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ABSTRACT

The development of computational tools for the esysttic prediction of metabolic vulnerabilities
of cancer cells constitutes a central questionystesns biology. Here, we presegyiiCSool, a
freely accessible and online tool that allows uscaory out this task in a simple, efficient and
intuitive environmentgMCStool exploits the concept of genetic Minimal Cut SegMCSs), a
theoretical approach to synthetic lethality basedyenome-scale metabolic networks, including a
unique database of thousands of synthetic lethalepated from Humanl, the most recent
metabolic reconstruction of human cells. Based bii\Req datagMCSool extends and improves
our previously developed algorithms to predictusitze and analyze metabolic essential genes in
cancer, demonstrating a superior performance tlampeting algorithms in both accuracy and
computational performance. A detailed illustratadrgMCStool is presented for multiple myeloma
(MM), an incurable hematological malignancy. gMG®taould identify a synthetic lethal that
explains the dependency on CTP Synthase 1 (CTRSd sub-group of MM patients. We provide
in vitro experimental evidence that supports this hyposheghich opens a new research area to

treat MM.
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INTRODUCTION

With the increasing coverage and accuracy of ra&rehuman genome-scale metabolic
networks?, the development of Constraint-based Modeling (GBApproaches for different
biomedical questions has significantly grown in it years. One of the central topics in CBM has
been cancer metaboli$M) as it constitutes an attractive strategy to gaights into the underlying
metabolic dependencies of tumor cells and systeaibtipredicts vulnerabilities. We can find a
plethora of methods in the literat@rehat first construct context-specific metabolicdals (CS-
models), based on cancer -omics data, and subdgqusymputationally predict gene knockout
perturbations that sufficiently decreases growte @ disrupts a key metabolic task for cellular
viability (gene essentiality analysig) These methods have been successfully appliedetttify
cancer-specific essential genes in different tupnbmswvever, there is still substantial room for

improvement, as recently shown in Robinsbal., 2020.

In this direction, we released a conceptually défeé approach based on the concept of genetic
Minimal Cut Sets (gMCSs), which does not require ttonstruction of CS-models and more
generally exploits the concept of synthetic letiyifi In particular, gMCSs define minimal set of
genes whose knockout would render the functioning given metabolic task impossible. When
they are applied to cancer studies, we focus omlmoét tasks that compromise cellular viability
and, thus, gMCSs convert into metabolic essengakg (QMCSs of size 1) and synthetic lethals
(gMCSs of size greater than 1). Importantly, gMG®8e structural properties of the reference
metabolic network and, once they are obtained, are map —omics data to identify metabolic
vulnerabilities and their associated response hikens. Using microarray expression data, we
reported a superior performance than other algostin the literature to predict gene essentiality,

according to large-scale gene silencing data fiwerProject Achille¥ .
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Despite the interest in the gMCS approach sincetitslicatiorf, further improvements are still
required to make it a more practical tool in carmesearch. First, there is a need for automatiag th
application and visualization of the gMCS approach more intuitive and friendlier environment.
Second, we need to go beyond Re¢baRd generate a new database of gMCSs with Huntiae 1,
most recent reference human genome-scale metatsilicork. Third, our previous methodology
to identify cancer-specific essential genes retirdnicroarrays data and must be adapted to RNA-

seq data, which is a more attractive and used tdoty for the measurement of mMRNA expression.

In order to face these challenges, we presentdd@Sool, an automated computational tool that
makes use of the gMCS approach to predict metabaliterabilities in cancer based on Humanl
and RNA-seq data. We first show tlghlCS ool is more accurate, informative and efficient than
competing approaches to predict cancer-specifiengisg genes. Then, a detailed illustration of
gMCSool is presented for multiple myeloma (MM), an incdeabematological malignancy. Using
different sources of RNA-seq data, which includmgkes from healthy donors, MM patients and
cell lines, we identify metabolic liabilities of MMWith gMCSooal. In vitro experimental work is
presented for the inhibition of CTP synthase 1 (SIR a key gene involved in the pyrimidine de

novo synthesis, essential for cell proliferationl &mability in a group of patients with MM.
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RESULTS

gMCSool (https://biotecnun.unav.es/app/gmcsjoas a freely accessible web tool for the

calculation of essential genes in cancer metabdlshuses genome-scale metabolic networks and
RNA-seq data from human cells as input dgMCStool exploits the concept of genetic Minimal
Cut Set (QMCS), previously reported in Apaolatal.®°. However, we introduce several major
improvements in order to make gene essentialitgiptiens more flexible, accurate and general.
The tool is organized in 5 different modules (Fg@A): (i) ‘gMCS database’, (ii) ‘Upload RNA-
seq data’, (iii) ‘Predict Essential Genes’, (iv)isvalization’ and (v) ‘DepMap analysis’. A detailed
illustration of the utilization ogMCStool can be found in the Help tab. In summary, the f&s
modules incorporate the basic functions to caleukdsential genes (Figure 1B). The last two
modules allow us to visualize essential genes &eit tompanion biomarkers in the samples
analyzed (Figure 1C), as well as to conduct theetation analysis of our essentiality predictions
with data from the Cancer Dependency Map (DepM&jgufe 1D}%*2 Full description of these 5
modules can be found in the ‘Help’ tab gMCSool. We describe below the most relevant
improvements ogMCStool at the algorithmic level and its application féwetidentification of

