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ABSTRACT 

The development of computational tools for the systematic prediction of metabolic vulnerabilities 

of cancer cells constitutes a central question in systems biology. Here, we present gMCStool, a 

freely accessible and online tool that allows us to carry out this task in a simple, efficient and 

intuitive environment. gMCStool exploits the concept of genetic Minimal Cut Sets (gMCSs), a 

theoretical approach to synthetic lethality based on genome-scale metabolic networks, including a 

unique database of thousands of synthetic lethals computed from Human1, the most recent 

metabolic reconstruction of human cells. Based on RNA-seq data, gMCStool extends and improves 

our previously developed algorithms to predict, visualize and analyze metabolic essential genes in 

cancer, demonstrating a superior performance than competing algorithms in both accuracy and 

computational performance. A detailed illustration of gMCStool is presented for multiple myeloma 

(MM), an incurable hematological malignancy. gMCStool could identify a synthetic lethal that 

explains the dependency on CTP Synthase 1 (CTPS1) in a sub-group of MM patients. We provide 

in vitro experimental evidence that supports this hypothesis, which opens a new research area to 

treat MM.     
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INTRODUCTION 

With the increasing coverage and accuracy of reference human genome-scale metabolic 

networks1,2, the development of Constraint-based Modeling (CBM) approaches for different 

biomedical questions has significantly grown in the last years. One of the central topics in CBM has 

been cancer metabolism2–4, as it constitutes an attractive strategy to gain insights into the underlying 

metabolic dependencies of tumor cells and systematically predicts vulnerabilities. We can find a 

plethora of methods in the literature5 that first construct context-specific metabolic models (CS-

models), based on cancer -omics data, and subsequently, computationally predict gene knockout 

perturbations that sufficiently decreases growth rate or disrupts a key metabolic task for cellular 

viability (gene essentiality analysis)6,7. These methods have been successfully applied to identify 

cancer-specific essential genes in different tumors; however, there is still substantial room for 

improvement, as recently shown in Robinson et al., 20201. 

In this direction, we released a conceptually different approach based on the concept of genetic 

Minimal Cut Sets (gMCSs), which does not require the construction of CS-models and more 

generally exploits the concept of synthetic lethality8,9. In particular, gMCSs define minimal set of 

genes whose knockout would render the functioning of a given metabolic task impossible. When 

they are applied to cancer studies, we focus on metabolic tasks that compromise cellular viability 

and, thus, gMCSs convert into metabolic essential genes (gMCSs of size 1) and synthetic lethals 

(gMCSs of size greater than 1). Importantly, gMCSs are structural properties of the reference 

metabolic network and, once they are obtained, we can map –omics data to identify metabolic 

vulnerabilities and their associated response biomarkers. Using microarray expression data, we 

reported a superior performance than other algorithms in the literature to predict gene essentiality, 

according to large-scale gene silencing data from the Project Achilles10 . 
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Despite the interest in the gMCS approach since its publication8, further improvements are still 

required to make it a more practical tool in cancer research. First, there is a need for automating the 

application and visualization of the gMCS approach in a more intuitive and friendlier environment. 

Second, we need to go beyond Recon211 and generate a new database of gMCSs with Human1, the 

most recent reference human genome-scale metabolic network1. Third, our previous methodology 

to identify cancer-specific essential genes relied on microarrays data and must be adapted to RNA-

seq data, which is a more attractive and used technology for the measurement of mRNA expression.  

In order to face these challenges, we present here gMCStool, an automated computational tool that 

makes use of the gMCS approach to predict metabolic vulnerabilities in cancer based on Human1 

and RNA-seq data. We first show that gMCStool is more accurate, informative and efficient than 

competing approaches to predict cancer-specific essential genes. Then, a detailed illustration of 

gMCStool is presented for multiple myeloma (MM), an incurable hematological malignancy.  Using 

different sources of RNA-seq data, which include samples from healthy donors, MM patients and 

cell lines, we identify metabolic liabilities of MM with gMCStool. In vitro experimental work is 

presented for the inhibition of CTP synthase 1 (CTPS1), a key gene involved in the pyrimidine de 

novo synthesis, essential for cell proliferation and viability in a group of patients with MM.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

RESULTS  

gMCStool (https://biotecnun.unav.es/app/gmcstool) is a freely accessible web tool for the 

calculation of essential genes in cancer metabolism that uses genome-scale metabolic networks and 

RNA-seq data from human cells as input data. gMCStool exploits the concept of genetic Minimal 

Cut Set (gMCS), previously reported in Apaolaza et al.8,9. However, we introduce several major 

improvements in order to make gene essentiality predictions more flexible, accurate and general. 

