its function. To
determine/identify the state-of-the-art methods in protein structure prediction, the biennial
community-based benchmarking experiment “Critical Assessment of methods in protein
Structure Prediction (CASP)” has been established.?™ In CASP14 (2020), DeepMind showcased
AlphaFold2, which is a program based on artificial intelligence (Al) that directly processes
multiple sequence alignments.> Comparable accuracies in predicting protein structures could
also be achieved with RoseTTAFold®, and specialized tools for antibodies which incorporate
the recent advances have been presented.’”™ Those tools are highly accurate based on global
measures, often with RMSDs to the crystal structure of less than 1 A. However, there might
be higher inaccuracies in parts of the protein. Post-translational modifications are omitted,
but can sometimes be added afterwards.° Furthermore, the accuracy for multimers, such as
antibodies, is still lower.!! Additional challenges can arise for antibodies since VDJ
recombination events do not follow the classical pathway of evolution.!?

Antibodies are crucial components of the adaptive immune response.!* Genetic
recombination and somatic hypermutation events enable the adaptive immune system to
produce a vast number of antibodies against a variety of pathogens.}?> To understand and
optimize antigen recognition and to enable rational design of antibodies, accurate structure
models are essential.!* Despite these recent advances, accurate structure prediction of
antibodies remains challenging and still needs to be extensively validated. In particular, the
flexible loops involved in recognizing the antigen pose a major challenge.>® In comparison
to other protein superfamilies, the fold of antibodies is generally highly conserved.}’1°
Especially the framework of the antigen-binding fragment (Fab) is structurally almost identical
for all antibodies.?%?! However, the area hardest to predict accurately is the six hypervariable
loops that form the antigen-binding site, called the paratope. These loops are also known as
the complementarity determining region (CDR) and provide the structural diversity essential
to recognize a wide range of antigens. Five of the six loops tend to adopt canonical cluster

folds based on their length and sequence composition. However, the third CDR loop of the
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heavy chain, the CDR-H3 loop, is the most diverse in length, sequence and structure and
therefore is the most challenging loop to predict accurately. Additionally, the CDR-H3 loop
conformation is also strongly influenced by the relative interdomain orientation, as it is
located in the center, directly in the interface between the heavy and the light chains.
Recently, to tackle this challenge, various antibody-specific deep learning methods such as
ABlooper, DeepAb and IgFold have significantly improved the CDR loop modeling accuracy.’~
922 The predicted structure models achieve similar or better quality than methods, that are
able to predict all types of protein structures (including AlphaFold2).1%23 All these
improvements have enabled predictions of a vast number of antibody structures at a high
level of accuracy, which can then further be used as input structures for virtual screening or

to inform rational design of antibodies.'#1°

Possible inaccuracies in antibody structure models

Here, we investigated a dataset consisting of 137 antibody sequences published by Jain et al.
and used several freely available antibody structure prediction tools, i.e., ABlooper’, IgFold?,
DeepAb® and the MOE Antibody Modeller?, to generate structure models for further
biophysical characterizations.?>?® Careful inspection of the generated models revealed
inconsistencies such as cis-amid bonds in the CDR loops, D-amino acids and severe clashes. In
total, this resulted in up to 300 D-amino acids and up to 240 cis-amid bonds for the 137
antibody models. We found cis-amid bonds and clashes independent of the applied antibody
modelling tools. The only tool that did not introduce any D-amino acids is DeepAb. These
structural inaccuracies affect the results of structure-based biophysical property
predictions.?>?® In addition to the Jain et al. dataset?’, we predicted the structure of the CIS43
antibody, where the experimental X-ray structure (PDB accession code: 7SG5)%® was released
after the structure prediction tools were published, to have an experimental reference
structure outside of the used training set. Figure 1 shows an overlay of all obtained structure
models and reveals an overall high structural similarity, reflected in low overall RMSD values
(~1A). However, substantial structural variability can be observed in the CDR-H3 loop (RMSD
values >2A). This result points out one particular challenge in predicting antibody structures:
The high variability of the antibody CDR loops cannot be captured/represented by one single-
static structure. While there can be properties and metrics that are not too much affected by

these issues, metrics that rely on accurate CDR-H3 structures will be strongly distorted. This
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includes antibody-antigen docking, since the CDR-H3 loop is a central part of the binding
interface, as well as structure-based hydrophobicity calculations, since the binding interface
frequently contains more hydrophobic amino acids than the rest of the antibody
surface.*1>2> Molecular dynamics simulations (MD) might correctly capture the ensemble in
solution if the starting structure is sufficiently close, but current MD approaches cannot
sample cis-trans isomerisation or transitions from D- to L-amino acids, leading to ensembles
that are potentially worse than the starting structure in terms of RMSD to the crystal structure

(SI Figure S1).