metabolic vulnerabilities in Multiple Myeloma (MM).
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Figure 1. Overview of the gM CStool web application. (A) Snapshot of the heading gfMCSooal,
which includes the 5 main modules (‘gMCS databd&igjoad RNA-seq data’, ‘Predict Essential
Genes’, ‘Visualization’ and ‘DepMap analysis’), ‘eand ‘About’ tabs;(B) 3 basic modules for
the calculation of essential genesgMCSoal. In the first module the database of gMCSs can be
specified; in the second module, RNA-seq data,ttmgewnith sample information, can be uploaded
in different formats; in the third module, diffetgparameters in our algorithm can be fixed and the
prediction of essential genes is executed and shiowable format{C) Example heatmap of gene
expression data that can be obtained from the Homaddule: ‘Visualization’. Expression data is
shown for the predicted essential geBPAT4) and its partner gene&PAM, GPAT2, GPAT3) in a
specific gMCS, namely GPAT4, GPAM, GPAT2, GPAT3}, for the different samples analyzed:
naive B cells (NB), centroblasts (CB), centrocy{€€), memory B cells (MEM), tonsil plasma
cells (TPC), bone marrow plasma cells (BMPC) andtiple Myeloma (MM). It can be observed
that GPAT4 is an essential gene for a subgroup W patients (MM responders) and for bone
marrow plasma cells (BMPC) from healthy individualbe essentiality of GPAT4 in these samples
is due to the fact that its partner genes are losWgressed(D) Example dotplot that can be
obtained from the fifth module: ‘DepMap analysig/ihere correlation studies with DepMap are
presented. In the vertical axis we have the essdigpntscore ofGPAT4 in DepMap for different
human cell lines and in the horizontal axis the imaxn expression level across partner genes:
(GPAM, GPAT2, GPAT3). Each point represents a single cell line. Is ttase, only MM cell lines

are shown.

Generation of a database of gM CSs for gMCStool

Genetic Minimal Cut Sets (gMCSs) are minimal subs#tgenes whose simultaneous removal
directly blocks a particular metabolic t&Skin cancer studies, this target metabolic taskiesn
typically the biomass reaction, whose flux représehe proliferation rate, a key phenotype to
disrupt in cancer. However, the authors of Humaorisier not only the biomass production, but
also other metabolic tasks that are essential édiular viability'* such as the production of
vitamin and cofactors or activity of electron trpog chain, which expands the scopedrosilico
predicted metabolic vulnerabilities. As detailedtire Methods section, we adapted our previous
algorithm for the computation of gMCSs to consitles 57 metabolic tasks defined in Human1,

including the biomass production (Figure 2A).
7
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As a result of our calculations, we enumerated ntben 160,000 gMCSs for Humanl (see
Methods section). A great part of them correspdodsiomass production (57,717); however, we
also have gMCSs implied in other relevant metabalsks: de novo synthesis of key intermediates
(32,062), beta oxidation of fatty acids (25,8893 ernovo synthesis of nucleotides (15,774) (Figure
2B). Due to its simplicity or the existence of sfareous alternative reactions, we could not find
gMCSs in 5 metabolic tasks (see Supplementary THbl&he length of computed gMCSs ranges
from 1 gene to more than 15 genes, being 7 geresntst repeated solution (Figure 2C). This
illustrates the high degree of metabolic flexigildf human cells. Some of them are shared across
the different metabolic tasks, obtaining a totad {607 uniqgue gMCSs, which overall involve 1244
metabolic genes (Supplementary Data 1). They wareed in gMCSool for further analysis.
Supplementary Figure 1 shows the tabghfCSool where the database of gMCSs, under the
selected input parameters, can be downloaded. iINwethat for biomass production we fixed the
Ham'’s growth medium, which is the one given by d#éfan Human1l for this essential metabolic
task. However,gMCSool provides an additional database of gMCSs for Humamder

unconstrained growth medium (all uptakes availabldumanl).
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Figure 2: Generation of gMCStool database of gM CSs based on Human1. (A) Using Humanl,
the most recent reconstruction of the human masahpla collection of metabolic models was
generated to simulate each essential metabolicpgeedent in human cells (task-specific GEM).
Then, we calculated gMCSs for each task-specifiaViGEask-specific gMCSs), generating a
database of synthetic lethals for human cells #rat stored ingMCSool; (B) Distribution of
computed gMCSs among different subgroups of mei@abadks included in Human{C) Barplot
presenting the length of gMCSs includegyMCStool.

I ntegration of RNA-seq data into gM CStool for gene essentiality analysis

Following the concept of synthetic lethality, itpsssible to predict cancer-specific essential gene
by combining our database of gMCSs and gene expredata, as demonstrated in Apaolaza et al.,
2017. This can be done by searching for gMCSs in whithenes are lowly expressed except one

of them that is highly expressed and essentiaihfersituation under study (Figure 3A). Note here
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that gMCSs of size 1 directly correspond to esatmggenes for any cell type under the growth

medium considered, in this case the Ham’s medium.

