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Abstract 

Cell-cell communication involves multiple classes of molecules, diverse interacting cells, and 

complex spatiotemporal dynamics. While this communication can be inferred from single-cell 

RNA-seq, no computational methods can account for both protein and metabolite ligands 

simultaneously, while also accounting for the temporal dynamics. We adapted Tensor-cell2cell 

here to study several time points simultaneously and jointly incorporate both ligand types. Our 

approach detects temporal dynamics of cell-cell communication during brain development, 

allowing for the detection of the concerted use of key protein and metabolite ligands by pertinent 

interacting cells. 
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Main 

Cell-cell communication (CCC) is multimodal and dynamic, involving both small molecule and 

protein signals integrated with fine spatiotemporal coordination to drive multicellular functions. 

Although single-cell transcriptomics has enabled computational methods to infer cell-cell 

communication from gene expression1, these approaches have mainly focused on protein-protein 

interactions defining ligand-receptor (LR) pairs that cells can use to communicate. Thus, 

computational approaches are needed to untangle complex dynamics of CCC involving both 

proteins and metabolites simultaneously.  

 

Two recent efforts have helped to incorporate the use of non-protein ligands or metabolites for 

inferring CCC2,3, enabling the study of these molecules from single-cell transcriptomics. However, 

it has remained unclear how to integrate protein- and metabolite-mediated CCC to perform 

analyses accounting for both simultaneously. Unlike CCC mediated by protein ligands, which can 

be inferred directly from the expression levels of the encoding genes encoding, CCC mediated 

by metabolite ligands is indirectly inferred from the corresponding enzymes that could either 

produce or consume them. Thus, the resulting communication scores of proteins and metabolites 

extracted from gene expression represent distinct activities of LR pairs, being only informative in 

isolation due to differences in the scale of values between protein- and metabolite-based 

communication scores. In addition, these tools do not account for temporal coordination of LR 

pairs; rather, only up to two samples can be accounted for at a time, preventing insights of protein 

and metabolite ligands acting concertly and limiting the analysis to be differential between up to 

two time points. 

 

To address these challenges, here we adapt Tensor-cell2cell4 to integrate both proteins and 

metabolites as the ligands mediating the intercellular interactions. Briefly, Tensor-cell2cell is a 

tool for studying complex CCC patterns and dynamics. Distinct context-dependent patterns are 

summarized by signatures or factors that identify LR pairs which act in specific combinations of 

sender-receiver cell types. To integrate the protein- and metabolite-based scores for joint 

assessment of changes in CCC, we generate a 4D-communication tensor wherein the mediator 

molecules include proteins and metabolites as ligands, and their communication scores are 

transformed to be comparable (Fig. 1). First, scores are separately inferred using cell2cell
5 for 

protein-mediated CCC and MEBOCOST2 for metabolite-mediated CCC. Since each method is 

designed for the distinct types of molecule, they output different communication score distributions 

(Supplementary Fig. 1a). Then, we built a separate 4D-communication tensor for the protein-

protein and metabolite-protein LR pairs (Figs. 1a,b). Next, we transform their values using a 

regularization approach6 (see Methods). After this transformation, the communication scores 

between the two classes of LR pairs were comparable in terms of scale of values (Supplementary 

Fig. 1b). They further became more similar in terms of distribution types, but with differences in 

their skewness and kurtosis (see Supplementary Notes). Thus, the resulting 4D tensor with both 

classes of ligands (Fig.1c) allows Tensor-cell2cell to jointly assess the signaling activities coming 

from these two kinds of molecules, enabling a better understanding of how they are 

interconnected and the extent to which they follow similar patterns. 
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Fig. 1. Integration of communication scores from protein- and metabolite-based inference. (a) Communication 

scores are inferred separately for protein- and metabolite-mediated interactions using cell2cell and MEBOCOST, 

respectively. A 4D-communication tensor is built in each case using the resulting scores. (b) Each 4D-communication 

tensor is transformed by a regularization approach as described in Methods, scaling scores between 0 and 1. (c) Then, 

both tensors are concatenated on the ligand-receptor pairs axis, generating a joint 4D-communication tensor. 

