

The efficacy of chemotherapy is limited by intratumoural senescent cells that persist through the upregulation of PD-L2

Selim Chaib^{1,2*}, José Alberto López-Domínguez^{1*}, Marta Lalinde³, Neus Prats¹, Ines Marin¹, Kathleen Meyer¹, María Isabel Muñoz¹, Mònica Aguilera¹, Lidia Mateo¹, Camille Stephan-Otto Attolini¹, Susana Llanos⁴, Sandra Pérez-Ramos³, Marta Escorihuela³, Fatima Al-Shahrour⁴, Timothy P. Cash⁵, Tamara Tchkonia², James L. Kirkland², Joaquín Arribas^{3,6,7,8} and Manuel Serrano^{1,8, #}

¹ Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

² Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America

³ Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO)-CIBERONC, Barcelona, Spain.

⁴ Spanish National Cancer Research Center (CNIO), Madrid, Spain

⁵ Rejuveron Senescence Therapeutics, Barcelona, Spain

⁶ Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.

⁷ Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.

⁸ Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

*equal contributors

Correspondence to: manuel.serrano@irbbarcelona.org

1 **Abstract**

2

3 Anti-cancer therapies often result in a subset of surviving cancer cells that undergo therapy-
4 induced senescence (TIS). Senescent cancer cells strongly modify the intratumoural
5 microenvironment favoring immunosuppression and, thereby, tumour growth. An emerging
6 strategy to optimise current therapies is to combine them with treatments that eliminate senescent
7 cells. To this end, we undertook an unbiased proteomics approach to identify surface markers
8 contributing to senescent cells immune evasion. Through this approach, we discovered that the
9 immune checkpoint inhibitor PD-L2, but not PD-L1, is upregulated across multiple senescent
10 human and murine cells. Importantly, blockade of PD-L2 strongly synergises with genotoxic
11 chemotherapy, causing remission of solid tumours in mice. We show that PD-L2 inhibition
12 prevents the persistence of chemotherapy-induced senescent cells, which exert cell-extrinsic
13 immunomodulatory actions. In particular, upon chemotherapy, tumours deficient in PD-L2 fail to
14 produce cytokines of the CXCL family, do not recruit myeloid-derived suppressor cells (MDSCs)
15 and are eliminated in a CD8 T cell-dependent manner. We conclude that blockade of PD-L2
16 improves chemotherapy efficacy by reducing the intratumoural burden of senescent cells and their
17 associated recruitment of immunosuppressive cells. These findings provide a novel strategy to
18 exploit vulnerabilities arising in tumour cells as a result of therapy-induced damage and cellular
19 senescence.

20 **Introduction**

21 The inhibitory receptor PD-1 and its ligand PD-L1 (B7-H1) constitute an important immune
22 checkpoint that controls the establishment of immune tolerance and negatively regulates the
23 activity and proliferation of PD-1-expressing immune cells¹. They are also key contributors to
24 immune evasion by cancer cells, which frequently overexpress PD-L1². Immunotherapies
25 targeting PD-1/PD-L1 have been successfully used in the clinic against a broad spectrum of
26 tumours³⁻⁵, including melanoma and non-small cell lung cancer⁶. An alternative PD-1 ligand, PD-
27 L2 (B7-DC) has received comparatively less attention due to the lower frequency of PD-L2
28 positive cancers, compared to PD-L1⁷.

29 PD-L1 and PD-L2 share roughly a 40% of their amino acid sequence and they compete for
30 PD-1 binding, although, interestingly, PD-L2 exhibits a 2- to 6-fold higher binding affinity to PD-
31 1⁸. PD-L2 is predominantly expressed by dendritic cells, macrophages, and other antigen
32 presenting cells, together with other immune populations. Additionally, in the context of cancer,
33 cancer-associated fibroblast (CAF) can express PD-L2 and contribute to an immunosuppressive
34 tumour microenvironment (TME)^{9,10}. PD-L2 expression is most frequent in triple-negative breast
35 cancer (TNBC) and abundant in small intestine and pancreatic neuroendocrine tumours,
36 gallbladder cancer, endometrial cancer, bladder cancer, gastric cancer and head and neck
37 squamous cell carcinoma (HNSCC)^{7,11}. There is little understanding about the biological role of
38 PD-L2 for immune evasion in cancers, although it is interesting to note that ectopic expression of
39 PD-L2 produces immune evasion through inhibition of PD-1¹². In the case of monocytes and
40 macrophages, interferon γ (IFN- γ) upregulates both PD-L1 and PD-L2, while IL-4 selectively
41 upregulates PD-L2^{13,14}. However, at present, there is limited information regarding how levels of
42 PD-L2 are regulated in cancer. Two recent reports have found upregulation of PD-L2 in some
43 cancer cell lines in vitro in response to cisplatin¹⁵ or radiation¹⁶.

44 Conventional chemotherapy or radiotherapy is still the most common treatment for solid
45 cancers. DNA damage and other insults associated with these therapies can trigger therapy-induced
46 senescence (TIS) in cancer cells and in other intratumoural cells, such as endothelial cells and
47 fibroblasts¹⁷. The senescence program constitutes a cell-intrinsic barrier against oncogene-driven
48 proliferation and transformation, however, it also involves a prominent secretory activity known
49 as the Senescence Associated Secretory Phenotype (SASP)¹⁸. The SASP is complex and
50 heterogeneous, comprising pro-inflammatory cytokines, chemokines, matrix remodeling enzymes

51 and growth factors, that result in cell-extrinsic effects known to facilitate tumour growth¹⁹⁻²³. More
52 specifically, the SASP includes immunosuppressive factors, like TGF- β , and chemokines that
53 recruit myeloid-derived suppressive cells (MDSCs)²⁴⁻²⁷. Therefore, while senescence is a cell-
54 intrinsic barrier for cancer cells, it is also pro-tumourigenic through its extrinsic actions on the
55 tumour microenvironment.

56 Therefore, therapies that selectively eliminate senescent cells (known as senolytic
57 therapies) have been demonstrated in multiple studies to synergise with cancer chemotherapy²⁸.
58 This is the case of senolytic compounds, such as ABT-263 (navitoclax)²³, derivatives of this
59 drug^{29,30}, dasatinib^{31,32}, cardiac glycosides^{33,34} and mTOR inhibitors³⁵. Also, elimination of
60 senescent cells using engineered CAR-T cells leads to improved tumour control in combination
61 with MEK and CDK4/6 inhibitors³⁶. Whether PD-L2 plays a role in the senescent phenotype and
62 whether this feature can be exploited in novel therapies is unknown. Here, we show the importance
63 of PD-L2 upregulation in the persistence of therapy-induced senescent cells and, thereby, in their
64 ability to modulate tumour immunosurveillance across a variety of mouse models of cancer.

65

66 Results

67 Senescent cancer cells overexpress PD-L2

68 To gain insight into the immunomodulatory potential of senescent cells, we performed an unbiased
69 proteomic screen of proteins enriched in the plasma membrane of senescent and non-senescent
70 human SK-MEL-103 melanoma cells, using doxorubicin or the CDK-4/6 inhibitor palbociclib to
71 trigger therapy-induced senescence (TIS). Interestingly, among the upregulated plasma membrane
72 proteins in both TIS conditions (doxorubicin and palbociclib) was PD-L2 (**Supplementary Table**
73 **1**). Moreover, drug class enrichment analysis of datasets from the LINCS L1000 project³⁷ revealed
74 that PD-L2 is upregulated by common inducers of cellular senescence, such as DNA-damage and
75 cell cycle inhibition (**Extended Data Fig. 1a**). Indeed, PD-L2 transcript levels were significantly
76 upregulated in TIS in human and murine cancer cell lines of various origins, including melanoma,
77 lung squamous cell carcinoma, head and neck squamous cell carcinoma, and osteosarcoma (**Fig.**
78 **1a-b** and **Extended Data Fig. 1b-d**). In contrast, increases in PD-L1 transcript levels were modest
79 or absent. PD-L2 expression was also elevated in vivo following the induction of TIS in human
80 xenografts and mouse syngeneic tumours (**Fig. 1c-d** and **Extended Data Fig. 1e**).

81 Based on the above findings, we next assessed cell surface levels of PD-L2 in TIS. Flow
82 cytometry and immunohistochemistry-based analysis revealed elevated PD-L2 in SK-MEL-103
83 cells, both in vitro and in xenograft models, upon TIS (**Fig. 1e-f** and **Extended Data Fig. 1f**),
84 which was not present in a PD-L2-KO SK-MEL-103 clonal cell line generated by CRISPR-Cas9
85 (**Extended Data Fig. 1g**). Upregulation of PD-L2 was detected by flow cytometry in cell lines of
86 different cancer cell types that underwent TIS (**Figure 1g**) and occurred gradually during the
87 development of TIS over a period of 7 days (**Fig. 1h**). It is interesting to note that osteosarcoma
88 Saos-2 cells, which are unable to undergo senescence (due to the absence of RB1³⁸), did not
89 upregulate PD-L2 in response to palbociclib, in contrast to TIS-competent osteosarcoma U2OS
90 cells (**Extended Data Fig. 1h**). Together, these data indicate that the upregulation of PD-L2 is a
91 common feature of the program elicited by therapy-induced senescence (TIS) and results in
92 elevated plasma membrane PD-L2 levels.

93

94 **PD-L2-KO tumours are highly susceptible to chemotherapy**

95 The consistent upregulation of PD-L2 in therapy-induced senescent cells prompted us to study its
96 relevance in the context of cancer therapy. For this, we generated a murine PD-L2-KO Panc02 cell
97 line by CRISPR-Cas9 (**Extended Data Fig. 2a**) and we injected WT and PD-L2-KO cells
98 orthotopically into the pancreas of immunocompetent mice that were subsequently treated with
99 genotoxic chemotherapy (doxorubicin). Interestingly, chemotherapy controlled the growth of PD-
100 L2-KO tumours significantly better than their WT counterparts (**Fig. 2a**). As a result, mice bearing
101 PD-L2-KO tumours and treated with doxorubicin lived significantly longer than mice with treated
102 WT tumours or untreated PD-L2-KO tumours (**Fig. 2b**). To extend our observations to a different
103 tumour model, we injected WT and PD-L2-KO B16-OVA melanoma cells orthotopically into
104 C57BL/6 mice. Again, we observed a profound reduction in tumour growth rate in PD-L2-KO
105 tumours treated with chemotherapy (**Extended Data Fig. 2b**). In contrast, WT tumours had a
106 partial and transient reduction in tumour growth in response to chemotherapy (**Extended Data**
107 **Fig. 2b**). Collectively, these data indicate that the expression of PD-L2 by cancer cells limits the
108 efficacy of chemotherapy.

109 We next analysed whether a functional adaptive immune response was required for the
110 control of PD-L2-KO tumours. For this, we injected WT and PD-L2-KO Panc02 cells into the
111 pancreas of athymic nude mice (lacking T cells) and quantified tumour growth over time. Neither

112 in the absence of chemotherapy nor after administration of doxorubicin (**Extended Data Fig. 2c**)
113 did tumours show any significant difference in growth rate across experimental groups, suggesting
114 that the adaptive immune system was responsible for the phenotype associated to PD-L2-KO
115 tumours. To elucidate which major T cell subset was essential for tumour regression, we depleted
116 CD4⁺ or CD8⁺ T cells from animals bearing PD-L2-KO pancreatic tumours and were subsequently
117 treated with doxorubicin (**Extended Data Fig. 2d**). Mice lacking CD8⁺ T cells were unable to
118 control PD-L2-KO tumours after chemotherapy, while control animals or mice treated with anti-
119 CD4 blocking antibodies presented a robust suppression of tumour growth (**Fig. 2c**). Together,
120 these results indicate that CD8⁺ T cells are responsible for the efficient removal of PD-L2-KO
121 tumours upon chemotherapy.

122
123 **Absence of PD-L2 expression prevents the recruitment of myeloid cells after chemotherapy**
124 To better understand the mechanisms underlying the enhanced efficiency of chemotherapy in PD-
125 L2-KO tumours, we performed a comprehensive analysis of the immune infiltrate in Panc02 PD-
126 L2 WT and KO tumours. We quantified a panel of sixteen markers of different immune
127 populations by mass cytometry 5 days after the start of doxorubicin treatment (**Fig. 3a**). We
128 detected a substantial recruitment of CD11b⁺Gr1⁺ myeloid cells in PD-L2-WT tumours after
129 treatment with doxorubicin (**Fig. 3b**). This was in sharp contrast to PD-L2-KO tumours, which
130 were unable to recruit these myeloid cells (**Fig. 3b**). No significant variations were observed across
131 experimental conditions for other immune populations, including T cells, macrophages, or NK
132 cells (**Extended Data Fig. 3a-c**). Interestingly, we also observed that depletion of CD8⁺ T cells
133 resulted in accumulation of Gr1⁺ cells in chemotherapy-treated PD-L2-KO tumours (**Fig. 3c** and
134 **Extended Data Fig. 3d**). To evaluate the impact of Gr1⁺ myeloid cells in this tumour model, we
135 depleted Gr1⁺ cells from animals bearing WT tumours and treated with doxorubicin, observing an
136 improvement in tumour control (**Fig. 3d**). These results indicate that, upon chemotherapy,
137 immunosuppressive myeloid cells are recruited in a PD-L2-dependent manner. Conversely,
138 absence of PD-L2 prevents recruitment of Gr1⁺ immunosuppressive myeloid cells post-
139 chemotherapy, rendering tumours susceptible to the action of CD8⁺ T cells.

