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The tremendous advances in structural biology and the exponential increase of high-quality 

experimental structures available in the PDB motivated numerous studies to tackle the grand 

challenge of predicting protein structures. AlphaFold2 revolutionized the field of protein 

structure prediction, by combining artificial intelligence with evolutionary information.  

Antibodies are one of the most important classes of biotherapeutic proteins. Accurate 

structure models are a prerequisite to advance biophysical property predictions and 

consequently antibody design. Various specialized tools are available to predict antibody 

structures based on different principles and profiting from current advances in protein 

structure prediction based on artificial intelligence. Here, we want to emphasize the 

importance of reliable protein structure models and highlight the enormous advances in the 

field. At the same time, we want to raise the awareness that protein structure models4and 

in particular antibody models4may suffer from structural inaccuracies, namely incorrect cis-

amid bonds, wrong stereochemistry or clashes. We show that these inaccuracies affect 

biophysical property predictions such as surface hydrophobicity. Thus, we stress the 

significance of carefully reviewing protein structure models before investing further 

computing power and setting up experiments. To facilitate the assessment of model quality, 

we provide a tool <TopModel= to validate structure models.   
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Breakthroughs in Protein/Antibody Structure Prediction 

Predicting the three-dimensional (3D) structure of a protein based solely on the amino-acid 

sequence has been one of the grand challenges in the field of protein structure prediction.1 

Accurate prediction of the 3D structure of a protein is critical to understand its function, as 

the shape of the protein determines its properties and ultimately its function. To 

determine/identify the state-of-the-art methods in protein structure prediction, the biennial 

community-based benchmarking experiment <Critical Assessment of methods in protein 

Structure Prediction (CASP)= has been established.234 In CASP14 (2020), DeepMind showcased 

AlphaFold2, which is a program based on artificial intelligence (AI) that directly processes 

multiple sequence alignments.5 Comparable accuracies in predicting protein structures could 

also be achieved with RoseTTAFold6, and specialized tools for antibodies which incorporate 

the recent advances have been presented.739 Those tools are highly accurate based on global 

measures, often with RMSDs to the crystal structure of less than 1 Å. However, there might 

be higher inaccuracies in parts of the protein. Post-translational modifications are omitted, 

but can sometimes be added afterwards.10 Furthermore, the accuracy for multimers, such as 

antibodies, is still lower.11  Additional challenges can arise for antibodies since VDJ 

recombination events do not follow the classical pathway of evolution.12 

Antibodies are crucial components of the adaptive immune response.13 Genetic 

recombination and somatic hypermutation events enable the adaptive immune system to 

produce a vast number of antibodies against a variety of pathogens.12 To understand and 

optimize antigen recognition and to enable rational design of antibodies, accurate structure 

models are essential.14 Despite these recent advances, accurate structure prediction of 

antibodies remains challenging and still needs to be extensively validated. In particular, the 

flexible loops involved in recognizing the antigen pose a major challenge.15,16 In comparison 

to other protein superfamilies, the fold of antibodies is generally highly conserved.17319 

Especially the framework of the antigen-binding fragment (Fab) is structurally almost identical 

for all antibodies.20,21 However, the area hardest to predict accurately is the six hypervariable 

loops that form the antigen-binding site, called the paratope. These loops are also known as 

the complementarity determining region (CDR) and provide the structural diversity essential 

to recognize a wide range of antigens. Five of the six loops tend to adopt canonical cluster 

folds based on their length and sequence composition. However, the third CDR loop of the 
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heavy chain, the CDR-H3 loop, is the most diverse in length, sequence and structure and 

therefore is the most challenging loop to predict accurately. Additionally, the CDR-H3 loop 

conformation is also strongly influenced by the relative interdomain orientation, as it is 

located in the center, directly in the interface between the heavy and the light chains. 

Recently, to tackle this challenge, various antibody-specific deep learning methods such as 

ABlooper, DeepAb and IgFold have significantly improved the CDR loop modeling accuracy.73

9,22 The predicted structure models achieve similar or better quality than methods, that are 

able to predict all types of protein structures (including AlphaFold2).11,23 All these 

improvements have enabled predictions of a vast number of antibody structures at a high 

level of accuracy, which can then further be used as input structures for virtual screening or 

to inform rational design of antibodies.14,15  

 

Possible inaccuracies in antibody structure models 

Here, we investigated a dataset consisting of 137 antibody sequences published by Jain et al. 

and used several freely available antibody structure prediction tools, i.e., ABlooper7, IgFold8, 

