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Abstract 

Recent findings in animals have challenged the traditional view of the cerebellum solely as the site 

of motor control, suggesting that the cerebellum may also be important for learning to predict 

reward from trial-and-error feedback. Yet, evidence for the role of the cerebellum in reward 

learning in humans is lacking. Moreover, open questions remain about which specific aspects of 

reward learning the cerebellum may contribute to. Here we address this gap through an 

investigation of multiple forms of reward learning in individuals with cerebellum dysfunction, 

represented by cerebellar ataxia cases. Nineteen participants with cerebellar ataxia and 57 age- and 

sex-matched healthy controls completed two separate tasks that required learning about reward 

contingencies from trial-and-error. To probe the selectivity of reward learning processes, the tasks 

differed in their underlying structure: while one task measured incremental reward learning ability 

alone, the other allowed participants to use an alternative learning strategy based on episodic 

memory alongside incremental reward learning. We found that individuals with cerebellar ataxia 

were profoundly impaired at reward learning from trial-and-error feedback on both tasks, but 

retained the ability to learn to predict reward based on episodic memory. These findings provide 

evidence from humans for a specific and necessary role for the cerebellum in incremental learning 

of reward associations based on reinforcement. More broadly, the findings suggest that alongside 

its role in motor learning, the cerebellum likely operates in concert with the basal ganglia to support 

reinforcement learning from reward.  
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Abbreviations: CA 3 Cerebellar ataxia, HC 3 Healthy control, SCA 3 Spinocerebellar ataxias, 

MSA 3 Multiple system atrophy, MSA-C 3 Multiple system atrophy, cerebellar type, FA 3 

Friedreich's ataxia, IMCA 3 Immune-mediated cerebellar ataxia, ILOCA 3 Idiopathic late onset 

cerebellar ataxia, SARA 3 Scale for the assessment and rating of ataxia, CCAS 3 Cerebellar 

cognitive affective/Schmahmann syndrome scale, MoCA 3 Montreal cognitive assessment, BDI 

3 Beck9s depression inventory, QUIP 3 Questionnaire for impulsive-compulsive disorders in 

Parkinson9s disease, MCI 3 Mild Cognitive Impairment 

 

Introduction 

It is well established that the cerebellum is required for refining movement through supervised 

motor learning.134 The cerebellum receives error signals from climbing fiber input which then 

alters Purkinje cell plasticity to adapt motor behavior in service of minimizing future error.537 

However, recent findings have challenged the notion that the cerebellum is solely responsible for 

supervised learning of motor behavior and instead suggest that the cerebellum may also be 

involved in the processing of reward more generally.8319 In particular, climbing fiber inputs to the 

cerebellum encode expected reward,13,15,17,19 and cerebellar Purkinje cells have been found to 

report reward-based prediction errors.11,12,18 These signals are essential ingredients for 

reinforcement learning, or learning that allows an organism to determine from trial-and-error 

feedback which actions should be taken in order to maximize future expected reward. The presence 

of reward-related processing in the cerebellum suggests that it may play a role in reinforcement 

learning alongside its capacity for supervised motor learning.20 This proposal challenges not only 

our current understanding of cerebellar function, but also our understanding of how the brain learns 

from reward more broadly.5,21 

Although research on the cerebellum9s function in reward learning is growing, the vast majority 

of work has been done in animal models,10319 and evidence in humans remains limited. Human 
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neuroimaging studies have revealed correlational evidence that the cerebellum is involved in tasks 

unrelated to movement,22 however, despite some reports of BOLD activity in the cerebellum in 

response to reward across several early imaging studies,23325 more direct investigations of the role 

of cerebellum in reward-related behaviors in humans are lacking. The aim of the present study was 

to fill this gap by testing whether individuals with damage to the cerebellum, as occurs in cerebellar 

ataxia (CA), are impaired in their ability to acquire stimulus-reward associations.   

Our study builds upon a rich literature focused on learning about reward from trial-and-error 

feedback. This process has been studied extensively using models of incremental learning, which 

rely on error-driven rules that summarize experiences with a running average.26328 During reward 

learning of this type, an agent uses the outcome of a recent decision to associate some stimulus 

with an action. Following successful learning, actions that are more likely to be rewarded are more 

likely to be repeated. This simple mechanism has been evoked to explain conditioning behavior 

and is well-captured by reward prediction error signals in midbrain dopamine neurons that project 

to the striatum.27,29 This error signal is also precisely what has been implicated in recent animal 

models of cerebellar contributions to reward learning,9 suggesting an additional, albeit unclear, 

role for the cerebellum in this process. Whether these cerebellar contributions are actually needed 

for successful incremental reward learning in humans is at present unknown. 

To answer this question, we asked individuals with CA to complete a series of tasks that required 

them to learn associations between stimuli from trial-and-error feedback in order to maximize 

expected reward. CA is defined as a lack of coordination caused by disorders that affect cerebellar 

function.30 A large variety of conditions can cause CA, ranging from immune-mediated disease to 

genetic and neurodegenerative disorders. Given the presence of cerebellar dysfunction in CA 

cases, studying individuals with CA is a common method used to investigate the necessary 

physiological functions of the cerebellum in humans. 

Nineteen individuals with CA and 57 age- and sex-matched healthy controls (HC) completed two 

tasks (Figure 1). The first, referred to throughout as the incremental learning task, allowed us to 

measure each participants9 ability to learn about reward incrementally. This task was motivated by 

recent work using a similar simplified paradigm to investigate cerebellar-based incremental 

learning in non-human primates.10,11 The second task, referred to throughout as the multiple 
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learning strategies task, allowed us to measure whether any impairments were specific to 

incremental learning alone. In the multiple learning strategies task, learning about reward can be 

supported by an alternative strategy based on episodic memory for trial-unique past outcomes. 

Healthy adults readily use of both of these strategies in this task.31,32 We hypothesized that 

cerebellar dysfunction would lead specifically to impaired incremental reward learning relative to 

healthy controls. 