140
141 **PD-L2 determines the persistence of tumour senescent cells post-chemotherapy**

142 We wondered about the degree of similarity between senescent cancer cells lacking or expressing
143 PD-L2. To evaluate this, we analysed by RNAseq the transcriptome of both cell lines upon
144 doxorubicin. Remarkably, their expression profiles were essentially identical with only 10
145 differentially expressed genes (DEGs) out of ~21,000 detected genes ($|FC| > 1.5$, FDR < 0.05)
146 (**Supplementary Table 2**). The enrichment of signatures of p53 activation and inflammation were
147 evident and similar in WT and KO doxorubicin-treated Panc02 cells (**Extended Data Fig. 4**).
148 These results suggest that PD-L2 is not relevant for the induction of senescence in vitro.

149 Given the high similarity between the transcriptomes of PD-L2 WT and KO cells, we
150 wondered whether PD-L2 is important for the intratumoural persistence of senescent after
151 chemotherapy. To evaluate senescent cell burden in orthotopic pancreatic tumours, we quantified
152 senescence-associated beta-galactosidase (SABG) and p21⁺ cells by immunohistochemistry.
153 Interestingly, 5 days post-chemotherapy, SABG⁺ and p21⁺ cells were clearly increased in PD-L2-
154 WT tumours, but not in PD-L2 KO tumours (**Fig. 4a**). We interpret that, in accordance with our
155 previous results, the absence of PD-L2 impairs the persistence of intratumoural senescent cells
156 post-therapy.

157 It is known that senescent cells contribute to the generation of an immunosuppressive
158 microenvironment by recruiting MDSC into the tumour²⁴⁻²⁷. A number of cytokines and
159 chemokines present in the SASP mediate this recruitment, including IL-6²⁴, CCL2²⁵, CXCL1 and
160 CXCL2²⁶. We quantified the levels of intratumoural chemokines and cytokines in our Panc02
161 model and observed that cytokines associated with MDSCs recruitment were lowest in PD-L2-KO
162 tumours post-chemotherapy, particularly in the case CXCL1 and CXCL2 (**Fig. 4b**). Our results
163 suggest that lower levels of cellular senescence and decreased myeloid cell recruitment by secreted
164 factors contribute to the synergic effect of chemotherapy and PD-L2 deficiency.

165

166 **Combinational therapy with blocking anti-PD-L2 antibodies**

167 Given our previous results, we explored the role PD-L2 activity in additional models. MMTV-
168 PyMT mice develop spontaneous mammary gland tumours, reaching the status of adenoma and
169 carcinoma stages at 9 and 13 weeks of age, respectively. At 9 weeks of age, mice were weekly
170 treated with doxorubicin for 4 weeks and tumours were analysed. In agreement with our previous
171 models, we observed abundant senescent cells (SABG⁺) in post-therapy tumours (**Extended Data**
172 **Fig. 5a**). Notably, SABG⁺ cells were also PD-L2⁺ by immunohistochemistry, further confirming

173 that PD-L2 is a marker of therapy-induced senescence (**Extended Data Fig. 5a**). To determine the
174 role of PD-L2 in this setting, we used a commercially available blocking anti-PD-L2 antibody
175 (TY-25). Treatment with TY-25 alone did not have a significant effect on tumour growth and
176 doxorubicin had a modest effect in reducing tumour growth rate (**Fig. 5a**). Remarkably, the
177 combination of both treatments, TY-25 and doxorubicin, resulted in complete tumour regression
178 (**Fig. 5a**). To characterise the anti-tumour effect of combined chemotherapy and PD-L2 antibody,
179 we analysed lymphocytic infiltration by immunohistochemistry and observed a highly significant
180 increase of CD8⁺ T cells, but not CD4⁺ T cells (**Fig. 5b-c**). To test the involvement of CD8⁺ T
181 cells in the remission elicited by anti-PD-L2 treatment, we performed another experiment
182 including anti-CD8 and anti-CD4 blocking antibodies. While blocking CD4⁺ cells had little effect,
183 blocking CD8⁺ cells led to tumour regrowth (**Extended Data Fig. 5b**). Together, these results
184 indicate increased immune surveillance of senescent and non-senescent tumour cells upon PD-L2
185 suppression.

186

187 **Discussion**

188 Here, we demonstrate that senescence-inducing therapies employed in the clinic result in
189 upregulation of PD-L2 in cancer cells. While the expression of PD-L2 is not necessary for
190 senescence induction and maintenance, it contributes to immune evasion of post-therapy tumours.
191 The presence of senescent cancer cells within tumours, even if they account to a subset of the
192 tumor cells, is of high relevance due to their immunosuppressive secretome. In agreement with
193 previous reports²⁴⁻²⁷, we show that PD-L2-proficient tumours secrete cytokines and chemokines,
194 such as CXCL1 and CXCL2, which recruit myeloid-derived suppressive cells (MDSCs) upon
195 therapy. Importantly, tumours deficient in PD-L2 fail to produce these chemokines and to recruit
196 MDSCs, rendering tumours vulnerable to CD8⁺ T cells. We finally show that anti-PD-L2
197 antibodies unleash the immune clearance of tumours post-chemotherapy, including senescent as
198 well as non-senescent cancer cells.

199 The accumulation of senescent cells with aging³⁹⁻⁴¹ and in multiple pathological
200 conditions⁴²⁻⁴⁸, including cancers³¹, has been partially attributed to defective
201 immunosurveillance⁴⁹⁻⁵⁵. It remains to be explored to what extent PD-L2 is also involved in the
202 accumulation of senescent cells associated to aging and aging-associated diseases.

203 The concept of immune-mediated senescent cell clearance being synergistic with
204 senescence-inducing therapies has been recently reported in the context of cancer³⁶. Specifically,
205 in a model of pulmonary adenocarcinoma, a senescence-inducing therapy followed by
206 administration of uPAR-specific CAR-T cells extended survival and increased lymphocytic
207 infiltration³⁶. Our current findings on the use of anti-PD-L2 antibodies add another strategy to
208 improve the efficacy of anti-cancer therapies.

209

210 **Methods**

211 **Mammalian tissue culture**

212 SK-MEL-103 (human melanoma), U2OS (human osteosarcoma), Saos-2 (human osteosarcoma),
213 HEK293T (human embryonic kidney) and H226 (human squamous cell carcinoma) cells were
214 obtained from American Type Culture Collection. UT-SCC-38, UT-SCC-42B, UT-SCC-2 cells
215 (human head and neck squamous cell carcinoma) were provided by Dr. Reidar Grenman
216 (University of Turku, Finland). B16F1 and B16F10 cells (mouse melanoma) were provided by
217 Dr. María Soengas (Spanish National Cancer Research Center, Spain). B16-OVA: B16 (mouse
218 melanoma) expressing ovalbumin (OVA) and Panc02 (mouse pancreatic adenocarcinoma) were
219 provided by Dr. Federico Pietrocola (Institute for Research in Biomedicine, Spain). HCmel3
220 cells (mouse melanoma) were provided by Dr. Thomas Tüting (University of Bonn, Germany).
221 Cells were routinely tested for mycoplasma contamination. HCmel3 and Panc02 cells were
222 maintained in Roswell Park Memorial Institute medium (Gibco). The rest of the cell lines were
223 maintained in Dulbecco's Modified Eagle's Medium (Gibco). All media were supplemented with
224 10% fetal bovine serum (Gibco) with 1% penicillin/streptomycin (Gibco). All cell lines were
225 cultured at 37° C in a humidified atmosphere and 5% CO₂ and procedures were conducted under
226 aseptic conditions in a biological safety cabinet according standard operating procedure.

227

228 **Induction of cellular senescence in tissue culture**

229 Unless otherwise noted, senescence was induced using 5 µM palbociclib (Pfizer Inc.) for seven
230 days, or 48 h treatments of 200 nM doxorubicin (Sigma-Aldrich) and 12 mU bleomycin (Sigma-
231 Aldrich), after which fresh media was added. Senescence was evaluated at day 7.

232

233 **Gene expression analysis by qPCR**

234 Total RNA from adherent cells or homogenised tissue biopsies was isolated using TRI Reagent
235 (Sigma-Aldrich) according to manufacturer's instructions. A total of 3-4 µg of total RNA was
236 reverse transcribed using the iScript advanced cDNA synthesis kit (Bio-Rad). Quantitative PCR
237 of target genes (Table 1) was performed using SybrGreen (Applied Biosystems) and ran on
238 QuantStudioTM 6 Flex Real-Time PCR System using QuantStudioTM 6 and 7 Flex Real-Time
239 PCR software v1.0 (Applied Biosystems). Relative gene expression levels were quantified using
240 β-actin or human TBP as housekeeping genes, as indicated.

241

242 Primers used for human (h) and mouse (m) target genes

hPD-L1 fwd	5'-CAGCTGAATTGGTCATCCCAG-3'
hPD-L1 rev	5'-TCAGTGCTACACCAAGGCATA-3'
hPD-L2 fwd	5'-ACCAGTGTCTGCGCCTAAA-3'
hPD-L2 rev	5'-CCTGGGTTCCATCTGACTTGA-3'
hTBP fwd	5'-ATCAGTGCCGTGGTCGT-3'
hTBP rev	5'-TTCGGAGAGTTCTGGGATTG-3'
hβ-actin fwd	5'-CAAGGCCAACCGCGAGAAGAT-3'
hβ-actin rev	5'-CCAGAGGCGTACAGGGATAGCAC-3'
mPD-L1 fwd	5'-AGTCAATGCCCATACCGC-3'
mPD-L1 rev	5'-TTCTGGATAACCCTCGGCCT-3'
mPD-L2 fwd	5'-TCATTGACCCTCTGAGTCGG-3'
mPD-L2 rev	5'-GGAAGATCAAAGCGATGGTGC-3'
mβ-actin fwd	5'-GGCACCAACACCTTCTACAATG-3'
mβ-actin rev	5'-GTGGTGGTGAAGCTGTAGCC-3'

243

244 **Generation of cell pellets for immunohistochemistry**

245 Cells were harvested using PBS + 10 mM EDTA at 37° C. Harvested cells were then centrifuged
246 at 300 x g and washed with PBS. Cell pellets were then overlaid with 10% buffered formalin
247 (Sigma-Aldrich) and fixed for 10 hours at 4° C. Formalin was then removed and cell pellets were
248 embedded in paraffin. Tissue sections were deparaffinised, rehydrated and washed with
249 EnVision FLEX wash buffer (Dako). Antigen retrieval was performed using Tris-EDTA buffer
250 (pH 9) at 97° C for 20 minutes. After blocking endogenous peroxidase, slides were blocked with

251 5% goat serum + 2.5% bovine serum albumin (BSA) for 60 minutes. Slides were then incubated
252 with anti-PD-L2 (CST #82723) diluted 1:25 in EnVision FLEX antibody diluent (Dako) over
253 night at 4° C. Next day, slides were incubated with anti-goat-HRP for 45 minutes and developed
254 for 10 minutes adding DAB. Slides were then dehydrated and mounted with DPX.

255

256 **Flow cytometry**

257 Cells were harvested in PBS with 10 mM EDTA at 37° C. Collected cells were then stained with
258 yellow live/dead dye solution (Invitrogen) for 15 minutes at 4° C and washed. Cells were then
259 stained with anti-PD-L2-biotin (Miltenyi Biotec #130-098-525) diluted 1:11 in FACS buffer
260 (0.5% BSA, 2 mM EDTA in PBS) for 15 minutes and after two washes the samples were
261 incubated with anti-biotin-APCVio770 (Miltenyi Biotec #130-113-851), diluted 1:50 in FACS
262 buffer for 15 minutes. After repeated washes, cells were filtered using a 70 µm cell strainer and
263 analysed on a Gallios flow cytometer and with FlowJo 10.0.7.

264

265 **CRISPR**

266 For PD-L2 knockouts, mouse and human sgRNAs were designed using the CHOPCHOP web
267 tool: (<http://chopchop.cbu.uib.no>) and cloned into pSpCas9(BB)-2A- Puro (PX459) (Addgene
268 #48139) and lentiCRISPRv2 (Addgene #52961).

269

270 sgRNAs targeting human (h) or mouse (m) PD-L2 gene

hPD-L2 sgRNA fwd 5'-CACCGACTTGAGGTATGTGGAACG-3'

hPD-L2 sgRNA rev 5'-AAACCGTCCACATACCTCAAGTC-3'

mPD-L2 sgRNA fwd 5'-CACCGAAGTGTACACCGTAGACGT-3'

mPD-L2 sgRNA rev 5'-AACACACGTCTACGGTGTACACTTC-3'

271

272 **PCR of genomic DNA**

273 Genomic DNA was isolated using the DNeasy blood and tissue kit (Qiagen) following
274 manufacturer's instructions. 500 ng of genomic DNA were added to a mix with 0.2 mM dNTP, 1
275 µM of primers hybridizing to intronic regions spanning exon 3 of PD-L2 (Table 3) and 1 U of
276 BIOTAQ DNA polymerase (Ecogen). After 35 cycles of amplification, the PCR products were
277 separated by electrophoresis on a 1% agarose gel. PCR bands were gel purified using QIAquick

278 gel extraction kit (Qiagen). Isolated PCR fragments were then sent for sequencing to Eurofins
279 Genomics and analysed using Serial Cloner V2.6.1.