DeepAb9 and the MOE Antibody Modeller24, to generate structure models for further 

biophysical characterizations.25,26 Careful inspection of the generated models revealed 

inconsistencies such as cis-amid bonds in the CDR loops, D-amino acids and severe clashes. In 

total, this resulted in up to 300 D-amino acids and up to 240 cis-amid bonds for the 137 

antibody models. We found cis-amid bonds and clashes independent of the applied antibody 

modelling tools. The only tool that did not introduce any D-amino acids is DeepAb. These 

structural inaccuracies affect the results of structure-based biophysical property 

predictions.25,26 In addition to the Jain et al. dataset27, we predicted the structure of the CIS43 

antibody, where the experimental X-ray structure (PDB accession code: 7SG5)28 was released 

after the structure prediction tools were published, to have an experimental reference 

structure outside of the used training set. Figure 1 shows an overlay of all obtained structure 

models and reveals an overall high structural similarity, reflected in low overall RMSD values 

(~1Å). However, substantial structural variability can be observed in the CDR-H3 loop (RMSD 

values >2Å). This result points out one particular challenge in predicting antibody structures: 

The high variability of the antibody CDR loops cannot be captured/represented by one single-

static structure. While there can be properties and metrics that are not too much affected by 

these issues, metrics that rely on accurate CDR-H3 structures will be strongly distorted. This 
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includes antibody-antigen docking, since the CDR-H3 loop is a central part of the binding 

interface, as well as structure-based hydrophobicity calculations, since the binding interface 

frequently contains more hydrophobic amino acids than the rest of the antibody 

surface.14,15,25 Molecular dynamics simulations (MD) might correctly capture the ensemble in 

solution if the starting structure is sufficiently close, but current MD approaches cannot 

sample cis-trans isomerisation or transitions from D- to L-amino acids, leading to ensembles 

that are potentially worse than the starting structure in terms of RMSD to the crystal structure 

(SI Figure S1). 

 

To show the effect of starting structures with cis-amid bonds and D-amino acids in the CDR 

loops, we compare the surface hydrophobicity of structure models for the CIS43 antibody 

variant with the X-ray structure (Figure 2). The surface hydrophobicity was assigned using the 

hydrophobicity scale by Wimley and White.29 We find differences in the surface 

hydrophobicity, which is expected as hydrophobicity is potentially a strongly conformation 

dependent property, since small sidechain rearrangements may expose otherwise buried 

hydrophobic groups. While small inaccuracies in the atomic positions can be fixed by 

molecular dynamics simulations, the correct sidechain packing is often impossible when D-

amino acids or cis-amide bonds are present, leading to almost irreparable errors in the 

biophysical property estimation. The same is true for antibody-antigen docking, where an 

accurate representation of the surface is required to find the correct interactions with the 

antigen. 

Figure 3 shows examples of cis-amide bonds and D-amino acids in the CDR-H3 loop of CIS43. 

Additionally, in one of the obtained models we find a missing proline sidechain at the tip of 

the CDR-H3 loop. Rebuilding the proline results in severe clashes, clashes, as shown in the 

right panel of Figure 3, and the only way to avoid these clashes would be to build a D-Proline 

instead.  

 

To facilitate the identification of these issues, we present a tool (available on Github: 

https://github.com/liedllab/TopModel), called <TopModel=, that quickly checks the structure 

for cis-amid bonds, D-amino acids, and clashes. With this tool, structure models can rapidly 

be checked to assess the quality/accuracy of the models before performing further analysis. 

At the same time, it offers the possibility to directly visualize these issues in PyMOL.30 Figure 
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4 shows the output obtained by <TopModel=. Residues colored in magenta (D-amino acids) 

and red (cis-amid bonds) represent issues that should be fixed, while cis-Prolines are colored 

green, as they occasionally occur in native protein structures. Van der Waals clashes are 

colored in yellow. For the clashes we also provide an optional score, to quantify the quality of 

the model, that takes the number of clashes and the length of the protein into account, to 

quantify the quality of the model. Non-planar amid bonds are depicted in cyan. As these issues 

can also be found for other protein structure models apart from antibodies, we recommend 

checking every model with <TopModel= and stress the importance of validating the obtained 

structures to ensure the most accurate results/predictions as possible.  

 

Discussion 

While we want to highlight the enormous advances in the protein structure prediction field, 

at the same time, we want to emphasize the importance to critically review structure models-

-especially antibody models--before basing conclusions/further experiments/molecular 

dynamics simulations on potentially erroneous models.31 In particular, we want to stress the 

importance of not limiting the characterization of the antigen binding site to a single-static 

structure model, as there is already a high structural variability between the different models. 