The tool is organized in 5 different modules (Figure 1A): (i) ‘gMCS database’, (ii) ‘Upload RNA-

seq data’, (iii) ‘Predict Essential Genes’, (iv) ‘Visualization’ and (v) ‘DepMap analysis’. A detailed 

illustration of the utilization of gMCStool can be found in the Help tab. In summary, the first 3 

modules incorporate the basic functions to calculate essential genes (Figure 1B). The last two 

modules allow us to visualize essential genes and their companion biomarkers in the samples 

analyzed (Figure 1C), as well as to conduct the correlation analysis of our essentiality predictions 

with data from the Cancer Dependency Map (DepMap) (Figure 1D)10,12. Full description of these 5 

modules can be found in the ‘Help’ tab of gMCStool. We describe below the most relevant 

improvements of gMCStool at the algorithmic level and its application for the identification of 

metabolic vulnerabilities in Multiple Myeloma (MM).  
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Figure 1: Overview of the gMCStool web application. (A) Snapshot of the heading of gMCStool, 

which includes the 5 main modules (‘gMCS database’, ‘Upload RNA-seq data’, ‘Predict Essential 

Genes’, ‘Visualization’ and ‘DepMap analysis’), ‘Help’ and ‘About’ tabs; (B) 3 basic modules for 

the calculation of essential genes in gMCStool. In the first module the database of gMCSs can be 

specified; in the second module, RNA-seq data, together with sample information, can be uploaded 

in different formats; in the third module, different parameters in our algorithm can be fixed and the 

prediction of essential genes is executed and shown in table format; (C) Example heatmap of gene 

expression data that can be obtained from the fourth module: ‘Visualization’. Expression data is 

shown for the predicted essential gene (GPAT4) and its partner genes (GPAM, GPAT2, GPAT3) in a 

specific gMCS, namely {GPAT4, GPAM, GPAT2, GPAT3}, for the different samples analyzed: 

naïve B cells (NB), centroblasts (CB), centrocytes (CC), memory B cells (MEM), tonsil plasma 

cells (TPC), bone marrow plasma cells (BMPC) and Multiple Myeloma (MM). It can be observed 

that GPAT4 is an essential gene for a subgroup of MM patients (MM responders) and for bone 

marrow plasma cells (BMPC) from healthy individuals. The essentiality of GPAT4 in these samples 

is due to the fact that its partner genes are lowly expressed; (D) Example dotplot that can be 

obtained from the fifth module: ‘DepMap analysis’, where correlation studies with DepMap are 

presented. In the vertical axis we have the essentiality score of GPAT4 in DepMap for different 

human cell lines and in the horizontal axis the maximum expression level across partner genes: 

(GPAM, GPAT2, GPAT3). Each point represents a single cell line. In this case, only MM cell lines 

are shown. 

Generation of a database of gMCSs for gMCStool 

Genetic Minimal Cut Sets (gMCSs) are minimal subsets of genes whose simultaneous removal 

directly blocks a particular metabolic task8,9. In cancer studies, this target metabolic task has been 

typically the biomass reaction, whose flux represents the proliferation rate, a key phenotype to 

disrupt in cancer. However, the authors of Human1 consider not only the biomass production, but 

also other metabolic tasks that are essential for cellular viability1,13 such as the production of 

vitamin and cofactors or activity of electron transport chain, which expands the scope of in silico 

predicted metabolic vulnerabilities. As detailed in the Methods section, we adapted our previous 

algorithm for the computation of gMCSs to consider the 57 metabolic tasks defined in Human1, 

including the biomass production (Figure 2A).  
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As a result of our calculations, we enumerated more than 160,000 gMCSs for Human1 (see 

Methods section). A great part of them corresponds to biomass production (57,717); however, we 

also have gMCSs implied in other relevant metabolic tasks: de novo synthesis of key intermediates 

(32,062), beta oxidation of fatty acids (25,889) or de novo synthesis of nucleotides (15,774) (Figure 

2B). Due to its simplicity or the existence of spontaneous alternative reactions, we could not find 

gMCSs in 5 metabolic tasks (see Supplementary Table 1). The length of computed gMCSs ranges 

from 1 gene to more than 15 genes, being 7 genes the most repeated solution (Figure 2C). This 

illustrates the high degree of metabolic flexibility of human cells. Some of them are shared across 

the different metabolic tasks, obtaining a total of 97,607 unique gMCSs, which overall involve 1244 

metabolic genes (Supplementary Data 1). They were stored in gMCStool for further analysis. 

Supplementary Figure 1 shows the tab of gMCStool where the database of gMCSs, under the 

selected input parameters, can be downloaded. Note here that for biomass production we fixed the 

Ham’s growth medium, which is the one given by default in Human1 for this essential metabolic 

task. However, gMCStool provides an additional database of gMCSs for Human1 under 

unconstrained growth medium (all uptakes available in Human1). 
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Figure 2: Generation of gMCStool database of gMCSs based on Human1. (A) Using Human1, 

the most recent reconstruction of the human metabolism, a collection of metabolic models was 

generated to simulate each essential metabolic task present in human cells (task-specific GEM). 

Then, we calculated gMCSs for each task-specific GEM (task-specific gMCSs), generating a 

database of synthetic lethals for human cells that are stored in gMCStool; (B) Distribution of 

computed gMCSs among different subgroups of metabolic tasks included in Human1; (C) Barplot 

presenting the length of gMCSs included in gMCStool.  

 

Integration of RNA-seq data into gMCStool for gene essentiality analysis 

Following the concept of synthetic lethality, it is possible to predict cancer-specific essential genes 

by combining our database of gMCSs and gene expression data, as demonstrated in Apaolaza et al., 

20178. This can be done by searching for gMCSs in which all genes are lowly expressed except one 

of them that is highly expressed and essential for the situation under study (Figure 3A). Note here 
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that gMCSs of size 1 directly correspond to essential genes for any cell type under the growth 

medium considered, in this case the Ham’s medium. 