280

281 Primers used for PCR of exon 3 of human and mouse PD-L2 gene

hPD-L2 exon3 fwd	5'-ATAAGACAGGTGCCTTTGGAA-3'
hPD-L2 exon3 rev	5'-GGACTAATTTCCTGGCTTCCT-3'
mPD-L2 exon3 fwd	5'-TTTAAAGGCGGTAACAATGCT-3'
mPD-L2 exon3 rev	5'-TAGGGCCTGACTTTAATTCCAA-3'

282

283 **Transfections**

284 Cells were transfected with pSpCas9(BB)-2A-Puro (PX459) (Addgene #48139) using FuGENE6
285 (Promega) following the manufacturer's recommendations. A total of 3 µg of sgRNA containing
286 PX459 plasmid were transfected. After three days, successfully transfected cells were selected
287 using puromycin (Merck). Cells were then either used in bulk or single clones were isolated by
288 plating 0.5 cells per well in a 96 well plate until colony formation. Successfully generated
289 knockouts from single cell colonies were then assessed by sequencing of sgRNA targeted exons,
290 IHC and flow cytometry for genome editing and PD- L2 protein expression respectively.

291

292 **Generation of lentiviruses and infections**

293 Lentiviruses were produced by transfecting HEK293T cells with p8.91 (gag-pol expressor),
294 pMDG.2 (VSV-G expressor) and lentiCRISPRv2 (Addgene #52961) for generation of bulk PD-
295 L2-KO cells or luciferase (Addgene #105621) to monitor in vivo bioluminescence following
296 standard procedures. Virus batches were harvested 48, 72 and 96 hours after transfection. Cellular
297 debris was removed by centrifugation and filtering. The supernatant containing the virus was then
298 used fresh or stored by snap-freezing aliquots supplemented with 8 µg/ml polybrene (Fisher
299 Scientific) in ethanol/dry ice and stored at -80° C. Recipient cells were incubated for eight hours
300 with lentivirus and selected three days later with puromycin (Merck) or G418 (Thermofisher) for
301 lentiCRISPRv2 or luciferase experiments, respectively.

302

303 **Plasma membrane proteomic screening**

304 SK-MEL-103 cells were induced to senesce by addition of 200 nM doxorubicin for 48 h, or 1 μ M
305 palbociclib for the duration of the experiment. At day 7, up to 5×10^6 cells per condition, including
306 growing cells seeded 48 h before as controls, were collected in cold PBS by scraping and pelleted
307 by centrifugation. Plasma membrane proteins were extracted using a plasma membrane protein
308 extraction kit (Abcam, #ab65400), following the manufacturer's instructions. Proteins were
309 dissolved in UT buffer (8 M urea, 2 M thiourea, 100 mM Tris-HCl pH = 8.0) and digested using a
310 standard FASP protocol. The proteins were reduced (15 mM TCEP, 30 minutes, room temperature,
311 RT), alkylated (50 mM CAA, 20 minutes in the dark, RT) and sequentially digested with Lys-C
312 (Wako) (protein:enzyme ratio 1:50, overnight at RT) and trypsin (Promega) (protein:enzyme ratio
313 1:100, 6 h at 37° C). Resulting peptides were desalted using Sep-Pak C18 cartridges (Waters). LC-
314 MS/MS was performed by coupling an UltiMate 3000 RSLCnano LC system to either a Q Exactive
315 HF or Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific). In both cases, peptides
316 were loaded into a trap column (AcclaimTM PepMapTM 100 C18 LC Columns 5 μ m, 20 mm length)
317 for 3 minutes at a flow rate of 10 μ l/minute in 0.1% FA. Then, peptides were transferred to an
318 EASY-Spray PepMap RSLC C18 column (Thermo) (2 μ m, 75 μ m x 50 cm) operated at 45° C and
319 separated using a 90 min effective gradient (buffer A: 0.1% FA; buffer B: 100% ACN, 0.1% FA)
320 at a flow rate of 250 nl/min. The gradient used was: from 4% to 6% of buffer B in 2.5 min, from
321 6% to 25% B in 72.5 min, from 25% to 42.5% B in 14 min plus 6 additional min at 98% B. Peptides
322 were sprayed at 1.8 kV into the mass spectrometer via the EASY-Spray source and the capillary
323 temperature was set to 300° C. The Q Exactive HF was operated in a data-dependent mode, with
324 an automatic switch between MS and MS/MS scans using a top 15 method (intensity threshold \geq
325 6.7e4, dynamic exclusion of 26.25 sec and excluding charges +1 and > +6). MS spectra were
326 acquired from 350 to 1400 m/z with a resolution of 60,000 FWHM (200 m/z). Ion peptides were
327 isolated using a 2.0 Th window and fragmented using higher-energy collisional dissociation
328 (HCD) with a normalised collision energy of 27. MS/MS spectra resolution was set to 15,000 or
329 30,000 (200 m/z). The ion target values were 3e6 for MS (maximum IT of 25 ms) and 1e5 for
330 MS/MS (maximum IT of 15 or 45 msec). The Q Exactive HF-X was operated in a data-dependent
331 mode, with an automatic switch between MS and MS/MS scans using a top 12 method (intensity
332 threshold \geq 3.6e5, dynamic exclusion of 34 sec and excluding charges +1 and > +6). MS spectra
333 were acquired from 350 to 1400 m/z with a resolution of 60,000 FWHM (200 m/z). Ion peptides
334 were isolated using a 1.6 Th window and fragmented using higher-energy collisional dissociation

335 (HCD) with a normalised collision energy of 27. MS/MS spectra resolution was set to 15,000 (200
336 m/z). The ion target values were 3e6 for MS (maximum IT of 25 ms) and 1×10^5 for MS/MS
337 (maximum IT of 22 ms). Raw files were processed with MaxQuant using the standard settings
338 against either a human protein database (UniProtKB/Swiss-Prot, 20373 sequences) or a mouse
339 database (UniProtKB/TrEMBL, 53449 sequences). Carbamidomethylation of cysteines was set as
340 a fixed modification whereas oxidation of methionines and protein N-term acetylation were set as
341 variable modifications. Minimal peptide length was set to 7 amino acids and a maximum of two
342 tryptic missed-cleavages were allowed. Results were filtered at 0.01 FDR (peptide and protein
343 level). Afterwards, the “proteinGroups.txt” file was loaded in Prostar (Wieczorek et al,
344 Bioinformatics 2017) using the LFQ intensity values for further statistical analysis. Briefly,
345 proteins with less than 75% valid values in at least one experimental condition were filtered out.
346 When needed, a global normalisation of log2-transformed intensities across samples was
347 performed using the LOESS function. Missing values were imputed using the algorithms SLSA⁵⁶
348 for partially observed values and DetQuantile for values missing on an entire condition.
349 Differential analysis was performed using the empirical Bayes statistics Limma. Proteins with a p-
350 value < 0.05 and a log₂ ratio >0.58 (1.5 in non-log scale) were defined as upregulated. The FDR
351 was estimated to be below 5%.

352

353 **Transcriptomic analysis and gene set enrichment analysis**

354 RNA was extracted from PD-L2-WT and PD-L2-KO Panc02 cells, treated with 200 nM
355 doxorubicin for 48 h or untreated, using the RNeasy Mini Kit (Qiagen). The concentration of total
356 RNA was quantified with the Nanodrop One (Thermo Fisher) and RNA integrity was assessed
357 with the Bioanalyzer 2100 RNA Nano assay (Agilent). Libraries for RNA-seq were prepared at
358 the IRB Barcelona Functional Genomics Core Facility. Briefly, mRNA was isolated from 1.5 µg
359 of total RNA using the kit NEBNext Poly(A) mRNA Magnetic Isolation Module (New England
360 Biolabs). NGS libraries were prepared from the purified mRNA using the NEBNext Ultra II RNA
361 Library Prep Kit for Illumina (New England Biolabs). Ten cycles of PCR amplification were
362 applied to all libraries. The final libraries were quantified using the Qubit dsDNA HS assay
363 (Invitrogen) and quality controlled with the Bioanalyzer 2100 DNA HS assay (Agilent). An
364 equimolar pool was prepared with the sixteen libraries and sequenced on a NextSeq550 (Illumina)
365 at IRB. 42.5 Gbp of SE75 reads were produced from a High Output run. A minimum of 32.2

366 million reads were obtained for all samples. Single-end reads were aligned to the mouse genome
367 version mm10 using STAR (v.2.5.2b). SAM files were converted to BAM files and sorted using
368 sambamba. The count matrix was generated with Rsubread⁵⁷ with the built-in annotation for
369 mm10. DESeq2⁵⁸ was used for differential expression analysis with fold change shrinkage as
370 implemented in the lfcShrink function. Functional enrichment analysis was performed over gene
371 sets defined in the Molecular Signatures Database (MSigDB) hallmark gene set collection. The
372 rotation-based approach for enrichment⁵⁹ implemented in the R package limma was used to
373 represent the null distribution. The max-mean enrichment statistic proposed elsewhere, under
374 restandardisation, was considered for competitive testing.

375

376 **Drug class enrichment analysis**

377 Datasets from the LINCS L1000 project (<http://www.lincsproject.org/>) were analysed and
378 differential expression of *PDCD1LG2* was detected by comparing control and treated samples
379 introducing a correction by cell line and batch effect⁶⁰. 4690 drugs with common names were then
380 further processed and categorised into drugs sets reflecting their mode of action. The resulting
381 drug set enrichment analysis was then compared to a drugset consisting of random drugs.

382

383 **Mouse husbandry**

384 All procedures were approved by the Ethical Committee for Animal Experimentation (CEEA) at
385 the Parc Cientific de Barcelona (Spain), the CNIO-ISCIII Ethics Committee for Research and
386 Animal Welfare (Madrid, Spain) and the Ethical Committee for Animal Experimentation (CEEA)
387 at Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain). Male wildtype mice (C57BL/6)
388 were purchased from Charles River. Male nude mice (Hsd:athymic nude-*Foxn1^{nu}*) were purchased
389 from Envigo. MMTV-PyMT (PyMT) mice, in a FVB background, were purchased from The
390 Jackson Laboratory (Bar Harbor, ME). The animals were kept under a 12 h-12 h light-dark cycle
391 and allowed unrestricted access to food and water.

392

393 **Syngeneic Panc02 pancreatic tumours**

394 Syngeneic pancreatic adenocarcinoma Panc02 cells expressing firefly luciferase were
395 orthotopically injected in the pancreas of immunocompetent or nude mice (5×10^5 cells in 50 μ l
396 PBS). Tumour growth was assessed once a week using an IVIS Spectrum Imaging System (Perkin

397 Elmer Inc). 10 minutes after intraperitoneal injection of 75 mg/kg luciferin, bioluminescence was
398 recorded. Quantification of tumour burden was performed using Living Image 3.2 software (Perkin
399 Elmer Inc). Doxorubicin (Sigma-Aldrich) treatment (or PBS as vehicle) was applied in the
400 indicated experimental groups at days 7, 10 and, unless otherwise noted, 24 after surgery. Survival
401 was monitored until the animals reached the humane endpoints related to tumour size, anaemia,
402 subcutaneous oedema or ascites. Doxorubicin was injected at 4 mg/kg, intraperitoneally. For short-
403 term determinations, additional cohorts of mice were euthanised at day 12, and the tumours were
404 formalin-fixed for immunohistochemistry or processed for mass cytometry.

405

406 **Treatments with blocking antibodies**

407 For selective elimination of immune cell populations in C57BL/6 mice with Panc02 orthotopic
408 tumours, the animals were treated twice a week, starting three days after the surgery, with 100 µg
409 each of, alternatively, anti-CD4 (clone GK1.5, BioXCell #BP0003-1), anti-CD8α (clone 2.43,
410 BioXCell #BE0061) or IgG2b (clone LTF-2, BioXCell #BP0090) as an isotype control.
411 Doxorubicin was administered on days 7 and 10 as described. Tumour growth was monitored by
412 IVIS and the mice were euthanised at day 28. Alternatively, mice with Panc02 orthotopic tumours
413 were treated twice a week, starting three days after the surgery, with 200 µg anti-Gr1 (clone RB6-
414 8C5, BioXCell #BE0075) or isotype control (clone LTF-2, BioXCell #BP0090). Doxorubicin was
415 administered as described on days 7, 10 and 24 and the mice were euthanised at day 35.