This high variability suggests that even considering ensembles in solution might more 

accurately reflect the properties/functions of the antibody.16 The tremendous development 

in protein structure prediction enables fast protein structure predictions that approach the 

accuracy of experimental structures.23 These breakthroughs have been achieved by 

combining artificial intelligence with an effective exploitation of the available structural 

information and incorporation of evolutionary related sequences in terms of multiple 

sequence alignments (MSAs).23 Thereby, AlphaFold, RoseTTAFold and ESMFold 

revolutionized protein structure prediction.6,23,32334 Various deep learning (based) approaches 

have also been shown to improve antibody structure prediction and outperform all previously 

available antibody structure prediction methods.739,35 Accurately predicting the structure of 

antibodies is central to understand their function, to elucidate antibody-antigen binding and 

inform rational antibody design.  

However, the most challenging part in antibody structures prediction is concentrated in the 

six CDR loops, as they reveal the highest variability in both sequence and structure.13,36 In 

particular, the CDR-H3 loop reveals the highest diversity and variability, which impedes the 
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accurate prediction of its structure.37,38 This is in line with our findings, as the comparison of 

different antibody prediction methods reveals the most diverging results for the CDR-H3 loop. 

Figure 1 shows an overlay of all the obtained models, highlighting the high conformational 

variability of the CDR-H3 loop. To account for this high diversity of the CDR loops one single 

static structure might not be sufficient and therefore the CDR loops should rather be 

characterized as ensembles in solution.16,37 This is especially important, as various biophysical 

properties of antibodies, such as hydrophobicity, are conformation dependent and already 

small sidechain rearrangements reveal distinct surface properties.25,26 Molecular dynamics 

simulations provide such ensembles in solution, increasing the probability that conformations 

determining biophysical properties are captured.25 In agreement with these observations, we 

find that these conformational differences between the models can result in changes in the 

surface hydrophobicity.  

 

In addition to the high divergence in CDR-H3 loop conformations, we found various cis-amid 

bonds, D-amino acids, and clashes in the obtained models. Such modeling artifacts are firstly 

non-natural and secondly, can strongly influence biophysical property predictions and result 

in misleading conclusions.31 Thus, to address these pitfalls, we provide a tool that quickly 

inspects protein structure models and identifies issues/flaws in the protein structures, namely 

the python package <TopModel=. As accurate antibody structures are a prerequisite to 

reliably understand antibody function and characterize biophysical properties, we strongly 

suggest an additional validation of the respective structure models to increase the quality of 

the respective predictions. 

 

Methods 

 
The tool <TopModel= (version 1.0) inspects and highlights issues in a structure model. 

<TopModel= checks the chirality, amide bond stereochemistry and Van der Waals clashes for 

every residue in the structure model. The structure models are parsed and analyzed using 

biopython.39 To calculate the chirality a triangle is defined based on the priority of the atom 

chains around the chiral center. The direction of a normal vector to this plane, calculated 

using the cross product, is determined by the priority of the atom chains. By calculating the 

dot product of this normal vector and a vector from the chiral center to the plane the 
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orientation of the three atom chains with respect to the center can be determined. Based on 

the sign of the resulting scalar the chirality can be assigned. This approach allows us to 

calculate the chirality even if no hydrogens are included in the structure model. The amide 

bond is inspected by calculating the dihedral angle of the protein backbone. Cis-amide bonds 

to proline are labelled separately as they naturally occur more frequently than in other amino 

acids. Dihedral angles that could neither be assigned cis nor trans are labelled as non-planar.  

The VDW clashes are quickly computed using a k-d tree40 and VDW radii data gathered using 

the python package mendeleev41. All pairs of atoms within 5 Å of each other are checked for 

VDW clashes by calculating the distance and comparing against the combined VDW radii 

minus 0.5 Å. The pairs of atoms that are closer than 5 Å are calculated using a k-d tree40 and 

the VDW radii data is gathered using the python package mendeleev41.For the clashes an 

optional score can be displayed, which takes the number of clashes and the length of the 

protein into account. The chiralities and amide bond orientations are not included in the 

score. To quickly assess the structural implications of the issues found by <TopModel=, the 

analyzed structure can be opened in PyMOL30 with the issues highlighted and labeled as 

shown in Figure 4. 

 

Author Contributions 

M.L.F.Q., J.K., F.W. performed research, analyzed data and drafted the manuscript. A.M.F. 

performed research and analyzed data. P.K.Q. analyzed data and contributed in writing the 

manuscript. C.M.D. and K.R.L. supervised the research.  