In order to identify highly and lowly expressed genes in every sample using RNA-seq data, we have 

developed our own threshold technique for gMCStool, which can be applied independently to each 

sample (cohort-independent). Our threshold strategy exploits the fact that at least one of the genes 

involved in every gMCS should be highly expressed to guarantee the performance of its associated 

metabolic task. With this in mind, we infer for each sample a potential population of highly 

expressed genes by extracting the maximum expressed gene for each gMCS. Once duplicated genes 

were eliminated, we build an empirical probability function of the expression of highly expressed 

genes for each sample and fixed the X% quantile threshold of expression for them, referred as 

gmcsTHX, to alleviate possible inconsistencies and incomplete metabolic pathways in Human1 (see 

Methods section for details, Figure 3A). We also implemented localT2, a cohort-dependent 

methodology developed in Richelle et al., 201914, which defines a threshold for each gene based on 

the observed expression distribution across the samples of the cohort. In summary, gMCStool 

incorporates these 2 thresholding approaches to categorize RNA-seq data, which is then integrated 

with our database of gMCSs to predict essential genes.  

With the aim of assessing the prediction power of gMCStool, we performed a benchmark study of 

gene essentiality in cancer. We conducted the same analysis to the one found in Robinson et al., 

20201, based on the DepMap database, which integrates RNA-seq gene expression data12 and 

CRISPR essentiality screening experiments10 for a total of 621 cell lines. To avoid bias in the 

comparison, we used the same release of DepMap than the original analysis. As in Robinson et al., 

2020, the genes in DepMap with Achilles score lower than -0.6 were defined as the gold-standard 

reference set of essential genes. We used gMCStool to upload RNA-seq and sample information 

data (Supplementary Figure 2), and to conduct gene essentiality analysis (Supplementary Figure 3). 

In our analysis, we considered the list of gMCSs from the 57 essential metabolic tasks (biomass 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

production included) and predicted essential genes with both gene expression thresholding 

approaches: gmcsTH5 and localT2 (Supplementary Data 2). We compared our predicted essential 

genes with those resulting from DepMap (gold-standard).  

As in Robinson et al.1, we calculated the accuracy, sensitivity, specificity, Matthew’s correlation 

coefficient (MCC). Note here that MCC is a more adequate performance metric than accuracy for 

cases where there is an unbalance between true positives and true negatives, as we have over 90% 

of non-essential genes. We also included the results presented in the publication of Human11, which 

used tINIT to reconstruct 621 cell-specific GEMs and predict essential genes with single gene 

knockout perturbations (referred here as tINIT). Results can be found in Figure 3B. In the light of 

the MCC obtained, it can be observed that our gMCS approach overperforms tINIT with both 

thresholding approaches considering all metabolic tasks (unpaired one-sided Wilcoxon test p-

value≤0.0001). The same result was found if we exclusively consider the essential tasks related 

with biomass production (Supplementary Figure 4). In addition, our gmcsTH5 thresholding 

approach seems more accurate and conservative than localT2, which obtains the highest results in 

sensitivity but includes too many false negatives (unpaired one-sided Wilcoxon test p-value 

≤0.0001, Supplementary Figure 4). Thus, gMCStool is more accurate than the state-of-the-art 

approach in the literature for predicting essential genes in cancer. Note here that for this gene 

essentiality study gMCStool took 36 minutes for the gmcsTH5 approach and 31 minutes for the 

localT2 approach using a standard computer. Instead, tINIT required several days, as the 

construction of CS-models is time consuming (between 16 and 83 minutes per sample). 
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Figure 3: gMCS pipeline for the calculation of essential genes for Human1. (A) RNA-seq data 

is integrated with our database of gMCSs as follows. First, a potential population of highly 

expressed genes is obtained by extracting the maximum expressed gene of each gMCS (eliminating 

duplicates). Second, the X% quantile threshold (gmcsTHX) of this empirical probability distribution 

of gene expression is determined in order to discriminate between highly (in red color) and lowly 

(in blue color) expressed genes. For the results presented here, we fixed this threshold equal to 5% 

(gmcsTH5). Finally, in order to identify essential genes, together with gMCSs of size 1, we search 

for gMCSs which only contain one highly expressed gene and the rest are lowly expressed. Results 

are summarized in a binary matrix where columns and rows are essential genes and essential 

metabolic tasks. A gene is considered as essential if it is essential in at least one essential metabolic 

task. This process is repeated for each different sample. (B) Comparison of gene essentiality 

prediction using different methodologies and Human1 for the 621 selected cell lines with available 

CRISPR screening in the DepMap database 10. tINIT is the gold standard for CS models, and our 

gMCSs approach was applied with two different gene expression thresholding strategies: gmcsTH5 

and localT2, introduced in Richelle et al., 201914. Note: MCC denotes Mathew Correlation 

Coefficient; ****/***/ns refer to the statistical significance level from an unpaired one-sided 

Wilcoxon test that compares the gMCS approach against the results obtained with tINIT, namely 

****: p-value<=0.0001, ***: p-value<=0.001, and ns: non-significant. 
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Application of gMCStool to Multiple Myeloma  

To illustrate the use of gMCStool, we performed a screening prediction of essential genes in 

Multiple Myeloma (MM). We used a previously generated dataset in our group that includes RNA-

seq data from different B cell subpopulations from healthy individuals15 and bone marrow plasma 

cells from MM patients16,17. We also considered data from the MMRF-CoMMpass project, funded 

by the Multiple Myeloma Research Foundation (MMRF), which includes RNA-seq data for 767 

MM patients at diagnosis. Finally, we obtained RNA-seq data for the 7 MM cell lines available in 

Cancer Cell Line Encyclopedia (CCLE)12 .  