In order to identify highly and lowly expressed gsrin every sample using RNA-seq data, we have
developed our own threshold techniquedMCStool, which can be applied independently to each
sample (cohort-independent). Our threshold stragegyoits the fact that at least one of the genes
involved in every gMCS should be highly expresseduarantee the performance of its associated
metabolic task. With this in mind, we infer for dasample a potential population of highly
expressed genes by extracting the maximum expreggerlfor each gMCS. Once duplicated genes
were eliminated, we build an empirical probabiliitjmction of the expression of highly expressed
genes for each sample and fixed the X% quantilestiold of expression for them, referred as
gmesTHX, to alleviate possible inconsistencies and incetepietabolic pathways in Humanl (see
Methods section for details, Figure 3A). We alsgplementedlocalT2, a cohort-dependent
methodology developed in Richebieal., 2019“, which defines a threshold for each gene based on
the observed expression distribution across thepksnof the cohort. In summargMCSool
incorporates these 2 thresholding approaches égaare RNA-seq data, which is then integrated

with our database of gMCSs to predict essentiaégen

With the aim of assessing the prediction powegMCSool, we performed a benchmark study of
gene essentiality in cancer. We conducted the saralysis to the one found in Robinsenal.,
2020, based on the DepMap database, which integrates-9% gene expression ddtand
CRISPR essentiality screening experiméhfer a total of 621 cell lines. To avoid bias ireth
comparison, we used the same release of DepMagtbaoriginal analysis. As in Robinsenal.,
2020, the genes in DepMap with Achilles score lothan -0.6 were defined as the gold-standard
reference set of essential genes. We @whd@3ool to upload RNA-seq and sample information
data (Supplementary Figure 2), and to conduct gseentiality analysis (Supplementary Figure 3).

In our analysis, we considered the list of gMCS3srfrthe 57 essential metabolic tasks (biomass
10
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production included) and predicted essential gewdh both gene expression thresholding
approachesgmesTH5 andlocal T2 (Supplementary Data 2). We compared our prediessgntial

genes with those resulting from DepMap (gold-stadida

As in Robinsonet al.!, we calculated the accuracy, sensitivity, speatyfidMatthew’s correlation
coefficient (MCC). Note here that MCC is a more quge performance metric than accuracy for
cases where there is an unbalance between trugvpssind true negatives, as we have over 90%
of non-essential genes. We also included the sepréisented in the publication of Humnthich
usedtINIT to reconstruct 621 cell-specific GEMs and predissential genes with single gene
knockout perturbations (referred heretld T). Results can be found in Figure 3B. In the light
the MCC obtained, it can be observed that our gMpproach overperforms tINIT with both
thresholding approaches considering all metaba@gke (unpaired one-sided Wilcoxon test p-
value<0.0001). The same result was found if we exclugiweinsider the essential tasks related
with biomass production (Supplementary Figure 4).addition, ourgmcsTH5 thresholding
approach seems more accurate and conservativedtam?2, which obtains the highest results in
sensitivity but includes too many false negativespgéired one-sided Wilcoxon test p-value
<0.0001, Supplementary Figure 4). ThgdlCSool is more accurate than the state-of-the-art
approach in the literature for predicting essergi@ahes in cancer. Note here that for this gene
essentiality studygMCStool took 36 minutes for thgmcsTH5 approach and 31 minutes for the
localT2 approach using a standard computer. Insteldl,T required several days, as the

construction of CS-models is time consuming (betwkg and 83 minutes per sample).
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Figure 3: gMCS pipeline for the calculation of essential genes for Human1l. (A) RNA-seq data

is integrated with our database of gMCSs as follofisst, a potential population of highly
expressed genes is obtained by extracting the memiexpressed gene of each gMCS (eliminating
duplicates). Second, the X% quantile threshgidc6THX) of this empirical probability distribution

of gene expression is determined in order to digoate between highly (in red color) and lowly
(in blue color) expressed genes. For the resuétsemted here, we fixed this threshold equal to 5%
(gmesTHS). Finally, in order to identify essential genesgdther with gMCSs of size 1, we search
for gMCSs which only contain one highly expressedegand the rest are lowly expressed. Results
are summarized in a binary matrix where columns ewils are essential genes and essential
metabolic tasks. A gene is considered as essdntizd essential in at least one essential mdtabo
task. This process is repeated for each differampge. (B) Comparison of gene essentiality
prediction using different methodologies and Hum@orlthe 621 selected cell lines with available
CRISPR screening in the DepMap databdséNIT is the gold standard for CS models, and our
gMCSs approach was applied with two different gexression thresholding strategigeicsTH5

and local T2, introduced in Richellest al., 2019*. Note: MCC denotes Mathew Correlation
Coefficient; ****[***/ns refer to the statistical ignificance level from an unpaired one-sided
Wilcoxon test that compares the gMCS approach agéie results obtained with tINIT, namely

*rek p-value<=0.0001, ***; p-value<=0.001, and nsaon-significant.
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Application of gMCStool to Multiple Myeloma

To illustrate the use ojMCSool, we performed a screening prediction of essemjeles in
Multiple Myeloma (MM). We used a previously genexhtlataset in our group that includes RNA-
seq data from different B cell subpopulations frogalthy individual®® and bone marrow plasma
cells from MM patient®'”. We also considered data from the MMRF-CoMMpasgegt, funded
by the Multiple Myeloma Research Foundation (MMRW®}ich includes RNA-seq data for 767
MM patients at diagnosis. Finally, we obtained REEg data for the 7 MM cell lines available in

