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Abstract

Recent findings in animals have challenged the traditional view of the cerebellum solely as the site
of motor control, suggesting that the cerebellum may also be important for learning to predict
reward from trial-and-error feedback. Yet, evidence for the role of the cerebellum in reward
learning in humans is lacking. Moreover, open questions remain about which specific aspects of
reward learning the cerebellum may contribute to. Here we address this gap through an
investigation of multiple forms of reward learning in individuals with cerebellum dysfunction,
represented by cerebellar ataxia cases. Nineteen participants with cerebellar ataxia and 57 age- and
sex-matched healthy controls completed two separate tasks that required learning about reward
contingencies from trial-and-error. To probe the selectivity of reward learning processes, the tasks
differed in their underlying structure: while one task measured incremental reward learning ability
alone, the other allowed participants to use an alternative learning strategy based on episodic
memory alongside incremental reward learning. We found that individuals with cerebellar ataxia
were profoundly impaired at reward learning from trial-and-error feedback on both tasks, but
retained the ability to learn to predict reward based on episodic memory. These findings provide
evidence from humans for a specific and necessary role for the cerebellum in incremental learning
of reward associations based on reinforcement. More broadly, the findings suggest that alongside
its role in motor learning, the cerebellum likely operates in concert with the basal ganglia to support

reinforcement learning from reward.
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Introduction

It is well established that the cerebellum is required for refining movement through supervised
motor learning.!™ The cerebellum receives error signals from climbing fiber input which then
alters Purkinje cell plasticity to adapt motor behavior in service of minimizing future error.>”’
However, recent findings have challenged the notion that the cerebellum is solely responsible for
supervised learning of motor behavior and instead suggest that the cerebellum may also be
involved in the processing of reward more generally.®"!? In particular, climbing fiber inputs to the
cerebellum encode expected reward,!>!>!17-1% and cerebellar Purkinje cells have been found to
report reward-based prediction errors.!l'!2!8 These signals are essential ingredients for
reinforcement learning, or learning that allows an organism to determine from trial-and-error
feedback which actions should be taken in order to maximize future expected reward. The presence
of reward-related processing in the cerebellum suggests that it may play a role in reinforcement
learning alongside its capacity for supervised motor learning.?’ This proposal challenges not only
our current understanding of cerebellar function, but also our understanding of how the brain learns

from reward more broadly.>?!

Although research on the cerebellum’s function in reward learning is growing, the vast majority

10-19

of work has been done in animal models, and evidence in humans remains limited. Human


https://doi.org/10.1101/2022.11.04.515251
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.515251; this version posted November 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Running title: REWARD LEARNING IN THE CEREBELLUM

neuroimaging studies have revealed correlational evidence that the cerebellum is involved in tasks
unrelated to movement,?? however, despite some reports of BOLD activity in the cerebellum in

response to reward across several early imaging studies,?*23

more direct investigations of the role
of cerebellum in reward-related behaviors in humans are lacking. The aim of the present study was
to fill this gap by testing whether individuals with damage to the cerebellum, as occurs in cerebellar

ataxia (CA), are impaired in their ability to acquire stimulus-reward associations.

Our study builds upon a rich literature focused on learning about reward from trial-and-error
feedback. This process has been studied extensively using models of incremental learning, which
rely on error-driven rules that summarize experiences with a running average.?¢-2® During reward
learning of this type, an agent uses the outcome of a recent decision to associate some stimulus
with an action. Following successful learning, actions that are more likely to be rewarded are more
likely to be repeated. This simple mechanism has been evoked to explain conditioning behavior
and is well-captured by reward prediction error signals in midbrain dopamine neurons that project
to the striatum.?’-? This error signal is also precisely what has been implicated in recent animal
models of cerebellar contributions to reward learning,” suggesting an additional, albeit unclear,
role for the cerebellum in this process. Whether these cerebellar contributions are actually needed

for successful incremental reward learning in humans is at present unknown.

To answer this question, we asked individuals with CA to complete a series of tasks that required
them to learn associations between stimuli from trial-and-error feedback in order to maximize
expected reward. CA is defined as a lack of coordination caused by disorders that affect cerebellar
function.>® A large variety of conditions can cause CA, ranging from immune-mediated disease to
genetic and neurodegenerative disorders. Given the presence of cerebellar dysfunction in CA
cases, studying individuals with CA is a common method used to investigate the necessary

physiological functions of the cerebellum in humans.

Nineteen individuals with CA and 57 age- and sex-matched healthy controls (HC) completed two
tasks (Figure 1). The first, referred to throughout as the incremental learning task, allowed us to
measure each participants’ ability to learn about reward incrementally. This task was motivated by
recent work using a similar simplified paradigm to investigate cerebellar-based incremental

learning in non-human primates.!®!! The second task, referred to throughout as the multiple
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learning strategies task, allowed us to measure whether any impairments were specific to
incremental learning alone. In the multiple learning strategies task, learning about reward can be
supported by an alternative strategy based on episodic memory for trial-unique past outcomes.
Healthy adults readily use of both of these strategies in this task.3!*? We hypothesized that
cerebellar dysfunction would lead specifically to impaired incremental reward learning relative to

healthy controls.
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Figure 1 Design of the incremental learning and multiple learning strategies tasks. (A) Left: Trial
design for the incremental learning task. Participants saw one of two fractal cues on the screen and were
required to press either the F key with their left hand or the J key with their right hand. Following their
choice, they received binary probabilistic feedback about whether they were correct or not. Right: Drifting
cue-response-reward contingencies over the course of the incremental learning task. The probability that
the F key is rewarded is shown for each cue in blue and orange. (B) Left: Trial design or the multiple
learning strategies task. Participants chose between two decks of cards (one blue and one orange) and
received an outcome between $0-$1 in intervals of 20 cents. Each card featured a trial-unique object that
could repeat once every 9-30 trials. Participants were told that if they saw the same card again, it would be
worth the same amount as the first time that it appeared. Right: An example of how average deck value
reversed throughout the course of the multiple learning strategies task.
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Materials and Methods