We projected the RNA-seq expression profiles of the three datasets onto our database of gMCSs, 

obtaining a table which indicates the number of samples for which a gene is considered as essential 

in each tissue type in at least one of the essential metabolic tasks (Supplementary Data 3). We 

selected the MM-specific essential genes according to the following criteria: 1) to be essential in 

more than 10% of MM samples from our cohort; 2) to be essential in less than two samples from 

any healthy B cell subpopulations and less than two samples in bone marrow plasma cells, the 

healthy counterpart of myeloma cells; 3) to be essential in more than 5% of CoMMpass samples 

and 4) to be essential in one or more MM cell lines. Table 1 shows the 6 MM-specific essential 

genes identified in our analysis, including the percentages of samples in which the gene is 

considered as essential. Furthermore, we extracted the 8 gMCSs that explain the essentiality of 

these 6 genes in MM but only affect a few samples of B cell subpopulations (Supplementary 

Figures S5-S12).  
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Table 1: Specific essential genes identified in Multiple Myeloma. These genes are predicted 

essential in a sufficient percentage of samples of our MM cohort and MMRF-CoMMpass, but not in 

the samples of different B cell subpopulations obtained from healthy donors: bone marrow plasma 

cells (BMPC), tonsil plasma cells (TPC), memory B cells (MEM), centrocytes (CC), centroblasts 

(CB), naïve B cells (NB). Units are percentage of predicted samples in which a gene is essential.  

SYMBOL ENSEMBL 
NB 

(n = 5) 
CB 

(n = 7) 
CC 

(n = 7) 
MEM 
(n = 8) 

TPC 
(n = 5) 

BMPC 
(n = 3) 

MM 
(n = 37) 

CoMMpass 
(n = 767) 

CCLE 
(n = 7) 

CTPS1 ENSG00000171793 0% 0% 0% 0% 0% 0% 11% 71% 86% 

DHFR ENSG00000228716 0% 0% 0% 0% 20% 0% 11% 57% 86% 

LCAT ENSG00000213398 0% 29% 0% 0% 0% 0% 11% 7% 14% 

NMNAT3 ENSG00000163864 0% 0% 0% 0% 0% 0% 16% 28% 14% 

PC ENSG00000173599 0% 0% 0% 0% 0% 0% 32% 17% 86% 

UAP1 ENSG00000117143 0% 0% 0% 0% 0% 0% 16% 14% 29% 

From the results shown in Table 1, we focused on CTPS1 for further analysis. Figure 4A shows the 

gMCS that involves CTPS1 and CTPS2 and suggests the essentiality of CTPS1 in a subgroup of 

MM samples but not in the healthy tissues from different B cell subpopulations. Similarly, it can be 

observed the patients from CoMMpass that could be responders and non-responders to CTPS1 

inhibition based on the expression of CTPS2. The same result can be observed for the 7 MM cell 

lines considered. In addition, Figure 4B shows that the expression of CTPS2 decreases for the sub-

group of MM samples that potentially could respond to CTPS1 inhibition (MM responders). Note 

here that we used gMCStool to automatically generate these figures (Supplementary Figure 13). 

At the center of our hypothesis above is that CTPS1 and CTPS2 are synthetic lethal and, thus, the 

essentiality of CTPS1 depends on CTPS2, namely when CTPS2 is lowly expressed, CTPS1 

becomes essential. We assessed this hypothesis with DepMap data available in gMCStool, finding a 

positive and significant correlation between the Achilles score of CTPS1 and the expression of 

CTPS2 (rho = 0.247, p-val = 2.5e-13, Supplementary Figure 14), as detailed in Figure 4C. This 

provides further support to our hypothesis of synthetic lethality of CTPS1 and CTPS2.  
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Figure 4: Prediction of essentiality of CTPS1 in MM with gMCStool. (A) Selected gMCS: 

{ CTPS1, CTPS2} and gene expression in our cohort of patients, MMRF-CoMMpass and selected 

MM Cell Lines; (B) Boxplot of expression of the CTPS1 and CTPS2 genes in the B cell 

differentiation and MM samples; (C) Correlation between the essentiality of CTPS1 (CRISPR 

knockout screen data, DepMap) and the expression of CTPS2 in log2(TPM+1). (D) qPCR-RT of 

CTPS1 and CTPS2 expression in the selected cell lines. Data are referred to GUS gene. Full 

experimental results are found in Supplementary Table 3. (E) Proliferation of H929, KMS11 and 

KMS12 cell lines treated with CTPS1 inhibitor. The proliferation percentage refers to non-treated 

cells (black line). Data represent mean�±�standard deviation of at least three experiments. Note: 

****/ns refer to the statistical significance level from an unpaired one-sided Wilcoxon test, namely 

****: p-value<=0.0001 and ns: non-significant.  

Furthermore, gMCStool provides the associated metabolic task for each gMCS. In this particular 

case, the inhibition of CTPS1 and CTPS2 blocks several tasks: CTP (cytidine triphosphate) de novo 

synthesis, dCTP (deoxycytidine triphosphate) de novo synthesis and biomass production, which 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

turns out to disrupt the production of CTP, dCMP (deoxycytidine monophosphate), DNA and RNA. 