Cancer Cell Line Encyclopedia (CCLE)

We projected the RNA-seq expression profiles ofttiree datasets onto our database of gMCSs,
obtaining a table which indicates the number of@amfor which a gene is considered as essential
in each tissue type in at least one of the essemitabolic tasks (Supplementary Data 3). We
selected the MM-specific essential genes accorttintpe following criteria: 1) to be essential in
more than 10% of MM samples from our cohort; 2p&oessential in less than two samples from
any healthy B cell subpopulations and less than samples in bone marrow plasma cells, the
healthy counterpart of myeloma cells; 3) to be ®sakin more than 5% of CoMMpass samples
and 4) to be essential in one or more MM cell linEsble 1 shows the 6 MM-specific essential
genes identified in our analysis, including the cpatages of samples in which the gene is
considered as essential. Furthermore, we extrabeed gMCSs that explain the essentiality of
these 6 genes in MM but only affect a few sample® aell subpopulations (Supplementary

Figures S5-S12).

13
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Table 1. Specific essential genes identified in Multiple Myeloma. These genes are predicted
essential in a sufficient percentage of samplesioMM cohort and MMRF-CoMMpass, but not in

the samples of different B cell subpopulations wigtd from healthy donors: bone marrow plasma
cells (BMPC), tonsil plasma cells (TPC), memory &l (MEM), centrocytes (CC), centroblasts

(CB), naive B cells (NB). Units are percentagereficted samples in which a gene is essential.

SYMBOL ENSEMBL (15 (=7 (-7 (-8 (-5 (=3 (-3 (-7 (=7
CTPS1 ENSG00000171793 0% 0% 0% 0% 0% 0% 11% 71% 86%
DHFR ENSG00000228716 0% 0% 0% 0% 209 0% 11% 57% 86%
LCAT ENSG00000213398 0% 29% 0% 0% 0% 0% 11% 7% 14%

NMNAT3 ENSG00000163864 0% 0% 0% 0% 0% 0% 16% 28% 14%

PC ENSG00000173599 0% 0% 0% 0% 0% 0% 32% 17% 86%
UAP1 ENSG00000117143 0% 0% 0% 0% 0% 0% 16% 14% 29%

From the results shown in Table 1, we focused oR&ITfor further analysis. Figure 4A shows the
gMCS that involve<CTPSL and CTPS2 and suggests the essentiality of CTPS1 in a supgod
MM samples but not in the healthy tissues fromedéht B cell subpopulations. Similarly, it can be
observed the patients from CoMMpass that could dspanders and non-responders to CTPS1
inhibition based on the expression of CTPS2. Theeseesult can be observed for the 7 MM cell
lines considered. In addition, Figure 4B shows thatexpression d€TPS2 decreases for the sub-
group of MM samples that potentially could respoadCTPS1 inhibition (MM responders). Note

here that we usegMCStool to automatically generate these figures (Suppléangfrigure 13).

At the center of our hypothesis above is that CTRS&1L CTPS2 are synthetic lethal and, thus, the
essentiality of CTPS1 depends on CTPS2, namely WBERS2 is lowly expressed, CTPS1
becomes essential. We assessed this hypothesi®eap data available gMCSool, finding a
positive and significant correlation between thehilles score of CTPS1 and the expression of
CTPR (rho = 0.247, p-val = 2.5e-13, Supplementary Figid¢ as detailed in Figure 4C. This

provides further support to our hypothesis of sgtithlethality of CTPS1 and CTPS2.
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Figure 4: Prediction of essentiality of CTPS1 in MM with gMCStool. (A) Selected gMCS:
{CTPSL, CTPS2} and gene expression in our cohort of patients, RFMCoMMpass and selected
MM Cell Lines; (B) Boxplot of expression of th€TPSL and CTPS2 genes in the B cell
differentiation and MM sampleqC) Correlation between the essentiality @PSL (CRISPR
knockout screen data, DepMap) and the expressi@iIrB&2 in log2(TPM+1).(D) gPCR-RT of
CTPSL and CTPS2 expression in the selected cell lines. Data aferredl to GUS gene. Full
experimental results are found in SupplementaryleT8b(E) Proliferation of H929, KMS11 and
KMS12 cell lines treated with CTPSL1 inhibitor. Tpmliferation percentage refers to non-treated
cells (black line). Data represent mean Istandard deviation of at least three experimentgeN
****Ins refer to the statistical significance leviebm an unpaired one-sided Wilcoxon test, namely

*rxx: p-value<=0.0001 and ns: non-significant.

FurthermoregMCSool provides the associated metabolic task for eacR§Mn this particular
case, the inhibition of CTPS1 and CTPS2 blocksrsgvasks: CTPdytidine triphosphate) de novo

synthesis, dCTPdéoxycytidine triphosphate) de novo synthesis and biomass production, which
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turns out to disrupt the production of CTP, dCNMBokycytidine monophosphate), DNA and RNA.
Based on this information, we performediarsilico simulation for the addition of cytidine to the
growth medium, showing a rescue of proliferatioteathe inhibition ofCTPS1L andCTPS2, which
illustrates howgMCStool provides further evidence for predicted synthkdtbals (Supplementary

Table 2).