416

417 **Determination of circulating immune populations by flow cytometry**

418 Approximately 200 µl of total blood of mice treated with doxorubicin and anti-CD4/8 blocking
419 antibodies was extracted by terminal cardiac puncture and kept briefly on ice in a tube containing
420 EDTA. 10 ml of red blood cells (RBC) lysis buffer (BioLegend) were added and the samples
421 were incubated for 5 min at 37° C. The samples were then centrifuged at 350 x g and washed
422 with PBS twice and in 100 µl FACS buffer once, before an additional centrifugation and
423 resuspension in 1:400 CD16/CD32 (BD Fc BlockTM, BD Biosciences #553142) for 15 minutes,
424 at 4° C. 50 µl of a primary antibody mix were later added, containing 1:500 anti-CD45-ApCCy7
425 (Biolegend #103116), 1:300 anti-CD3-APC (Thermo Fisher #17-0032-80), 1:400 anti-CD4-
426 PerCP Cy5.5, (BD Pharmingen #550954), 1:200 anti-CD8-FITC, (Thermo Fisher #11-0081-82)
427 for an incubation of 25 minutes at 4° C. After the incubations, the samples were washed three

428 times with FACS buffer, resuspended in 250 µl FACS buffer with 1 µl DAPI and analyzed with
429 a Gallios flow cytometer (Beckman Coulter)

430

431 **Other syngeneic tumour mouse models**

432 0.4 x 10⁶ HCmel3 cells were subcutaneously injected into male C57BL/6 mice. Four weeks later
433 mice were treated bi-weekly with 5 mg/kg intravenous (i. v.) doxorubicin for a total of three times.
434 0.2 x 10⁶ B16OVA WT or B16OVA PD-L2KO cells were subcutaneously injected into male
435 C57BL/6 mice. Mice were treated then on day 7 and day 10 with 5 mg/kg doxorubicin (i. v.) and
436 on day 17 with 5 mg/kg intraperitoneal doxorubicin. Tumour growth was monitored by caliper
437 measurements and tumour volume calculated using the formula volume = (length * width²) / 2.
438 Mice were euthanised two days after the last treatment.

439

440 **SK-MEL-103 xenograft tumours**

441 10⁶ SK-MEL-103 cells, either PD-L2-WT or PD-L2-KO, were harvested, resuspended in a volume
442 of 100 µl PBS and injected in the flank of athymic nude mice. Once tumours the were visible,
443 approximately at day 8-10, the mice were randomly assigned to the palbociclib-treated group,
444 which received 100 mg/kg of palbociclib by oral gavage in 50 mM sodium lactate every day, or
445 the control group, which received vehicle. Tumour size was monitored for ten days using a caliper
446 as described above. The tumours were then extracted and flash frozen for further analysis of gene
447 expression or whole mount SABG staining, and formalin fixed for PD-L2 staining as described
448 above.

449

450 **Immunohistochemistry in Panc02 pancreatic tumours**

451 Samples were fixed overnight at 4° C with neutral buffered formalin (Sigma-Aldrich). Paraffin-
452 embedded tissue sections (2-3 µm in thickness) were air dried and further dried at 60° C over-
453 night. For p21 detection, immunohistochemistry (IHC) was performed using a Ventana discovery
454 XT for p21 clone HUGO 291H/B5 (CNIO), undiluted, for 60 min. Antigen retrieval was performed
455 with Cell Conditioning 1 (CC1) buffer (Roche, #950-124). Secondary antibodies used were the
456 OmniMap anti-rat HRP (Roche, #760-4457). For Ly6G/C (Gr1) staining, IHC was performed
457 using a Ventana discovery XT for Ly6G/C (Novus #NB600-1387) primary antibody at 1:100 for
458 60 min. Antigen retrieval was performed with Cell Conditioning 1 (CC1) buffer (Roche, 950-124).

459 After incubation with the primary antibody, the rabbit anti-rat IgG (AI-4001, Vector) at 1:500 for
460 32 min was used followed with the secondary antibody OmniMap anti-rabbit HRP (760-4311,
461 Roche). Antigen-antibody complexes were revealed with ChromoMap DAB Kit (Roche, 760-
462 159). Specificity of staining was confirmed with the rat IgG isotype control (R&D Systems, #6-
463 001-F). Brightfield images were acquired with a NanoZoomer-2.0 HT C9600 digital scanner
464 (Hamamatsu) equipped with a 20X objective. All images were visualised with a gamma correction
465 set at 1.8 in the image control panel of the NDP.view 2 U12388-01 software (Hamamatsu,
466 Photonics, France). Automated quantification was performed using QuPath⁶¹.

467

468 **Senescence-associated β -galactosidase stainings**

469 SABG stainings of adherent cells, OCT embedded tumours or whole mount tumours were
470 performed using homemade solutions adapted from the original protocol⁶². A fixation solution was
471 prepared containing 5 mM EGTA, 2 mM MgCl₂ and 0.2% glutaraldehyde in 0.1 M phosphate
472 buffer (pH 7). A staining solution was prepared containing 40 mM citric acid, 5 mM potassium
473 cyanoferate (II), 5 mM potassium cyanoferate (III), 150 mM sodium chloride and 2 mM
474 magnesium chloride in 0.1 M phosphate buffer (pH 6). The solution was light protected and stored
475 at 4° C. Prior to staining, the needed amount of staining solution was pre-warmed at 37° C and 5-
476 bromo-4-chloro-3-indolyl β -D-galactoside (X-Gal) was added to a final concentration of 1 mg/ml.
477 X-gal was added directly before the staining from a 100 mg/ml solution in N,N
478 dimethylformamide, stored at -20° C for no longer than 4 weeks. For staining of cells, they were
479 washed with PBS, an appropriate amount of cold fixation solution was added and cells were
480 incubated for 15 minutes at RT. After that, cells were washed twice with PBS and then the X-gal-
481 containing staining solution was added. Cells were incubated in a non-CO₂ regulated incubator at
482 37° C overnight. The following day, the staining solution was removed, cells were washed twice
483 with PBS and stored in 50% glycerol at 4° C until the analysis was performed. For whole
484 tumour SABG staining, the staining procedure is the same as for cells with the modification that
485 tissues were fixed for 45 minutes in fixation solution at RT and then incubated with staining
486 solution for 16 hours at 37 °C. For OCT-embedded, frozen tumours, 4 μ m-thick sections were
487 obtained, followed by fixing and staining as described above. Nuclear fast red was used as
488 counterstain.

489

490 **Identification of immune cell populations by mass cytometry (CyTOF)**

491 Single cell suspensions were prepared from Panc02 pancreatic tumours. The tumours were briefly
492 kept in DMEM on ice and manually minced in DMEM. The tumour fragments were incubated in
493 10 mg/ml collagenase I and DNase in DMEM for 30 minutes, at 37° C, with gentle shaking, in
494 gentleMACS C tubes, with several steps of processing in a gentleMACS Dissociator before and
495 after the incubation following the manufacturer's instructions. The resulting cell suspension was
496 passed through a 70 µm strainer, washed in PBS, incubated in RBC lysis buffer (BioLegend) for
497 5 minutes at room temperature and then washed with PBS a second time. The cells were then
498 resuspended incubated with anti-mouse CD16/CD32 at 1:400 (BD Fc BlockTM, BD Biosciences
499 #553142) for 10 minutes, at 4° C in 50 µl in Maxpar Cell Staining Buffer (CSB). Then, an equal
500 volume of the 16-antibody cocktail from the Maxpar mouse spleen/lymph node phenotyping panel
501 kit (Fluidigm #201306), spanning all major immune cell populations, was added and incubated for
502 15 minutes at room temperature, vortexed and incubated for 15 additional minutes. The cell
503 suspension was then washed twice with 2 ml Maxpar CSB and fixed in 1.6% formaldehyde in PBS
504 for 10 min at room temperature. The samples were then centrifuged at 800 x g for 5 minutes and
505 resuspended in 1 ml of 125 nM Cell-ID Intercalator-Ir (Fluidigm) in Maxpar Fix and Perm Buffer
506 (Fluidigm), followed by vortex and incubation 4° C overnight. Acquisition was performed the
507 following day after washing with Cell Acquisition Solution (Fluidigm) and mixing with diluted
508 EQ bead solution (Fluidigm), following the manufacturer's instructions, in a Helios detector
509 (Fluidigm). The gating strategy is fully standardized and described in detail by the manufacturer.
510 Briefly, Intercalator-Ir positive cells are selected, from which CD19⁺B220⁺ B lymphocytes are
511 defined. Next, TCRβ⁺CD3⁺ T cells are selected and, within this population, CD4⁺ and CD8⁺ T
512 cells are detected. From the TCRβ⁻CD3⁻ population, sequentially, we identified by sequential
513 exclusion NK1.1⁺ NK cells and CD11c⁺ dendritic cells. Finally, among CD11b⁺ cells,
514 macrophages and MDSCs were identified depending on Gr1 positivity.

515

516 **Measurement of intratumoural cytokine and chemokine levels**

517 Panc02 pancreatic tumours were flash frozen after excision and approximately 10 mg of tumour
518 mass was homogenised in RIPA lysis buffer (Merck) using a FastPrep-24 5G homogeniser (MP
519 Biomedicals) in the presence of Halt protease inhibitor cocktail (Thermo Scientific). The protein
520 concentration was determined by a colorimetric assay (DC protein assay kit, BioRad). All samples

521 were diluted to a protein concentration of 1.2 mg/ml in a total volume of 75 μ l of RIPA and shipped
522 to Eve Technologies (Calgary, Canada) on dry ice. The intratumoural levels of CCL11 (eotaxin),
523 G-CSF, GM-CSF, IFN- γ , IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p40,
524 IL-12p70, IL-13, IL-15, IL-17, CXCL10 (IP 10), CXCL1 (KC), LIF, CXCL6 (LIX), CCL2 (MCP-
525 1), CXCL9 (MIG), CCL3 (MIP-1 α), CCL4 (MIP-1 β), CXCL2 (MIP-2), CCL5 (RANTES), TNF α
526 and VEGF were determined using a Multiplexing LASER Bead Assay (Mouse Cytokine Array /
527 Chemokine Array 31-Plex, Eve Technologies). For the cytokines and chemokines included in the
528 assay but not shown in the manuscript (IL-13, IL-12p40, CCL4), no changes were observed.

529

530 **MMTV-PyMT model**

531 Male PyMT mice were mated with FVB-WT female to generate female littermates that are
532 PyMT/wild-type (WT). Mice were genotyped for the PyMT allele by polymerase chain reaction
533 (PCR) using the following primers: forward primer, 5'-CGCACATACTGCTGGAAGAA and
534 reverse primer, 5'-TGCCGGAACGTTTATTAG. Weights were recorded for every
535 experiment. The mice were housed in a specific pathogen-free environment. At 9 weeks of age,
536 PyMT mice were palpated to detect the onset of mammary tumour development. The mice were
537 then injected intraperitoneally with 4 mg/kg doxorubicin or an equivalent volume of PBS, once a
538 week for 4 weeks. Additional groups of mice were treated with anti-mouse PD-L2 (clone TY25,
539 BioXCell, #BE0112), alone or in combination with doxorubicin. From the detection of palpable
540 tumours, the mice were monitored for tumour growth with a caliper twice a week. Total tumour
541 volume was determined using the formula: volume = (length * width²) / 2. The mice were
542 euthanised 4 weeks after the onset of tumours and the start of the treatments. For depletion of
543 specific immune populations, the mice were injected intraperitoneally with anti-CD4 (clone YTS
544 191, BioXCell #BE0119), anti-CD8 α (clone 53-6.7, BioXCell #BE0004-1), or rat IgG (IgG2a
545 isotype, BioXCell #BE0089) and euthanized at week 13. All the antibody treatments were
546 administered i. p., every three days for four weeks, at a 10 mg/kg dose.

547

548 **Immunohistochemistry and SABG in mammary tumours**

549 For PMyT mice, mammary glands were either formalin-fixed or whole mounted, as previous
550 described, and paraffin-embedded. IHC experiments were performed using the Dako EnVision+
551 System-HRP kit. Using the Leica microtome system, 3 μ m-thick sections were obtained, and

552 antigen retrieval was performed using Tris EDTA buffer (pH 9) by boiling followed by washing
553 in running water and blocking for endogenous peroxidase for 15 min at room temperature. The
554 slides were washed with Tris-buffered saline (TBS) and, after 1 h of incubation with 3% BSA
555 blocking solution, each of them was incubated with primary antibody against PD-L2 (1:100, CST
556 #49189), CD3 (1:100, Abcam #ab16669), CD4 (1:1000, Abcam #ab183685) or CD8 (Abcam
557 #1:2000, ab217344) at 4° C overnight. Followed by washing, they were incubated with System-
558 HRP Labelled Polymer Anti-Rabbit (Dako, K400311-2) secondary antibodies for 1 hour at room
559 temperature. The tissues were counterstained with hematoxylin after the substrate (DAB) reaction
560 step. For SABG staining, mammary gland samples were whole mounted using a fixative solution
561 of 0.2% glutaraldehyde, 2% paraformaldehyde in PBS. Overnight staining with senescence β -
562 galactosidase staining kit (CST) was performed directly in the fixed samples, previous to their
563 inclusion in paraffin. Using the Leica microtome system, 3 μ m-thick sections were obtained and
564 counterstained with Liquid-Stable Nuclear Fast Red (VWR Life Science AMRESCO).

565

566 **Quantification and Statistical Analysis**

567 Results are presented as mean \pm SEM for all data. All statistical analysis were performed using
568 GraphPad Prism 8 and a p value lower than 0.05 was considered significant. Tests were applied as
569 described in the figures, with the general use of two-tailed Student's t-tests for pairwise
570 comparisons between two isolated conditions and one-way ANOVA with Tukey's multiple
571 comparison for experiments with three or more experimental conditions. For datasets including
572 two independent factors, in which one of them is usually time, 2-way ANOVA was used. Specific
573 tests for select experiments are detailed in the figure legends and/or in the methodological
574 description.

575

576 **Data availability**

577 The proteomic screen data is available at ProteomeXchange located at
578 <http://proteomecentral.proteomexchange.org/cgi/GetDataset> (Project accession: PXD033714;
579 Username: reviewer_pxd033714@ebi.ac.uk; Password: EkVHvHFn). The RNA sequencing data
580 has been submitted to Gene Expression Omnibus (GEO) and are pending to obtain an accession
581 number.

