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Abstract

Differential gene expression between environments often underlies phenotypic plasticity.

However, environment-specific expression patterns are hypothesized to relax selection on
genes, and thus limit plasticity evolution. We collated over 27 terabases of
RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and
200 treatment conditions to investigate this hypothesis. Consistent with relaxed
selection, genes with more treatment-specific expression have higher levels of nucleotide
diversity and divergence at nonsynonymous sites but lack stronger signals of positive
selection. This result persisted even after controlling for expression level, gene length,

GC content, the tissue specificity of expression, and technical variation between studies.

Overall, our investigation supports the existence of a hypothesized trade-off between the
environment specificity of a gene’s expression and the strength of selection on said gene
in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease
apart the contributions of many variables in limiting plasticity evolution.

1 Introduction

Organisms must cope with ever-changing environmental conditions to survive and
reproduce. If these changes in condition cannot be avoided or escaped, phenotypes that
respond to environmental variation through phenotypic plasticity may be adaptive. For
example, under low light, the same Arabidopsis thaliana genotype will produce more or
larger leaves to capture more energy for photosynthesis [64]. Plastic responses are partly
controlled through differential gene expression between environments [67, [68].
Understanding the evolution of these condition-specific expression patterns could help
reconcile the diversity of plastic responses observed in nature and engineer organisms to
overcome environmental challenges.

However, not all organisms can respond plastically to environmental change, so it is
crucial to understand the processes that constrain plasticity [80]. These constraints are
usually characterized as either costs, where plasticity reduces fitness in some way, or
limits to the evolution or maintenance of plasticity [20]. Decades of research has
attempted to measure the costs associated with plasticity (reviewed in [69]) but studies
often fail to detect costs or find costs that are weak or restricted to certain environments
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[80) [78, 5]. Theory also predicts that there will be strong selection to alleviate costs [54].
Thus, limits may be more important than costs in shaping the evolution of plasticity.

Recent work suggests that relaxed selection can limit plasticity evolution [71], [54].
For instance, one hypothesis posits that genes are often under selection for
environment-specific expression to minimize deleterious pleiotropy [71l 50, [31]. However,
narrowing the range of environments where a gene is expressed also reduces the
opportunity for negative selection to act on deleterious mutations in the gene [36] [83, [79].
The accumulation of deleterious mutations could then cancel out any selective benefits
of the environment-specific expression pattern. Thus, a trade-off arises between a gene’s
degree of environment-specific expression and the strength of negative selection acting
on said gene. If we assume that environment-specific expression generally contributes to
phenotypic plasticity, then this trade-off would potentially limit the maintenance of
plasticity [36, [71]. Whether such a trade-off exists has not yet been tested, but the
deposition of expression data from hundreds of experimental treatments across hundreds
of labs into public repositories now enables approximating environment specificity as
treatment specificity and linking treatment-specific expression to the rate of evolution.

One challenge in studying the relationship between treatment specificity and protein
evolution is that many factors influence evolutionary rates (for review, see
[66), 27, 38, 93]) and these factors are hard to disentangle. A protein’s expression level is
often considered the best predictor of its evolutionary rate [60] - a result observed across
all domains of life [93] and sometimes considered a "law” of genome evolution [38].
Among multicellular organisms, the degree of tissue specificity in expression is also
generally predictive of evolutionary rates [22] [43] [84] 04 [70, [7, 53], 29] B0]. Additional
factors that also influence evolutionary rates include exon edge conservation [7],
mutational bias [81] [59], gene length [53], gene age [62], GC content [95], 53], expression
stochasticity [29], involvement in general vs specialized metabolism [53], identity as a
regulatory or structural gene [82], recombination rate [42], codon-bias [6], mating
system [85] 28 [62], gene compactness [43] 53], co-expression or protein-protein
interaction network connectivity [3, [49, 55| [4] [34], gene body methylation [75],
metabolic flux [I4], protein structure [47], essentiallity [57, [89, [19], and even plant
height [4T]. This overabundance of possible explanatory variables suggests that massive
genome-scale datasets and careful statistical analysis are required to tease out the
influence of treatment-specific expression on evolutionary rates.