 

To illustrate the utility of our approach, we applied it to study brain development. This complex 

temporal process involves a sequence of stages that generate a wide variety of neural and non-

neural cell types. These cell types must be produced in the correct number, and with the proper 

spatiotemporal dynamics7; dynamics that are interconnected with the protein and metabolite 

ligands transmitted between the different cell types in the brain. Hence, using multiple time points 

that represent different stages of development of a brain cortical organoid model8, Tensor-cell2cell 

detected six main signatures of the dynamics of CCC occurring during brain development (factors 

in Fig. 2a). Each signature distinguishes CCC between different cell types and involves key 

protein and metabolite ligand-receptor interactions depending on the development stage that 

these dynamics represent.  
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Fig. 2. Main coordinated dynamics of protein- and metabolite-mediated cell-cell communication in brain 

development. (a) Tensor decomposition of the joint 4D-communication tensor including both proteins and metabolites 

as the ligands. Each row indicates a factor obtained with Tensor-cell2cell, wherein the y-axis represents the loadings 

(conceptually, the importance) of the elements (x-axis) included in the respective dimensions (columns). Bars are 

colored as indicated in the legend. The number of factors to consider was evaluated through an elbow analysis 
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(Supplementary Fig. 4). (b) Heatmap summarizing the joint loadings for sender-receiver cell pairs in each of the factors. 

Higher values indicate that a given directed pair is one of the main actors in the factor. A hierarchical clustering was 

performed on the cell-cell pairs given their loadings across factors. These joint loadings for the directed sender-receiver 

cell pairs were computed as the outer product of the loadings of sender and receiver cells in (a). (c) Heatmap showing 

protein and metabolite LR pairs that are the main mediators per factor. Only LR pairs with a loading value greater than 

0.1 in at least one factor are shown. A hierarchical clustering was performed on the LR pairs given their loadings across 

factors. 

 

The signatures of CCC dynamics in brain development captured by Tensor-cell2cell involve either 

specific time points (factors 1, 5, and 6) or changes across time points (factors 2-4), which are 

linked to different ligand-receptor and cell-cell interactions (see a summary of these dynamics in 

Supplementary Table 1, and further details in the Supplementary Notes). Particularly, factor 1 

captures communication in the first month including all cell types except GABAergic neurons 

(Figs. 2a,b), a cell type that is virtually absent in the first month (Supplementary Fig. 2c). Mediators 

in factor 1 encompass a wide range of molecules (Fig. 2c), but the main actors correspond to 

midkine (MDK), pleiotrophin (PTN), ephrins (EFNA and EFNB), and CD99. Meanwhile, factors 5 

and 6 capture communication in the third month. Factor 5 is associated with receiver cells that 

are not progenitors, wherein GABAergic neurons are important (highest loadings in the receiver 

dimension, Fig. 2a). Tensor-cell2cell also links this factor with the use of ephrin/Eph and Wnt by 

neurons (Fig. 2c). In contrast, factor 6 is associated with progenitors as the main receiver cells, 

excluding GABAergic neurons as main receivers (Figs. 2a,b). Here, delta-like/Notch and GABA 

are important actors on progenitors during the third month of development (Fig. 2c). Additionally, 

MDK, PTN, CD99, retinal and adenosine act on factors 5 and 6 (Fig. 2c). 