Cerebellar Ataxia Participants

Nineteen individuals with cerebellar ataxia (CA) were recruited from the Ataxia Clinic, Columbia
University Medical Center and completed both tasks (see Table 1 for information about basic CA
participant demographics and diagnoses). Due to hardware issues, data from one participant on
each task was not saved. The first CA participant also completed a shorter pilot version of the
incremental learning task, and several changes were made before running this task on the other 18
CA participants. Thus, the final sample for the incremental learning task was 17 CA participants,
and the final sample for the multiple learning strategies task was 18 CA participants. Task order
was counterbalanced such that 10 CA participants completed the incremental learning task prior
to the multiple learning strategies task, and 9 CA participants completed tasks in the opposite order.
A neuropsychological battery comprised of the Montreal Cognitive Assessment (MOCA), Beck’s
Depression Inventory (BDI), MESA digit forward and backward span, trail making test A and B,
and the cerebellar cognitive affective syndrome scale (CCAS), lasting approximately 30 minutes
was conducted between tasks for each participant. This battery was specifically selected based on
the current understanding of the cerebellum’s role and association with non-motor symptoms, such

34,35

as depression,*? executive function,**3> and attention.*¢

Healthy Controls

Age- and sex-matched participants were recruited through Amazon Mechanical Turk using the
Cloud Research Approved Participants feature.?” To account for potential variability due to online
data collection, three matched controls were collected for each CA participant, bringing the total
number of controls to 57 (3:1 match). Of these, data from one control was excluded for the multiple
learning strategies task due to random responding. Task order was counterbalanced such that the
tasks were completed in the identical order to each control’s matched CA participant. A modified
online neuropsychological battery consisting of 7 measures (see Supplementary Material) was
completed in between each task for comparison to individuals with CA. Five of these measures

(Semantic Fluency, Phonemic Fluency, Category Switching, Similarities and Go No Go) were
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directly taken from the CCAS, and two others were comprised of the MESA digit forward back

backward span. Participant recruitment was restricted to the United States. Before starting each

task, all participants were required to score 100% on a quiz that tested their comprehension of the

instructions and were made to repeat the instructions until this score was achieved. Informed

consent was obtained with approval form the Columbia University Institutional Review Board.

Table |. Basic CA participant demographics and neuropsychiatric measures

Participant Age (years) Sex Diagnosis CCAS MoCA BDI QUIP FDS BDS TMTA (sec) TMTB (sec)
Participant | 40 M SCA3 59 21 15 40 8 5 50 150
Participant 2 33 M SCA3 77 21 9 12 I 5 21 261
Participant 3 20 F SCA2 92 27 23 10 13 4 41 71
Participant 4 52 F MSA-C 85 27 4 0 8 3 23 158
Participant 5 6l F SCA2 92 23 15 38 8 4 49 169
Participant 6 56 M MSA-C 100 26 7 8 13 4 66 127
Participant 7 52 M SCA2 62 26 13 55 I 4 105 287
Participant 8 41 F SCA2 95 29 18 2 10 8 45 97
Participant 9 43 M SCAI 87 27 0 6 10 6 52 104
Participant 10 62 F MSA-C 70 21 4 25 6 6 45 121
Participant | | 54 M SCA2 72 21 0 5 I 5 32 100
Participant 12 67 F ILOCA 101 29 12 16 12 5 51 88
Participant 13 60 F SCA3 104 28 | 0 14 9 42 13
Participant 14 51 F SCAIO 74 25 13 8 8 2 35 83
Participant 15 66 M SCAI 60 23 4 20 7 3 66 127
Participant 16 49 M IMCA 86 28 17 6 13 7 8l 225
Participant 17 54 M FA 98 26 24 8 10 8 50 80
Participant 18 33 F FA 84 27 3 26 9 4 38 84
Participant 19 54 F IMCA 13 28 18 4 I 8 33 62

SCA — Spinocerebellar ataxias, MSA-C — Multiple system atrophy, cerebellar type, ILOCA — Idiopathic late onset cerebellar ataxia, IMCA —
Immune-mediated cerebellar ataxia, FA — Friedreich’s ataxia, CCAS — Cerebellar cognitive affective/Schmahmann syndrome scale, MoCA —
Montreal cognitive assessment, BDI — Beck’s depression inventory, QUIP — Questionnaire for impulsive-compulsive disorders in Parkinson’s
disease, FDS — Forward digit span, BDS — Backward digit span, TMTA — Trail making test part A, TMTB — Trail making test part B
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Experiment Tasks

Incremental Learning Task

In the incremental learning task (Figure 1A), participants were told that they would be playing a
game where they were required to press a key, either F or J, whenever one of two symbols was
seen, and that they would receive feedback about whether they had pressed correctly following
each trial. They were then informed that it was their job to determine which key they should press
for each symbol, and that what key is best will change throughout the experiment. Outcomes were
determined by a drifting probability such that each button was correct for each image 50% of the
time. Critically, these probabilities differed over time, thus encouraging constant learning
throughout the task. Participants were told to press the F key with their left index finger and the J
key with their right index finger. The response period during which the symbol remained on the
screen lasted 1.5 seconds, with feedback displayed for 1 second immediately following the
response period. An intertrial interval featuring a fixation cross was shown for an average of 1
second, but varied between 0.5 and 1.5 seconds. Lastly, to provide a rewarding outcome for correct
responses, participants were informed that they could earn bonus money based on their

performance. Correct responses were worth an additional cent each.
Multiple Learning Strategies Task

The other task completed by participants was previously developed by our lab*? to measure the
relative contribution of incremental learning and episodic memory to decisions (Figure 1B).
Participants were told that they would be playing a card game where their goal was to win as much
money as possible. Each trial consisted of a choice between two decks of cards that differed based
on their color (red or blue). Participants had two seconds to decide between the decks. The outcome
of each decision was then immediately displayed for 1.5 seconds. Following each decision,
participants were shown a fixation cross during the intertrial interval period which varied in length
(mean = 1.5 seconds, min = 1 seconds, max = 2 seconds). Decks were equally likely to appear on
either side of the screen (left or right) on each trial and screen side was not predictive of outcomes.