Acknowledgement 

The computational results presented her have been achieved (in part) using the Vienna 

Scientific Cluster (VSC). This work was supported by the Austrian Science Fund (FWF) under 

grant number P34518. MFQ received the APART-MINT PostDoc fellowship of the Austrian 

Academy of sciences (No. 11985). We acknowledge PRACE for awarding us access to Piz Daint 

at CSCS, Switzerland.  

Conflicts of Interest 

All authors declare no conflict of interest. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515600
http://creativecommons.org/licenses/by-nc/4.0/


 8 

 

References 

1.  Al-Lazikani B, Jung J, Xiang Z, Honig B. Protein structure prediction. Current Opinion in 
Chemical Biology 2001; 5:5136.  

2.  Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein structure prediction of 
CASP III targets using ROSETTA. Proteins: Structure, Function, and Bioinformatics 1999; 
37:17136.  

3.  Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein 
structure prediction methods. Proteins: Structure, Function, and Bioinformatics 1995; 
23:ii3iv.  

4.  Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-
García B, Bates PA, Fernandez-Recio J, et al. Updates to the Integrated Protein-Protein 
Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 
2. J Mol Biol 2015; 427:3031341.  

5.  Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, 
Bates R, }ídek A, Potapenko A, et al. Applying and improving AlphaFold at CASP14. 
Proteins: Structure, Function, and Bioinformatics 2021; 89:1711321.  

6.  Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, 
Kinch LN, Schaeffer RD, et al. Accurate prediction of protein structures and interactions 
using a three-track neural network. Science 2021; 373:87136.  

7.  Abanades B, Georges G, Bujotzek A, Deane CM. ABlooper: fast accurate antibody CDR 
loop structure prediction with accuracy estimation. Bioinformatics 2022; 38:1877380.  

8.  Ruffolo JA, Chu L-S, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction 
from deep learning on massive set of natural antibodies. bioRxiv 2022; 
:2022.04.20.488972.  

9.  Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep 
learning. Patterns 2022; 3:100406.  

10.  Bagdonas H, Fogarty CA, Fadda E, Agirre J. The case for post-predictional modifications 
in the AlphaFold Protein Structure Database. Nature Structural & Molecular Biology 
2021; 28:869370.  

11.  Evans R, O9Neill M, Pritzel A, Antropova N, Senior A, Green T, }ídek A, Bates R, 
Blackwell S, Yim J, et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 
2022; :2021.10.04.463034.  

12.  Market E, Papavasiliou FN. V(D)J Recombination and the Evolution of the Adaptive 
Immune System. PLoS Biology 2003; 1:e16.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515600
http://creativecommons.org/licenses/by-nc/4.0/


 9 

13.  Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The 
Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:55.  

14.  Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, Weng Z, Pierce BG. An 
expanded benchmark for antibody-antigen docking and affinity prediction reveals 
insights into antibody recognition determinants. Structure [Internet] 2021; Available 
from: https://www.sciencedirect.com/science/article/pii/S0969212621000058 

15.  Fernández-Quintero ML, Vangone A, Loeffler JR, Seidler CA, Georges G, Liedl KR. 
Paratope states in solution improve structure prediction and docking. Structure 
[Internet] 2021; Available from: 
https://www.sciencedirect.com/science/article/pii/S0969212621004135 

16.  Fernández-Quintero ML, Pomarici ND, Math BA, Kroell KB, Waibl F, Bujotzek A, Georges 
G, Liedl KR. Antibodies exhibit multiple paratope states influencing VH3VL domain 
orientations. Communications Biology 2020; 3:589.  

17.  Wang J-H. The sequence signature of an Ig-fold. Protein Cell 2013; 4:569372.  

18.  Youkharibache P. Topological and Structural Plasticity of the Single Ig Fold and the 
Double Ig Fold Present in CD19. Biomolecules 2021; 11:1290.  

19.  Lesk AM, Chothia C. Evolution of proteins formed by ³-sheets: II. The core of the 
immunoglobulin domains. Journal of Molecular Biology 1982; 160:325342.  

20.  Tramontano A, Chothia C, Lesk AM. Framework residue 71 is a major determinant of 
the position and conformation of the second hypervariable region in the VH domains 
of immunoglobulins. Journal of Molecular Biology 1990; 215:175382.  

21.  Honegger A, Malebranche AD, Röthlisberger D, Plückthun A. The influence of the 
framework core residues on the biophysical properties of immunoglobulin heavy chain 
variable domains. Protein Engineering, Design and Selection 2009; 22:121334.  

22.  Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. ImmuneBuilder: 
Deep-Learning models for predicting the structures of immune proteins. bioRxiv 2022; 
:2022.11.04.514231.  