Finally, we carried ouin vitro experimental validation of the essentiality@FPSL in three MM
cell lines. For two of them, H929 and KMSHMCSool had predicted their sensitivity to CTPS1
inhibition due to their low expression GfTPS2, while for one of them, KMS13MCSool had
predicted its resistance ©OTPSL inhibition due to its high expression GTPS2 (Figure 4D,
Supplementary Table 3). Specifically, we synthetiaeCTPS1 inhibitor, previously developed by
Rao and colleagu&s and assessed its effect in the proliferationhefthree cell lines mentioned
above. As a result, H929 and KMS11 reduced thailifpration more than 50% after 4 days of
culture and no alterations were obtained for KM$igure 4E). These positives results reinforce

the predictive power @jMCSool and open new research avenues to treat MM.

16


https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.514827; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

In this work, we presengMCSool, a computational tool for the prediction of meti#bo
vulnerabilities in cancer based on gMCSs, a netwaded approach to synthetic lethality, and
RNA-seq data.gMCStool incorporates technical improvements in our presipudeveloped
algorithm$® and addresses the need of efficiently automatiegapplication and visualization of

the gMCS approach in a simple and intuitive enwviment.

Importantly,gMCSool stores more than 160,000 gMCSs that block at wastessential metabolic
task of Humanl, the most recent genome-scale metatawork of human cells. The computation
of this database of gMCSs substantially simplifteg process of identifying cancer-specific
essential genes, which can be now extracted byciyrmapping gene expression data onto them.
This strategy makes gene essentiality analysis raocessible and natural to researchers less

familiar with the field of constraint-based modelin

In addition,gMCStool allows us to perform gene essentiality analysisenefficiently than other
algorithms in the literature, as we avoid the siEponstructing context-specific metabolic models,
which makes use of time-consuming optimization méphes. For examplgMCStool required 36
minutes to calculate the essential genes for @&l8B1 cancer cell lines available in DepMap,
whereas tINIT needs between 30-60 minutes to réaarighe metabolic model of one single cell
line using RNA-seq data. ThugMCSool substantially reduces the computational requiresngn
conduct gene essentiality analysis in cancer. 8palty, we could analyze the samples in the
Results section, which add up to more than 140(Qpknconsidering DepMap and different MM
cohorts, in less than 80 minutes with a standanmtpcer. Overall,gMCStool constitutes an

effective and friendly online tool to search fortateolic vulnerabilities in cancer research.

In addition to makeggMCStool a practical tool for researchers in cancer metsimplwe extended

our previously developed algorithms in order to: cbnsider that Humanl involves different
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essential metabolic tasks beyond biomass prodyctigpical target in network-based gene
essentiality analysis; 2) predict essential gereesedh on RNA-seq data, namely by proposing a
novel approach to discriminate between highly aowly expressed genegnicsTHX). These
advances allowed us to compare the accuracyggME€Sool with tINIT***% the approach
developed by the authors of Humanl in order todbGiE metabolic models of cancer cells and

conduct gene essentiality analysis. Importantls #tudy shows thagMCSool is significantly

more accurate that tINIT when compared with gesemsality screens available in DepMap.

Another advantage a@dMCStool is its visualization capabilitiegMCStool exploits the fact that
essential genes are derived from specific gMCSgrevbne gene is highly expressed and the rest
genes are lowly expressed. Thus, genes involvgiidSs do not only allow us to predict essential
genes, but also response biomarkers for their iindnib This idea underlies the different plots that
can be extracted frongMCSool, which facilitates the interpretation of our cortgtional
predictions. In this directiogMCSool also outputs essential tasks and metabolite bibegis that
are disrupted by gMCSs, which are particularly infative to construct testable hypotheses about
the mechanism behind predicted synthetic lethatse lHere that this might be of interest due to the
fact that the composition of the human biomasypscally defined as universal for all cells, but

5

some authors think that this might be an incorasgumptiofi = suggesting that it could be

context-specific and some metabolites are moreaatehan others for different tumors.

To exemplify the use o§MCSool in personalized medicine, we performed gene esdignt
analysis in the different B-cell differentiation bpopulations and MM samples from several
cohorts, aiming to identify candidates that maxemithe number of MM samples affected but, at
the same time, minimizes the toxicity of the treatiy which is simulated here as the number of
healthy tissue samples affected by such targetpii@eshe large number of gMCSs stored in
gMCStool, we only spot 6 metabolic enzymes whos$gbition is selectively toxic for MM cells,

which illustrates the difficulty of identifying carr-specific metabolic processes. Among them, we
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focused orCTPSL. In vitro experiments confirmed the predictionggpfCStool in 3 MM cell lines:
2 positives forCTPSL inhibition and 1 negative faETPSL inhibition, according to the expression
of CTPS2. These results support the synthetic lethalitgPS1 andCTPS2 and open new research

area to treat MM.