 

Figure 1 Design of the incremental learning and multiple learning strategies tasks. (A) Left: Trial 
design for the incremental learning task. Participants saw one of two fractal cues on the screen and were 
required to press either the F key with their left hand or the J key with their right hand. Following their 
choice, they received binary probabilistic feedback about whether they were correct or not. Right: Drifting 
cue-response-reward contingencies over the course of the incremental learning task. The probability that 
the F key is rewarded is shown for each cue in blue and orange. (B) Left: Trial design or the multiple 
learning strategies task. Participants chose between two decks of cards (one blue and one orange) and 
received an outcome between $0-$1 in intervals of 20 cents. Each card featured a trial-unique object that 
could repeat once every 9-30 trials. Participants were told that if they saw the same card again, it would be 
worth the same amount as the first time that it appeared. Right: An example of how average deck value 
reversed throughout the course of the multiple learning strategies task. 

Time

Response

1.5 sec

Outcome

1 sec

…

…
Response

Outcome

…

2 sec

1.5 sec

Encoding

…

… Outcome

9-30 Trials

Retrieval

$1

$1
$1

Time

Incremental Learning Task

Multiple Learning Strategies Task

A

B

…



Running title: REWARD LEARNING IN THE CEREBELLUM 

 

6 

 

Materials and Methods 

Cerebellar Ataxia Participants 

Nineteen individuals with cerebellar ataxia (CA) were recruited from the Ataxia Clinic, Columbia 

University Medical Center and completed both tasks (see Table 1 for information about basic CA 

participant demographics and diagnoses). Due to hardware issues, data from one participant on 

each task was not saved. The first CA participant also completed a shorter pilot version of the 

incremental learning task, and several changes were made before running this task on the other 18 

CA participants. Thus, the final sample for the incremental learning task was 17 CA participants, 

and the final sample for the multiple learning strategies task was 18 CA participants. Task order 

was counterbalanced such that 10 CA participants completed the incremental learning task prior 

to the multiple learning strategies task, and 9 CA participants completed tasks in the opposite order. 

A neuropsychological battery comprised of the Montreal Cognitive Assessment (MOCA), Beck9s 

Depression Inventory (BDI), MESA digit forward and backward span, trail making test A and B, 

and the cerebellar cognitive affective syndrome scale (CCAS), lasting approximately 30 minutes 

was conducted between tasks for each participant. This battery was specifically selected based on 

the current understanding of the cerebellum9s role and association with non-motor symptoms, such 

as depression,33 executive function,34,35 and attention.36 

Healthy Controls 

Age- and sex-matched participants were recruited through Amazon Mechanical Turk using the 

Cloud Research Approved Participants feature.37 To account for potential variability due to online 

data collection, three matched controls were collected for each CA participant, bringing the total 

number of controls to 57 (3:1 match). Of these, data from one control was excluded for the multiple 

learning strategies task due to random responding. Task order was counterbalanced such that the 

tasks were completed in the identical order to each control9s matched CA participant. A modified 

online neuropsychological battery consisting of 7 measures (see Supplementary Material) was 

completed in between each task for comparison to individuals with CA. Five of these measures 

(Semantic Fluency, Phonemic Fluency, Category Switching, Similarities and Go No Go) were 
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directly taken from the CCAS, and two others were comprised of the MESA digit forward back 

backward span. Participant recruitment was restricted to the United States. Before starting each 

task, all participants were required to score 100% on a quiz that tested their comprehension of the 

instructions and were made to repeat the instructions until this score was achieved. Informed 

consent was obtained with approval form the Columbia University Institutional Review Board. 

Table 1. Basic CA participant demographics and neuropsychiatric measures 

Participant  Age (years) Sex Diagnosis CCAS MoCA BDI QUIP FDS BDS TMTA (sec) TMTB (sec) 

Participant 1 40 M SCA3 59 21 15 40 8 5 50 150 

Participant 2 33 M SCA3 77 21 9 12 11 5 21 261 

Participant 3 20 F SCA2 92 27 23 10 13 4 41 71 

Participant 4 52 F MSA-C 85 27 4 0 8 3 23 158 

Participant 5 61 F SCA2 92 23 15 38 8 4 49 169 

Participant 6 56 M MSA-C 100 26 7 8 13 4 66 127 

Participant 7 52 M SCA2 62 26 13 55 11 4 105 287 

Participant 8 41 F SCA2 95 29 18 2 10 8 45 97 

Participant 9 43 M SCA1 87 27 0 6 10 6 52 104 

Participant 10 62 F MSA-C 70 21 4 25 6 6 45 121 

Participant 11 54 M SCA2 72 21 0 5 11 5 32 100 

Participant 12 67 F ILOCA 101 29 12 16 12 5 51 88 

Participant 13 60 F SCA3 104 28 1 0 14 9 42 113 

Participant 14 51 F SCA10 74 25 13 8 8 2 35 83 

Participant 15 66 M SCA1 60 23 4 20 7 3 66 127 

Participant 16 49 M IMCA 86 28 17 6 13 7 81 225 

Participant 17 54 M FA 98 26 24 8 10 8 50 80 

Participant 18 33 F FA 84 27 3 26 9 4 38 84 

Participant 19 54 F IMCA 113 28 18 4 11 8 33 62 

SCA – Spinocerebellar ataxias, MSA-C – Multiple system atrophy, cerebellar type, ILOCA – Idiopathic late onset cerebellar ataxia, IMCA – 
Immune-mediated cerebellar ataxia, FA – Friedreich’s ataxia,  CCAS – Cerebellar cognitive affective/Schmahmann syndrome scale, MoCA – 
Montreal cognitive assessment, BDI – Beck’s depression inventory, QUIP – Questionnaire for impulsive-compulsive disorders in Parkinson’s 
disease, FDS – Forward digit span, BDS – Backward digit span, TMTA – Trail making test part A, TMTB – Trail making test part B 
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Experiment Tasks 

Incremental Learning Task 

In the incremental learning task (Figure 1A), participants were told that they would be playing a 

game where they were required to press a key, either F or J, whenever one of two symbols was 

seen, and that they would receive feedback about whether they had pressed correctly following 

each trial. They were then informed that it was their job to determine which key they should press 

for each symbol, and that what key is best will change throughout the experiment. Outcomes were 

determined by a drifting probability such that each button was correct for each image 50% of the 

time. Critically, these probabilities differed over time, thus encouraging constant learning 

throughout the task. Participants were told to press the F key with their left index finger and the J 

key with their right index finger. The response period during which the symbol remained on the 

screen lasted 1.5 seconds, with feedback displayed for 1 second immediately following the 

response period. An intertrial interval featuring a fixation cross was shown for an average of 1 

second, but varied between 0.5 and 1.5 seconds. Lastly, to provide a rewarding outcome for correct 

responses, participants were informed that they could earn bonus money based on their 

performance. Correct responses were worth an additional cent each. 