Based on this information, we performed an in silico simulation for the addition of cytidine to the 

growth medium, showing a rescue of proliferation after the inhibition of CTPS1 and CTPS2, which 

illustrates how gMCStool provides further evidence for predicted synthetic lethals (Supplementary 

Table 2).  

Finally, we carried out in vitro experimental validation of the essentiality of CTPS1 in three MM 

cell lines. For two of them, H929 and KMS11, gMCStool had predicted their sensitivity to CTPS1 

inhibition due to their low expression of CTPS2, while for one of them, KMS12, gMCStool had 

predicted its resistance to CTPS1 inhibition due to its high expression of CTPS2 (Figure 4D, 

Supplementary Table 3). Specifically, we synthetized a CTPS1 inhibitor, previously developed by 

Rao and colleagues19, and assessed its effect in the proliferation of the three cell lines mentioned 

above. As a result, H929 and KMS11 reduced their proliferation more than 50% after 4 days of 

culture and no alterations were obtained for KMS12 (Figure 4E). These positives results reinforce 

the predictive power of gMCStool and open new research avenues to treat MM.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

DISCUSSION 

In this work, we present gMCStool, a computational tool for the prediction of metabolic 

vulnerabilities in cancer based on gMCSs, a network-based approach to synthetic lethality, and 

RNA-seq data. gMCStool incorporates technical improvements in our previously developed 

algorithms8,9 and addresses the need of efficiently automating the application and visualization of 

the gMCS approach in a simple and intuitive environment.  

Importantly, gMCStool stores more than 160,000 gMCSs that block at least one essential metabolic 

task of Human1, the most recent genome-scale metabolic network of human cells. The computation 

of this database of gMCSs substantially simplifies the process of identifying cancer-specific 

essential genes, which can be now extracted by correctly mapping gene expression data onto them. 

This strategy makes gene essentiality analysis more accessible and natural to researchers less 

familiar with the field of constraint-based modeling.  

In addition, gMCStool allows us to perform gene essentiality analysis more efficiently than other 

algorithms in the literature, as we avoid the step of constructing context-specific metabolic models, 

which makes use of time-consuming optimization techniques. For example, gMCStool required 36 

minutes to calculate the essential genes for all the 621 cancer cell lines available in DepMap, 

whereas tINIT needs between 30-60 minutes to reconstruct the metabolic model of one single cell 

line using RNA-seq data. Thus, gMCStool substantially reduces the computational requirements to 

conduct gene essentiality analysis in cancer. Specifically, we could analyze the samples in the 

Results section, which add up to more than 1400 samples, considering DepMap and different MM 

cohorts, in less than 80 minutes with a standard computer. Overall, gMCStool constitutes an 

effective and friendly online tool to search for metabolic vulnerabilities in cancer research.  

In addition to make gMCStool a practical tool for researchers in cancer metabolism, we extended 

our previously developed algorithms in order to: 1) consider that Human1 involves different 
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essential metabolic tasks beyond biomass production, typical target in network-based gene 

essentiality analysis; 2) predict essential genes based on RNA-seq data, namely by proposing a 

novel approach to discriminate between highly and lowly expressed genes (gmcsTHX). These 

advances allowed us to compare the accuracy of gMCStool with tINIT1,13,20, the approach 

developed by the authors of Human1 in order to build CS metabolic models of cancer cells and 

conduct gene essentiality analysis. Importantly, this study shows that gMCStool is significantly 

more accurate that tINIT when compared with gene essentiality screens available in DepMap.  

Another advantage of gMCStool is its visualization capabilities. gMCStool exploits the fact that 

essential genes are derived from specific gMCSs, where one gene is highly expressed and the rest 

genes are lowly expressed. Thus, genes involved in gMCSs do not only allow us to predict essential 

genes, but also response biomarkers for their inhibition. This idea underlies the different plots that 

can be extracted from gMCStool, which facilitates the interpretation of our computational 

predictions. In this direction, gMCStool also outputs essential tasks and metabolite biosynthesis that 

are disrupted by gMCSs, which are particularly informative to construct testable hypotheses about 

the mechanism behind predicted synthetic lethals. Note here that this might be of interest due to the 

fact that the composition of the human biomass is typically defined as universal for all cells, but 

some authors think that this might be an incorrect assumption21–25, suggesting that it could be 

context-specific and some metabolites are more relevant than others for different tumors.  

To exemplify the use of gMCStool in personalized medicine, we performed gene essentiality 

analysis in the different B-cell differentiation subpopulations and MM samples from several 

cohorts, aiming to identify candidates that maximizes the number of MM samples affected but, at 

the same time, minimizes the toxicity of the treatment, which is simulated here as the number of 

healthy tissue samples affected by such target. Despite the large number of gMCSs stored in 

gMCStool, we only spot 6 metabolic enzymes whose inhibition is selectively toxic for MM cells, 

which illustrates the difficulty of identifying cancer-specific metabolic processes. Among them, we 
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focused on CTPS1. In vitro experiments confirmed the predictions of gMCStool in 3 MM cell lines: 

2 positives for CTPS1 inhibition and 1 negative for CTPS1 inhibition, according to the expression 

of CTPS2. These results support the synthetic lethality of CTPS1 and CTPS2 and open new research 

area to treat MM.   