To show the effect of starting structures with cis-amid bonds and D-amino acids in the CDR
loops, we compare the surface hydrophobicity of structure models for the CIS43 antibody
variant with the X-ray structure (Figure 2). The surface hydrophobicity was assigned using the
hydrophobicity scale by Wimley and White.? We find differences in the surface
hydrophobicity, which is expected as hydrophobicity is potentially a strongly conformation
dependent property, since small sidechain rearrangements may expose otherwise buried
hydrophobic groups. While small inaccuracies in the atomic positions can be fixed by
molecular dynamics simulations, the correct sidechain packing is often impossible when D-
amino acids or cis-amide bonds are present, leading to almost irreparable errors in the
biophysical property estimation. The same is true for antibody-antigen docking, where an
accurate representation of the surface is required to find the correct interactions with the
antigen.

Figure 3 shows examples of cis-amide bonds and D-amino acids in the CDR-H3 loop of CIS43.
Additionally, in one of the obtained models we find a missing proline sidechain at the tip of
the CDR-H3 loop. Rebuilding the proline results in severe clashes, clashes, as shown in the
right panel of Figure 3, and the only way to avoid these clashes would be to build a D-Proline

instead.

To facilitate the identification of these issues, we present a tool (available on Github:
https://github.com/liedllab/TopModel), called “TopModel”, that quickly checks the structure
for cis-amid bonds, D-amino acids, and clashes. With this tool, structure models can rapidly
be checked to assess the quality/accuracy of the models before performing further analysis.

At the same time, it offers the possibility to directly visualize these issues in PyMOL.3° Figure
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4 shows the output obtained by “TopModel”. Residues colored in magenta (D-amino acids)
and red (cis-amid bonds) represent issues that should be fixed, while cis-Prolines are colored
green, as they occasionally occur in native protein structures. Van der Waals clashes are
colored in yellow. For the clashes we also provide an optional score, to quantify the quality of
the model, that takes the number of clashes and the length of the protein into account, to
quantify the quality of the model. Non-planar amid bonds are depicted in cyan. As these issues
can also be found for other protein structure models apart from antibodies, we recommend
checking every model with “TopModel” and stress the importance of validating the obtained

structures to ensure the most accurate results/predictions as possible.

Discussion

While we want to highlight the enormous advances in the protein structure prediction field,
at the same time, we want to emphasize the importance to critically review structure models-
-especially antibody models--before basing conclusions/further experiments/molecular
dynamics simulations on potentially erroneous models.3! In particular, we want to stress the
importance of not limiting the characterization of the antigen binding site to a single-static
structure model, as there is already a high structural variability between the different models.
This high variability suggests that even considering ensembles in solution might more
accurately reflect the properties/functions of the antibody.'® The tremendous development
in protein structure prediction enables fast protein structure predictions that approach the
accuracy of experimental structures.?® These breakthroughs have been achieved by
combining artificial intelligence with an effective exploitation of the available structural
information and incorporation of evolutionary related sequences in terms of multiple
sequence alignments (MSAs).2® Thereby, AlphaFold, RoseTTAFold and ESMFold
revolutionized protein structure prediction.®?332734 Various deep learning (based) approaches
have also been shown to improve antibody structure prediction and outperform all previously
available antibody structure prediction methods.”~23> Accurately predicting the structure of
antibodies is central to understand their function, to elucidate antibody-antigen binding and
inform rational antibody design.