Multiple Learning Strategies Task 

The other task completed by participants was previously developed by our lab32 to measure the 

relative contribution of incremental learning and episodic memory to decisions (Figure 1B). 

Participants were told that they would be playing a card game where their goal was to win as much 

money as possible. Each trial consisted of a choice between two decks of cards that differed based 

on their color (red or blue). Participants had two seconds to decide between the decks. The outcome 

of each decision was then immediately displayed for 1.5 seconds. Following each decision, 

participants were shown a fixation cross during the intertrial interval period which varied in length 

(mean = 1.5 seconds, min = 1 seconds, max = 2 seconds). Decks were equally likely to appear on 

either side of the screen (left or right) on each trial and screen side was not predictive of outcomes. 

Participants completed a total of 150 trials. 
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Participants were made aware that there were two ways they could earn bonus money throughout 

the task, which allowed for the use of incremental learning and episodic memory respectively. 

First, at any point in the experiment one of the two decks was <lucky=, meaning that the expected 

value (�) of one deck color was higher than the other (�!"#$%=63¢, �"&!"#$%=37¢). Outcomes 

ranged from $0 to $1 in increments of 20¢. Critically, the mapping from � to deck color underwent 

an unsignaled reversal periodically throughout the experiment, which incentivized participants to 

utilize each deck9s recent reward history in order to determine the identity of the currently lucky 

deck. Second, in order to allow us to assess the use of episodic memory throughout the task, each 

card within a deck featured an image of a trial-unique object that could re-appear once throughout 

the experiment after initially being chosen. Participants were told that if they encountered a card a 

second time it would be worth the same amount as when it was first chosen, regardless of whether 

its deck color was currently lucky or not. On a given trial �, cards chosen once from trials � 2 9 

through � 2 30 had a 60% chance of reappearing following a sampling procedure designed to 

prevent each deck9s expected value from becoming skewed by choice, minimize the correlation 

between the expected value of previously seen cards and deck expected value, and ensure that 

choosing a previously selected card remained close to 50¢. 

Following completion of the multiple learning strategies task, we tested participants9 memory for 

the trial-unique objects. Participants completed up to 54 three-part memory trials. An object was 

first displayed on the screen and participants were asked whether or not they had previously seen 

the object and were given five response options: Definitely New, Probably New, Don9t Know, 

Probably Old, Definitely Old. If the participant indicated that they had not seen the object before 

or did not know, they moved on to the next trial. If, however, they indicated that they had seen the 

object before they were then asked if they had chosen the object or not. Lastly, if they responded 

that they had chosen the object, they were asked what the value of that object was (with options 

spanning each of the six possible object values between $0-1). 
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Computational Models 

In order to best capture subjective estimates of incrementally constructed value on each task, we 

fit computational models to participants9 choices. Below we describe each of these models in 

detail. 

Q Learning Models 

We modeled incremental reward learning using a Q Learning model, which is a standard model-

free reinforcement learner that assumes a store value (�) for each deck is updated over time26,28. 

� is then referenced on each decision in order to guide choices. After each outcome, �', the value 

for an option 1 �( is updated according to the following rule3 if that option is chosen: 

�(,'*( = �(,' + �(�' 2 �(,')  (1) 

And is not updated if a different option is chosen: 

�(,'*( = �(,'  (2) 

Likewise, if a different option is chosen, its value is updated equivalently. Large differences 

between estimated value and outcomes therefore have a larger impact on updates, but the overall 

degree of updating is controlled by the learning rate, �, which is a free parameter constrained to 

lie between 0 and 1. 

For the incremental learning task, the model learned separate Q values for each cue and button 

combination, such that four Q values were estimated in total. Decisions on this task were then 

modeled using the following softmax: 

�(�/�����) = �(�+,( + �+,, + �(,((�-,( 2 �.,() + �(,,(�-,, 2 �.,,))  (3) 

�(�) =
(

(*/!"
  (4) 

such that four inverse temperatures � were estimated to capture a bias toward choosing a key for 

each cue (�+,( and �+,,) and sensitivity to incrementally learned value for each cue (�(,( and �(,,). 

This model is referred to as the <Q Learner= model throughout the text. 
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For the multiple learning strategies task, the model learned separate Q values for each deck color, 

such that two Q values were estimated in total. Decisions on this task were then modeled using the 

following softmax: 

�(�/�������) = �(�((�0 2 �1) + �,(��������) + �2(���))  (5) 

such that three inverse temperatures � were estimated to capture sensitivity to incrementally 

learned value (�(), sensitivity to the value of previously seen objects (�,), and a bias toward 

choosing the deck featuring a previously seen object regardless of its value (�2). The predictor 

�������� was the coded true value of a previously seen object (ranging from 0.5 if the value was 

$1 on the red deck or $0 on the blue deck to -0.5 if the value was $0 on the red deck and $1 on the 

blue deck) and the predictor ��� was coded as 0.5 if the red deck featured a previously seen object 

and -0.5 if the blue deck did instead. For both of these predictors, trials that did not feature a 

previously seen object were coded as 0. This model is referred to as the <Hybrid= model throughout 

the text. 

Biased Responder Model 

For both tasks, we compared the performance of the Q Learning models to a model which made 

choices that were completely independent of reward information. For the incremental learning 

task, this model was simply: 

�(�/�����) = �(�+,( + �+,,)  (6) 

such that choices depended only on choosing a button to press for each cue throughout the 

experiment. For the multiple learning strategies task, this model was: 

�(�/�������) = �(�+)  (7) 

such that choices depended only on preferring one deck over the other throughout the experiment. 

Our logic in using this model as a baseline was that responses captured by the Q learning models 

should, at a minimum, outperform a biased responder that did not consider reward in order for it 

to make meaningful predictions about participants9 behavior. 
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Posterior Inference and Model Comparison 

Model parameters for each participant were estimated using Bayesian inference. The joint 

posterior was approximated using No-U-Turn Sampling38 as implemented in stan39. Four chains 

with 2000 samples (1000 discarded as burn-in) were run for a total of 4000 posterior samples per 

model per subject. Chain convergence was determined by ensuring that the Gelman-Rubin statistic 

�> was close to 1 for all parameters. For the incremental learning task, the Q learner did not 

converge for one CA participant, and so that individual and their matched controls were removed 

from further model-based analyses. For the multiple learning strategies task, all models for all 

participants converged. 

