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Abstract

Cell-cell communication involves multiple classes of molecules, diverse interacting cells, and
complex spatiotemporal dynamics. While this communication can be inferred from single-cell
RNA-seq, no computational methods can account for both protein and metabolite ligands
simultaneously, while also accounting for the temporal dynamics. We adapted Tensor-cell2cell
here to study several time points simultaneously and jointly incorporate both ligand types. Our
approach detects temporal dynamics of cell-cell communication during brain development,
allowing for the detection of the concerted use of key protein and metabolite ligands by pertinent
interacting cells.
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Main

Cell-cell communication (CCC) is multimodal and dynamic, involving both small molecule and
protein signals integrated with fine spatiotemporal coordination to drive multicellular functions.
Although single-cell transcriptomics has enabled computational methods to infer cell-cell
communication from gene expression’, these approaches have mainly focused on protein-protein
interactions defining ligand-receptor (LR) pairs that cells can use to communicate. Thus,
computational approaches are needed to untangle complex dynamics of CCC involving both
proteins and metabolites simultaneously.

Two recent efforts have helped to incorporate the use of non-protein ligands or metabolites for
inferring CCC??, enabling the study of these molecules from single-cell transcriptomics. However,
it has remained unclear how to integrate protein- and metabolite-mediated CCC to perform
analyses accounting for both simultaneously. Unlike CCC mediated by protein ligands, which can
be inferred directly from the expression levels of the encoding genes encoding, CCC mediated
by metabolite ligands is indirectly inferred from the corresponding enzymes that could either
produce or consume them. Thus, the resulting communication scores of proteins and metabolites
extracted from gene expression represent distinct activities of LR pairs, being only informative in
isolation due to differences in the scale of values between protein- and metabolite-based
communication scores. In addition, these tools do not account for temporal coordination of LR
pairs; rather, only up to two samples can be accounted for at a time, preventing insights of protein
and metabolite ligands acting concertly and limiting the analysis to be differential between up to
two time points.

To address these challenges, here we adapt Tensor-cell2cell* to integrate both proteins and
metabolites as the ligands mediating the intercellular interactions. Briefly, Tensor-cell2cell is a
tool for studying complex CCC patterns and dynamics. Distinct context-dependent patterns are
summarized by signatures or factors that identify LR pairs which act in specific combinations of
sender-receiver cell types. To integrate the protein- and metabolite-based scores for joint
assessment of changes in CCC, we generate a 4D-communication tensor wherein the mediator
molecules include proteins and metabolites as ligands, and their communication scores are
transformed to be comparable (Fig. 1). First, scores are separately inferred using cell2cell® for
protein-mediated CCC and MEBOCOST? for metabolite-mediated CCC. Since each method is
designed for the distinct types of molecule, they output different communication score distributions
(Supplementary Fig. 1a). Then, we built a separate 4D-communication tensor for the protein-
protein and metabolite-protein LR pairs (Figs. 1a,b). Next, we transform their values using a
regularization approach® (see Methods). After this transformation, the communication scores
between the two classes of LR pairs were comparable in terms of scale of values (Supplementary
Fig. 1b). They further became more similar in terms of distribution types, but with differences in
their skewness and kurtosis (see Supplementary Notes). Thus, the resulting 4D tensor with both
classes of ligands (Fig.1c) allows Tensor-cell2cell to jointly assess the signaling activities coming
from these two kinds of molecules, enabling a better understanding of how they are
interconnected and the extent to which they follow similar patterns.
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Fig. 1. Integration of communication scores from protein- and metabolite-based inference. (a) Communication
scores are inferred separately for protein- and metabolite-mediated interactions using cell2cell and MEBOCOST,
respectively. A 4D-communication tensor is built in each case using the resulting scores. (b) Each 4D-communication
tensor is transformed by a regularization approach as described in Methods, scaling scores between 0 and 1. (c) Then,
both tensors are concatenated on the ligand-receptor pairs axis, generating a joint 4D-communication tensor.

