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We present, here, an open-source systems biology toolkit to simulate mathematical models of the signal-transduction 

pathways of G-protein coupled receptors (GPCRs). By merging structural macromolecular data with systems biology 

simulations, we developed a framework to simulate the signal-transduction kinetics induced by ligand-GPCR 

interactions, as well as the consequent change of concentration of signaling molecular species, as a function of time 

and ligand concentration. Therefore, this tool brings to the light the possibility to investigate the subcellular effects of 

ligand binding upon receptor activation, deepening the understanding of the relationship between the molecular level 

of ligand-target interactions and higher-level cellular and physiologic or pathological response mechanisms. 
Computational systems biology approaches for modeling signaling pathways together with pharmacokinetics and 

pharmacodynamics mechanistic models have been making important contributions to neuroscience drug discovery and 
development 1,2. They have been used, for instance, to translate drugs9 modes of action from in vitro to in vivo, but also 
from animal models to human3. Through such models it is possible to integrate and predict important quantitative and 
qualitative parameters such as the drug concentration profile in blood or at the site of action and cellular signaling 
downstream the targets sites4,5. The incorporation of physiochemical-based macromolecular structure parameters in 
such computational systems biology approaches can not only deepen our understanding on the molecular mechanisms 
of drug modes of action, but also  give insight in how genetic mutations can affect the subcellular downstream signaling 
events by altering receptor9s ligand binding, activation and signaling4,5. 

Although the number of mathematical models of signal-transduction pathways for a variety of systems, as well as the 
number of tools for conducting systems biology studies and the number of computational methods to derive quantitative 
structure-kinetics relationships have been increasing over the years6, the use of systems biology simulations to study 
pharmacological models at the molecular level is still in its early stages. This is mostly due to the lack of a common 
language to annotate, exchange, reuse and update biochemical signaling pathways models, the absence of an 
interrelationship framework between structural and systems biology, the current limitations in reproducing kinetic 
parameters with molecular computational approaches and the lack of kinetic parameters needed to feed the network. 
Ideally, such parameters should be determined experimentally under relevant conditions to the model, but, actually the 
existing parameters are distributed in literature and relate to different experimental conditions7,8.  

Here, we present the Structural System Biology (SSB) toolkit: an open-source systems biology object-oriented library 
to specifically simulate mathematical models of the signal-transduction pathways of GPCRs. The SSB toolkit allows to 
investigate the concentration changes of molecular species throughout signaling pathways as a function of time and 
ligand concentration, in order to support the comparison of signal-transduction kinetics. We envision the use of this 
toolkit as a scaffold that holds together ligand/structure data and systems biology simulations to study GPCRs9 modes of 
action. 

The SSB toolkit was designed to use structure biology data to feed systems biology simulations in order to predict the 
effect of ligand-targets interactions on the GPCRs molecular signaling responses. Experimental or computed affinities (Kd) 
or kinetic parameters (kon and koff), can then be used to fire up the mathematical models of the signaling pathways, that 
predict the variation of concentration of molecular species of the pathways over time, and deduce, in the end, dose-
response curves of the ligand-GPCRs interactions (Fig. 1). In this way, the SSB toolkit facilitates the comparison of the 
signal-transduction kinetics induced by those interactions. 

The core of the SSB toolkit consists of the mathematical models of the main GPCRs9 signaling pathways: Gs, Gi/o, and 
Gq/11. To implement them in our framework we adapted pre-existing models. The Gs and Gi/o pathways were implemented 
based on the model proposed by Nair et al.9, whereas the Gq/11 pathway was based on the model proposed by Chang et 

al.10.  
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Figure 1 - Conceptual scheme for predicting dose-response through signaling pathways9 simulation. For each concentration value the signaling model is simulated, 

obtaining in the end several curves of the concentration of a specific species of the pathway as a function of time. After, the maximum value of each curve is selected and 

plotted, resulting, in the end, in the dose-response curve. 