Under this approach, the likelihood function for all models can be written as: 

�' > ���������(�')   (8) 

where �' is 1 if the subject chose F (in the resonse mapping task) or red (in the multiple learning 

strategies task). Here, �' is the linear combination of inverse temperature parameters and predictors 

explained above for each model. For the Q learning models, the learning rate,�, had the following 

weakly informative prior: 

� > �(0,1)  (9) 

For all models, every inverse temperature parameter had the following weakly informative prior: 

� > �(0,5)  (10) 

Model fit was assessed using approximate leave-one-out cross validation estimated using Pareto-

smoothed importance sampling40. The expected log pointwise predictive density (ELPD) was 

computed and used as a measure of out-of-sample predictive fit for each model. 

Bayesian Observers 

In order to provide a normative performance benchmark, we also simulated beliefs about 

incremental value as estimated by Bayesian observers for each task. For the incremental learning 

task, this learner was a Kalman Filter41 with observation noise set to the true standard deviation of 
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outcomes and process noise set to 1.5. For the multiple learning strategies task, this learner was a 

reduced Bayesian change-point detection model42 with hazard rate equal to the true proportion of 

deck reversal trials for each participant in the task. Choices in the incremental learning task were 

made according to which button the observer believed was the most likely to be rewarded for each 

cue at each time point. Choices in the multiple learning strategies task were made differently 

depending on whether a previously seen object was present. For trials in which no previously seen 

object was shown, the observer responded according to its beliefs about deck value. For trials in 

which a previously seen object was present, however, the observer compared the value of that 

object to its belief about deck value for the opposing deck and chose accordingly. In this way, the 

observer was augmented with <perfect= episodic memory. 

Regression Models 

Mixed effects Bayesian regressions were used to test effects of group (CA participant or control). 

Group membership was allowed to vary randomly by CA participant identifier, ���, such that CA 

participants and matched controls were assigned the same ID. In these models, ������� was 

coded as -0.5 for CA participants and 0.5 for controls. We additionally controlled for working 

memory ability by including backwards digit span scores, �����, as a standardized covariate in 

these analyses. 

For the incremental learning task, we assessed behavioral incremental learning performance using 

the following logistic regression: 

�(�������) = �(�! + �!,#$%['] + �������'(�) + �),#$%[']) +

��������1'9�* + �*,#$%[']: + �������' × ��������1'9�+ + �+,#$%[']: +
��������1'*(�, + �,,#$%[']) + �������' × ��������1'*(�- + �-,#$%[']) +
������. + ���/)

 (11) 

Here, and in all regressions described in this section, � stands for fixed effects and � stands for 

random effects of CA participant ID. The predictor ��������1 indicates the true underlying 

difficulty of the task and is the probability that the F key was rewarding for cue 1. A second-order 

polynomial was included for this predictor as extreme values indicate portions of the task that are 

easier and middling values indicate portions of the task that were more difficult. Interaction effects 
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of this predictor and group were included to capture differences in sensitivity to the underlying 

task difficulty between the groups. Lastly, the reaction time, ��, on each decision was included as 

a standardized covariate in this analysis to account for any differences that may be due to slowed 

responding by individuals with CA on this task. 

For both the incremental learning and multiple learning strategies tasks, we assessed whether there 

were differences between the groups on Q learning model performance compared to the baseline 

biased responder model with the following linear regression: 

�������������� = �+ + �+,345['] + �������'(�( + �(,345[']) + ������,  (12) 

where �������������� was the difference in model performance (Q Learning model ELPD - 

Biased Responder ELPD; see above) for each subject. 

For the multiple learning strategies task, we assessed behavioral incremental learning performance 

using the following logistic regression: 

�(�/���������) = �(�! + �!,#$%['] + �0+:+ × �������'(�):/ + �):/,#$%[']) + ������2) (13) 

In this regression, we grouped trials according to their distance from a reversal, up to three trials 

prior to (� = 23:21), during (� = 0), and after (� = 1: 3) a reversal occurred. We then dummy 

coded them to measure their effects on the degree to which the lucky deck was chosen and 

interacted each dummy coded regressor with group to measure how this was affected by group 

membership. 

We then assessed the degree to which each group used either incrementally learned deck value, 

the value of previously seen objects, or a bias toward previously seen objects regardless of their 

value as estimated by the Hybrid Q learning model using a simple linear regression of the following 

form for each of these inverse temperature parameters and groups: 

�������8 = �+ + ������(  (14) 

Here we interested primarily in the intercept, �+, as this determined the degree to which each 

group9s inverse temperatures were above zero. 
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We also assessed the impact of group on subsequent memory performance following the multiple 

learning strategies task using the following linear regression: 

������ = �+ + �+,345['] + �������'(�( + �(,345[']) + ������,  (15) 

where ������ is the signal detection measure �2, which is the difference in z scored hit rate and 

false alarm rate for each participant.  

We were also interested in determining whether there were any differences in reaction times 

between individuals with CA and matched controls due to motor impairment. For both the 

incremental learning and multiple learning strategies tasks we did this by assessing whether there 

were any differences in reaction time between groups: 

�� = �+ + �+,345['] + �������'(�( + �(,345['])  (16) 

where �� was the median reaction time across trials in either task. A separate regression of this 

form was used for each of the two tasks. 

Lastly, we assessed whether there were differences on each neuropsychological measure, 

�������, using a linear regression for each measure that adhered to the following form: 

������� = �+ + �+,345['] + �������'(�( + �(,345['])  (17) 

For all regression analyses, fixed effects are reported in the text as the mean of each parameter9s 

marginal posterior distribution alongside 95% credible intervals, which indicate where 95% of the 

posterior density falls. Parameter values outside of this range are unlikely given the model, data, 

and priors. Thus, if the range of likely values does not include zero, we conclude that a meaningful 

effect was observed. 