Finally, despite the advance giMCSool over existing tools, there is still a long wayaithieve the
desired performance in predicting cancer-specifiseatial genes using genome-scale metabolic
networks.gMCStool reached a maximum of 35% of sensitivity and Flresaging DepMap as
gold-standard. The extension and update of exisgfgrence genome-scale metabolic networks is
obviously a critical task to improve further acayametrics. In this respect, Humanl has
established an open and active community that gesva successful and integrative response to
that need. In addition, the definition of canceedfic metabolic tasks, beyond common essential
metabolic tasks, such as biomass produtjaould open new avenues to identify essential gene
and increase sensitivity. We recently illustratdte trelevance of polyamines in different
hematological tumors, and these metabolites aretypitally considered in standard biomass
reactiond’. The development of systematic methods to extthese essential metabolites in
different contexts constitutes a challenging isskmally, the integration of metabolic and
regulatory networks is a difficult but relevantkabat has a great impact in predicting essential
genes, particularly when the proxy for activitygene expression data that could be modified due to
compensatory regulatory pathways. Making progresalli these challenges will help not only
gMCSool, but all methods in the literature to predict maceurately essential genes and response
biomarkers in order to address unmet clinical nesds$ reach our goal to provide patients more

personalized treatments.
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METHODS

Calculation of genetic Minimal Cut Sets (gM CSs) in Human 1

The reference metabolic network Humanl (version .0f4 was obtained from

https://github.com/SysBioChalmers/Human-GENHumanl involves 13,416 reactions, 8,458

metabolites and 3,628 genes. Importantly, Humariiheke 56 essential metabolic tasks for any
human cell in addition to the biomass productioypidally included in other genome-scale
metabolic reconstructions?®?® Each of them defines a list of output metabolifest must be

derived from a list of input metabolites and, ittassary, an artificial equation that is required to
support this transformation. Lower and upper bowardsalso fixed for a specific subset of reactions

involved in each metabolic task.

With this information, a different metabolic model each essential task can be built and used to
assess the effect of genetic perturbations viatipgogramming, namely by assuming the mass
balance condition and thermodynamic constrainEssential genes correspond to those single gene
knockouts leading to an infeasible linear prograngnfat least one of the required lower/upper
bounds in the metabolic task is violated). Howetag strategy is not efficient to calculate higher
order essential gene knockout perturbations (syiothethals), due to the combinatorial nature of

the problem. The gMCS approach is suitable fortés&.

For the calculation of gMCSs, we used taéculateGeneMCS function available in the COBRA

Toolbox?, available athttps://github.com/opencobra/cobratoolho¥his function requires a

metabolic model and a single target reaction tblbeked as input data. We constructed this input
data for each metabolic task following its ass@dainformation about inputs, outputs, artificial
equations and lower bounds. A detailed illustratiento how the target reaction was derived for

each metabolic task can be found in Supplementatg M.
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Note here the adaptation of Humanl to takculateGeneMCS function from COBRA leads to
slightly different metabolic models to the onegorally built Humanl. However, we checked for
each metabolic task that the essential genes in noetabolic models, obtained with the
singleGeneDeletion function available in COBRA, and the original mtsden Humanl, derived

from thecheckTasksGenes function from RAVEN?, were the same.

In order to reduce the computational cost of calig gMCSs, the resulting metabolic models for
each essential task were simplified using tagFVA function from COBRA (without any
requirement in the objective function). Finally] ablculated gMCSs were checked using the
checkTasks function available in RAVEN using the original mietdic models in Humanl. This
task was performed in order to remove possiblesfalssitive gMCSs that could arise due to the
time limit fixed in the Mixed-Integer Linear Progmming (MILP) solver used in the
calculateGeneMCS function °. These results were computed with Intel(R) Xeon@Ryer 4110
CPU @ 2.10GHz processors, limiting to 8 cores argB3of RAM. A time limit of 120 seands

was set for each solution derived from the func@atcul ateGeneMCS
Gene categorization based on RNA-seq data

In our computational approach, we denote a geressential in a particular sample when it is the
only gene expressed in at least one gMCS. Thusrder to identify essential genes for each
sample, we need to systematically decide which g@ane highly (ON) or lowly (OFF) expressed.

To that end, we developed our own methodology URIN@-seq expression data.

Our approach exploits our database of gMCSs bynaisguthat all of them should involve at least
one highly expressed gene to guarantee that tlssiocated metabolic tasks are feasible. In
particular, we assume that the gene with the higivgeession in each gMCS is the one that should
be highly expressed. Thus, we extracted the maxirexonession level in every gMCS and every

essential task and generated an empirical distoibwf highly expressed genes for each sample
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(XH). Note here that repetitions are not taken intoant and each gene contributes exactly one
value to the distribution. We considered as higitpressed those genes expressed above the Xth
percentile, referred here gacsTHX, and lowly expressed otherwise. We fixed the tho&b of
expression at 5th percentilgnicsTH5) to alleviate possible inconsistencies and incetepl

metabolic pathways in Humanl.