However, the most challenging part in antibody structures prediction is concentrated in the
six CDR loops, as they reveal the highest variability in both sequence and structure.’®3¢ In

particular, the CDR-H3 loop reveals the highest diversity and variability, which impedes the
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accurate prediction of its structure.3”-38 This is in line with our findings, as the comparison of
different antibody prediction methods reveals the most diverging results for the CDR-H3 loop.
Figure 1 shows an overlay of all the obtained models, highlighting the high conformational
variability of the CDR-H3 loop. To account for this high diversity of the CDR loops one single
static structure might not be sufficient and therefore the CDR loops should rather be
characterized as ensembles in solution.'®3” This is especially important, as various biophysical
properties of antibodies, such as hydrophobicity, are conformation dependent and already
small sidechain rearrangements reveal distinct surface properties.?>2® Molecular dynamics
simulations provide such ensembles in solution, increasing the probability that conformations
determining biophysical properties are captured.?® In agreement with these observations, we
find that these conformational differences between the models can result in changes in the

surface hydrophobicity.

In addition to the high divergence in CDR-H3 loop conformations, we found various cis-amid
bonds, D-amino acids, and clashes in the obtained models. Such modeling artifacts are firstly
non-natural and secondly, can strongly influence biophysical property predictions and result
in misleading conclusions.3! Thus, to address these pitfalls, we provide a tool that quickly
inspects protein structure models and identifies issues/flaws in the protein structures, namely
the python package “TopModel”. As accurate antibody structures are a prerequisite to
reliably understand antibody function and characterize biophysical properties, we strongly
suggest an additional validation of the respective structure models to increase the quality of

the respective predictions.

Methods

The tool “TopModel” (version 1.0) inspects and highlights issues in a structure model.
“TopModel” checks the chirality, amide bond stereochemistry and Van der Waals clashes for
every residue in the structure model. The structure models are parsed and analyzed using
biopython.3® To calculate the chirality a triangle is defined based on the priority of the atom
chains around the chiral center. The direction of a normal vector to this plane, calculated
using the cross product, is determined by the priority of the atom chains. By calculating the

dot product of this normal vector and a vector from the chiral center to the plane the
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orientation of the three atom chains with respect to the center can be determined. Based on
the sign of the resulting scalar the chirality can be assigned. This approach allows us to
calculate the chirality even if no hydrogens are included in the structure model. The amide
bond is inspected by calculating the dihedral angle of the protein backbone. Cis-amide bonds
to proline are labelled separately as they naturally occur more frequently than in other amino
acids. Dihedral angles that could neither be assigned cis nor trans are labelled as non-planar.
The VDW clashes are quickly computed using a k-d tree?® and VDW radii data gathered using
the python package mendeleev*L. All pairs of atoms within 5 A of each other are checked for
VDW clashes by calculating the distance and comparing against the combined VDW radii
minus 0.5 A. The pairs of atoms that are closer than 5 A are calculated using a k-d tree*® and
the VDW radii data is gathered using the python package mendeleev®'.For the clashes an
optional score can be displayed, which takes the number of clashes and the length of the
protein into account. The chiralities and amide bond orientations are not included in the
score. To quickly assess the structural implications of the issues found by “TopModel”, the
analyzed structure can be opened in PyMOL3® with the issues highlighted and labeled as

shown in Figure 4.
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41. Mentel . mendeleev - A Python package with properties of chemical elements, ions,
isotopes and methods to manipulate and visualize periodic table.

Comparison to X-ray Overlay of homology models

Ca-RMSD of Fv

X-ray X-ray
ABlooper ABlooper
MOE MOE
DeepAb DeepAb
IgFold IgFold

Figure 1: A) Comparison of the available X-ray structure of the CIS43 antibody (PDB code:
7SG5) with the structure models generated with different antibody prediction tools, namely
ABlooper, MOE, DeepAb and IgFold. B) Structural overlay of the obtained Fv models,
showing the high variability in the CDR-H3 loop. C) Ca.-RMSD matrix of the X-ray structure
and the respective models for the whole Fv. D) Ca-RMSD matrix of the X-ray structure and

the respective models for the CDR-H3 loop.

X-ray ABlooper
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Figure 2: Surface hydrophobicity mapped on the X-ray structure and two antibody models.
Surface hydrophobicity was assigned by the Whimley and White hydrophobicity scale.

Hydrophobic areas are colored in yellow, while hydrophilic parts are depicted in blue.
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Figure 3: Examples of structural inaccuracies observed in some of the models, namely cis-

amid bonds, D-amino acids and Van der Waals clashes.
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Figure 4: Pymol visualization of the structural inaccuracies, as output of the “TopModel”

tool.
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