Participants completed a total of 150 trials.
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Participants were made aware that there were two ways they could earn bonus money throughout
the task, which allowed for the use of incremental learning and episodic memory respectively.
First, at any point in the experiment one of the two decks was “lucky”, meaning that the expected

value (V) of one deck color was higher than the other (Viycxy=63¢, Viniucky=37¢). Outcomes

ranged from $0 to $1 in increments of 20¢. Critically, the mapping from V' to deck color underwent
an unsignaled reversal periodically throughout the experiment, which incentivized participants to
utilize each deck’s recent reward history in order to determine the identity of the currently lucky
deck. Second, in order to allow us to assess the use of episodic memory throughout the task, each
card within a deck featured an image of a trial-unique object that could re-appear once throughout
the experiment after initially being chosen. Participants were told that if they encountered a card a
second time it would be worth the same amount as when it was first chosen, regardless of whether
its deck color was currently lucky or not. On a given trial t, cards chosen once from trials ¢ — 9
through t — 30 had a 60% chance of reappearing following a sampling procedure designed to
prevent each deck’s expected value from becoming skewed by choice, minimize the correlation
between the expected value of previously seen cards and deck expected value, and ensure that

choosing a previously selected card remained close to 50¢.

Following completion of the multiple learning strategies task, we tested participants’ memory for
the trial-unique objects. Participants completed up to 54 three-part memory trials. An object was
first displayed on the screen and participants were asked whether or not they had previously seen
the object and were given five response options: Definitely New, Probably New, Don’t Know,
Probably Old, Definitely Old. If the participant indicated that they had not seen the object before
or did not know, they moved on to the next trial. If, however, they indicated that they had seen the
object before they were then asked if they had chosen the object or not. Lastly, if they responded
that they had chosen the object, they were asked what the value of that object was (with options

spanning each of the six possible object values between $0-1).
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Computational Models

In order to best capture subjective estimates of incrementally constructed value on each task, we
fit computational models to participants’ choices. Below we describe each of these models in

detail.
Q Learning Models

We modeled incremental reward learning using a Q Learning model, which is a standard model-
free reinforcement learner that assumes a store value (Q) for each deck is updated over time?6-28,
Q is then referenced on each decision in order to guide choices. After each outcome, 13, the value

for an option 1 Q, is updated according to the following rule? if that option is chosen:

Q141 = Q1 + a(re — Q) (D)

And is not updated if a different option is chosen:

Q1,t+1 = Ql,t (2)

Likewise, if a different option is chosen, its value is updated equivalently. Large differences
between estimated value and outcomes therefore have a larger impact on updates, but the overall
degree of updating is controlled by the learning rate, a, which is a free parameter constrained to

lie between 0 and 1.

For the incremental learning task, the model learned separate Q values for each cue and button
combination, such that four Q values were estimated in total. Decisions on this task were then

modeled using the following softmax:

P(ChooseF) = a(Bo1 + Boz + 1,1(Qr1 — Q1) + B12(Qr2 — Q) 2)) 3)

1
1+e~X

o(x) = (4)

such that four inverse temperatures § were estimated to capture a bias toward choosing a key for
each cue (B ; and B, ;) and sensitivity to incrementally learned value for each cue (f;; and S, ;).

This model is referred to as the “Q Learner” model throughout the text.

10
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For the multiple learning strategies task, the model learned separate Q values for each deck color,
such that two Q values were estimated in total. Decisions on this task were then modeled using the

following softmax:
P(ChooseRed) = o($1(Qr — Qp) + L. (0ldValue) + f3(01d)) (5)

such that three inverse temperatures § were estimated to capture sensitivity to incrementally
learned value (f;), sensitivity to the value of previously seen objects (), and a bias toward
choosing the deck featuring a previously seen object regardless of its value (f3). The predictor
OldValue was the coded true value of a previously seen object (ranging from 0.5 if the value was
$1 on the red deck or $0 on the blue deck to -0.5 if the value was $0 on the red deck and $1 on the
blue deck) and the predictor Old was coded as 0.5 if the red deck featured a previously seen object
and -0.5 if the blue deck did instead. For both of these predictors, trials that did not feature a
previously seen object were coded as 0. This model is referred to as the “Hybrid” model throughout

the text.
Biased Responder Model

For both tasks, we compared the performance of the Q Learning models to a model which made
choices that were completely independent of reward information. For the incremental learning

task, this model was simply:
P(ChooseF) = o(Bo1 + Po,2) (6)

such that choices depended only on choosing a button to press for each cue throughout the

experiment. For the multiple learning strategies task, this model was:
P(ChooseRed) = o(B,) (7)

such that choices depended only on preferring one deck over the other throughout the experiment.
Our logic in using this model as a baseline was that responses captured by the Q learning models
should, at a minimum, outperform a biased responder that did not consider reward in order for it

to make meaningful predictions about participants’ behavior.