	
All the three signaling pathways were programmed using the PySB11 python library, designed specifically for running 

systems biology simulations. In detail, we start by defining all the species, initial concentrations, reactions, and reactions 
constants. Then, all the ordinary differential equations (ODEs) are integrated and the variation of the concentration of 
the molecular species that make part of the model can be monitored throughout the time evolution of the ODEs. To 
obtain a dose-response curve individual simulations of the pathway according to a range of ligand concentrations must 
be performed (Fig. 1). The dose-response curve is, then, obtained by fitting a logistic regression to the maximum 
concentration value from each individual simulation. In the end, a curve of the response in function of the ligand 
concentration is obtained (Fig. 1), from which the efficacy parameter of a ligand can be extracted.  

Another novel feature of the SSB toolkit is the possibility to investigate the parameters of the model that leads to a 
better fit of the model to experimental data.  

The open-source SSB toolkit was implemented as an object-oriented python module, which grants its readability, 
reusability, and deployment. It was developed having in mind its use through Jupyter notebooks, nowadays broadly 
adopted by the scientific community. In this way, users are allowed to create workflows according to their needs.  

To start a SSB simulation, experimental or computed Kd, kon or koff parameters must be provided as inputs. Many 
computational approaches recently developed to derive drug binding kinetics12315 exist and they can be used to estimate 
those parameters. In particular, the SSB toolkit has an implementation of the tRAMD tool16. This tool uses random 
accelerated molecular dynamics (RAMD) simulations to calculate the residence time of a ligand, from which the koff 
parameter can be obtained16. If Kd is supplied, the concentration of activated receptors is calculated according to the 
occupancy theory, while for given kon or koff the concentration of activated receptors is calculated directly from the ligand-
receptors binding equation9s reaction.  

Likewise, the simulation and pathway parameters must be set up. The SSB toolkit allows the user to adjust each 
parameter of the pathway: initial species concentrations and kinetic parameters, or to stick with the default parameter 
values. 

To assist the computational biology community to understand all the potentialities of the SSB toolkit we have prepared 
a series of Jupyter notebooks tutorials17 that can be easily run in cloud computing environments directly from the 
browser. All the toolkit source-code and the Jupyter notebook tutorials are open-source and available through github.com 
(https://github.com/rribeiro-sci/SSBtoolkit.git). 
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Application Case: simulation of the signal-transducing pathway of the Oxytocin receptor (OXTR). We have applied the 
SSB toolkit to model the signaling pathway of Oxytocin receptor (OXTR) in order to study the impact of a disease-variant 
of the receptor on its subcellular Ca2+ signaling dynamics5. We have implemented the OXTR-Gq  signaling cascade  by 
integrating two existing mathematical models, and by tuning the parameters of the model that were recognized as altered 
during disease conditions we were able to predict the functional impact caused by their associated variants5. Therefore, 
scaling one of the parameters of the model that describes the binding of the Gq-protein to the receptor, which implicitly 
depends on the receptor activation, we were able to reproduce the shape of the experimental Ca2+ concentration curves. 
The integration of structural features within our model, allowed us to reproduce and give a rationale on the molecular 
determinants underlying the increase in the intracellular calcium concentration in presence of the variant. The results of 
the multiscale model prompted us to propose that the A218T variant is involved in a change in the activation properties 
of the OXTR with an impact on the downstream events. The SSB model of the OXTR, as well as other application cases, 
i.e. simulation of the agonist and competitive antagonists are described in detail in the Jupyter notebooks tutorials 
(https://github.com/rribeiro-sci/SSBtoolkit.git). 