Results 

Impaired reward learning in the incremental learning task 

Our first goal was to assess CA participants9 baseline ability to learn incrementally from reward 

using the incremental learning task. On this task, CA participants made overall fewer correct 

choices compared to healthy controls (�9:;"3 = 20.88, 	95%	�� = [21.55,	20.144]; Figure 
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2A). CA participants9 choices were less correct throughout the entirety of the task, even during 

periods of learning where action-outcome contingencies were more deterministic (e.g. close to 

100%) compared to more difficult periods of learning (�9:;"3×3-0/=>:5(# = 25.49, 	95%	�� =

[27.57, 23.52]; Figure 2B-C. Overall, this difference in performance indicates that CA 

participants did not learn from reward feedback. Although CA participants responded slightly 

more slowly than healthy controls on this task (�9:;"3 = 2115.81, 	95%	�� =

[2201.26, 233.55]; Supplementary Figure 1), we included reaction times as a covariate in the 

above regression analysis to ensure that differences in choice accuracy were not attributed to motor 

slowing in CA participants.  

Next, to more formally assess participants9 performance on this task, we fit a standard Q learning 

model to participants9 responses. This model captures the extent to which each participant 

incorporated trial-by-trial outcomes into running estimates of the value of pressing each button in 

response to each cue, as well as whether choices are based on these estimates. As a baseline, we 

compared the performance of this model to a biased responder that merely estimated the extent to 

which each participant pressed one button over the other, regardless of outcome, in response to 

each cue. While healthy controls9 responses were well described by the Q learning model, this 

model did no better than the biased responder at predicting CA participants9 decisions, thus 

demonstrating that CA participants engaged in little-to-no incremental learning (Figure 2D). On 

a measure of estimated out-of-sample predictive performance, controls were substantially better 

fit by the Q learner compared to the biased responder, while this improvement in fit was largely 

absent for CA participants (�9:;"3 = 30.94, 	95%	�� = [16.465, 	46.0]). Thus, while healthy 

controls incorporated feedback into their estimates about the relationship between cue and action 

at each timepoint, CA participants generally did not. 
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Figure 2 Performance on the incremental learning task. (A) Performance on the incremental learning 
task averaged across all trials for healthy controls (HC) and CA participants compared to a Bayesian 
observer in gray, which represents normative performance on the task. Individual points are averages for 
each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals. 
(B) Performance on the incremental learning task over time. Each timepoint represents ten trials. Lines are 
group averages and bands are 95% confidence intervals. For normative comparison, the performance of the 
Bayesian observer is shown as a dotted gray line. (C) Performance on the incremental learning task as a 
function of task difficulty, which is indexed by the true underlying probability that pressing the F key was 
the correct response (>50%) on each trial. Points represent group level averages from 13 bins with an equal 
number of trials, lines represent the fit of a second-order linear model, and error bars and bands represent 
95% confidence intervals. (D) Model performance of the Q Learner and baseline Biased Responder models. 
Left: Posterior predictive performance. Individual lines represent Q learner fits for each individual, whereas 
thick lines represent the group-level average fit (with the Q Learner in color and Biased Responder in gray). 
Bands represent 95% confidence intervals. Right: The difference in estimated out-of-sample predictive 
performance (as measured by expected log pointwise predictive density; ELPD) between the Q Learner and 
the Biased Responder model for each group. Individual points are the ELPD difference for each subject and 
filled in points represent group-level averages. Error bars are 95% confidence intervals. 
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Together, these results indicate that individuals with CA are impaired at reward learning from trial-

and-error. 

Impaired incremental reward learning but intact episodic memory 

in the multiple learning strategies task 

After establishing that CA participants were impaired in a task that measured solely incremental 

reward learning, we wanted to examine both the specificity and generalizability of this impairment 

by i) providing an alternative means of online reward-based decision making alongside 

incremental learning and ii) altering the incremental learning task structure to measure responses 

to reversal events rather than drifting probabilities. The multiple learning strategies task was thus 

used to accomplish both of these goals. 

Consistent with the results of the incremental learning task, CA participants in the multiple 

learning strategies task were less responsive to reward outcomes compared to controls (Figure 

3A). Specifically, controls tended to choose the lucky deck more than CA participants immediately 

prior to a reversal (�9:;"3×'?'@( = 0.397, 	95%	�� = [0.002, 	0.807]), and this tendency was 

disrupted by reversals; CA participants did not show this pattern (�9:;"3×'?+ =

20.897, 	95%	�� = [21.28,	20.535]), and remained below chance performance after a reversal 

occurred (�9:;"3×'?'*( = 20.595, 	95%	�� = [20.984,	20.21]). This indicates that CA 

participants were unable to learn which deck had the higher expected value at any given time 

throughout the task. 

We next assessed the extent to which both incrementally constructed value and episodic value 

contributed to choice in a combined Hybrid choice model. This model combined a standard Q 

learning model with three inverse temperature parameters that captured each participants9 

sensitivity to estimated deck value, the true value of previously seen objects, and a bias toward 

choosing previously seen objects regardless of their value (Figure 3B-C). This model of hybrid 

choice outperformed a biased responder, which again served as a baseline, for both CA participants 

and controls as there was no difference between groups in estimated out-of-sample predictive 

performance (�9:;"3 = 21.631, 	95%	�� = [211.425, 	8.444]; Supplementary Figure 2).  
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Figure 3 Performance on the multiple learning strategies task. (A) Deck learning performance on the 
multiple learning strategies task as indicated by the proportion of trials on which the currently lucky deck 
was chosen as a function of how distant those trials were from a reversal in deck value. Performance for 
both healthy controls (HC) and CA participants is shown alongside a Bayesian observer with perfect 
episodic memory for visual comparison. Lines represent group averages and bands represent 95% 
confidence intervals. (B) Object value usage on trials in which a previously seen object appeared. Points 
represent group averages and error bars represent 95% confidence intervals. (C) Inverse temperature 
estimates from the Hybrid model. Individual points represent estimates for each subject, group-level 
averages are shown as filled in points and error bars represent 95% confidence intervals. (D) Recognition 
memory performance on the subsequent memory task. Individual points represent each participant9s dprime 
score, filled in points are group-level averages and error bars are 95% confidence intervals. 
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Importantly, this indicates that the behavior of both CA participants and controls was well 

described by the hybrid choice model, which is expected if CA participants are unimpaired at 

episodic value learning. For each group, we then assessed whether sensitivity differed from zero 

and, if so, concluded that participants in that group made choices that were affected by each 

possible predictor. While healthy controls incorporated deck value into their decisions (�AB =

3.173, 	95%	�� = [2.181, 	4.189]), CA participants generally did not (�BC = 0.681, 	95%	�� =

[20.668, 	2.066]). This reward learning deficit was specific to value acquired incrementally, 

however, because CA participants and controls were both sensitive to episodic value (�AB =

1.373, 	95%	�� = [1.095, 	1.654]; �BC = 1.13, 	95%	�� = [0.59, 	1.643]) and were both 

similarly biased by previously seen objects regardless of their value (�AB = 1.142, 	95%	�� =

[0.798, 	1.477]; �BC = 0.551, 	95%	�� = [0.028, 	1.056]). 