11
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Posterior Inference and Model Comparison

Model parameters for each participant were estimated using Bayesian inference. The joint
posterior was approximated using No-U-Turn Sampling®® as implemented in stan®°. Four chains
with 2000 samples (1000 discarded as burn-in) were run for a total of 4000 posterior samples per
model per subject. Chain convergence was determined by ensuring that the Gelman-Rubin statistic
R was close to 1 for all parameters. For the incremental learning task, the Q learner did not
converge for one CA participant, and so that individual and their matched controls were removed
from further model-based analyses. For the multiple learning strategies task, all models for all

participants converged.
Under this approach, the likelihood function for all models can be written as:
c; ~ Bernoulli(6;) (8)

where ¢, is 1 if the subject chose F (in the resonse mapping task) or red (in the multiple learning
strategies task). Here, 6, is the linear combination of inverse temperature parameters and predictors
explained above for each model. For the Q learning models, the learning rate,«, had the following

weakly informative prior:

a ~ B(0,1) ©)

For all models, every inverse temperature parameter had the following weakly informative prior:
B~ N(0,5) (10)

Model fit was assessed using approximate leave-one-out cross validation estimated using Pareto-
smoothed importance sampling®. The expected log pointwise predictive density (ELPD) was

computed and used as a measure of out-of-sample predictive fit for each model.
Bayesian Observers

In order to provide a normative performance benchmark, we also simulated beliefs about
incremental value as estimated by Bayesian observers for each task. For the incremental learning

task, this learner was a Kalman Filter*! with observation noise set to the true standard deviation of

12
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outcomes and process noise set to 1.5. For the multiple learning strategies task, this learner was a
reduced Bayesian change-point detection model*? with hazard rate equal to the true proportion of
deck reversal trials for each participant in the task. Choices in the incremental learning task were
made according to which button the observer believed was the most likely to be rewarded for each
cue at each time point. Choices in the multiple learning strategies task were made differently
depending on whether a previously seen object was present. For trials in which no previously seen
object was shown, the observer responded according to its beliefs about deck value. For trials in
which a previously seen object was present, however, the observer compared the value of that
object to its belief about deck value for the opposing deck and chose accordingly. In this way, the

observer was augmented with “perfect” episodic memory.
Regression Models

Mixed effects Bayesian regressions were used to test effects of group (CA participant or control).
Group membership was allowed to vary randomly by CA participant identifier, pid, such that CA
participants and matched controls were assigned the same ID. In these models, GrouplD was
coded as -0.5 for CA participants and 0.5 for controls. We additionally controlled for working
memory ability by including backwards digit span scores, dsBwd, as a standardized covariate in

these analyses.

For the incremental learning task, we assessed behavioral incremental learning performance using

the following logistic regression:

p(Correct) = 0(Bo + bopiaje) + GrouplDe(By + by piare)) +
pFRewardlt(ﬁ2 + bZ,pid[t]) + GrouplD; X pFRewardlt(ﬁ3 + b3‘pid[t]) +
pFReward1Z(Bs + bapiapy) + GrouplDy X pFReward1%(Bs + bs piare)) +
dsBwdf¢ + RTf3;)

(1)

Here, and in all regressions described in this section, £ stands for fixed effects and b stands for
random effects of CA participant ID. The predictor pFReward1 indicates the true underlying
difficulty of the task and is the probability that the F key was rewarding for cue 1. A second-order
polynomial was included for this predictor as extreme values indicate portions of the task that are

easier and middling values indicate portions of the task that were more difficult. Interaction effects
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of this predictor and group were included to capture differences in sensitivity to the underlying
task difficulty between the groups. Lastly, the reaction time, RT, on each decision was included as
a standardized covariate in this analysis to account for any differences that may be due to slowed

responding by individuals with CA on this task.

For both the incremental learning and multiple learning strategies tasks, we assessed whether there
were differences between the groups on Q learning model performance compared to the baseline

biased responder model with the following linear regression:

ELPDDif ference = By + bgpiape) + GrouplDe(By + by piafe)) + dsBwdp, (12)

where ELPDDif ference was the difference in model performance (Q Learning model ELPD -
Biased Responder ELPD; see above) for each subject.

For the multiple learning strategies task, we assessed behavioral incremental learning performance

using the following logistic regression:
p(ChooseLucky) = a(Bo + bopiafe] + T-3:3 X GrouplD¢(B1.7 + b1.7 piaje)) + dsBwdBs) (13)

In this regression, we grouped trials according to their distance from a reversal, up to three trials
prior to (t = —3:—1), during (¢t = 0), and after (¢ = 1: 3) a reversal occurred. We then dummy
coded them to measure their effects on the degree to which the lucky deck was chosen and
interacted each dummy coded regressor with group to measure how this was affected by group

membership.

We then assessed the degree to which each group used either incrementally learned deck value,
the value of previously seen objects, or a bias toward previously seen objects regardless of their
value as estimated by the Hybrid Q learning model using a simple linear regression of the following

form for each of these inverse temperature parameters and groups:
InvTemps; = o + dsBwdf; (14)

Here we interested primarily in the intercept, f,, as this determined the degree to which each

group’s inverse temperatures were above zero.
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We also assessed the impact of group on subsequent memory performance following the multiple

learning strategies task using the following linear regression:
Dprime = [, + bo,pid[t] + GroupID.(B; + bl,pid[t]) + dsBwdp, (15)

where Dprime is the signal detection measure d’, which is the difference in z scored hit rate and

false alarm rate for each participant.

We were also interested in determining whether there were any differences in reaction times
between individuals with CA and matched controls due to motor impairment. For both the
incremental learning and multiple learning strategies tasks we did this by assessing whether there

were any differences in reaction time between groups:

RT = Bo + bopiage) + GrouplDe(By + b1 piare)) (16)
where RT was the median reaction time across trials in either task. A separate regression of this

form was used for each of the two tasks.

Lastly, we assessed whether there were differences on each neuropsychological measure,

Measure, using a linear regression for each measure that adhered to the following form:
Measure = B, + bO,pid[t] + GroupID:(5; + bl,pid[t]) (17)

For all regression analyses, fixed effects are reported in the text as the mean of each parameter’s
marginal posterior distribution alongside 95% credible intervals, which indicate where 95% of the
posterior density falls. Parameter values outside of this range are unlikely given the model, data,
and priors. Thus, if the range of likely values does not include zero, we conclude that a meaningful

effect was observed.