23.  Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, 
Bates R, }ídek A, Potapenko A, et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 2021; 596:58339.  

24.  Molecular Operating Environment (MOE). 2020;  

25.  Waibl F, Fernández-Quintero ML, Wedl FS, Kettenberger H, Georges G, Liedl KR. 
Comparison of hydrophobicity scales for predicting biophysical properties of 
antibodies. Frontiers in Molecular Biosciences [Internet] 2022; 9. Available from: 
https://www.frontiersin.org/articles/10.3389/fmolb.2022.960194 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515600
http://creativecommons.org/licenses/by-nc/4.0/


 10 

26.  Waibl F, Fernández-Quintero ML, Kamenik AS, Kraml J, Hofer F, Kettenberger H, 
Georges G, Liedl KR. Conformational Ensembles of Antibodies Determine Their 
Hydrophobicity. Biophysical Journal 2021; 120:143357.  

27.  Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, 
Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl 
Acad Sci USA 2017; 114:944.  

28.  Banach BB, Tripathi P, Da Silva Pereira L, Gorman J, Nguyen TD, Dillon M, Fahad AS, 
Kiyuka PK, Madan B, Wolfe JR, et al. Highly protective antimalarial antibodies via 
precision library generation and yeast display screening. Journal of Experimental 
Medicine 2022; 219:e20220323.  

29.  Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at 
membrane interfaces. Nature Structural Biology 1996; 3:84238.  

30.  Schrodinger. The PyMOL Molecular Graphics System, Version 1.8. 2015;  

31.  Schreiner E, Trabuco LG, Freddolino PL, Schulten K. Stereochemical errors and their 
implications for molecular dynamics simulations. BMC Bioinformatics 2011; 12:190.  

32.  Jisna VA, Jayaraj PB. Protein Structure Prediction: Conventional and Deep Learning 
Perspectives. The Protein Journal 2021; 40:522344.  

33.  Bongirwar V, Mokhade AS. Different methods, techniques and their limitations in 
protein structure prediction: A review. Progress in Biophysics and Molecular Biology 
2022; 173:72382.  

34.  Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Santos Costa A dos, Fazel-Zarandi M, Sercu T, 
Candido S, et al. Language models of protein sequences at the scale of evolution 
enable accurate structure prediction. bioRxiv 2022; :2022.07.20.500902.  

35.  Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder: Automated antibody 
structure prediction with data3driven accuracy estimation. mAbs 2016; 8:1259368.  

36.  Chothia C, Lesk AM. Canonical structures for the hypervariable regions of 
immunoglobulins. Journal of Molecular Biology 1987; 196:901317.  

37.  Fernández-Quintero ML, Kraml J, Georges G, Liedl KR. CDR-H3 loop ensemble in 
solution 3 conformational selection upon antibody binding. null 2019; 11:1077388.  

38.  Regep C, Georges G, Shi J, Popovic B, Deane CM. The H3 loop of antibodies shows 
unique structural characteristics. Proteins 2017; 85:131138.  

39.  Hamelryck T, Manderick B. PDB file parser and structure class implemented in Python. 
Bioinformatics 2003; 19:2308310.  

40.  Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, 
Peterson P, Weckesser W, Bright J, et al. SciPy 1.0: fundamental algorithms for 
scientific computing in Python. Nature Methods 2020; 17:261372.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515600
http://creativecommons.org/licenses/by-nc/4.0/


 11 

41.  Mentel A. mendeleev - A Python package with properties of chemical elements, ions, 
isotopes and methods to manipulate and visualize periodic table.  

 

 

 

Figure 1: A) Comparison of the available X-ray structure of the CIS43 antibody (PDB code: 

7SG5) with the structure models generated with different antibody prediction tools, namely 

ABlooper, MOE, DeepAb and IgFold. B) Structural overlay of the obtained Fv models, 

showing the high variability in the CDR-H3 loop. C) Ca-RMSD matrix of the X-ray structure 

and the respective models for the whole Fv. D) Ca-RMSD matrix of the X-ray structure and 

the respective models for the CDR-H3 loop. 
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Figure 2: Surface hydrophobicity mapped on the X-ray structure and two antibody models. 

Surface hydrophobicity was assigned by the Whimley and White hydrophobicity scale. 

Hydrophobic areas are colored in yellow, while hydrophilic parts are depicted in blue.  

 

 

Figure 3: Examples of structural inaccuracies observed in some of the models, namely cis-

amid bonds, D-amino acids and Van der Waals clashes.  

 

 

 

Figure 4: Pymol visualization of the structural inaccuracies, as output of the <TopModel= 

tool. 
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