To illustrate the utility of our approach, we applied it to study brain development. This complex
temporal process involves a sequence of stages that generate a wide variety of neural and non-
neural cell types. These cell types must be produced in the correct number, and with the proper
spatiotemporal dynamics’; dynamics that are interconnected with the protein and metabolite
ligands transmitted between the different cell types in the brain. Hence, using multiple time points
that represent different stages of development of a brain cortical organoid model®, Tensor-cell2cell
detected six main signatures of the dynamics of CCC occurring during brain development (factors
in Fig. 2a). Each signature distinguishes CCC between different cell types and involves key
protein and metabolite ligand-receptor interactions depending on the development stage that
these dynamics represent.
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Fig. 2. Main coordinated dynamics of protein- and metabolite-mediated cell-cell communication in brain
development. (a) Tensor decomposition of the joint 4D-communication tensor including both proteins and metabolites
as the ligands. Each row indicates a factor obtained with Tensor-cell2cell, wherein the y-axis represents the loadings
(conceptually, the importance) of the elements (x-axis) included in the respective dimensions (columns). Bars are
colored as indicated in the legend. The number of factors to consider was evaluated through an elbow analysis
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(Supplementary Fig. 4). (b) Heatmap summarizing the joint loadings for sender-receiver cell pairs in each of the factors.
Higher values indicate that a given directed pair is one of the main actors in the factor. A hierarchical clustering was
performed on the cell-cell pairs given their loadings across factors. These joint loadings for the directed sender-receiver
cell pairs were computed as the outer product of the loadings of sender and receiver cells in (a). (c) Heatmap showing
protein and metabolite LR pairs that are the main mediators per factor. Only LR pairs with a loading value greater than
0.1 in at least one factor are shown. A hierarchical clustering was performed on the LR pairs given their loadings across
factors.

The signatures of CCC dynamics in brain development captured by Tensor-cell2cell involve either
specific time points (factors 1, 5, and 6) or changes across time points (factors 2-4), which are
linked to different ligand-receptor and cell-cell interactions (see a summary of these dynamics in
Supplementary Table 1, and further details in the Supplementary Notes). Particularly, factor 1
captures communication in the first month including all cell types except GABAergic neurons
(Figs. 2a,b), a cell type that is virtually absent in the first month (Supplementary Fig. 2c). Mediators
in factor 1 encompass a wide range of molecules (Fig. 2c), but the main actors correspond to
midkine (MDK), pleiotrophin (PTN), ephrins (EFNA and EFNB), and CD99. Meanwhile, factors 5
and 6 capture communication in the third month. Factor 5 is associated with receiver cells that
are not progenitors, wherein GABAergic neurons are important (highest loadings in the receiver
dimension, Fig. 2a). Tensor-cell2cell also links this factor with the use of ephrin/Eph and Wnt by
neurons (Fig. 2c). In contrast, factor 6 is associated with progenitors as the main receiver cells,
excluding GABAergic neurons as main receivers (Figs. 2a,b). Here, delta-like/Notch and GABA
are important actors on progenitors during the third month of development (Fig. 2c). Additionally,
MDK, PTN, CD99, retinal and adenosine act on factors 5 and 6 (Fig. 2c).

Regarding CCC inferred to increase across time, factor 2 is associated with communication of
GABAergic and Glutamatergic neurons, and intermediate progenitors (IPs) as both senders and
receivers, and glial cells as additional receivers (Figs. 2a,b). Important molecular mediators
correspond to MDK, PTN, NCAM1, CADM1, NRXN/NLGN, ephrin/Eph, retinal, iron, GABA, and
testosterone. Factors 3 and 4 are primarily associated with progenitors and glial cells as the main
sender and receiver cells, respectively. Progenitors and glial cells send signals to all cells except
progenitors in factor 3, including mediators such as MDK, PTN, NCAM1, CADM1, ephrins, retinal,
iron, GABA, and BMP7. Meanwhile, factor 4 identifies signaling from all cell types to progenitors
and glial cells, where leukotriene has a crucial role (Fig. 2c). MDK, PTN, and CD99 are important
in this factor as well (Fig. 2c), showing their central role in brain development®.

Our adapted approach is uniquely capable of detecting concerted activities of specific protein and
metabolite ligands. For example, interactions of MDK and retinal with their cognate receptors
cluster together across factors (Fig. 2c). MDK is encoded by a retinoic acid (RA)-responsive
gene®, and retinal is the precursor of RA, a molecule that has a crucial role during brain
development'®, aligning with our data-driven results that suggest these two ligands act in concert.
Moreover, Tensor-cell2cell reveals that delta-like/Notch and GABA are important mediators of
CCC involving progenitors as the main receiver cells in the third month of development (factor 6
in Fig. 2). Notch signaling at this point maintains a proliferative state of progenitors'' that help
generate a proper number of cells during early stages while blocking differentiation into
neurons’'2. Similarly, GABA plays an important role in promoting proliferation of undifferentiated
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neural progenitors'. Thus, our approach reveals biologically meaningful coordination of protein-
and metabolite-mediated CCC by which both ligand classes together deliver synergistic biological
information.