To investigate the influence of treatment-specific expression on evolutionary rates,
we compiled a dataset of gene expression data across over 200 treatments from over 300
peer-reviewed studies in A. thaliana. We annotated RNA-sequencing runs from these
studies using standardized ontologies, then processed all of them with the same pipeline.
Finally, we combined the resulting gene expression matrix with estimates of selection
based on within-species polymorphism and between-species divergence to investigate
whether genes with treatment-specific expression were under weaker negative selection.

2 Materials and methods

2.1 RNA-seq run annotation

We amassed an initial set of RNA-seq runs from the Sustech Arabidopsis RNA-seq
database V2 [92] (http://ipf.sustech.edu.cn/pub/athrdb/)) excluding any samples
not associated with a publication or lacking a tissue type label. On May 24th, 2022 we
also downloaded all run metadata from the Sequence Read Archive (SRA) returned by
the following search term: (” Arabidopsis thaliana”[Organism] AND "RNA”[Source])
OR (” Arabidopsis thaliana” [Organism] AND "RNA-Seq” [Strategy]) OR (” Arabidopsis
thaliana” [Organism] AND "TRANSCRIPTOMIC” [Source]). All SRA runs were linked
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to their associated publications, if possible, using Entrez. Any SRA run numbers that s
we could not link to a PUBMED ID or DOI were omitted. We then manually removed &

all SRA runs that originated from transgenic, mutant, hybrid, grafted, cell culture, 68
polyploid, or aneuploid samples based on information in the SRA metadata and 69
associated publications. Runs from any naturally-occurring A. thaliana accession were 7o
included. We also omitted SRA runs that focused on sequencing non-coding RNA 7
(ncRNA-seq, miRNA-seq, IncRNA-seq, sSRNA-seq, etc.). After applying these criteria, 7
any bioprojects with 8 or fewer SRA run numbers remaining were also omitted. 73

All runs were labeled with treatment and tissue type descriptions using the Plant 74
Experimental Conditions Ontology (PECO) and the Plant Ontology (PO) [15], 75
respectively, based on information in their associated publications and SRA metadata. 7
In our analysis, control exposure was defined as long day conditions (12 hrs light 7
exposure or longer, but not constant light) and growing temperatures in the range of 18°
- 26°, inclusive, without explicit application of stress or nutrient limitation. Warm 7

treatments were defined as 27° or higher, while cold treatments were defined as 17° or 8
lower. Any studies that did not report both day length and growing temperature were &
omitted. Any runs that could not be linked to treatments based on their annotations in &
the SRA or Sustech databases were also omitted. Treatment with polyethylene glycol 8
(PEG) was categorized as drought exposure. Samples from plants that were recovering s
from stress were categorized according to the growth conditions of the recovery state 8
instead of the stressed state. When appropriate, we labeled samples with multiple 8
PECO terms. For example, a sample that was subjected to both heat stress and high 87
light stress would get two PECO terms (one for each stress) and be treated separately s
from samples subjected to only heat stress or only light stress. Tissue type labels were s
eventually collapsed to the following categories: whole plant, shoot, root, leaf, seed, and  «

a combined category of flower and fruit tissues. The flower and fruit tissue categories o1
were combined because of their developmental relationship and small size relative to the o
other categories. In the end, we had a dataset of 24,101 sequencing runs from 306 9
published studies. o
2.2 RNA-seq run processing %
All RNA-seq runs were processed using the same workflow to remove the effects of %
bioinformatic processing differences between studies on expression level. First, runs o7
were downloaded using the SRA toolkit (v2.10.7), but 90 runs were not publicly %

available and thus failed to download. All successfully downloaded runs were trimmed o
using fastp v0.23.1 [I0], requiring a minimum quality score of 20 and a minimum read 10
length of at least 25 bp (-q 20 -1 25). Trimming results were compiled using multiqe v1.7 1
[25]. All trimmed runs were then aligned to a decoy-aware transcriptome index made by 10
combining the primary transcripts of the Araportll genome annotation [I1] with the A. 10
thaliana genome in salmon v1.2.1 [61] using an index size of 25bp. The salmon outputs 10