Finally, despite the advance of gMCStool over existing tools, there is still a long way to achieve the 

desired performance in predicting cancer-specific essential genes using genome-scale metabolic 

networks. gMCStool reached a maximum of 35% of sensitivity and F1 score using DepMap as 

gold-standard. The extension and update of existing reference genome-scale metabolic networks is 

obviously a critical task to improve further accuracy metrics. In this respect, Human1 has 

established an open and active community that provides a successful and integrative response to 

that need. In addition, the definition of cancer-specific metabolic tasks, beyond common essential 

metabolic tasks, such as biomass production26, could open new avenues to identify essential genes 

and increase sensitivity. We recently illustrated the relevance of polyamines in different 

hematological tumors, and these metabolites are not typically considered in standard biomass 

reactions27. The development of systematic methods to extract these essential metabolites in 

different contexts constitutes a challenging issue. Finally, the integration of metabolic and 

regulatory networks is a difficult but relevant task that has a great impact in predicting essential 

genes, particularly when the proxy for activity is gene expression data that could be modified due to 

compensatory regulatory pathways. Making progress in all these challenges will help not only 

gMCStool, but all methods in the literature to predict more accurately essential genes and response 

biomarkers in order to address unmet clinical needs and reach our goal to provide patients more 

personalized treatments.   
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METHODS 

Calculation of genetic Minimal Cut Sets (gMCSs) in Human 1 

The reference metabolic network Human1 (version 1.4.0)1 was obtained from 

https://github.com/SysBioChalmers/Human-GEM. Human1 involves 13,416 reactions, 8,458 

metabolites and 3,628 genes. Importantly, Human1 defines 56 essential metabolic tasks for any 

human cell in addition to the biomass production, typically included in other genome-scale 

metabolic reconstructions11,28,29. Each of them defines a list of output metabolites that must be 

derived from a list of input metabolites and, if necessary, an artificial equation that is required to 

support this transformation. Lower and upper bounds are also fixed for a specific subset of reactions 

involved in each metabolic task.  

With this information, a different metabolic model for each essential task can be built and used to 

assess the effect of genetic perturbations via linear programming, namely by assuming the mass 

balance condition and thermodynamic constraints30. Essential genes correspond to those single gene 

knockouts leading to an infeasible linear programming (at least one of the required lower/upper 

bounds in the metabolic task is violated). However, this strategy is not efficient to calculate higher 

order essential gene knockout perturbations (synthetic lethals), due to the combinatorial nature of 

the problem. The gMCS approach is suitable for this task9.  

For the calculation of gMCSs, we used the calculateGeneMCS function available in the COBRA 

Toolbox31, available at https://github.com/opencobra/cobratoolbox/. This function requires a 

metabolic model and a single target reaction to be blocked as input data. We constructed this input 

data for each metabolic task following its associated information about inputs, outputs, artificial 

equations and lower bounds. A detailed illustration as to how the target reaction was derived for 

each metabolic task can be found in Supplementary Note 1. 
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Note here the adaptation of Human1 to the calculateGeneMCS function from COBRA leads to 

slightly different metabolic models to the ones originally built Human1. However, we checked for 

each metabolic task that the essential genes in our metabolic models, obtained with the 

singleGeneDeletion function available in COBRA, and the original models in Human1, derived 

from   the checkTasksGenes function from RAVEN32, were the same. 

In order to reduce the computational cost of calculating gMCSs, the resulting metabolic models for 

each essential task were simplified using the fastFVA function from COBRA (without any 

requirement in the objective function). Finally, all calculated gMCSs were checked using the 

checkTasks function available in RAVEN using the original metabolic models in Human1. This 

task was performed in order to remove possible false positive gMCSs that could arise due to the 

time limit fixed in the Mixed-Integer Linear Programming (MILP) solver used in the 

calculateGeneMCS function 9. These results were computed with Intel(R) Xeon(R) Silver 4110 

CPU @ 2.10GHz processors, limiting to 8 cores and 8 GB of RAM. A time limit of 120 seconds 

was set for each solution derived from the function CalculateGeneMCS.  

Gene categorization based on RNA-seq data  

In our computational approach, we denote a gene as essential in a particular sample when it is the 

only gene expressed in at least one gMCS. Thus, in order to identify essential genes for each 

sample, we need to systematically decide which genes are highly (ON) or lowly (OFF) expressed. 

To that end, we developed our own methodology using RNA-seq expression data.  

Our approach exploits our database of gMCSs by assuming that all of them should involve at least 

one highly expressed gene to guarantee that their associated metabolic tasks are feasible. In 

particular, we assume that the gene with the highest expression in each gMCS is the one that should 

be highly expressed. Thus, we extracted the maximum expression level in every gMCS and every 

essential task and generated an empirical distribution of highly expressed genes for each sample 
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(XH). Note here that repetitions are not taken into account and each gene contributes exactly one 

value to the distribution. We considered as highly expressed those genes expressed above the Xth 

percentile, referred here as gmcsTHX, and lowly expressed otherwise. We fixed the threshold of 

expression at 5th percentile (gmcsTH5) to alleviate possible inconsistencies and incomplete 

metabolic pathways in Human1.  