References:

- 1 Topalian, S. L. *et al.* Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. *N Engl J Med* **366**, 2443-2454, doi:10.1056/NEJMoa1200690 (2012).
- 2 Cha, J. H., Chan, L. C., Li, C. W., Hsu, J. L. & Hung, M. C. Mechanisms Controlling PD-L1 Expression in Cancer. *Mol Cell* **76**, 359-370, doi:10.1016/j.molcel.2019.09.030 (2019).
- 3 Chen, L. & Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. *J Clin Invest* **125**, 3384-3391, doi:10.1172/JCI80011 (2015).
- 4 Ghosh, C., Luong, G. & Sun, Y. A snapshot of the PD-1/PD-L1 pathway. *J Cancer* **12**, 2735-2746, doi:10.7150/jca.57334 (2021).
- 5 Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. *Science* **359**, 1350-1355, doi:10.1126/science.aar4060 (2018).
- 6 Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. *Science* **348**, 56-61, doi:10.1126/science.aaa8172 (2015).
- 7 Solinas, C. *et al.* Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? *Transl Oncol* **13**, 100811, doi:10.1016/j.tranon.2020.100811 (2020).
- 8 Ghiotto, M. *et al.* PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. *Int Immunol* **22**, 651-660, doi:10.1093/intimm/dxq049 (2010).
- 9 Gorchs, L. *et al.* Human Pancreatic Carcinoma-Associated Fibroblasts Promote Expression of Co-inhibitory Markers on CD4(+) and CD8(+) T-Cells. *Front Immunol* **10**, 847, doi:10.3389/fimmu.2019.00847 (2019).
- 10 Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P. & Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8 (+) T Cells to protect tumour cells. *Nature communications* **9**, 948, doi:10.1038/s41467-018-03347-0 (2018).
- 11 Yearley, J. H. *et al.* PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. *Clin Cancer Res* **23**, 3158-3167, doi:10.1158/1078-0432.CCR-16-1761 (2017).
- 12 Tanegashima, T. *et al.* Immune Suppression by PD-L2 against Spontaneous and Treatment-Related Antitumor Immunity. *Clin Cancer Res* **25**, 4808-4819, doi:10.1158/1078-0432.CCR-18-3991 (2019).

13 Latchman, Y. *et al.* PD-L2 is a second ligand for PD-1 and inhibits T cell activation. *Nat Immunol* **2**, 261-268, doi:10.1038/85330 (2001).

14 Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. *Proc Natl Acad Sci U S A* **100**, 5336-5341, doi:10.1073/pnas.0931259100 (2003).

15 Sudo, S. *et al.* Cisplatin-induced programmed cell death ligand-2 expression is associated with metastasis ability in oral squamous cell carcinoma. *Cancer Sci* **111**, 1113-1123, doi:10.1111/cas.14336 (2020).

16 Sengedorj, A. *et al.* The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. *Cancers (Basel)* **14**, doi:10.3390/cancers14092050 (2022).

17 Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. *Nat Rev Cancer*, doi:10.1038/s41568-022-00450-9 (2022).

18 Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. *Annual review of pathology* **5**, 99-118, doi:10.1146/annurev-pathol-121808-102144 (2010).

19 Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. *Proc Natl Acad Sci U S A* **98**, 12072-12077, doi:10.1073/pnas.211053698 (2001).

20 Bavik, C. *et al.* The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. *Cancer Res* **66**, 794-802, doi:10.1158/0008-5472.CAN-05-1716 (2006).

21 Coppe, J. P. *et al.* A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. *Mol Cancer Res* **6**, 1085-1098, doi:10.1158/1541-7786.MCR-08-0062 (2008).

22 Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. *Genes Dev* **34**, 1565-1576, doi:10.1101/gad.343129.120 (2020).

23 Demaria, M. *et al.* Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. *Cancer Discov* **7**, 165-176, doi:10.1158/2159-8290.CD-16-0241 (2017).

24 Ruhland, M. K. *et al.* Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. *Nature communications* **7**, 11762, doi:10.1038/ncomms11762 (2016).

25 Eggert, T. *et al.* Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. *Cancer Cell* **30**, 533-547, doi:10.1016/j.ccr.2016.09.003 (2016).

26 Toso, A. *et al.* Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. *Cell reports* **9**, 75-89, doi:10.1016/j.celrep.2014.08.044 (2014).

27 Salminen, A., Kauppinen, A. & Kaarniranta, K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. *Biogerontology* **19**, 325-339, doi:10.1007/s10522-018-9762-8 (2018).

28 Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. *Nat Rev Cancer* **22**, 340-355, doi:10.1038/s41568-022-00450-9 (2022).

29 Munoz-Espin, D. *et al.* A versatile drug delivery system targeting senescent cells. *EMBO Mol Med* **10**, doi:10.15252/emmm.201809355 (2018).

30 Gonzalez-Gualda, E. *et al.* Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. *Aging Cell* **19**, e13142, doi:10.1111/ace.13142 (2020).

31 Wyld, L. *et al.* Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. *Cancers (Basel)* **12**, doi:10.3390/cancers12082134 (2020).

32 Rivera-Torres, J. & San Jose, E. Src Tyrosine Kinase Inhibitors: New Perspectives on Their Immune, Antiviral, and Senotherapeutic Potential. *Front Pharmacol* **10**, 1011, doi:10.3389/fphar.2019.01011 (2019).

33 Triana-Martinez, F. *et al.* Identification and characterization of Cardiac Glycosides as senolytic compounds. *Nature communications* **10**, 4731, doi:10.1038/s41467-019-12888-x (2019).

34 Guerrero, A. *et al.* Cardiac glycosides are broad-spectrum senolytics. *Nat Metab* **1**, 1074-1088, doi:10.1038/s42255-019-0122-z (2019).

35 Wang, C. *et al.* Inducing and exploiting vulnerabilities for the treatment of liver cancer. *Nature* **574**, 268-272, doi:10.1038/s41586-019-1607-3 (2019).

36 Amor, C. *et al.* Senolytic CAR T cells reverse senescence-associated pathologies. *Nature* **583**, 127-132, doi:10.1038/s41586-020-2403-9 (2020).

37 Subramanian, A. *et al.* A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. *Cell* **171**, 1437-1452 e1417, doi:10.1016/j.cell.2017.10.049 (2017).

38 Llanos, S. *et al.* Lysosomal trapping of palbociclib and its functional implications. *Oncogene* **38**, 3886-3902, doi:10.1038/s41388-019-0695-8 (2019).

39 Krishnamurthy, J. *et al.* Ink4a/Arf expression is a biomarker of aging. *J Clin Invest* **114**, 1299-1307, doi:10.1172/JCI22475 (2004).

40 Espinosa De Ycaza, A. E. *et al.* Senescent cells in human adipose tissue: A cross-sectional study. *Obesity (Silver Spring)* **29**, 1320-1327, doi:10.1002/oby.23202 (2021).

41 Xu, M. *et al.* Targeting senescent cells enhances adipogenesis and metabolic function in old age. *Elife* **4**, e12997, doi:10.7554/eLife.12997 (2015).

42 Schafer, M. J. *et al.* Cellular senescence mediates fibrotic pulmonary disease. *Nature communications* **8**, 14532, doi:10.1038/ncomms14532 (2017).

43 Jeon, O. H. *et al.* Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. *Nat Med* **23**, 775-781, doi:10.1038/nm.4324 (2017).

44 Pignolo, R. J., Passos, J. F., Khosla, S., Tchkonia, T. & Kirkland, J. L. Reducing Senescent Cell Burden in Aging and Disease. *Trends Mol Med* **26**, 630-638, doi:10.1016/j.molmed.2020.03.005 (2020).

45 Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. *Nat Rev Endocrinol* **16**, 263-275, doi:10.1038/s41574-020-0335-y (2020).

46 Wissler Gerdes, E. O. *et al.* Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. *Int Rev Neurobiol* **155**, 203-234, doi:10.1016/bs.irn.2020.03.019 (2020).

47 Tchkonia, T. & Kirkland, J. L. Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. *JAMA* **320**, 1319-1320, doi:10.1001/jama.2018.12440 (2018).

48 Farr, J. N. *et al.* Targeting cellular senescence prevents age-related bone loss in mice. *Nat Med* **23**, 1072-1079, doi:10.1038/nm.4385 (2017).

49 Ovadaya, Y. *et al.* Impaired immune surveillance accelerates accumulation of senescent cells and aging. *Nature communications* **9**, 5435, doi:10.1038/s41467-018-07825-3 (2018).

50 Pereira, B. I. *et al.* Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. *Nature communications* **10**, 2387, doi:10.1038/s41467-019-10335-5 (2019).

51 Munoz, D. P. *et al.* Targetable mechanisms driving immuno-evasion of persistent senescent cells link chemotherapy-resistant cancer to aging. *JCI Insight* **5**, doi:10.1172/jci.insight.124716 (2019).

52 Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. *J Exp Med* **210**, 2057-2069, doi:10.1084/jem.20130783 (2013).

53 Krizhanovsky, V. *et al.* Senescence of activated stellate cells limits liver fibrosis. *Cell* **134**, 657-667, doi:10.1016/j.cell.2008.06.049 (2008).

54 Sagiv, A. *et al.* NKG2D ligands mediate immunosurveillance of senescent cells. *Aging (Albany NY)* **8**, 328-344, doi:10.18632/aging.100897 (2016).

55 Prata, L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. *Semin Immunol* **40**, 101275, doi:10.1016/j.smim.2019.04.003 (2018).

56 Bo, T. H., Dysvik, B. & Jonassen, I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. *Nucleic Acids Res* **32**, e34, doi:10.1093/nar/gnh026 (2004).

57 Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res* **47**, e47, doi:10.1093/nar/gkz114 (2019).

58 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-0550-8 (2014).

59 Wu, D. *et al.* ROAST: rotation gene set tests for complex microarray experiments. *Bioinformatics* **26**, 2176-2182, doi:10.1093/bioinformatics/btq401 (2010).

60 Perales-Paton, J. *et al.* vulcanSpot: a tool to prioritize therapeutic vulnerabilities in cancer. *Bioinformatics* **35**, 4846-4848, doi:10.1093/bioinformatics/btz465 (2019).

61 Bankhead, P. *et al.* QuPath: Open source software for digital pathology image analysis. *Scientific reports* **7**, 16878, doi:10.1038/s41598-017-17204-5 (2017).

62 Dimri, G. P. *et al.* A biomarker that identifies senescent human cells in culture and in aging skin in vivo. *Proc Natl Acad Sci U S A* **92**, 9363-9367 (1995).

Acknowledgements

J.A.L-D. was supported by the Spanish Ministry of Science through a Juan de la Cierva-Incorporación fellowship and by the Spanish Association Against Cancer (AECC) through an AECC Investigador fellowship. I.M. was funded by a FPI fellowship from the Spanish Ministry of Science. Work in the laboratory of M.S. was funded by the IRB and “laCaixa” Foundation, and by grants from the Spanish Ministry of Science co-funded by the European Regional Development Fund (ERDF) (SAF2017-82613-R), European Research Council (ERC-2014-AdG/669622), and Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement of Catalonia (Grup de Recerca consolidat 2017 SGR 282). J.L.K., T.T., and S.C. are supported by the National Institutes of Health (grants R37AG13925, R33AG61456, R01AG072301, R01AG61414, P01AG62413, and UH3AG56933), Robert and Arlene Kogod, the Connor Fund, Robert J. and Theresa W. Ryan, and the Noaber Foundation. Work in the laboratory of J.A. is supported by the Breast Cancer Research Foundation (BCRF-21-008), Instituto de Salud Carlos III (project references AC15/00062, CB16/12/00449 and PI19/01181) and the EC (under the Framework of the ERA-NET TRANSCAN-2 initiative co-financed by FEDER), AECC and Fundació La Caixa (HR22-00776).

Author contributions

S.C., J.A.L.-D. and M.L. designed and performed experiments and cowrote the manuscript. M.A. and N.P. performed histopathological analyses. I.M., K.M., S.L. and F.A.-S. provided data and feedback. M.M.M, S.P.-E. and M.E. provided technical support. L.M. and C.S.-O.A. performed computational analysis. T.C., T.T. and J.L.K. provided discussion and revisions. J.A. and M.S. designed and supervised the study, secured funding analysed the data and cowrote the manuscript.

Competing interests

M.S. is shareholder of Senolytic Therapeutics, Life Biosciences, Rejuveron Senescence Therapeutics, and Altos Labs and is an advisor to Rejuveron Senescence Therapeutics and Altos Labs. S.C. has received royalties from Rejuveron Senescence Therapeutics, AG. T.T. and J.L.K. have a financial interest related to this research including patents and pending patents covering senolytic drugs and their uses that are held by Mayo Clinic. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic conflict of interest policies. The funders had no role in the study design, data collection and analysis, decision to publish, or manuscript preparation. T.C. is a shareholder of RST.

Additional information

Extended Data is available for this paper. Correspondence and requests for materials should be addressed to Manuel Serrano.