 

Regarding CCC inferred to increase across time, factor 2 is associated with communication of 

GABAergic and Glutamatergic neurons, and intermediate progenitors (IPs) as both senders and 

receivers, and glial cells as additional receivers (Figs. 2a,b). Important molecular mediators 

correspond to MDK, PTN, NCAM1, CADM1, NRXN/NLGN, ephrin/Eph, retinal, iron, GABA, and 

testosterone. Factors 3 and 4 are primarily associated with progenitors and glial cells as the main 

sender and receiver cells, respectively. Progenitors and glial cells send signals to all cells except 

progenitors in factor 3, including mediators such as MDK, PTN, NCAM1, CADM1, ephrins, retinal, 

iron, GABA, and BMP7. Meanwhile, factor 4 identifies signaling from all cell types to progenitors 

and glial cells, where leukotriene has a crucial role (Fig. 2c). MDK, PTN, and CD99 are important 

in this factor as well (Fig. 2c), showing their central role in brain development9. 

 

Our adapted approach is uniquely capable of detecting concerted activities of specific protein and 

metabolite ligands. For example, interactions of MDK and retinal with their cognate receptors 

cluster together across factors (Fig. 2c). MDK is encoded by a retinoic acid (RA)-responsive 

gene9, and retinal is the precursor of RA, a molecule that has a crucial role during brain 

development10, aligning with our data-driven results that suggest these two ligands act in concert. 

Moreover, Tensor-cell2cell reveals that delta-like/Notch and GABA are important mediators of 

CCC involving progenitors as the main receiver cells in the third month of development (factor 6 

in Fig. 2). Notch signaling at this point maintains a proliferative state of progenitors11 that help 

generate a proper number of cells during early stages while blocking differentiation into 

neurons7,12. Similarly, GABA plays an important role in promoting proliferation of undifferentiated 
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neural progenitors13. Thus, our approach reveals biologically meaningful coordination of protein- 

and metabolite-mediated CCC by which both ligand classes together deliver synergistic biological 

information. 

 

Using enrichment analysis, we also demonstrate that the factors detected by Tensor-cell2cell 

represent higher-order functions occurring at different stages of brain development. For instance, 

we found that neurogenesis, neuron differentiation, axon development, morphogenesis, among 

other related processes are repeated in factors 2 and 5 (Supplementary Fig. 3), but associated 

with different time points (Fig. 2a). Factor 5 captures CCC that seems associated with neuron 

differentiation and earlier synapse formation between neurons, while factor 2 involves signals that 

promote cell-cell contact and consolidate differentiation and synapse formation (Fig. 2c and 

Supplementary Fig. 3). Furthermore, factors 4 and 6 encompass development and signaling 

regulation in general (Supplementary Fig. 3), wherein progenitors and glial cells are the main 

receivers (Fig. 2a). Interestingly, factor 6 represents month 3 and involves Notch signaling that 

seems to inhibit differentiation of these cells7,12, while factor 4 represents months 6 and 10, and 

mainly involves leukotriene, which has an important role in inducing differentiation into neurons14 

(Fig. 2c). Thus, these two factors seem to capture CCC reflecting a transition of progenitors from 

a proliferative to a differentiating state. 

 

By adapting Tensor-cell2cell to integrate cell2cell
5 and MEBOCOST2 scoring methods, we 

demonstrated that the temporal dynamics of both protein- and metabolite-mediated CCC can be 

jointly inferred and analyzed from single-cell omics. Applying our approach to decipher different 

types of CCC during brain cortical organoid development8, Tensor-cell2cell found concerted 

dynamics of protein- and metabolite-mediated CCC. Key proteins and metabolites were linked to 

cells and time points in a biologically meaningful manner. While we previously demonstrated that 

Tensor-cell2cell is robust to different protein-based communication scoring methods4, we cannot 

test its sensitivity to metabolite-based communication scores due to the scarcity of such methods. 

Thus, it is important to consider the differences that future tools for inferring metabolite-mediated 

CCC could introduce. 