We additionally had each participant complete a subsequent memory test for a subset of objects 

shown during the multiple learning strategies task. There was no difference in recognition memory 

performance between groups (�9:;"3 = 20.487, 	95%	�� = [21.144, 	0.157]). This result 

provides further evidence that CA participants were unimpaired at using episodic memory 

throughout the task relative to their stark impairments in incremental learning. Lastly, CA 

participants and healthy controls demonstrated no differences in reaction time on this task, 

suggesting that the behavioral differences reported here cannot be attributed to motor slowing in 

CA (�9:;"3 = 286.40, 	95%	�� = [2222.28, 44.76]; Supplementary Figure 1). 

Controlling for effects of non-motor deficits and disease subtype 

We next sought to ensure that the differences in the tasks reported here were specific to deficits in 

reward learning rather than general cognitive impairment. Controlling for cognitive impairment is 

particularly important because recent work43,44 has suggested that incremental learning 

experiments tax higher level functions, like executive control and working memory, in addition to 

learning from reward prediction error. To address this issue and assess possible cognitive 

impairment, we conducted a battery of neuropsychological measures on CA participants (see 

Methods). Of these, a subset of measures were also completed by healthy controls 

(Supplementary Table 1; Supplementary Figure 3). We found no differences in performance 
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between groups on all measures except for the backwards digit span task, which indexes working 

memory ability, and on which healthy controls scored higher than CA participants (�9:;"3 =

22.57, 	95%	�� = [24.17,	20.92]). Backwards digit span scores were thus included as 

covariates in all regression analyses (see Methods) in order to control for impacts of this 

performance difference on impairments in incremental learning, and all effects described in the 

above sections thus control for differences in working memory performance. To further ensure 

that CA participants9 deficient incremental learning was not due to broad cognitive impairment, 

we also repeated all analyses excluding seven CA participants (and their matched controls) with 

mild cognitive impairment (MCI), as indicated by scoring lower than 26 on the MoCA (Table 1). 

While CA participants with MCI consisted of some of the lowest performing participants in our 

sample (Supplementary Figures 4 and 5), we found no differences in the results across both tasks 

when they were excluded. It is therefore unlikely that CA participants9 impaired reward learning 

ability is due to either working memory deficits or cognitive decline more broadly. 

We next sought to further characterize the nature of CA participants9 reward learning impairment 

by looking at the relationship between incremental learning sensitivity, as measured by the Q 

learning models in each task, and performance on our neuropsychological battery. The extent to 

which CA participants learned about cues in the incremental learning task related only to total 

CCAS score (� = 0.84, 	� < 0.001, ����������	���������; Supplementary Table 2), 

suggesting that the specific contributions of the cerebellum to cognition may impact performance 

in this task. The CCAS scale was recently developed to measure the exact types of cognitive 

impairment that result from damage to the cerebellum.45 Because more focal cerebellar lesions 

tend to lead to lower total CCAS scores,46 this provides further evidence of the necessity for the 

cerebellum to successfully perform the incremental learning task. The relationship between total 

CCAS score and performance was driven by the timed portions of the CCAS scale (e.g. the 

Semantic Fluency and Category Switching measures; Supplementary Table 3), suggesting a 

potential effect of slowed responses in the incremental learning task. While CA participants did 

indeed respond more slowly than healthy controls on this task (see above), we controlled for this 

difference in our behavioral analysis. There was also no relationship between any of the timed 

CCAS measures and reaction time on the incremental learning task (Supplementary Figure 1), 

further suggesting that these measures captured independent timing-related impairment. Finally, 
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there was no relationship between any measure and incremental learning ability in the multiple 

learning strategies task (Supplementary Table 2). 

Finally, we addressed the possibility that the subset of our sample of CA participants consisting of 

diagnoses that were less restricted to the cerebellum, namely the three individuals with multiple 

system atrophy (MSA), could be responsible for the deficits reported here. We repeated all 

analyses with these three participants excluded and found no differences in the results 

(Supplementary Figures 6 and 7).  

Discussion 

The results of the present work demonstrate that individuals with cerebellar dysfunction, 

represented by CA cases in our cohort, are impaired at reward learning. While the cerebellum and 

basal ganglia have traditionally been treated as making separate contributions to learning,5,21 recent 

findings have called this dichotomy into question.8319 This work has suggested that, alongside its 

role in motor learning, the cerebellum likely operates in concert with the basal ganglia to support 

reinforcement learning from reward. Our study corroborates these findings from animal models,103

19 providing evidence that the human cerebellum is necessary for learning associations from 

reward. In comparison to age- and sex-matched healthy controls, CA participants were impaired 

at reward-based learning from trial-and-error. Further, CA participants retained the ability to 

employ an alternative strategy based in episodic memory to guide their decisions, demonstrating 

that this impairment is specific to incremental learning. These results challenge the idea that the 

cerebellum is used primarily for motor learning and shed light on how multiple neural systems 

may interact with one another to support learning in the non-motor domain. 

Our findings join a litany of recent research suggesting that the cerebellum plays a broad role in 

human cognition.22,47349 Indeed, individuals with damage to the cerebellum demonstrate 

impairment in a wide range of cognitive functions including cognitive control50 and impulsivity.51 

Human functional neuroimaging studies have also revealed cerebellar activity in a variety of 

different non-motor tasks.22,48 Many of these functions are likely supported by the robust 

bidirectional connections the cerebellum shares with the prefrontal cortex.52,53 In particular, recent 

findings have indicated that individuals with CA have heightened domain-specific impulsive and 
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compulsive behaviors, which is a common symptom of underlying reward system dysfunction.54,55 

Our study adds to this work by suggesting that the cerebellum is additionally necessary for reward 

learning in humans. 