Results

Impaired reward learning in the incremental learning task

Our first goal was to assess CA participants’ baseline ability to learn incrementally from reward
using the incremental learning task. On this task, CA participants made overall fewer correct

choices compared to healthy controls (Bgroup = —0.88, 95% CI = [-1.55, —0.144]; Figure
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2A). CA participants’ choices were less correct throughout the entirety of the task, even during
periods of learning where action-outcome contingencies were more deterministic (e.g. close to

100%) compared to more difficult periods of learning (Bs,oupxprrewaraiz = —5-49, 95% CI =

[—7.57,—3.52]; Figure 2B-C. Overall, this difference in performance indicates that CA
participants did not learn from reward feedback. Although CA participants responded slightly
more slowly than healthy controls on this task (Bgroup = —115.81, 95% CI =

[—201.26, —33.55]; Supplementary Figure 1), we included reaction times as a covariate in the
above regression analysis to ensure that differences in choice accuracy were not attributed to motor

slowing in CA participants.

Next, to more formally assess participants’ performance on this task, we fit a standard Q learning
model to participants’ responses. This model captures the extent to which each participant
incorporated trial-by-trial outcomes into running estimates of the value of pressing each button in
response to each cue, as well as whether choices are based on these estimates. As a baseline, we
compared the performance of this model to a biased responder that merely estimated the extent to
which each participant pressed one button over the other, regardless of outcome, in response to
each cue. While healthy controls’ responses were well described by the Q learning model, this
model did no better than the biased responder at predicting CA participants’ decisions, thus
demonstrating that CA participants engaged in little-to-no incremental learning (Figure 2D). On
a measure of estimated out-of-sample predictive performance, controls were substantially better
fit by the Q learner compared to the biased responder, while this improvement in fit was largely
absent for CA participants (Bgroup = 30.94, 95% CI = [16.465, 46.0]). Thus, while healthy
controls incorporated feedback into their estimates about the relationship between cue and action

at each timepoint, CA participants generally did not.
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Figure 2 Performance on the incremental learning task. (A) Performance on the incremental learning
task averaged across all trials for healthy controls (HC) and CA participants compared to a Bayesian
observer in gray, which represents normative performance on the task. Individual points are averages for
each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals.
(B) Performance on the incremental learning task over time. Each timepoint represents ten trials. Lines are
group averages and bands are 95% confidence intervals. For normative comparison, the performance of the
Bayesian observer is shown as a dotted gray line. (C) Performance on the incremental learning task as a
function of task difficulty, which is indexed by the true underlying probability that pressing the F key was
the correct response (>50%) on each trial. Points represent group level averages from 13 bins with an equal
number of trials, lines represent the fit of a second-order linear model, and error bars and bands represent
95% confidence intervals. (D) Model performance of the Q Learner and baseline Biased Responder models.
Left: Posterior predictive performance. Individual lines represent Q learner fits for each individual, whereas
thick lines represent the group-level average fit (with the Q Learner in color and Biased Responder in gray).
Bands represent 95% confidence intervals. Right: The difference in estimated out-of-sample predictive
performance (as measured by expected log pointwise predictive density; ELPD) between the Q Learner and
the Biased Responder model for each group. Individual points are the ELPD difference for each subject and
filled in points represent group-level averages. Error bars are 95% confidence intervals.
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Together, these results indicate that individuals with CA are impaired at reward learning from trial-

and-error.

Impaired incremental reward learning but intact episodic memory

in the multiple learning strategies task

After establishing that CA participants were impaired in a task that measured solely incremental
reward learning, we wanted to examine both the specificity and generalizability of this impairment
by 1) providing an alternative means of online reward-based decision making alongside
incremental learning and ii) altering the incremental learning task structure to measure responses
to reversal events rather than drifting probabilities. The multiple learning strategies task was thus

used to accomplish both of these goals.

Consistent with the results of the incremental learning task, CA participants in the multiple
learning strategies task were less responsive to reward outcomes compared to controls (Figure
3A). Specifically, controls tended to choose the lucky deck more than CA participants immediately
prior to a reversal (Bgroupxt=t-1 = 0.397, 95% CI = [0.002, 0.807]), and this tendency was

disrupted by reversals; CA participants did not show this pattern (Bgroupxt=0 =
—0.897, 95% CI = [—1.28, —0.535]), and remained below chance performance after a reversal
occurred  (Bgroupxt=t+1 = —0.595, 95% CI = [-0.984, —0.21]). This indicates that CA
participants were unable to learn which deck had the higher expected value at any given time

throughout the task.

We next assessed the extent to which both incrementally constructed value and episodic value
contributed to choice in a combined Hybrid choice model. This model combined a standard Q
learning model with three inverse temperature parameters that captured each participants’
sensitivity to estimated deck value, the true value of previously seen objects, and a bias toward
choosing previously seen objects regardless of their value (Figure 3B-C). This model of hybrid
choice outperformed a biased responder, which again served as a baseline, for both CA participants
and controls as there was no difference between groups in estimated out-of-sample predictive

performance (Bgroup = —1.631, 95% CI = [-11.425, 8.444]; Supplementary Figure 2).
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Figure 3 Performance on the multiple learning strategies task. (A) Deck learning performance on the
multiple learning strategies task as indicated by the proportion of trials on which the currently lucky deck
was chosen as a function of how distant those trials were from a reversal in deck value. Performance for
both healthy controls (HC) and CA participants is shown alongside a Bayesian observer with perfect
episodic memory for visual comparison. Lines represent group averages and bands represent 95%
confidence intervals. (B) Object value usage on trials in which a previously seen object appeared. Points
represent group averages and error bars represent 95% confidence intervals. (C) Inverse temperature
estimates from the Hybrid model. Individual points represent estimates for each subject, group-level
averages are shown as filled in points and error bars represent 95% confidence intervals. (D) Recognition
memory performance on the subsequent memory task. Individual points represent each participant’s dprime
score, filled in points are group-level averages and error bars are 95% confidence intervals.
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Importantly, this indicates that the behavior of both CA participants and controls was well
described by the hybrid choice model, which is expected if CA participants are unimpaired at
episodic value learning. For each group, we then assessed whether sensitivity differed from zero
and, if so, concluded that participants in that group made choices that were affected by each
possible predictor. While healthy controls incorporated deck value into their decisions (Byc =
3.173, 95% CI = [2.181, 4.189]), CA participants generally did not (S-4 = 0.681, 95% CI =
[—0.668, 2.066]). This reward learning deficit was specific to value acquired incrementally,
however, because CA participants and controls were both sensitive to episodic value (Syc =
1.373, 95% CI = [1.095, 1.654]; Bca = 1.13, 95% CI = [0.59, 1.643]) and were both
similarly biased by previously seen objects regardless of their value (S5 = 1.142, 95% CI =
[0.798, 1.477]; fca = 0.551, 95% CI = [0.028, 1.056]).