 

Our method recapitulated, in one analysis, multiple results discovered across many studies about 

brain development. Our analysis revealed proteins such as MDK, PTN, ephrins, CD99, Wnt, 

NOTCH, and neurexin-neuroligin, and metabolites such as retinal, GABA, and leukotriene to be 

important in brain development (CCC dynamics summarized in Supplementary Table 1). This is 

consistent with previous experimental evidence (see Supplementary Notes) and demonstrates 

the utility of jointly assessing protein- and metabolite- ligands as CCC mediators. We gain further 

novelty by analyzing CCC temporal dynamics across multiple time points, rather than exploring 

changes in a static manner. Finally, in addition to brain development, our approach can be applied 

to diverse datasets, enabling mechanistic insights into the dynamic CCC underlying organ 

development or other temporal biological processes across normal and dysregulated conditions 

(e.g. mutations, different growth conditions, etc.).  
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Methods 

Preprocessing of the RNA-seq data 

Raw data (GEO accession number GSE130238) from 1, 3, 6, and 10-month brain organoids8 

were processed using the Seurat v3.0 package15. To annotate single cells, the following pipeline 

was followed: Genes from individual time points that were not detected in at least 3 cells were 

discarded. Data from each time point were merged and cells with fewer than 200 genes, more 

than 6000 genes, or more than 7.5% mitochondrial genes were discarded. Then, data were scaled 

to 10,000 transcripts per cell and log transformed using the NormalizeData function. Most variable 

genes were found using FindVariableFeatures with default parameters, and used as input of the 

ScaleData function followed by Principal Component Analysis (PCA) across time points. Using 

the PCA embeddings, all time points were batch-corrected and integrated with Harmony16 using 

the RunHarmony function with default parameters. After integration, clustering analysis was 

performed with default parameters on the Harmony embeddings. Resolution was set to 0.5 and 

only the first 20 harmonized components were considered for finding neighbor cells. In this case, 

17 clusters were identified and further merged into the 7 main clusters to represent Glutamatergic, 

GABAergic, Glia, Progenitor, Intermediate Progenitor (IP), Mitotic and Other cell types 

(Supplementary Figs. 2a,b), based on the markers used in the ref.8 (Supplementary Fig. 2c). 

Mitotic and Other cells were excluded from the analyses. To perform the CCC analyses, the 

expression level of each gene was aggregated at the cell-type level by computing the log1p(CPM) 

average expression within each cluster. Cell types with less than 20 single cells were excluded 

from the respective time point. 

 

Ligand-receptor pairs for inferring cell-cell communication 

The CellChat database of ligand-receptor pairs was used17, which includes 2,005 human protein-

LR interactions and around 48% of these LR pairs include heteromeric-protein complexes. The 

MEBOCOST database of metabolite-sensor pairs2 was used, which includes 444 metabolite-LR 

interactions. Here, we considered only metabolite-receptor interactions (206 total interactions). 

After integrating these lists with the genes that were present across all time points, a total of 422 

protein- and 54 metabolite-based LR pairs were considered. 

 

Integrating protein- and metabolite-based interactions 

To integrate protein- and metabolite-mediated CCC, two 4D-communication tensors were built 

independently and integrated afterwards (Fig. 1). One tensor includes the protein-based LR 

interactions while the other includes the metabolite-based LR interactions. Each of these tensors 

is built by three main steps previously detailed4: 1) A communication matrix is generated for each 

ligand-receptor pair of the considered interactions. In this matrix, a communication score is 

assigned to the respective LR pair, based on the sample-wise expression of the ligand and the 

receptor by a respective sender and receiver cell. 2) All the resulting communication matrices are 

joined into a 3D-communication tensor for each time point (Fig. 1a). Steps 1 and 2 are repeated 

for every sample (time points in this case). 3) Once the 3D-communication tensors for all samples 

are built, they are then combined in a way that each of these 3D tensors represent a coordinate 

in the 4th-dimension of the 4D-communication tensor (4th dimension represented by the colored 

lines in Fig. 1a). To assign the communication scores, cell2cell was used for the protein-LR pairs, 