Using enrichment analysis, we also demonstrate that the factors detected by Tensor-cell2cell
represent higher-order functions occurring at different stages of brain development. For instance,
we found that neurogenesis, neuron differentiation, axon development, morphogenesis, among
other related processes are repeated in factors 2 and 5 (Supplementary Fig. 3), but associated
with different time points (Fig. 2a). Factor 5 captures CCC that seems associated with neuron
differentiation and earlier synapse formation between neurons, while factor 2 involves signals that
promote cell-cell contact and consolidate differentiation and synapse formation (Fig. 2c and
Supplementary Fig. 3). Furthermore, factors 4 and 6 encompass development and signaling
regulation in general (Supplementary Fig. 3), wherein progenitors and glial cells are the main
receivers (Fig. 2a). Interestingly, factor 6 represents month 3 and involves Notch signaling that
seems to inhibit differentiation of these cells”'?, while factor 4 represents months 6 and 10, and
mainly involves leukotriene, which has an important role in inducing differentiation into neurons™
(Fig. 2c). Thus, these two factors seem to capture CCC reflecting a transition of progenitors from
a proliferative to a differentiating state.

By adapting Tensor-cell2cell to integrate cell2cel’ and MEBOCOST? scoring methods, we
demonstrated that the temporal dynamics of both protein- and metabolite-mediated CCC can be
jointly inferred and analyzed from single-cell omics. Applying our approach to decipher different
types of CCC during brain cortical organoid development®, Tensor-cell2cell found concerted
dynamics of protein- and metabolite-mediated CCC. Key proteins and metabolites were linked to
cells and time points in a biologically meaningful manner. While we previously demonstrated that
Tensor-cell2cell is robust to different protein-based communication scoring methods*, we cannot
test its sensitivity to metabolite-based communication scores due to the scarcity of such methods.
Thus, it is important to consider the differences that future tools for inferring metabolite-mediated
CCC could introduce.

Our method recapitulated, in one analysis, multiple results discovered across many studies about
brain development. Our analysis revealed proteins such as MDK, PTN, ephrins, CD99, Wnt,
NOTCH, and neurexin-neuroligin, and metabolites such as retinal, GABA, and leukotriene to be
important in brain development (CCC dynamics summarized in Supplementary Table 1). This is
consistent with previous experimental evidence (see Supplementary Notes) and demonstrates
the utility of jointly assessing protein- and metabolite- ligands as CCC mediators. We gain further
novelty by analyzing CCC temporal dynamics across multiple time points, rather than exploring
changes in a static manner. Finally, in addition to brain development, our approach can be applied
to diverse datasets, enabling mechanistic insights into the dynamic CCC underlying organ
development or other temporal biological processes across normal and dysregulated conditions
(e.g. mutations, different growth conditions, etc.).
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Methods

Preprocessing of the RNA-seq data

Raw data (GEO accession number GSE130238) from 1, 3, 6, and 10-month brain organoids®
were processed using the Seurat v3.0 package'®. To annotate single cells, the following pipeline
was followed: Genes from individual time points that were not detected in at least 3 cells were
discarded. Data from each time point were merged and cells with fewer than 200 genes, more
than 6000 genes, or more than 7.5% mitochondrial genes were discarded. Then, data were scaled
to 10,000 transcripts per cell and log transformed using the NormalizeData function. Most variable
genes were found using FindVariableFeatures with default parameters, and used as input of the
ScaleData function followed by Principal Component Analysis (PCA) across time points. Using
the PCA embeddings, all time points were batch-corrected and integrated with Harmony'® using
the RunHarmony function with default parameters. After integration, clustering analysis was
performed with default parameters on the Harmony embeddings. Resolution was set to 0.5 and
only the first 20 harmonized components were considered for finding neighbor cells. In this case,
17 clusters were identified and further merged into the 7 main clusters to represent Glutamatergic,
GABAergic, Glia, Progenitor, Intermediate Progenitor (IP), Mitotic and Other cell types
(Supplementary Figs. 2a,b), based on the markers used in the ref.® (Supplementary Fig. 2c).
Mitotic and Other cells were excluded from the analyses. To perform the CCC analyses, the
expression level of each gene was aggregated at the cell-type level by computing the log1p(CPM)
average expression within each cluster. Cell types with less than 20 single cells were excluded
from the respective time point.

Ligand-receptor pairs for inferring cell-cell communication

The CellChat database of ligand-receptor pairs was used'’, which includes 2,005 human protein-
LR interactions and around 48% of these LR pairs include heteromeric-protein complexes. The
MEBOCOST database of metabolite-sensor pairs? was used, which includes 444 metabolite-LR
interactions. Here, we considered only metabolite-receptor interactions (206 total interactions).
After integrating these lists with the genes that were present across all time points, a total of 422
protein- and 54 metabolite-based LR pairs were considered.