While there is growing evidence validating the implication of the cerebellum in reward-based 

learning in animals, there is only limited work on this topic in humans. Early imaging studies, for 

example, demonstrated cerebellar BOLD activity in patients with substance use disorder who 

performed reward-based learning tasks23 and experienced cravings,24 and also in response to 

unexpected reward.25 However, it remains unknown how cerebellar damage impacts reward 

learning, as investigations of reward learning in the cerebellum are rare. While two previous 

studies employed reward-based experimental tasks in individuals with isolated ischemic lesions of 

the cerebellum,56,57 results until this point have remained far from conclusive. Thoma et al.56 used 

a reward-based learning task consisting of an initial acquisition phase in which eight participants 

with cerebellar damage were rewarded for learning associations between colors and symbols 

followed by a reversal portion in which they had to disremember previously acquired knowledge 

and learn new associations for each cue. While participants with cerebellar damage demonstrated 

no impairment at acquiring new, reward-based knowledge, they were selectively impaired at 

learning from a single reversal. While this study complements our findings, we found evidence for 

more global impairment: CA participants in both of our tasks were unable to learn associations 

from reward on a trial-by-trial basis. Rustemeier et al.57 took a different approach by asking twelve 

individuals with cerebellar damage to learn a simple acquisition task from probabilistic feedback 

and subsequently transfer this knowledge to re-arranged stimuli. While participants were 

unimpaired behaviorally at this task, electroencephalographic (EEG) results revealed that they may 

process reward-based feedback differently from controls. Our findings support this interpretation 

and further suggest that processing of trial-by-trial feedback is not just different, but impaired, in 

individuals with cerebellar damage. Finally, while another related study showed impairment in 

learning from reinforcement in twelve participants with cerebellar damage,20 this study was 

focused specifically on the motor domain.  

While our findings suggest that the cerebellum is necessary for incremental reward learning, they 

cannot speak to the neural circuitry underlying this role. One intriguing possibility is that the 
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cerebellum may operate in tandem with the basal ganglia4canonically seen as the seat of 

reinforcement  learning in the brain5,214to learn about reward incrementally. Reward prediction 

error signals in midbrain dopamine neurons that provide input to the basal ganglia27,29 have also 

been found to be encoded by cerebellar neurons.9,15,17,19 Further, through excitatory projections to 

the ventral tegmental area, the cerebellum has widespread reciprocal connections with the basal 

ganglia and has recently been shown to influence reward-driven behavior through these 

projections.8,58 While reinforcement learning via the basal ganglia and supervised learning via the 

cerebellum have typically been treated as fulfilling entirely separate roles,5,21 these systems appear 

to be more interdependent than previously thought. Future investigations of the relationship 

between the basal ganglia and cerebellum are needed to clarify the exact mechanisms underlying 

reinforcement learning in the brain. 

There are several potential limitations to the findings of our study. Our study participants included 

a large variety of different conditions causing cerebellar dysfunction, including some with MSA 

and spinocerebellar ataxia (SCA). While some of these pathologies are predominantly restricted 

to the cerebellum, non-cerebellar brain areas and circuits, such as the dopaminergic system in 

MSA, could also be involved. However, there was no change in the reported reward-based learning 

deficits with subgroup analyses comparing CA participants whose conditions are known to be 

multisystemic and those whose conditions show more isolated cerebellar pathology. Second, while 

cognitive impairment due to neurodegenerative disease could potentially contribute to some of the 

deficits measured here, we accounted for this possibility by establishing that the incremental 

reward learning deficits reported here persist regardless of MCI status. We also collected basic 

neuropsychological measures from all participants, and CA participants were not different from 

controls on the vast majority of measures. We focused particularly on possible contributions of 

working memory given recent work suggesting that working memory plays an important role in 

incremental reward learning.43,44 While CA participants and controls performed similarly on the 

forward digit span task, CA participants were somewhat impaired at backwards digit span. We 

controlled for this difference by including backwards digit span scores as covariates in all 

regression analyses. 
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Taken together, our findings suggest that the human cerebellum is necessary for reward learning. 

These results provide new constraints on models of non-motor learning and suggest that the 

cerebellum and basal ganglia work in tandem to support learning from reinforcement.  
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Supplementary Material 

 

Supplementary Figure 1 Reaction time and relationship to timing-dependent CCAS measures. 

Reaction time in the incremental learning (Top row) and multiple learning strategies (Bottom row) tasks. 

Lefthand panels show median RTs for CA participants compared to healthy controls (HC). Righthand 

panels show the relationship between CCAS measures which yielded a significant relationship with 

incremental value sensitivity in the incremental learning task and were conducted under time pressure, and 

reaction time, for CA participants. 
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Supplementary Figure 2 Model performance on the multiple learning strategies task for the Hybrid 

Learner and Biased Responder models. Left: Posterior predictive performance. Individual lines represent 

Hybrid Learner fits for each individual, whereas thick lines represent the group-level average fit (with the 

Hybrid Learner in color and Biased Responder in gray). Bands represent 95% confidence intervals. Right: 

The difference in estimated out-of-sample predictive performance (as measured by expected log pointwise 

predictive density) between the Hybrid Learner and the Biased Responder model for each group. Individual 

points are the ELPD difference for each subject and filled in points represent group-level averages. Error 

bars are 95% confidence intervals. 
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Supplementary Figure 3 Neuropsychological test performance for the subset of neuropsychological 

measures that were completed by both CA participants and healthy controls (HC). Scores from 

individual participants are plotted as empty circles behind group-level means plotted as filled circles with 

uncertainty represented by 95% confidence intervals.  
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Supplementary Figure 4 CA participant performance on the incremental learning task separated by 

mild cognitive impairment (MCI versus all others) and compared to healthy controls (HC). (A) 

Performance on the incremental learning task averaged across all trials. Individual points are averages for 

each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals. 