In addition, we used the localT2 methodology14. To put it briefly, a gene is considered as MAYBE 

ON in a specific sample whenever its expression level is greater than its mean expression level 

across the samples of the cohort, MAYBE OFF otherwise. Additionally, two global expression 

thresholds are applied in localT2: genes whose expression is below the 25th percentile of the 

distribution of expression for all samples and genes are considered as OFF, whereas those above the 

75th percentile of the same distribution are considered as ON. This global expression threshold 

dominates the categorization obtained from the relative expression threshold based on the mean 

expression value. Note here that our gmcsTH5 approach is independently applied to each sample, 

i.e.  we identified gmcsTH5 for each sample and defined the subset of highly and lowly expressed 

genes as those having an expression value higher and lower than gmcsTH5, respectively. Instead, 

localT2 is dependent on the cohort to categorize genes, as they consider all samples to establish 

global and relative thresholds. Both thresholding methods are available in gMCStool. They were 

applied to categorize the 1244 genes that participate in all the calculated gMCSs in the different 

cohorts of patients and cell lines considered in the Results section. A sensitivity analysis was 

performed in Supplementary Figure 15, which shows the same analysis presented in Figure 2 for 

several percentiles of gmcsTHX (gmcsTH0, gmcsTH1, gmcsTH5, gmcsTH10), finding robust results 

for lower expression thresholds. Moreover, we also tested the implication of normalization of TPM 

for localT2 and the effect of the gene-set selection for the 25th-75th threshold of localT2. 
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Gene essentiality analysis using gMCSs and gene expression data 

Once all gMCS have been calculated and the gene expression values are classified as highly or 

lowly expressed, gene essentiality analysis can be carried out. In particular, we search for gMCSs 

which have exclusively one gene defined as highly expressed, and the rest of genes lowly 

expressed. For each gene and each task, we identify gMCSs that contain that given gene as highly 

expressed and the rest as lowly expressed. If there is at least one gMCS that fulfills this condition, 

the gene is considered as essential. gMCStool can create a list of essential genes and associated 

gMCSs for each essential metabolic task in Human1. Note here that gMCSs that comprise only one 

gene are essential genes in all human cells.  

Multiple Myeloma case study 

RNA-seq data from our group consist of 37 MM patients (GSE151063)16,17 and 35 samples from 

different B cell subpopulation (GSE114816)15. Sample 57802 was removed from the study for 

being detected as an outlier in a PCA analysis. RNA-seq from the MMRF-CoMMpass has 767 

samples from MM patients at diagnosis time, available in IA18 release. RNA-seq from 7 MM cell 

lines was obtained from DepMap, release 21Q112. These cell lines are NCIH929, JJN3, KMS11, 

KMS12BM, KMS28BM, MM1S and RPMI8226. RNA-seq data was downloaded in TPM and 

profiled using both threshold methodologies: gmcsTH5 and localT2.  

Metabolite essentiality prediction 

In order to identify essential metabolites whose production is disrupted through gMCSs, we only 

focused on the biomass production task, due to its underlying complexity. The rest of essential 

metabolic tasks are well-defined and highly specific, depending only on a reduced number of 

metabolites.  
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To that end, we first defined a list of metabolites directly related to the biomass production. As in 

the biomass reaction of Human1 there are several metabolite pools, we also included their 

precursors in such target list. Then, we created a sink exchange reaction for each target metabolite 

and assessed their production through an FBA analysis30 after the removal of genes involved in 

each gMCS. We extracted for each gMCS the essential metabolites whose production is disrupted 

(maximal production is zero). 

Q-PCR 

The expression of CTPS1 and CTPS2 were analyzed by Q-PCR in MM KMS-11, KMS-12 and 

NCI-H929 cell lines. RNA was extracted with TRIzol Reagent (Invitrogen) according to the 

manufacturer's instructions. First, cDNA was synthesized from 1 µg of total RNA using the 

PrimeScript RT reagent kit (Perfect Real Time) (Cat No RR037A, TaKaRa) following the 

manufacturer’s instructions. The quality of cDNA was checked by a multiplex PCR that amplifies 

PBGD, ABL, BCR and β2-MG genes. Q-PCR was performed in a QuantStudio 5 Real-Time PCR 

System (Applied Biosystems), using 20 ng of cDNA in 2 µL, 1 µL of each specific primer at 10 µM 

(CTPS1 F: TTATTGAGGCCTTCCGTCAG; CTPS1 R: GGGAAAGCCCAAGTCCTCTA; CTPS2 

F: GCTGTCCAGGAGTGGGTTAT; CTPS2 R: CGCCTTAAACTGGAATTGTCT), 5 µL of 

SYBR Green PCR Master Mix 2X (Cat No 4334973, Applied Biosystems) in 10 µL reaction 

volume. The following program conditions were applied for Q-PCR running: 50 ºC for 2 min, 95 ºC 

for 60 s following by 45 cycles at 95 °C for 15 s and 60 °C for 60 s; melting program, one cycle at 

95 °C for 15 s, 40 °C for 60 s and 95 °C for 15 s. The relative expression of each gene was 

quantified by the Log 2(-ΔΔCt) method using the gene GUS as an endogenous control.  

Cell culture 

KMS-11, KMS-12 and NCI-H929 cell lines were maintained in culture in RPMI1640 medium 

(Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY) 
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and penicillin/streptomycin (BioWhitaker, Walkersvill, MD) at 37�°C in a humid atmosphere 

containing 5% CO2. Cell lines were obtained from the DSMZ or the American Type Culture 

Collection (ATCC). All cell lines were authenticated by performing a short tandem repeat allele 

profile and were tested for mycoplasma (MycoAlert Sample Kit, Cambrex), obtaining no positive 

results. 