We additionally had each participant complete a subsequent memory test for a subset of objects
shown during the multiple learning strategies task. There was no difference in recognition memory
performance between groups (Bgroup = —0.487, 95% CI = [—1.144, 0.157]). This result
provides further evidence that CA participants were unimpaired at using episodic memory
throughout the task relative to their stark impairments in incremental learning. Lastly, CA
participants and healthy controls demonstrated no differences in reaction time on this task,
suggesting that the behavioral differences reported here cannot be attributed to motor slowing in

CA (Bgroup = —86.40, 95% CI = [-222.28,44.76]; Supplementary Figure 1).

Controlling for effects of non-motor deficits and disease subtype

We next sought to ensure that the differences in the tasks reported here were specific to deficits in
reward learning rather than general cognitive impairment. Controlling for cognitive impairment is
particularly important because recent work*** has suggested that incremental learning
experiments tax higher level functions, like executive control and working memory, in addition to
learning from reward prediction error. To address this issue and assess possible cognitive
impairment, we conducted a battery of neuropsychological measures on CA participants (see
Methods). Of these, a subset of measures were also completed by healthy controls

(Supplementary Table 1; Supplementary Figure 3). We found no differences in performance
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between groups on all measures except for the backwards digit span task, which indexes working

memory ability, and on which healthy controls scored higher than CA participants (Bgroup =
—2.57, 95% CI = [—4.17, —0.92]). Backwards digit span scores were thus included as

covariates in all regression analyses (see Methods) in order to control for impacts of this
performance difference on impairments in incremental learning, and all effects described in the
above sections thus control for differences in working memory performance. To further ensure
that CA participants’ deficient incremental learning was not due to broad cognitive impairment,
we also repeated all analyses excluding seven CA participants (and their matched controls) with
mild cognitive impairment (MCI), as indicated by scoring lower than 26 on the MoCA (Table 1).
While CA participants with MCI consisted of some of the lowest performing participants in our
sample (Supplementary Figures 4 and 5), we found no differences in the results across both tasks
when they were excluded. It is therefore unlikely that CA participants’ impaired reward learning

ability is due to either working memory deficits or cognitive decline more broadly.

We next sought to further characterize the nature of CA participants’ reward learning impairment
by looking at the relationship between incremental learning sensitivity, as measured by the Q
learning models in each task, and performance on our neuropsychological battery. The extent to
which CA participants learned about cues in the incremental learning task related only to total
CCAS score (r = 0.84, p <0.001, Bonferroni corrected; Supplementary Table 2),
suggesting that the specific contributions of the cerebellum to cognition may impact performance
in this task. The CCAS scale was recently developed to measure the exact types of cognitive
impairment that result from damage to the cerebellum.* Because more focal cerebellar lesions
tend to lead to lower total CCAS scores,* this provides further evidence of the necessity for the
cerebellum to successfully perform the incremental learning task. The relationship between total
CCAS score and performance was driven by the timed portions of the CCAS scale (e.g. the
Semantic Fluency and Category Switching measures; Supplementary Table 3), suggesting a
potential effect of slowed responses in the incremental learning task. While CA participants did
indeed respond more slowly than healthy controls on this task (see above), we controlled for this
difference in our behavioral analysis. There was also no relationship between any of the timed
CCAS measures and reaction time on the incremental learning task (Supplementary Figure 1),

further suggesting that these measures captured independent timing-related impairment. Finally,
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there was no relationship between any measure and incremental learning ability in the multiple

learning strategies task (Supplementary Table 2).

Finally, we addressed the possibility that the subset of our sample of CA participants consisting of
diagnoses that were less restricted to the cerebellum, namely the three individuals with multiple
system atrophy (MSA), could be responsible for the deficits reported here. We repeated all
analyses with these three participants excluded and found no differences in the results

(Supplementary Figures 6 and 7).

Discussion

The results of the present work demonstrate that individuals with cerebellar dysfunction,
represented by CA cases in our cohort, are impaired at reward learning. While the cerebellum and
basal ganglia have traditionally been treated as making separate contributions to learning,>?! recent
findings have called this dichotomy into question.®!” This work has suggested that, alongside its
role in motor learning, the cerebellum likely operates in concert with the basal ganglia to support
reinforcement learning from reward. Our study corroborates these findings from animal models,'®
9 providing evidence that the human cerebellum is necessary for learning associations from
reward. In comparison to age- and sex-matched healthy controls, CA participants were impaired
at reward-based learning from trial-and-error. Further, CA participants retained the ability to
employ an alternative strategy based in episodic memory to guide their decisions, demonstrating
that this impairment is specific to incremental learning. These results challenge the idea that the

cerebellum is used primarily for motor learning and shed light on how multiple neural systems

may interact with one another to support learning in the non-motor domain.

Our findings join a litany of recent research suggesting that the cerebellum plays a broad role in
human cognition.?>#* Indeed, individuals with damage to the cerebellum demonstrate

1° and impulsivity.>!

impairment in a wide range of cognitive functions including cognitive contro
Human functional neuroimaging studies have also revealed cerebellar activity in a variety of
different non-motor tasks.?>*® Many of these functions are likely supported by the robust
bidirectional connections the cerebellum shares with the prefrontal cortex.>> In particular, recent

findings have indicated that individuals with CA have heightened domain-specific impulsive and
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compulsive behaviors, which is a common symptom of underlying reward system dysfunction.>*

Our study adds to this work by suggesting that the cerebellum is additionally necessary for reward

learning in humans.