(B) Performance on the incremental learning task as a function of task difficulty, which is indexed by the 

true underlying probability that pressing the F key was the correct response (>50%) on each trial. Points 

represent group level averages from 13 bins with an equal number of trials, lines represent the fit of a 

second-order linear model, and error bars and bands represent 95% confidence intervals. (C) The difference 

in estimated out-of-sample predictive performance (as measured by expected log pointwise predictive 

density; ELPD) between the Q Learner and the Biased Responder model for each group. Individual points 

are the ELPD difference for each subject and filled in points represent group-level averages. Error bars are 
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95% confidence intervals. (D) Performance on the incremental learning task over time. Each timepoint 

represents ten trials. Lines are group averages and bands are 95% confidence intervals. For normative 

comparison, the performance of the Bayesian observer is shown as a dotted gray line.  
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Supplementary Figure 5 CA participant performance on the multiple learning strategies task 

separated by mild cognitive impairment (MCI versus all others) and compared to healthy controls 

(HC). (A) Deck learning performance on the multiple learning strategies task as indicated by the proportion 

of trials on which the currently lucky deck was chosen as a function of how distant those trials were from 

a reversal in deck value. Lines represent group averages and bands represent 95% confidence intervals. (B) 

Object value usage on trials in which a previously seen object appeared. Points represent group averages 

and error bars represent 95% confidence intervals. (C) Inverse temperature estimates from the Hybrid 

model. Individual points represent estimates for each subject, group-level averages are shown as filled in 
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points and error bars represent 95% confidence intervals. (D) Recognition memory performance on the 

subsequent memory task. Individual points represent each participant9s dprime score, filled in points are 

group-level averages and error bars are 95% confidence intervals. 
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Supplementary Figure 6 CA participant performance on the incremental learning task separated by 

diagnosis (MSA individuals versus all others) and compared to healthy controls (HC). (A) 

Performance on the incremental learning task averaged across all trials. Individual points are averages for 

each subject and filled in points represent group-level averages. Error bars are 95% confidence intervals. 

(B) Performance on the incremental learning task as a function of task difficulty, which is indexed by the 

true underlying probability that pressing the F key was the correct response (>50%) on each trial. Points 

represent group level averages from 13 bins with an equal number of trials, lines represent the fit of a 

second-order linear model, and error bars and bands represent 95% confidence intervals. (C) The difference 

in estimated out-of-sample predictive performance (as measured by expected log pointwise predictive 

density; ELPD) between the Q Learner and the Biased Responder model for each group. Individual points 

are the ELPD difference for each subject and filled in points represent group-level averages. Error bars are 
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95% confidence intervals. (D) Performance on the incremental learning task over time. Each timepoint 

represents ten trials. Lines are group averages and bands are 95% confidence intervals. For normative 

comparison, the performance of the Bayesian observer is shown as a dotted gray line.  
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Supplementary Figure 7 CA participant performance on the multiple learning strategies task 

separated by diagnosis (MSA individuals versus all others) and compared to healthy controls (HC) 

(A) Deck learning performance on the multiple learning strategies task as indicated by the proportion of 

trials on which the currently lucky deck was chosen as a function of how distant those trials were from a 

reversal in deck value. Lines represent group averages and bands represent 95% confidence intervals. (B) 

Object value usage on trials in which a previously seen object appeared. Points represent group averages 

and error bars represent 95% confidence intervals. (C) Inverse temperature estimates from the Hybrid 

model. Individual points represent estimates for each subject, group-level averages are shown as filled in 
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points and error bars represent 95% confidence intervals. (D) Recognition memory performance on the 

subsequent memory task. Individual points represent each participant9s dprime score, filled in points are 

group-level averages and error bars are 95% confidence intervals. 
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Supplementary Table 1. Results of regression analyses assessing differences in neuropsychological test performance between 

CA participants and healthy controls. 

Measure ³ Estimate 95% Credible Interval 

Backwards -2.57 [-4.18, -0.92] 

Forwards -0.09 [-1.35, 1.15] 

Semantic 1.54 [-2.12, 5.14] 

Phonemic 0.04 [-2.75, 2.88] 

Category 1.68 [-0.76, 4.10] 

Similarities -0.20 [-0.50, 0.12] 

Go No Go 0.0001 [-0.33, 0.33] 
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Supplementary Table 2. Correlations between CA participant-level measures (Total neuropsychological scores and symptom 

duration) and incremental value sensitivity (as estimated by the Q Learning model in the incremental learning task and as by 

the Hybrid Q Learning model in the multiple learning strategies task). 

Measure Pearson's R P Value (Bonferroni Corrected) Task 

Symptom Duration -0.0661 1 Incremental Learning 

SARA (Total) 0.1067 1 Incremental Learning 

MoCA (Total) 0.5225 0.1885 Incremental Learning 

CCAS (Total) 0.8419 0.0001* Incremental Learning 

BDI (Total) 0.2977 1 Incremental Learning 

QUIP (Total) -0.3892 0.7356 Incremental Learning 

Symptom Duration -0.3699 0.7848 Multiple Learning Strategies 

SARA (Total) -0.2141 1 Multiple Learning Strategies 

MOCA (Total) 0.1438 1 Multiple Learning Strategies 

CCAS (Total) 0.3849 0.6887 Multiple Learning Strategies 

BDI (Total) 0.4641 0.3141 Multiple Learning Strategies 

QUIP (Total) -0.074 1 Multiple Learning Strategies 

CCAS – Cerebellar cognitive affective/Schmahmann syndrome scale, SARA – Scale for the Assessment and Rating of Ataxia, MoCA – Montreal 
cognitive assessment, BDI – Beck’s depression inventory, QUIP – Questionnaire for impulsive-compulsive disorders in Parkinson’s disease  

***p < 0.001 
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Supplementary Table 3. Correlations between CA participant CCAS subscale measures and incremental value sensitivity (as 

estimated by the Q Learning model) in the incremental learning task. 

CCAS Measure Pearson's R P Value (Bonferroni Corrected)  

Semantic Fluency 0.6693 0.033*  

Phonetic Fluency 0.6235 0.0749  

Category Switching 0.7168 0.012*  

Digit Span Fwd (CCAS) 0.295 1  

Digit Span Bwd (CCAS) 0.3146 1  

Cube Drawing 0.5009 0.4055  

Verbal Recall 0.4224 0.9118  

Similarities 0.5881 0.1302  

Go No Go -0.2654 1  

Affect 0.2944 1  

*p < 0.05 

 