 
Application Case: simulation of the dose-response curves of known antagonists and antagonists of Adenosine 2A 

receptor.  
We have applied the SSBtoolkit routines to model the cAMP concentration of the adenosine receptor (A2AR) upon binding 
of adenosine - the endogenous ligand - and the two more common agonists for A2 receptors used in functional studies: 
NECA and NGI to evaluate if we could reproduce experimental potency patterns. The experimental affinity values were 
obtained directly from pubchem.org18. To initiate the SB simulations, we have used Kd values of, obtained with a 3D-
Convolution Neural Network Deep Learning (Kdeep)19 embedded in the PlayMolecule.org web server, from ligand-
receptor (PDB ID: 2YDV) docked complexes performed with Autodock Vina20. We used a receptor concentration of 2 µM, 
a range of ligand concentration between 10-3 µM and 103 µM, and an integral time step of 1000. The results obtained 
from our protocol (Fig. S1) predicted that the NGI is the most potent agonist, followed by the NECA, being the Adenosine 
the less potent ligand, which agrees with the experimental data, Fig. S1. The same protocol was also applied to a set of 
antagonists of the A2 receptors, where we could observe that the predicted inhibition pattern also followed the 
experimental affinity pattern, Fig S2. 
 

Conclusions and future directions 

Here we present an open-source toolkit designed to exploit the synergies between molecular-level ligand-GPCR 
interactions and higher-level systemic and physiologic mechanisms. What we are proposing not only might constitute a 
computational approach to systematically assess pharmacodynamic parameters during virtual screening campaigns 
against GRCRs, but also open the possibility to consistently model experimental data in order to give rationales on the 
molecular structure/function relationships of GPCRs, as well as on the impact of their disease associated variants along 
the signaling pathway. 
Therefore, the insights obtained from our systems biology methods combined with a molecular level modeling of disease 
associated variants may support strategies for drug discovery and biomedical projects, paving the way to the acclaimed 
paradigm of structural systems pharmacology. 

Even if the SSB toolkit was developed having in mind ligand-GPCRs systems, it can be expanded to other 
pharmacological systems. By implementing ODEs models of other signaling pathways4 it will be possible to cover a larger 
pharmacology landscape, and then, enhance our understanding in drugs mode of actions and increase the predictive 
power of pharmacokinetics/dynamics models. 

Methods 

Since the SSB toolkit is an ongoing project, we strongly recommend users to read the full detailed documentation in the 
source-code repository on GitHub: https://github.com/rribeiro-sci/SSBtoolkit.git. 
Nonetheless, in the following lines a brief description on the methodology used to obtain drug-response curves for 
agonists and antagonists is provided. 
 
Obtaining dose-response curves of ligand-target interactions from simulation of mathematical models of signaling 

pathways. One of the key elements of the simulation of a mechanistic model of a signaling pathway is the calculation of 
the concentration of activated receptors under a predefined concentration of receptor and ligand. Typically, it is assumed 
that the response of a drug is proportional to the fraction of activated receptors. However, this assumption is not valid 
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for the so-called <spare receptors= like GPCRs. That is to say that the maximum response of a GPCR can be achieved with 
less than 100% of occupancy21. As this implies, we can9t estimate the EC50/IC50 of ligands of GPCRs without including the 
signaling pathway associated with these receptors. 

And there are two methods to calculate it. Having experimental or computational affinities (Kd) the concentration of 
activated receptors can be calculated according to the occupancy theory that states that the concentration of activated 
receptors equals to the fraction of occupied receptors at equilibrium. On the other hand, the concentration of activated 
receptors can also be calculated directly using the ligand-target reaction equation if its kinetic parameters (kon and koff) 

are provided.  

With the Kd, kon or koff parameters simulations of the mathematical models of the signaling pathway can be performed, 
by integrating all ODEs over a range of time. The variation of the concentration of the molecular species that make part 
of the model are, then, calculated from the time evolution of the ODEs. The response of a signaling pathway is, naturally, 
represented by the increase or decrease of one of the species described by the model. Therefore, for each signaling 
pathway we defined, by default, a reference species. While cAMP is chosen, by default, as reference species for the Gs 
and Gi/o pathway, for the Gq/11 pathway we chose IP3 as default molecular species. However, the user has the freedom to 
select any of the signaling species included in the pathways for the data collection. 