Figure 1

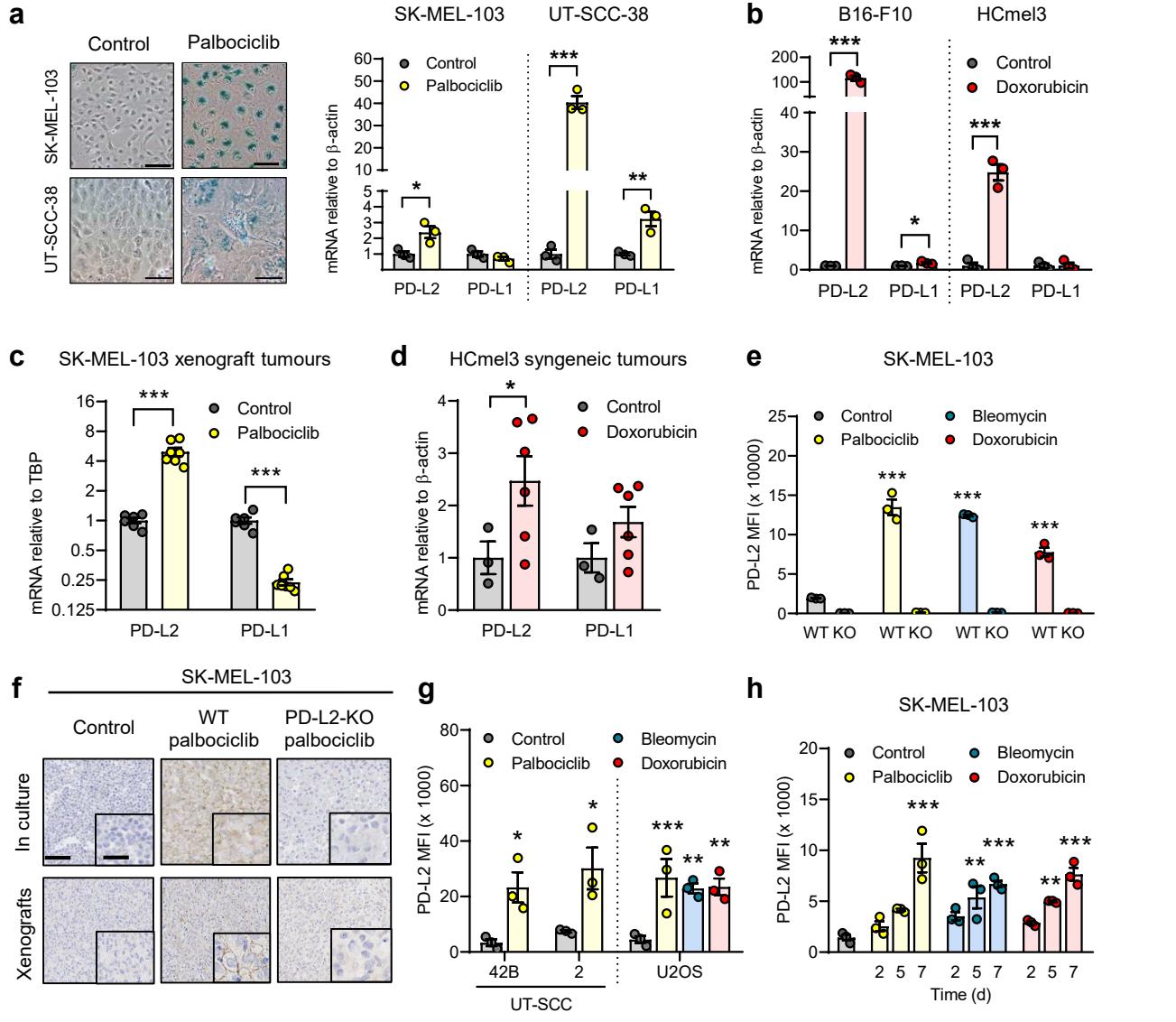


Fig. 1. PD-L2 is upregulated in human and murine cancer cell lines upon induction of cellular senescence. (a) Representative images of senescence-associated β -galactosidase (SABG) staining and PD-L1/2 mRNA expression in human cancer cell lines treated with palbociclib. Scale bars = 50 μ m. (b) PD-L1/2 mRNA expression in murine cancer cell lines after treatment with doxorubicin. (c) PD-L1/2 mRNA expression in SK-MEL-103 xenograft tumours in nude mice, treated with palbociclib. (d) PD-L1/2 mRNA expression in HCmel3 tumours in C57BL/6 mice treated with doxorubicin. (e) Quantification of PD-L2 protein levels by FACS upon generation of a PD-L2-KO SK-MEL-103 cell line, in control and senescent conditions. (f) PD-L2 stainings of WT and PD-L2-KO SK-MEL-103 cells in culture and as xenograft tumours, untreated and treated with palbociclib. Scale bars are 100 μ m for low magnification and 50 μ m for high magnification images. (g) PD-L2 protein levels as measured by flow cytometry upon induction of senescence with palbociclib, bleomycin and doxorubicin in different cancer cell lines at day 7 after induction. (h) PD-L2 protein levels as measured by flow cytometry upon induction of senescence with palbociclib, bleomycin and doxorubicin in SK-MEL-103 cells. MFI = median fluorescence intensity. t-tests or 1 way ANOVA with Tukey post-test were applied. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ vs respective control groups.

Figure 2

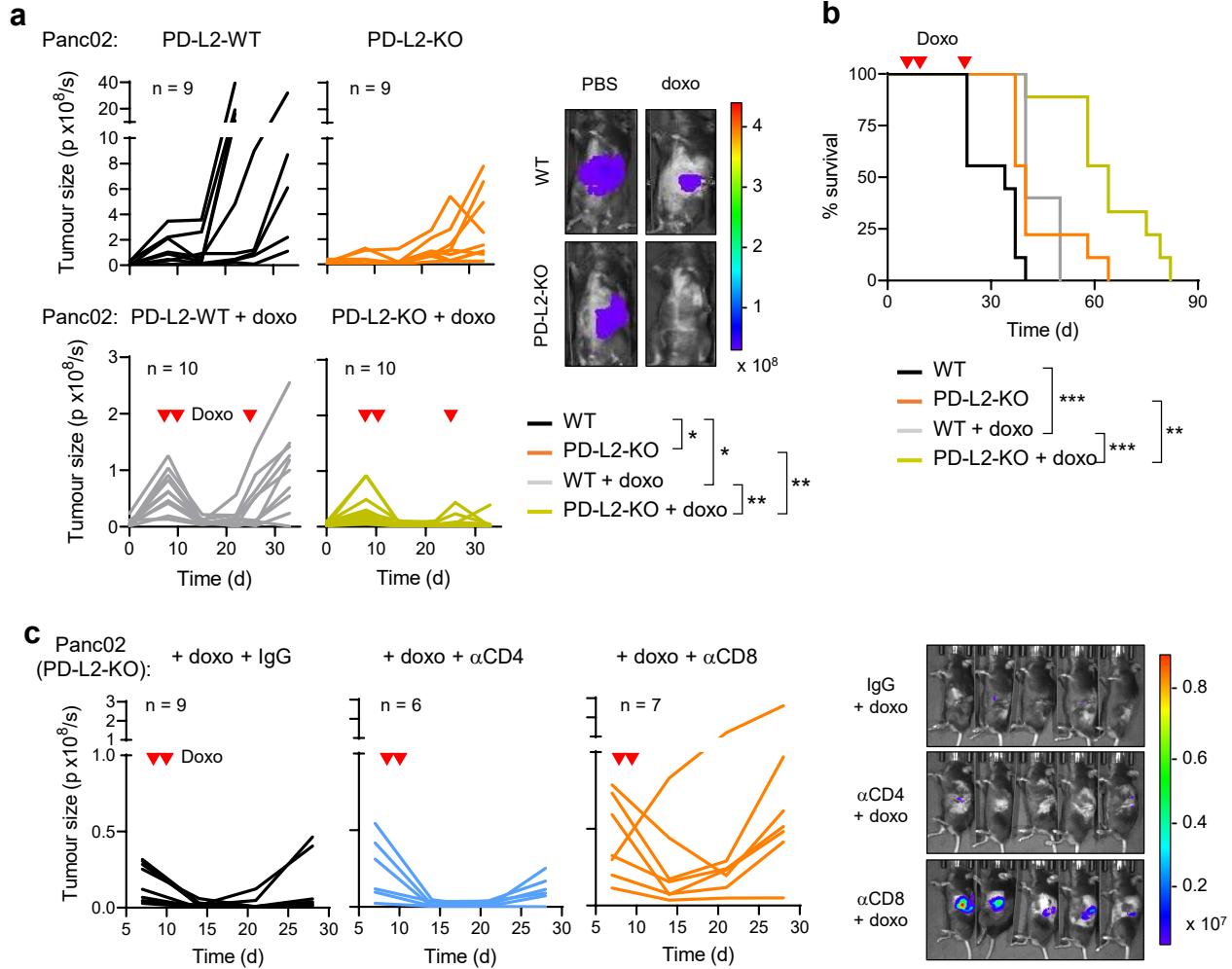


Fig. 2. A combination of PD-L2 ablation and chemotherapy results in tumour remission.

(a) Representative images and quantification of tumour growth for PD-L2-WT and KO Panc02 tumours, untreated or treated with doxorubicin at days 7, 10 and 24. (b) Survival curve for the mice from panel (a). (c) Quantification and representative images of tumour growth for PD-L2-KO Panc02 tumours after doxorubicin treatment (days 7 and 10) and repeated injections with IgG isotype control, anti-CD4 or anti-CD8 blocking antibody from day 3 after surgery. Luminescence units are photon/second (p/s) in the graphs and photon/sec/cm²/stereradian in the images. 2-way ANOVA and 1 way ANOVA with Tukey post-test were used. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 3

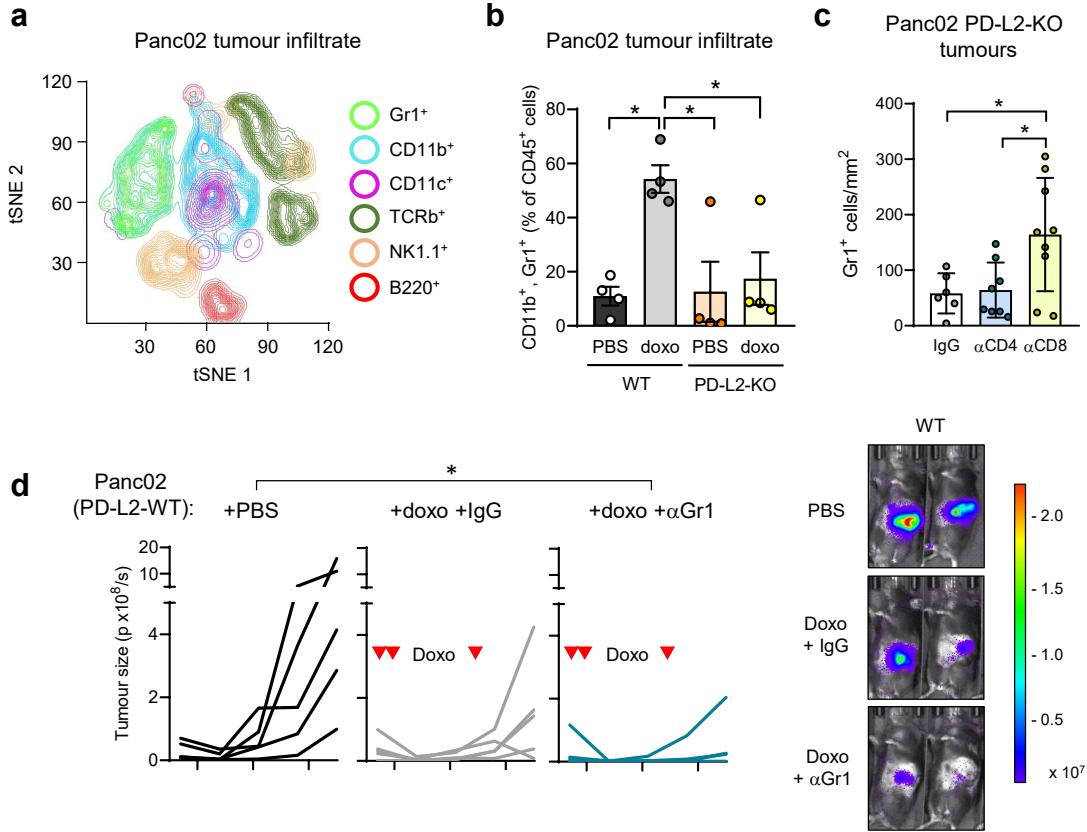


Fig. 3. Recruitment of tumour-promoting myeloid cells is prevented in PD-L2-KO upon doxorubicin treatment. (a) t-SNE plot including the different tumour-infiltrating immune subpopulations detected by CyTOF. A pool of all 16 individuals in different experimental conditions is shown ($n = 4$ for WT and PD-L2-KO, untreated or treated with doxorubicin). Doxorubicin treatment was administered on days 7 and 10 and samples were obtained on day 12. (b) Quantification of the percentage of CD11b⁺ Gr1⁺ cells, relative to total CD45⁺ cells. $N = 4$ for each experimental group. (c) Quantification of Gr1⁺ cells in sections of PD-L2-KO tumours treated with doxorubicin on days 7 and 10, subject to depletion of CD4⁺ or CD8⁺ T cells and collected on day 28. (d) Representative images and quantification of tumour growth for PD-L2-WT tumours, untreated or treated with doxorubicin on days 7, 10 and 24, including an additional group treated with anti-Gr1 blocking antibody. $N = 5$ per group. Luminescence units are photon/second (p/s) in the graphs and photon/sec/cm²/steradian in the images. 1 way ANOVA with Tukey post-test was applied. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Figure 4