while MEBOCOST was used for the metabolite-LR pairs. 
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The communication score for the protein-based LR pairs was computed as the geometric mean 

of the expression of the ligand in a sender cell type and the receptor in a receiver cell type. The 

gene expression of multimeric proteins was considered as the minimum gene expression among 

the subunits. While the communication score for the metabolite-based LR pairs was computed 

with the default parameters of MEBOSCOST, which considers the average expression of 

metabolite-consuming and producing enzymes. Negative values were replaced by zeros, and all 

resulting communication scores were root squared to represent the geometric mean between the 

metabolite and receptor expression values, similar to the protein-based LR pairs. Permutations 

were not performed, and all resulting communication scores were considered since we are 

interested in both background and cell-type-specific communication, instead of just the latter. 

Then, each communication score (C) of both 4D tensors was regularized by using the mean 

expression level across all genes and cell types (¿)6, resulting in a regularized score (R) with 

lower and upper bounds of 0 and 1, respectively: 

 

�	 = 	
�

� + �
 

 

These regularized tensors were concatenated, resulting in a 4D-communication tensor with joint 

protein- and metabolite-based LR pairs. This integrated 4D-communication tensor contains 

Glutamatergic neurons, GABAergic neurons, Glias, Progenitors, and IPs as the sender and 

receiver cell types. Thus, the different dimensions of this tensor contains 4 time points; 476 LR 

pairs; 5 sender cells; and 5 receiver cells, resulting in a tensor of shape 4 x 476 x 5 x 5. 

 

Deconvolution of communication dynamics with Tensor-cell2cell 

To deconvolve the integrated 4D-communication tensor, Tensor-cell2cell runs a non-negative 

tensor component analysis (TCA)4, which extracts a specific number of factors that represent 

different context-driven patterns of cell-cell communication. An elbow analysis was performed to 

automatically select a proper number of factors to extract (Supplementary Fig. 4), based on a 

tensor decomposition error18. These analyses were done through a robust run of Tensor-cell2cell, 

by using tol=1e-8, and n_iter_max=500 as parameters of the tensor decomposition. Tensor-

cell2cell was run using a NVIDIA RTX A6000 GPU with 48GB of memory and ~10k CUDA cores. 

 

Gene set enrichment analysis for ligand-receptor pairs 

LR-pair loadings of each factor can be used to run a Gene Set Enrichment Analysis (GSEA)19. 

Thus, biological functions can be assigned to each of the factors. Before running the analysis, we 

created a list of biological functions associated with each of the LR pairs in CellChat. We 

considered the gene sets of the Biological Process GO Terms, available at http://www.gsea-

msigdb.org/, and annotated each LR pair with all the gene sets that contain all of its interacting 

genes for the protein-based LR pairs. Metabolite-based LR pairs were annotated with the gene 

sets associated with the receptor genes. Then, by filtering LR sets to those containing at least 15 

LR pairs, we end up with 664 LR sets. As inputs of GSEA, we passed the LR pairs in each factor 

ranked by their loadings and the LR sets. In this case, we used the PreRanked GSEA function in 

the package gseapy with the default parameters and 999 permutations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514917doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514917
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Data availability 

All input data used for the analyses in this work and the result-generated data are available online 

in a "Code Ocean capsule [https://doi.org/10.24433/CO.7772943.v1]". In particular, single-cell 

RNA-seq data for the brain cortical organoid8 was previously deposited in the NCBI's Gene 

Expression Omnibus database under accession code "GSE130238 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130238]". 

 

Code availability 

The tools cell2cell and Tensor-cell2cell are available in a "GitHub repository 

[https://github.com/earmingol/cell2cell]", and MEBOCOST is available in another "GitHub 

repository [https://github.com/zhengrongbin/MEBOCOST]". The code and input data used for the 

analyses are available online in a "Code Ocean capsule 

[https://doi.org/10.24433/CO.7772943.v1]", which can be used to run all the analyses performed 

in this work online.  
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