Finally, to obtain a dose-response curve from systems biology simulations, individual simulations of the model 
according to range of ligand concentrations must be performed first, as it is described in the main text. 

However, this method is just valid if the ligands act as agonists. If the ligands act as competitive antagonists, the 
concentration of activated receptors will depend on the concentration and dissociation values of both the agonist and 
antagonist. By definition, an antagonist is a drug that inhibits the action of an agonist, having no effect in the absence of 
the agonist21. To address this situation, it is necessary to obtain at first place the drug-receptor binding curve of an 
antagonist in the presence of an agonist, like it is done in radio-ligand experimental binding assays. In such assays, a 
competitive ligand called <displacer= competes with a ligand with radioactivity previously added to the system. Therefore, 
we compute the following equation in function of a range of antagonist concentration with a saturation concentration 
value for the agonist: 

  

         (1) 

where L1R/Rtotal is the fraction of occupied receptors by agonist, L1 and KdL1 are the concentration and the dissociation 
constant of the agonist (8labeled ligand9), L2 and KdL2 are the concentration and dissociation constant of the antagonist 
(8displacer9).  

To calculate the concentration of agonist that saturates the receptor, we must calculate its submaximal concentration, 
i.e., the concentration of agonist for which the fraction of occupied receptor reaches the maximum plateau on the 
agonist-receptor binding curve. Therefore, before obtaining a drug-receptor binding curve of the agonist in the presence 
of the antagonist, a drug-receptor binding curve of the agonist without the antagonist must be obtained applying a 
simplified version of the previous equation: 

                             (2) 

The submaximal concentration value for the agonist can then be deduced from the binding curve of the agonists using 
the methods proposed by Sebaugh et al.22, in which the maximum plateau on the agonist-receptor binding curve is 
defined as the upper bend point of the linear portion of the sigmoid curve that is mathematically obtained by calculating 
the maximum value of the derivative function of the logistic function. 

Availability 

Source-code: https://github.com/rribeiro-sci/SSBtoolkit.git 
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Documentation:  
 
Tutorials: https://colab.research.google.com/github/rribeiro-sci/SSBtoolkit/blob/main/SSBtoolkit-Tutorial1.ipynb; 
https://colab.research.google.com/github/rribeiro-sci/SSBtoolkit/blob/main/SSBtoolkit-Tutorial2.ipynb; 
https://colab.research.google.com/github/rribeiro-sci/SSBtoolkit/blob/main/SSBtoolkit-Tutorial3A.ipynb; 
https://colab.research.google.com/github/rribeiro-sci/SSBtoolkit/blob/main/SSBtoolkit-Tutorial3B-tauRAMD.ipynb 
https://colab.research.google.com/github/rribeiro-sci/SSBtoolkit/blob/main/SSBtoolkit-Tutorial4-OXTR.ipynb 

Funding 

This work has been supported by the European Union9s Horizon 2020 Framework Programme for Research and Innovation 
under the Speciûc Grant Agreement No. 945539 (Human Brain Project SGA3) 
  
Competing interest 

The authors declare no competing interests. 

References 

1. Schoeberl, B. Quantitative Systems Pharmacology models as a key to translational medicine. Curr. Opin. Syst. Biol. 

16, 25331 (2019). 

2. Geerts, H. et al. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current 

Status, Opportunities, and Challenges. CPT Pharmacomet. Syst. Pharmacol. 9, 5320 (2020). 

3. Clarelli, F., Liang, J., Martinecz, A., Heiland, I. & Abel Zur Wiesch, P. Multi-scale modeling of drug binding kinetics to 

predict drug efficacy. Cell. Mol. Life Sci. CMLS 77, 3813394 (2020). 

4. Micheli, P., Ribeiro, R. & Giorgetti, A. A Mechanistic Model of NMDA and AMPA Receptor-Mediated Synaptic 

Transmission in Individual Hippocampal CA3-CA1 Synapses: A Computational Multiscale Approach. Int. J. Mol. Sci. 