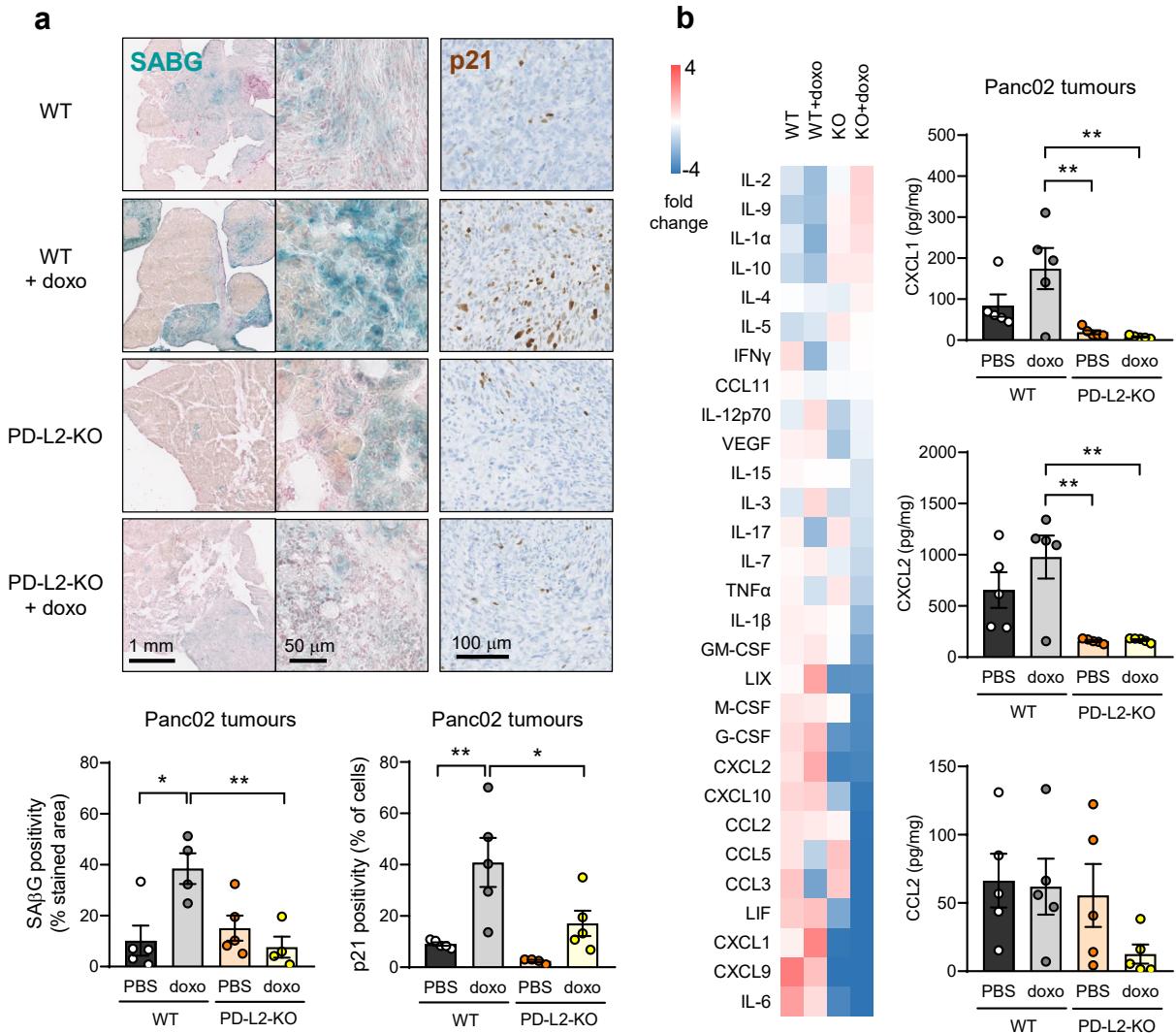


Fig. 4. PD-L2-KO Panc02 tumours after chemotherapy present lower levels of cellular senescence and key cytokines and chemokines.

(a) Representative images and quantification of SABG and p21 stainings in PD-L2-WT and KO, doxorubicin-treated (days 7 and 10) and untreated tumours, five days after the first dose. (b) Relative levels of intratumoural cytokines and chemokines measured by a commercial multiplexed system with beads bound to antibodies. Absolute quantifications of select cytokines and chemokines (CXCL1, CXCL2, CCL2). N = 5. 1 way ANOVAs with Tukey post-tests were applied. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 5

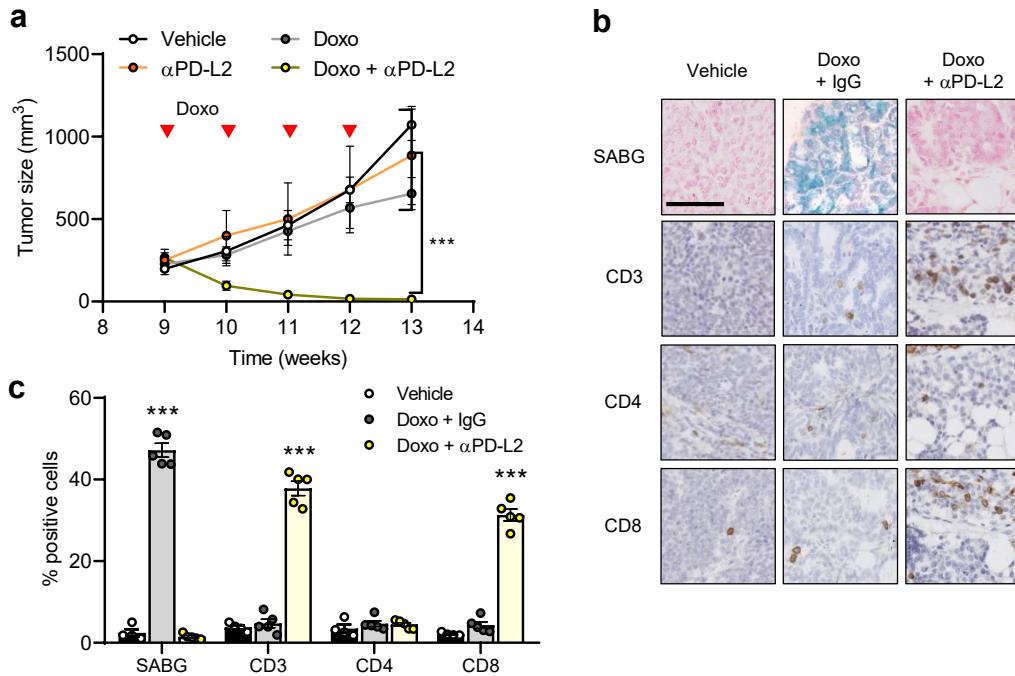
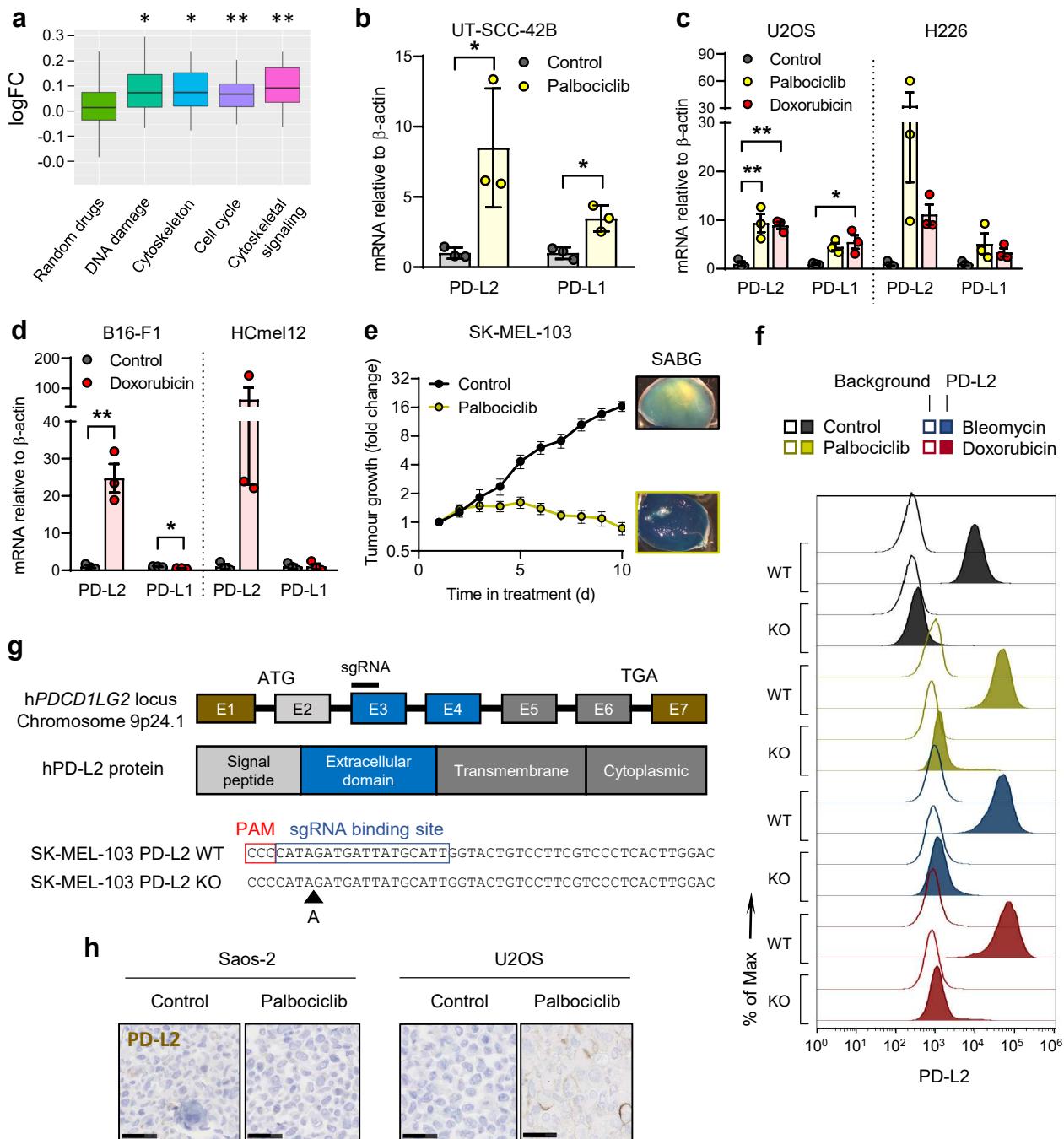
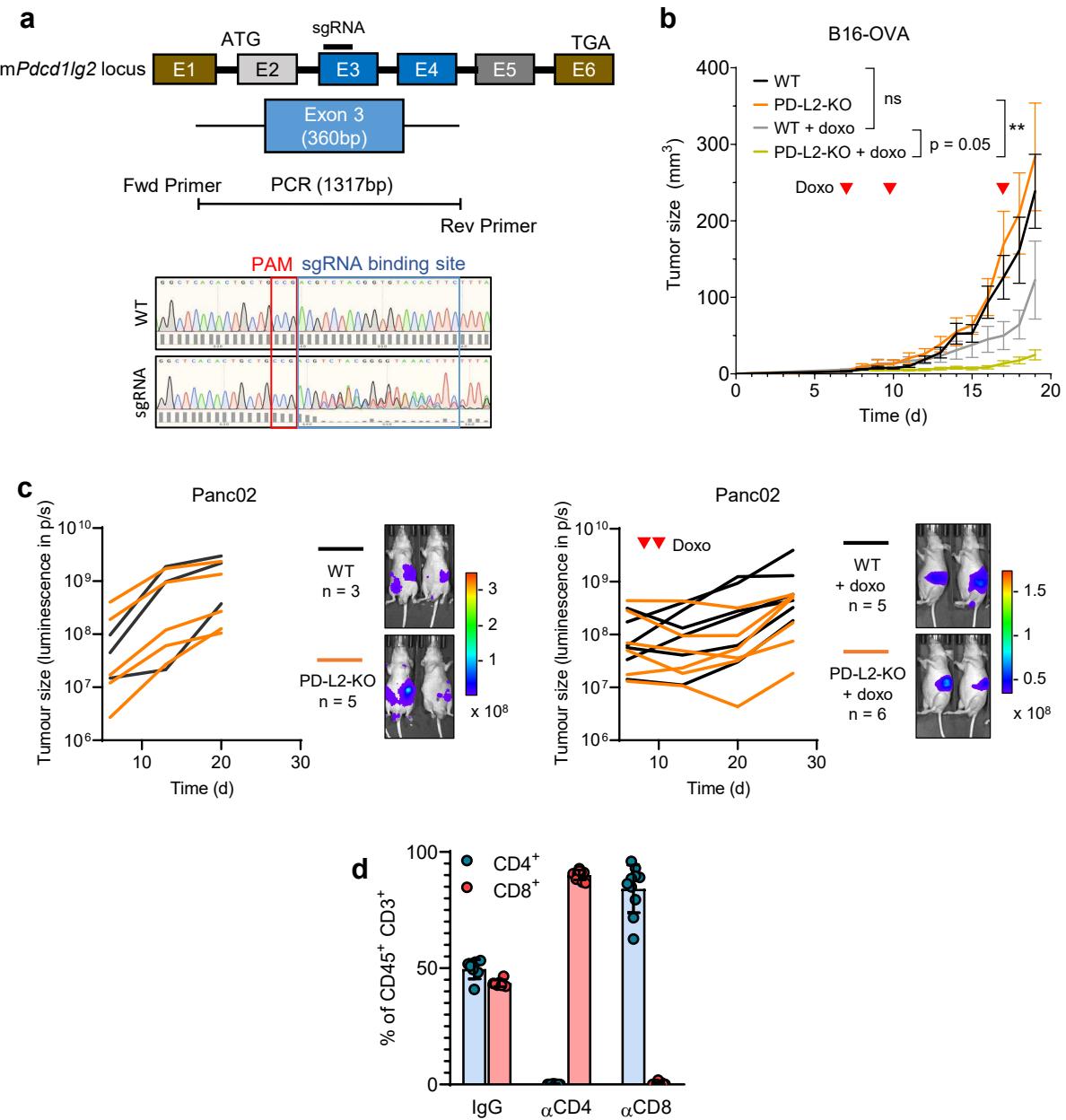



Fig. 5. PD-L2 blockade successfully eliminates mammary tumours after chemotherapy.