of each run were then combined with a custom R script to create an gene-by-run 105
expression matrix. We omitted 423 runs with a mapping rate j 1 %, 215 runs with zero 16
mapped transcripts, and 18 genes with zero mapped transcripts across all runs from 107

further analysis. We note that although this cut-off does not exclude samples with more 10
modest mapping rates (e.g. 20 - 60 %) the choice to include these samples was to avoid 10

removing large chunks of data as "outliers” and analyzing only those samples that 110
conform to our expectations. 111
2.3 Whole genome sequence data processing 12

We downloaded whole genome sequencing data for 1135 A. thaliana accessions from the 13
1001 genomes project panel (SRA project SRP056687) [2] using the SRA toolkit. All 1

329
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runs were trimmed using fastp [I0], requiring a minimum quality score of 20 and a read
length of at least 30 bp (-q 20 -1 30). Trimmed reads were then aligned to the A.
thaliana reference genome using BWA v0.7.17 [46]. The alignments were sorted and
converted to BAM format with SAMTOOLS v1.11 [I8], then optical duplicates were
marked with picardtools v2.22.1. Haplotypes were called for each accession, then
combined and jointly genotyped with GATK v4.1.4.1 assuming a sample ploidy of 2,
heterozygosity of 0.001, indel-heterozyogsity of 0.001, and minimum base quality score
of 20. Invariant sites were included in the genotype calls with the
—include-non-variant-sites option. All calls were restricted to only coding sequence (CDS)
regions based on the Araportll annotation by supplying a BED file of CDS coordinates
made with bedtools (v2.29.2). Following [39], variant and invariant sites were filtered
separately using both GATK and vcftools v0.1.15 [I7]. Variant sites were filtered if they
met any of the following criteria: QD < 2, QUAL < 30, MQ < 40, FS > 60,
HaplotypeScore > 13, MQRankSum < -12.5, ReadPosRankSum < -8.0, mean depth <
10, mean depth > 75, missing genotype calls > 20%, being an indel, or having more
than 2 alleles. In the end, 1,915,859 variant sites across all coding sequences were
retained for further analysis. Invariant sites were filtered if they met any of the
following criteria: QUAL > 100, mean depth < 10, mean depth > 75, missing genotype
calls > 20%. Finally, variant sites were annotated using snpEff (Java v15.0.2) [I3] and
variants labeled as either missense or synonymous were separated into different files
using SnpSift [12].

2.4 Selection estimated from between-species divergence

We identified 1:1 orthologs between the primary transcripts of A. thaliana and
Arabidopsis lyrata with Orthofinder v2.5.4 [24]. For each 1:1 ortholog, we aligned their
protein sequences with MAFFT L-INS-I v7.475 [35], then converted the protein
alignments to gapless codon-based alignments using pal2nal v14 [73]. Using the gapless
codon-based alignments, we estimated dN/dS using the method in [56] implemented as
a custom Biopython v1.79 script and implemented through the codeml program in the
PAML package v4.9 [91]. Unlike codeml, the custom Biopython script also returns
counts of nonsynonymous (N) and synonymous sites (S) within each gene as described
in [56], which we later used to calculate nucleotide diversity per nonsynonymous site
(mn) and per synonymous site (mg). Before proceeding with more analyses, we
confirmed that our estimates of dIN and dS were consistent between our Biopython
script and codeml (Figure S5, Pearson correlations dN : p = 0.9998, dS : p = 0.9809).
The outputs of the Biopython script were used in all subsequent analyses.

2.5 Selection estimated from within-species polymorphism
2.5.1 Nucleotide diversity at nonsynonymous sites.

Nucleotide diversity (7) was calculated for each gene with pixy v1.2.3.betal [39] three
times: once using all sites (both variant and invariant), once using missense sites plus
invariant sites, and once using synonymous sites plus invariant sites. These estimates
were then converted to m, my, and 7g, respectively, by first multiplying the per site
estimate output from pixy by the number of sites included in the analysis. Then, to get
mn and wg, the values from analyses of missense plus invariant, and synonymous plus
invariant sites were divided by the NV and S values for each gene, respectively, as
determined by the method in [56].