22, 1536 (2021). 

5. Meyer, M. et al. Structure-function relationships of the disease-linked A218T oxytocin receptor variant. Mol. 

Psychiatry 1311 (2022) doi:10.1038/s41380-021-01241-8. 

6. Malik-Sheriff, R. S. et al. BioModels415 years of sharing computational models in life science. Nucleic Acids Res. 

48, D4073D415 (2020). 

7. Xie, L. et al. Towards Structural Systems Pharmacology to Study Complex Diseases and Personalized Medicine. PLoS 

Comput. Biol. 10, (2014). 

8. Stein, M., Gabdoulline, R. R. & Wade, R. C. Bridging from molecular simulation to biochemical networks. Curr. Opin. 

Struct. Biol. 17, 1663172 (2007). 

9. Nair, A. G., Gutierrez-Arenas, O., Eriksson, O., Vincent, P. & Hellgren Kotaleski, J. Sensing Positive versus Negative 

Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny 

Neurons. J. Neurosci. 35, 14017314030 (2015). 

10. Chang, C., Poteet, E., Schetz, J. A., Gümü_, Z. H. & Weinstein, H. Towards a Quantitative Representation of the Cell 

Signaling Mechanisms of Hallucinogens: Measurement and Mathematical Modeling of 5-HT1A and 5-HT2A 

receptor-mediated ERK1/2 Activation. Neuropharmacology 56, 2133225 (2009). 

11. Lopez, C. F., Muhlich, J. L., Bachman, J. A. & Sorger, P. K. Programming biological models in Python using PySB. Mol. 

Syst. Biol. 9, 646 (2013). 

12. Schuetz, D. A. et al. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug 

Discov. Today 22, 8963911 (2017). 

13. Bruce, N. J., Ganotra, G. K., Richter, S. & Wade, R. C. KBbox: A Toolbox of Computational Methods for Studying the 

Kinetics of Molecular Binding. J. Chem. Inf. Model. 59, 363033634 (2019). 

14. Nunes-Alves, A., Kokh, D. B. & Wade, R. C. Recent progress in molecular simulation methods for drug binding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.515595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

kinetics. Curr. Opin. Struct. Biol. 64, 1263133 (2020). 

15. Capelli, R. et al. On the accuracy of molecular simulation-based predictions of koff values: a Metadynamics study. 

bioRxiv 2020.03.30.015396 (2020) doi:10.1101/2020.03.30.015396. 

16. Kokh, D. B. et al. Estimation of Drug-Target Residence Times by Ç-Random Acceleration Molecular Dynamics 

Simulations. J. Chem. Theory Comput. 14, 385933869 (2018). 

17. Kluyver, T. et al. Jupyter Notebooks - a publishing format for reproducible computational workflows. in Positioning 

and Power in Academic Publishing: Players, Agents and Agendas (eds. Loizides, F. & Scmidt, B.) 87390 (IOS Press, 

2016). 

18. Kim, S. et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49, D13883

D1395 (2021). 

19. Jiménez, J., akali
, M., Martínez-Rosell, G. & De Fabritiis, G. KDEEP: Protein3Ligand Absolute Binding Affinity 

Prediction via 3D-Convolutional Neural Networks. J. Chem. Inf. Model. 58, 2873296 (2018). 

20. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, 

efficient optimization, and multithreading. J. Comput. Chem. 31, 4553461 (2010). 

21. Principles of pharmacology: the pathophysiologic basis of drug therapy. (Wolters Kluwer Health/Lippincott Williams 

& Wilkins, 2012). 

22. Sebaugh, J. L. & McCray, P. D. Defining the linear portion of a sigmoid-shaped curve: bend points. Pharm. Stat. 2, 

1673174 (2003). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515595doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.515595
http://creativecommons.org/licenses/by-nc-nd/4.0/