While there is growing evidence validating the implication of the cerebellum in reward-based
learning in animals, there is only limited work on this topic in humans. Early imaging studies, for
example, demonstrated cerebellar BOLD activity in patients with substance use disorder who

4 and also in response to

performed reward-based learning tasks?* and experienced cravings,?
unexpected reward.”> However, it remains unknown how cerebellar damage impacts reward
learning, as investigations of reward learning in the cerebellum are rare. While two previous
studies employed reward-based experimental tasks in individuals with isolated ischemic lesions of
the cerebellum,>®>7 results until this point have remained far from conclusive. Thoma et al.>® used
a reward-based learning task consisting of an initial acquisition phase in which eight participants
with cerebellar damage were rewarded for learning associations between colors and symbols
followed by a reversal portion in which they had to disremember previously acquired knowledge
and learn new associations for each cue. While participants with cerebellar damage demonstrated
no impairment at acquiring new, reward-based knowledge, they were selectively impaired at
learning from a single reversal. While this study complements our findings, we found evidence for
more global impairment: CA participants in both of our tasks were unable to learn associations
from reward on a trial-by-trial basis. Rustemeier et al.>” took a different approach by asking twelve
individuals with cerebellar damage to learn a simple acquisition task from probabilistic feedback
and subsequently transfer this knowledge to re-arranged stimuli. While participants were
unimpaired behaviorally at this task, electroencephalographic (EEG) results revealed that they may
process reward-based feedback differently from controls. Our findings support this interpretation
and further suggest that processing of trial-by-trial feedback is not just different, but impaired, in
individuals with cerebellar damage. Finally, while another related study showed impairment in
learning from reinforcement in twelve participants with cerebellar damage,?® this study was

focused specifically on the motor domain.

While our findings suggest that the cerebellum is necessary for incremental reward learning, they

cannot speak to the neural circuitry underlying this role. One intriguing possibility is that the
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cerebellum may operate in tandem with the basal ganglia—canonically seen as the seat of
reinforcement learning in the brain®>2!'—to learn about reward incrementally. Reward prediction
error signals in midbrain dopamine neurons that provide input to the basal ganglia?’-* have also
been found to be encoded by cerebellar neurons.”!>!”-1? Further, through excitatory projections to
the ventral tegmental area, the cerebellum has widespread reciprocal connections with the basal
ganglia and has recently been shown to influence reward-driven behavior through these
projections.?*® While reinforcement learning via the basal ganglia and supervised learning via the
cerebellum have typically been treated as fulfilling entirely separate roles,>2! these systems appear
to be more interdependent than previously thought. Future investigations of the relationship
between the basal ganglia and cerebellum are needed to clarify the exact mechanisms underlying

reinforcement learning in the brain.

There are several potential limitations to the findings of our study. Our study participants included
a large variety of different conditions causing cerebellar dysfunction, including some with MSA
and spinocerebellar ataxia (SCA). While some of these pathologies are predominantly restricted
to the cerebellum, non-cerebellar brain areas and circuits, such as the dopaminergic system in
MSA, could also be involved. However, there was no change in the reported reward-based learning
deficits with subgroup analyses comparing CA participants whose conditions are known to be
multisystemic and those whose conditions show more isolated cerebellar pathology. Second, while
cognitive impairment due to neurodegenerative disease could potentially contribute to some of the
deficits measured here, we accounted for this possibility by establishing that the incremental
reward learning deficits reported here persist regardless of MCI status. We also collected basic
neuropsychological measures from all participants, and CA participants were not different from
controls on the vast majority of measures. We focused particularly on possible contributions of
working memory given recent work suggesting that working memory plays an important role in
incremental reward learning.*>** While CA participants and controls performed similarly on the
forward digit span task, CA participants were somewhat impaired at backwards digit span. We
controlled for this difference by including backwards digit span scores as covariates in all

regression analyses.
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Taken together, our findings suggest that the human cerebellum is necessary for reward learning.

These results provide new constraints on models of non-motor learning and suggest that the

cerebellum and basal ganglia work in tandem to support learning from reinforcement.
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Supplementary Figure 1 Reaction time and relationship to timing-dependent CCAS measures.
Reaction time in the incremental learning (Top row) and multiple learning strategies (Bottom row) tasks.
Lefthand panels show median RTs for CA participants compared to healthy controls (HC). Righthand
panels show the relationship between CCAS measures which yielded a significant relationship with
incremental value sensitivity in the incremental learning task and were conducted under time pressure, and

reaction time, for CA participants.
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Supplementary Figure 2 Model performance on the multiple learning strategies task for the Hybrid
Learner and Biased Responder models. Left: Posterior predictive performance. Individual lines represent
Hybrid Learner fits for each individual, whereas thick lines represent the group-level average fit (with the
Hybrid Learner in color and Biased Responder in gray). Bands represent 95% confidence intervals. Right:
The difference in estimated out-of-sample predictive performance (as measured by expected log pointwise
predictive density) between the Hybrid Learner and the Biased Responder model for each group. Individual
points are the ELPD difference for each subject and filled in points represent group-level averages. Error

bars are 95% confidence intervals.
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Supplementary Figure 3 Neuropsychological test performance for the subset of neuropsychological
measures that were completed by both CA participants and healthy controls (HC). Scores from
individual participants are plotted as empty circles behind group-level means plotted as filled circles with

uncertainty represented by 95% confidence intervals.
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Supplementary Figure 4 CA participant performance on the incremental learning task separated by
mild cognitive impairment (MCI versus all others) and compared to healthy controls (HC). (A)
Performance on the incremental learning task averaged across all trials. Individual points are averages for
each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals.
(B) Performance on the incremental learning task as a function of task difficulty, which is indexed by the
true underlying probability that pressing the F key was the correct response (>50%) on each trial. Points
represent group level averages from 13 bins with an equal number of trials, lines represent the fit of a
second-order linear model, and error bars and bands represent 95% confidence intervals. (C) The difference
in estimated out-of-sample predictive performance (as measured by expected log pointwise predictive
density; ELPD) between the Q Learner and the Biased Responder model for each group. Individual points

are the ELPD difference for each subject and filled in points represent group-level averages. Error bars are
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95% confidence intervals. (D) Performance on the incremental learning task over time. Each timepoint
represents ten trials. Lines are group averages and bands are 95% confidence intervals. For normative

comparison, the performance of the Bayesian observer is shown as a dotted gray line.
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Supplementary Figure 5 CA participant performance on the multiple learning strategies task

separated by mild cognitive impairment (MCI versus all others) and compared to healthy controls