In addition, we used thecal T2 methodology”. To put it briefly, a gene is considered as MAYBE
ON in a specific sample whenever its expressioelléy greater than its mean expression level
across the samples of the cohort, MAYBE OFF othsgwiAdditionally, two global expression
thresholds are applied ilocalT2: genes whose expression is below the 25th peleeoitithe
distribution of expression for all samples and gem® considered as OFF, whereas those above the
75th percentile of the same distribution are coereid as ON. This global expression threshold
dominates the categorization obtained from thetivelaexpression threshold based on the mean
expression value. Note here that gocsTH5 approach is independently applied to each sample,
i.e. we identifiedgmcsTH5 for each sample and defined the subset of hightlylawly expressed
genes as those having an expression value higlleloamer thangmcsTH5, respectively. Instead,
local T2 is dependent on the cohort to categorize genethegsconsider all samples to establish
global and relative thresholds. Both thresholdingthnds are available igMCStool. They were
applied to categorize the 1244 genes that parteipaall the calculated gMCSs in the different
cohorts of patients and cell lines considered | Results section. A sensitivity analysis was
performed in Supplementary Figure 15, which shdwesdame analysis presented in Figure 2 for
several percentiles gimcsTHX (gmesTHO, gmesTH1, gmesTHS5, gmesTH10), finding robust results

for lower expression thresholds. Moreover, we &sbed the implication of normalization of TPM

for local T2 and the effect of the gene-set selection for Bth-Z5th threshold dbcal T2.
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Gene essentiality analysis using gMCSs and gene expression data

Once all gMCS have been calculated and the geneessipn values are classified as highly or
lowly expressed, gene essentiality analysis cacaoeed out. In particular, we search for gMCSs
which have exclusively one gene defined as highipressed, and the rest of genes lowly
expressed. For each gene and each task, we idgMiBS5s that contain that given gene as highly
expressed and the rest as lowly expressed. If ibeaeleast one gMCS that fulfills this condition,
the gene is considered as esseng®lCSool can create a list of essential genes and asstciate
gMCSs for each essential metabolic task in HumBioie here that gMCSs that comprise only one

gene are essential genes in all human cells.
Multiple Myeloma case study

RNA-seq data from our group consist of 37 MM patefGSE151063j*" and 35 samples from
different B cell subpopulation (GSE1148%6)Sample 57802 was removed from the study for
being detected as an outlier in a PCA analysis. REé& from the MMRF-CoMMpass has 767
samples from MM patients at diagnosis time, avéelab IA18 release. RNA-seq from 7 MM cell
lines was obtained from DepMap, release Z]fQ'l[hese cell lines are NCIH929, JIN3, KMS11,
KMS12BM, KMS28BM, MM1S and RPMI8226. RNA-seq datasvdownloaded in TPM and

profiled using both threshold methodologigstsTH5 andlocal T2.
Metabolite essentiality prediction

In order to identify essential metabolites whosedpction is disrupted through gMCSs, we only
focused on the biomass production task, due taritierlying complexity. The rest of essential
metabolic tasks are well-defined and highly spegifiepending only on a reduced number of

metabolites.
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To that end, we first defined a list of metabolitiectly related to the biomass production. As in
the biomass reaction of Humanl there are severahbolite pools, we also included their
precursors in such target list. Then, we creatsmlaexchange reaction for each target metabolite
and assessed their production through an FBA asdlyafter the removal of genes involved in
each gMCS. We extracted for each gMCS the essengtdbolites whose production is disrupted

(maximal production is zero).
Q-PCR

The expression o€TPSL and CTPS2 were analyzed by Q-PCR in MM KMS-11, KMS-12 and
NCI-H929 cell lines. RNA was extracted with TRIzBleagent (Invitrogen) according to the
manufacturer's instructions. First, cONA was systhed from 1 pg of total RNA using the
PrimeScript RT reagent kit (Perfect Real Time) (®& RRO37A, TaKaRa) following the
manufacturer’s instructions. The quality of cONAsvehecked by a multiplex PCR that amplifies
PBGD, ABL, BCR andf2-MG genes. Q-PCR was performed in a QuantStudio 5 Res PCR
System (Applied Biosystems), using 20 ng of cDNARipL, 1 uL of each specific primer at 10 uM
(CTPS1 F: TTATTGAGGCCTTCCGTCAG; CTPS1 R: GGGAAAGCEAGTCCTCTA; CTPS2

F: GCTGTCCAGGAGTGGGTTAT; CTPS2 R: CGCCTTAAACTGGAATITCT), 5 pL of
SYBR Green PCR Master Mix 2X (Cat No 4334973, AppliBiosystems) in 10 pL reaction
volume. The following program conditions were apglfor Q-PCR running: 50 °C for 2 min, 95 °C
for 60 s following by 45 cycles at 95 °C for 15rel&60 °C for 60 s; melting program, one cycle at
95 °C for 15 s, 40 °C for 60 s and 95 °C for 15Tke relative expression of each gene was

quantified by the Log 2&ACt) method using the gel@JS as an endogenous control.
Cell culture

KMS-11, KMS-12 and NCI-H929 cell lines were maintd in culture in RPMI1640 medium
(Gibco, Grand Island, NY) supplemented with 10%lfé&ovine serum (Gibco, Grand Island, NY)
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and penicillin/streptomycin (BioWhitaker, WalkeryviMD) at 372J°C in a humid atmosphere
containing 5% CO2. Cell lines were obtained frone IDSMZ or the American Type Culture
Collection (ATCC). All cell lines were authenticdtéy performing a short tandem repeat allele
profile and were tested for mycoplasma (MycoAleastrple Kit, Cambrex), obtaining no positive

results.