Small molecule synthesis of CTPS1 inhibitor 

Synthesis of compound 1 from Rao et al.19 was performed by Wuxi Apptec and consisted of three 

steps. First, to a solution of EDCI (172.07 mg, 897.57 umol, 1.5 eq) and DMAP (73.10 mg, 598.38 

umol, 1 eq) in DCM (5 mL) were added 3-methoxyaniline (110.54 mg, 897.57 umol, 100.49 uL, 1.5 

eq). This solution was then added to 3-nitrobenzoic acid (0.1 g, 598.38 umol, 1 eq) and the solution 

was stirred at 25°C for 3 hours. TLC (Petroleum ether: Ethyl acetate=0:1) indicated the reaction 

was completed and one new spot formed. The reaction was clean according to TLC. The reaction 

mixture was quenched by addition water 5 mL. The organic layer was separated and washed with 

1M aqueous HCl 5 mL, dried over Na2SO4, filtered and concentrated under reduced pressure to give 

a residue.  Compound N-(3-methoxyphenyl)-3-nitro-benzamide (150 mg, 550.95 umol, 92.07% 

yield) was obtained as a yellow solid. Second, to a solution of N-(3-methoxyphenyl)-3-nitro-

benzamide (150 mg, 550.95 umol, 1 eq) in THF (8 mL) was added Pd/C (50 mg, 5% purity,) under 

N2. The suspension was degassed under vacuum and purged with H2 several times. The mixture was 

stirred under H2 (15 psi) at 25°C for 2 hours. TLC (Petroleum ether/Ethyl acetate=3:1) showed the 

starting material was consumed completely. The reaction mixture was filtered and the filtrate was 

concentrated. Compound 3-amino-N-(3-methoxyphenyl) benzamide (100 mg, 412.76 umol, 74.92% 

yield) was obtained as a white solid. Finally, to a solution of 3-amino-N-(3-

methoxyphenyl)benzamide (100 mg, 412.76 umol, 1 eq) in DCM (5 mL) was added DIEA (106.69 

mg, 825.52 umol, 143.79 uL, 2 eq) and 2-chloroacetyl chloride (46.62 mg, 412.76 umol, 32.83 uL, 

1 eq). The mixture was stirred at 0 °C for 1 hr. LC-MS showed the reaction was completed and one 
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main peak with desired m/z was detected. The reaction mixture was quenched by addition H2O 10 

mL, and extracted with DCM 10 mL (5 mL * 2). The combined organic layers were washed with 

brine 10 mL, dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue, 

which was washed by MeCN (10 mL), then filtered to collect the solid. Compound 3-[(2-

chloroacetyl)amino]-N-(3-methoxyphenyl) benzamide (50.49 mg, 155.04 umol, 37.56% yield, 

97.879% purity) was obtained as an off-white solid. ESI-MS m/z: calcd for C16H15ClN2O3 318.08, 

m/z found 319.1 [M+H]+. 1H-NMR (DMSO, 400MHz): δ ppm 10.50 (br s, 1H), 10.25 (br s, 1H), 

8.09 (br s, 1H), 7.82 (br d, J = 8.4 Hz, 1H), 7.66 (br d, J = 7.2 Hz, 1H), 7.54 - 7.42 (m, 2H), 7.36 (br 

d, J = 8.0 Hz, 1H), 7.30 - 7.21 (m, 1H), 6.69 (br d, J = 8.0 Hz, 1H), 4.28 (s, 2H), 3.75 (s, 3H). 

CTPS1 inhibitor treatment and cell proliferation assay 

KMS-11, KMS-12 and NCI-H929 cell lines were treated with 2µM of the CTPS1 inhibitor for 24, 

48, 72 and 96 hours. After the indicated times of treatment, cell proliferation was analyzed using the 

CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega, Madison, W) following the 

manufacturer’s instructions. First, the average of the absorbance from the control wells was 

subtracted from all other absorbance values. Data were calculated as the percentage of total 

absorbance of treated cells/absorbance of non-treated cells. 

Implementation and availability  

gMCStool has been developed using R33 and Shiny34. gMCStool is hosted using the Amazon Web 

Services cloud environment service and it can be publicly accessed in: 

https://biotecnun.unav.es/app/gmcstool . A full tutorial and example for our own cohort of samples 

corresponding to B cell differentiation and MM can be found in the ‘Help’ tab of gMCStool.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514827doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514827
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Code availability 

The code for gMCStool is available in https://github.com/lvalcarcel/gMCStool. Using this tool, it is 

possible to generate all the results presented in this article. Gene expression data should be a matrix 

which have genes (in ENSEMBL annotation) for rows and samples for columns.  

Accession numbers and datasets 

The authors declare that all data supporting the findings of this study are available within the article, 

in the supplementary material or in other studies.  

Referenced accession: B-cell and MM RNA-seq data was obtained from GEO under accession 

codes GSE15106316,17 and GSE11481615. MMRF-CoMMpass data were generated as part of the 

Multiple Myeloma Research Foundation Personalized Medicine Initiatives 

(https://research.themmrf.org and www.themmrf.org). All cancer cell lines are public and accessible 

in www.depmap.org10,12 (release 21Q2).  
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