Integrating protein- and metabolite-based interactions

To integrate protein- and metabolite-mediated CCC, two 4D-communication tensors were built
independently and integrated afterwards (Fig. 1). One tensor includes the protein-based LR
interactions while the other includes the metabolite-based LR interactions. Each of these tensors
is built by three main steps previously detailed*: 1) A communication matrix is generated for each
ligand-receptor pair of the considered interactions. In this matrix, a communication score is
assigned to the respective LR pair, based on the sample-wise expression of the ligand and the
receptor by a respective sender and receiver cell. 2) All the resulting communication matrices are
joined into a 3D-communication tensor for each time point (Fig. 1a). Steps 1 and 2 are repeated
for every sample (time points in this case). 3) Once the 3D-communication tensors for all samples
are built, they are then combined in a way that each of these 3D tensors represent a coordinate
in the 4th-dimension of the 4D-communication tensor (4th dimension represented by the colored
lines in Fig. 1a). To assign the communication scores, cell2cell was used for the protein-LR pairs,
while MEBOCOST was used for the metabolite-LR pairs.
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The communication score for the protein-based LR pairs was computed as the geometric mean
of the expression of the ligand in a sender cell type and the receptor in a receiver cell type. The
gene expression of multimeric proteins was considered as the minimum gene expression among
the subunits. While the communication score for the metabolite-based LR pairs was computed
with the default parameters of MEBOSCOST, which considers the average expression of
metabolite-consuming and producing enzymes. Negative values were replaced by zeros, and all
resulting communication scores were root squared to represent the geometric mean between the
metabolite and receptor expression values, similar to the protein-based LR pairs. Permutations
were not performed, and all resulting communication scores were considered since we are
interested in both background and cell-type-specific communication, instead of just the latter.
Then, each communication score (C) of both 4D tensors was regularized by using the mean
expression level across all genes and cell types (u)®, resulting in a regularized score (R) with
lower and upper bounds of 0 and 1, respectively:

C

R =
C+u

These regularized tensors were concatenated, resulting in a 4D-communication tensor with joint
protein- and metabolite-based LR pairs. This integrated 4D-communication tensor contains
Glutamatergic neurons, GABAergic neurons, Glias, Progenitors, and IPs as the sender and
receiver cell types. Thus, the different dimensions of this tensor contains 4 time points; 476 LR
pairs; 5 sender cells; and 5 receiver cells, resulting in a tensor of shape 4 x 476 x 5 x 5.

Deconvolution of communication dynamics with Tensor-cell2cell

To deconvolve the integrated 4D-communication tensor, Tensor-cell2cell runs a non-negative
tensor component analysis (TCA)*, which extracts a specific number of factors that represent
different context-driven patterns of cell-cell communication. An elbow analysis was performed to
automatically select a proper number of factors to extract (Supplementary Fig. 4), based on a
tensor decomposition error'®. These analyses were done through a robust run of Tensor-cell2cell,
by using tol=1e-8, and n_iter_max=500 as parameters of the tensor decomposition. Tensor-
cell2cell was run using a NVIDIA RTX A6000 GPU with 48GB of memory and ~10k CUDA cores.

Gene set enrichment analysis for ligand-receptor pairs

LR-pair loadings of each factor can be used to run a Gene Set Enrichment Analysis (GSEA)
Thus, biological functions can be assigned to each of the factors. Before running the analysis, we
created a list of biological functions associated with each of the LR pairs in CellChat. We
considered the gene sets of the Biological Process GO Terms, available at http://www.gsea-
msigdb.org/, and annotated each LR pair with all the gene sets that contain all of its interacting
genes for the protein-based LR pairs. Metabolite-based LR pairs were annotated with the gene
sets associated with the receptor genes. Then, by filtering LR sets to those containing at least 15
LR pairs, we end up with 664 LR sets. As inputs of GSEA, we passed the LR pairs in each factor
ranked by their loadings and the LR sets. In this case, we used the PreRanked GSEA function in
the package gseapy with the default parameters and 999 permutations.

19
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Data availability

All input data used for the analyses in this work and the result-generated data are available online
in a "Code Ocean capsule [https://doi.org/10.24433/C0O.7772943.v1]". In particular, single-cell
RNA-seq data for the brain cortical organoid® was previously deposited in the NCBI's Gene
Expression Omnibus database under accession code "GSE130238
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE130238]".

Code availability

The tools cell2cell and Tensor-cell2cell are available in a "GitHub repository
[https://github.com/earmingol/cell2cell]", and MEBOCOST is available in another "GitHub
repository [https://github.com/zhengrongbin/MEBOCOST]". The code and input data used for the
analyses are available online in a "Code Ocean capsule
[https://doi.org/10.24433/CO.7772943.v1]", which can be used to run all the analyses performed
in this work online.
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