Small molecule synthesis of CTPSL1 inhibitor

Synthesis of compound 1 from Reioal .*

was performed by Wuxi Apptec and consisted ofehre
steps. First, to a solution of EDCI (172.07 mg, .897umol, 1.5 eq) and DMAP (73.10 mg, 598.38
umol, 1 eq) in DCM (5 mL) were added 3-methoxyail{110.54 mg, 897.57 umol, 100.49 uL, 1.5
eq). This solution was then added to 3-nitrobenaoid (0.1 g, 598.38 umol, 1 eq) and the solution
was stirred at 25°C for 3 hours. TLC (Petroleunmeetlitthyl acetate=0:1) indicated the reaction
was completed and one new spot formed. The reastaanclean according to TLC. The reaction
mixture was quenched by addition water 5 mL. Thganic layer was separated and washed with
1M aqueous HCI 5 mL, dried over &0, filtered and concentrated under reduced pregegre

a residue. Compound N-(3-methoxyphenyl)-3-nitrozzamide (150 mg, 550.95 umol, 92.07%
yield) was obtained as a yellow solid. Second, teolution of N-(3-methoxyphenyl)-3-nitro-
benzamide (150 mg, 550.95 umol, 1 eq) in THF (8 m&} added Pd/C (50 mg, 5% purity,) under
N». The suspension was degassed under vacuum aretpwith H several times. The mixture was
stirred under H2 (15 psi) at 25°C for 2 hours. T{B&troleum ether/Ethyl acetate=3:1) showed the
starting material was consumed completely. Theti@aenixture was filtered and the filtrate was
concentrated. Compound 3-amino-N-(3-methoxyphemsizamide (100 mg, 412.76 umol, 74.92%
yield) was obtained as a white solid. Finally, to solution of 3-amino-N-(3-
methoxyphenyl)benzamide (100 mg, 412.76 umol, lie@CM (5 mL) was added DIEA (106.69

mg, 825.52 umol, 143.79 uL, 2 eq) and 2-chlorodadtioride (46.62 mg, 412.76 umol, 32.83 uL,

1 eq). The mixture was stirred at O °C for 1 hr-MS showed the reaction was completed and one
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main peak with desired m/z was detected. The aactixture was quenched by additiopQH10
mL, and extracted with DCM 10 mL (5 mL * 2). Thendbined organic layers were washed with
brine 10 mL, dried over N&8Q,, filtered and concentrated under reduced presdsugeve a residue,
which was washed by MeCN (10 mL), then filtered dollect the solid. Compound 3-[(2-
chloroacetyl)amino]-N-(3-methoxyphenyl) benzamids.49 mg, 155.04 umol, 37.56% yield,
97.879% purity) was obtained as an off-white sdi®Il-MS m/z: calcd for ¢H;sCIN,O; 318.08,
m/z found 319.1 [M+H]. *H-NMR (DMSO, 400MHz):5 ppm 10.50 (br s, 1H), 10.25 (br s, 1H),
8.09 (brs, 1H), 7.82 (br d,= 8.4 Hz, 1H), 7.66 (br d,= 7.2 Hz, 1H), 7.54 - 7.42 (m, 2H), 7.36 (br

d,J=8.0 Hz, 1H), 7.30 - 7.21 (m, 1H), 6.69 (bJds 8.0 Hz, 1H), 4.28 (s, 2H), 3.75 (s, 3H).
CTPS1 inhibitor treatment and cell proliferation assay

KMS-11, KMS-12 and NCI-H929 cell lines were treateith 2uM of the CTPS1 inhibitor for 24,
48, 72 and 96 hours. After the indicated timegedtment, cell proliferation was analyzed using the
CellTiter 96 Aqueous One Solution Cell Proliferatidssay (Promega, Madison, W) following the
manufacturer’'s instructions. First, the averageth®d absorbance from the control wells was
subtracted from all other absorbance values. Dagee vealculated as the percentage of total

absorbance of treated cells/absorbance of noreteals.
I mplementation and availability

gMCStool has been developed using®Rnd Shiny. gMCSoal is hosted using the Amazon Web
Services cloud environment service and itan be publicly accessed in:

https://biotecnun.unav.es/app/gmcstod full tutorial and example for our own cohoftsamples

corresponding to B cell differentiation and MM dae found in the ‘Help’ tab ajMCStoal.

26


https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.514827; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Code availability

The code fogMCStool is available imttps://github.com/lvalcarcel/gMCStodlsing this tool, it is

possible to generate all the results presentedisratticle. Gene expression data should be axnatri

which have genes (in ENSEMBL annotation) for rowd aamples for columns.
Accession numbers and datasets

The authors declare that all data supporting tidirfigs of this study are available within the detic

in the supplementary material or in other studies.

Referenced accession: B-cell and MM RNA-seq data wlatained from GEO under accession
codes GSE151063'" and GSE114818 MMRF-CoMMpass data were generated as part of the
Multiple Myeloma Research Foundation Personalized edi®lne Initiatives

(https://research.themmrf.org andvw.themmrf.org. All cancer cell lines are public and accessible

in www.depmap.ortf*?(release 21Q2).
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