(a) Tumour growth in PyMT mice treated weekly (from week 9) with anti-PD-L2 alone (TY-25), doxorubicin alone, or a combination of both as indicated. 2-way ANOVA, *** $p < 0.001$. (b-c) SABG, CD3, CD4, and CD8 positivity in untreated tumours and tumours treated with doxorubicin alone or in combination with anti-PD-L2 blocking antibody. Representative images are shown. 1-way ANOVA with Tukey post-test. *** $p < 0.001$ vs the rest of experimental conditions. Scale bar = 100 μm .

Extended Data Figure 1



Extended Data Fig. 1. PD-L2 is upregulated in human and murine senescent cancer cells.

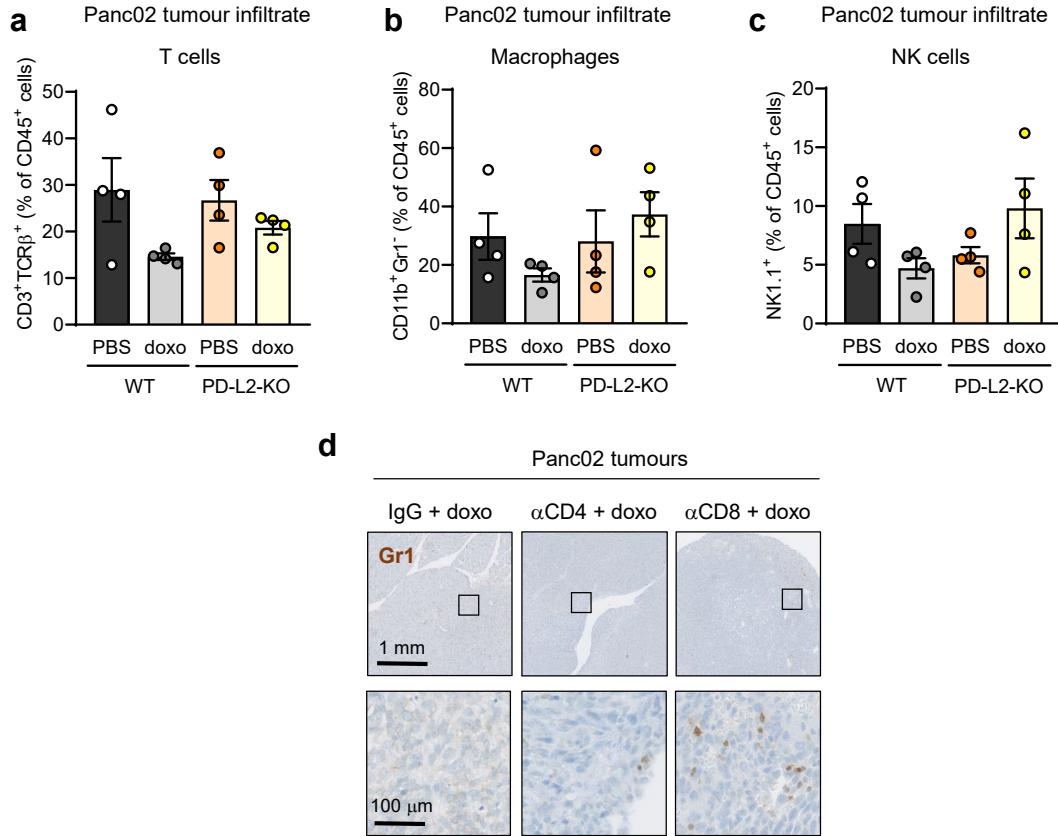
- Drug class enrichment analysis for human *PDCD1LG2* (PD-L2).
- PD-L1/2 mRNA expression in human cancer cell lines treated with palbociclib.
- PD-L1/2 mRNA expression in human cancer cell lines after treatment with doxorubicin or palbociclib.
- PD-L1/2 mRNA expression in murine cancer cell lines treated with doxorubicin.
- Growth chart of SK-MEL-103 xenograft tumours in nude mice, untreated or treated with palbociclib, and SABG staining *in toto* of representative tumours.
- Representative example (1 out of n = 3) of histogram for PD-L2 protein levels upon generation of a PD-L2-KO SK-MEL-103 cell line, in control and senescent conditions, measured by flow cytometry.
- CRISPR-Cas9 edition of the human *PDCD1LG2* locus, specifying the sgRNA binding site in exon 3. The sequence corresponds to the single clone of edited SK-MEL-103 cells used in the experiments labelled as PD-L2-KO SK-MEL-103.
- PD-L2 staining in Saos-2 and U2OS cell pellets, treated with palbociclib. Scale bars = 50 μ m.

t-tests or 1 way ANOVA with Tukey post-test were applied. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Extended Data Figure 2

Extended Data Fig. 2. A combination of PD-L2 ablation and chemotherapy results in tumour remission.

(a) CRISPR edition of the murine *Pdcd1lg2* locus, specifying the sgRNA bidding site in exon 3, that generated a bulk population of edited Panc02 cells. This bulk population was used in all the experiments labelled as PD-L2-KO Panc02.

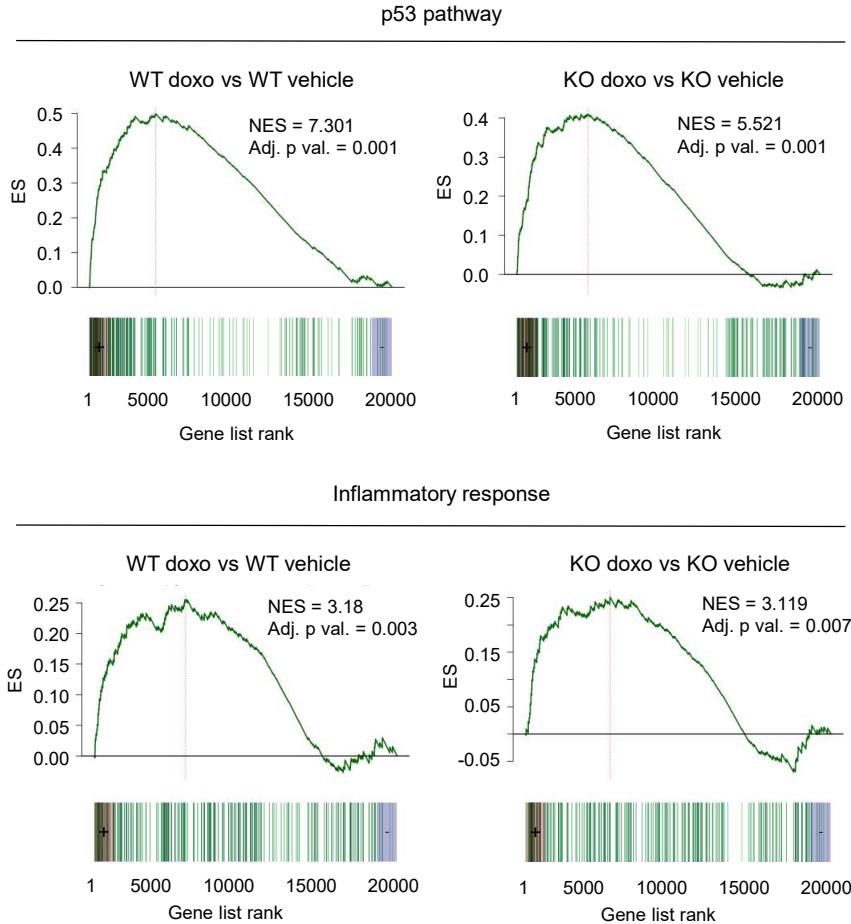

(b) Growth chart of WT and bulk PD-L2-KO B16-OVA tumours in C57BL/6 mice, untreated or treated with doxorubicin on days 7, 10 and 17 after subcutaneous injection of cells. B16-OVA-WT n = 5, B16-OVA-KO n = 6, B16-OVA-WT + doxo n = 11, B16-OVA-KO + doxo n = 11. 2-way ANOVA.

(c) Quantification and representative images of Panc02 WT and PD-L2-KO tumours in nude mice, untreated and treated with doxorubicin on days 7 and 10.

(d) Percentage of CD4⁺ and CD8⁺ T cells among total CD45⁺ CD3⁺ cells in blood of mice after treatment with blocking anti-CD4 and anti-CD8 antibodies.

Luminescence units are photon/second (p/s) in the graphs and photon/sec/cm²/steroradian in the images.

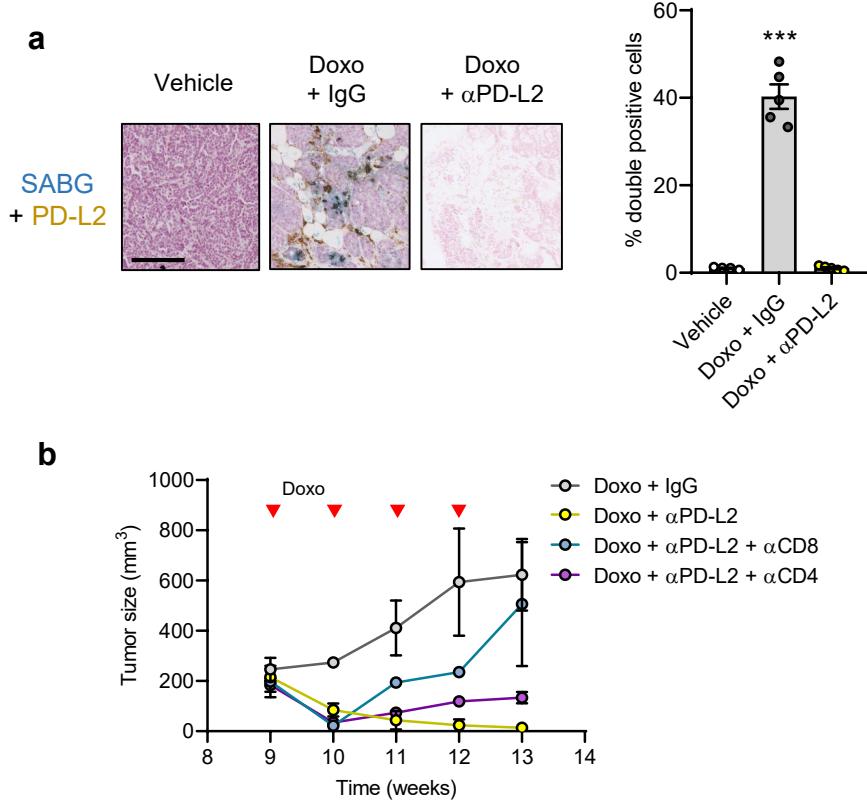
Extended Data Figure 3



Extended Data Fig. 3. Recruitment of tumour-promoting myeloid cells is prevented in PD-L2-KO tumours upon doxorubicin treatment.

(a-c) Quantification of the percentage of (a) lymphocytes (CD3⁺ TCR β ⁺), (b) macrophages (CD11b⁺ Gr1⁻) and (c) NK cells (NK1.1⁺) relative to total CD45⁺ cells, in WT and PD-L2-KO tumours untreated or treated with doxorubicin at days 7 and 10. See methods for further detail in the gating strategies. Samples were collected on day 28.

(d) Representative Gr1 stainings in sections of PD-L2-KO tumours treated with doxorubicin and subject to depletion of CD4⁺ or CD8⁺ T cells from Fig. 2c.


Extended Data Figure 4

Extended Data Fig. 4. The senescent phenotype of PD-L2-KO Panc02 cells is nearly identical to their WT counterparts.

GSEA plots for representative gene sets (Molecular Signatures Database hallmark gene set collection) associated to cellular senescence in doxorubicin-treated versus untreated WT Panc02 cells, as well as in doxorubicin-treated versus untreated PD-L2-KO Panc02 cells at day 7 after treatment.

Extended Data Figure 5

Extended Data Fig. 5. PD-L2 blockade successfully eliminates mammary tumours after chemotherapy. (a) SABG and PD-L2 costaining in tumours samples from PyMT mice treated weekly with doxorubicin from weeks 9 to 13. Representative images are shown. Samples were obtained at 13 weeks of age, 7 days after the last doxorubicin dose. 1-way ANOVA, *** $p < 0.001$ (b) Tumour growth in PyMT mice treated with doxorubicin and combinations of blocking antibodies against PD-L2, CD4 and CD8 as indicated. $N = 2$.