(HC). (A) Deck learning performance on the multiple learning strategies task as indicated by the proportion

of trials on which the currently lucky deck was chosen as a function of how distant those trials were from

areversal in deck value. Lines represent group averages and bands represent 95% confidence intervals. (B)

Object value usage on trials in which a previously seen object appeared. Points represent group averages

and error bars represent 95% confidence intervals. (C) Inverse temperature estimates from the Hybrid

model. Individual points represent estimates for each subject, group-level averages are shown as filled in
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points and error bars represent 95% confidence intervals. (D) Recognition memory performance on the
subsequent memory task. Individual points represent each participant’s dprime score, filled in points are

group-level averages and error bars are 95% confidence intervals.
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Supplementary Figure 6 CA participant performance on the incremental learning task separated by
diagnosis (MSA individuals versus all others) and compared to healthy controls (HC). (A)
Performance on the incremental learning task averaged across all trials. Individual points are averages for
each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals.
(B) Performance on the incremental learning task as a function of task difficulty, which is indexed by the
true underlying probability that pressing the F key was the correct response (>50%) on each trial. Points
represent group level averages from 13 bins with an equal number of trials, lines represent the fit of a
second-order linear model, and error bars and bands represent 95% confidence intervals. (C) The difference
in estimated out-of-sample predictive performance (as measured by expected log pointwise predictive
density; ELPD) between the Q Learner and the Biased Responder model for each group. Individual points

are the ELPD difference for each subject and filled in points represent group-level averages. Error bars are
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95% confidence intervals. (D) Performance on the incremental learning task over time. Each timepoint
represents ten trials. Lines are group averages and bands are 95% confidence intervals. For normative

comparison, the performance of the Bayesian observer is shown as a dotted gray line.
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Supplementary Figure 7 CA participant performance on the multiple learning strategies task
separated by diagnosis (MSA individuals versus all others) and compared to healthy controls (HC)
(A) Deck learning performance on the multiple learning strategies task as indicated by the proportion of
trials on which the currently lucky deck was chosen as a function of how distant those trials were from a
reversal in deck value. Lines represent group averages and bands represent 95% confidence intervals. (B)
Object value usage on trials in which a previously seen object appeared. Points represent group averages
and error bars represent 95% confidence intervals. (C) Inverse temperature estimates from the Hybrid

model. Individual points represent estimates for each subject, group-level averages are shown as filled in
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points and error bars represent 95% confidence intervals. (D) Recognition memory performance on the
subsequent memory task. Individual points represent each participant’s dprime score, filled in points are

group-level averages and error bars are 95% confidence intervals.
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Supplementary Table I. Results of regression analyses assessing differences in neuropsychological test performance between

CA participants and healthy controls.

Measure B Estimate 95% Credible Interval
Backwards -2.57 [-4.18, -0.92]
Forwards -0.09 [-1.35, I.15]

Semantic 1.54 [-2.12, 5.14]

Phonemic 0.04 [-2.75, 2.88]

Category 1.68 [-0.76, 4.10]

Similarities -0.20 [-0.50, 0.12]

Go No Go 0.0001 [-0.33, 0.33]
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Supplementary Table 2. Correlations between CA participant-level measures (Total neuropsychological scores and symptom
duration) and incremental value sensitivity (as estimated by the Q Learning model in the incremental learning task and as by

the Hybrid Q Learning model in the multiple learning strategies task).

Measure Pearson's R P Value (Bonferroni Corrected) Task

Symptom Duration -0.0661 | Incremental Learning
SARA (Total) 0.1067 | Incremental Learning
MoCA (Total) 0.5225 0.1885 Incremental Learning
CCAS (Total) 0.8419 0.0001* Incremental Learning
BDI (Total) 0.2977 | Incremental Learning
QUIP (Total) -0.3892 0.7356 Incremental Learning
Symptom Duration -0.3699 0.7848 Multiple Learning Strategies
SARA (Total) -0.2141 | Multiple Learning Strategies
MOCA (Total) 0.1438 | Multiple Learning Strategies
CCAS (Total) 0.3849 0.6887 Multiple Learning Strategies
BDI (Total) 0.4641 0.3141 Multiple Learning Strategies
QUIP (Total) -0.074 | Multiple Learning Strategies

CCAS — Cerebellar cognitive affective/Schmahmann syndrome scale, SARA — Scale for the Assessment and Rating of Ataxia, MoCA — Montreal
cognitive assessment, BDI — Beck’s depression inventory, QUIP — Questionnaire for impulsive-compulsive disorders in Parkinson’s disease

#5p < 0,001
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Supplementary Table 3. Correlations between CA participant CCAS subscale measures and incremental value sensitivity (as

estimated by the Q Learning model) in the incremental learning task.

CCAS Measure Pearson's R P Value (Bonferroni Corrected)
Semantic Fluency 0.6693 0.033*
Phonetic Fluency 0.6235 0.0749
Category Switching 0.7168 0.012%*

Digit Span Fwd (CCAS)  0.295 |

Digit Span Bwd (CCAS) 03146 |

Cube Drawing 0.5009 0.4055
Verbal Recall 0.4224 09118
Similarities 0.5881 0.1302
Go No Go -0.2654 |
Affect 0.2944 |

*p < 0.05
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