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159


https://doi.org/10.1101/2022.10.26.513896
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.26.513896; this version posted March 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2.5.2 Tajima’s D. 160

We next calculated Tajima’s D for each gene. First, we calculated m and Watterson’s 161
Theta (6y) for each variant site ¢ within a gene (m; and 6y, respectively). In this case, 1

7; was calculated as: 163
2
_ i 2
= (ni_1> 1_Zpij (1)
j=1
Where n; is the number of sequenced chromosomes with non-missing genotypes for 164
variant i, p;1 is the frequency of the reference allele, and p;s is the frequency of the 165
alternative allele. Then, Oy; was calculated as: 166
1

Owi = — 2

Wi a; ( )
Where a; is: 167

| =

a; = Z . (3)

This calculation of fy; is equivalent to the usual calculation of 6y with the number of 168
segregating sites set to one. Next, the variance in Tajima’s D was calculated for each 160
site as: 170

<

Var(m; — ;) = 2o (4)
a;

This is equivalent to equation 38 in [74] with the number of segregating sites set to one.
Finally, the results of the above calculations were combined in the following formula: 17

m; — Ow;
Di _ 7 Wi (5)
vV V(ZT(?TZ‘ — awz)
To get Tajima’s D for each gene, we then averaged across the D; values for all the 173
variant sites within a gene. 174
2.5.3 Direction of Selection (DoS). s
Counts of nonsynonymous and synonymous polymorphisms within each gene (Py and  ws
Ps, respectively) were determined with bedtools (v2.29.2). The number of w7
nonsynonymous and synonymous differences (Dy and Dg, respectively) between A. 178

thaliana genes and their 1:1 A. lyrata orthologs, if present, were estimated during the 17
process of calculating dN/dS in Biopython as described above. These values were then  1so

used to calculate the direction of selection (DoS) [(2] as follows: 181
D P
DoS = NN (6)
Dy +Ds Pn+Ps

We chose this metric, as opposed to the proportion of amino acid substitutions driven by 1s
positive selection («), because it is less biased than « [72] and was successfully used in 1
studies similar to ours [60]. Furthermore, we found that « often returns uninterpretable 1e
negative values when applied to A. thaliana, perhaps because of an excess of slightly 185
deleterious polymorphisms [58] due to their predominantly selfing mating system [9]. 186
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2.6 Treatment specificity

Treatment specificity (7) was estimated separately for runs from each tissue type using
the following formula [88]:

= leil 1 - m'z;cw (7)
N -1

Where z is the vector of average expression values of a gene in each treatment category,
measured in transcripts per million (TPM), and where N is the number of treatment
categories. Dividing by N means that 7 varies between zero and one, where zero
indicates no specificity and one indicates exclusive specificity to a single treatment. We
used this metric of specificity because it is consistently more robust than others [40] and
is normalized by the number of treatments included, making it comparable across data
sets. We also applied the same formula to calculate tissue specificity in several different
treatment conditions.

2.7 Simulating correlations between average expression and
specificity index

Average expression level and measures of expression specificity are correlated by
definition because genes with more treatment /tissue-specific expression will have lower
average expression across all treatment/tissue categories. We ran two simulations to
better illustrate the factors driving the correlation between average expression and the
specificity index, 7. In both simulations, we generated 1000 random matrices, where
each element z;; represented the expression of gene ¢ in experiment j, by sampling from
a zero-inflated negative binomial distribution:

x;5 ~ ZINegBinom(N, p1,p2) (8)

Where the size and probability parameters of the negative binomial component were
N =100 and p; = 0.1, respectively, while the probability of an expression value being
non-zero was py = 0.4. All matrices included 5 groups of columns, with 5 columns per
group, representing replicates of tissue/treatment groups. For both simulations, we
averaged across columns within each group to simulate the calculation of
tissue/treatment-wide averages. We then applied the formula for 7 across the rows of
this averaged matrix to get expression specificity. In one simulation, we calculated
expression level by averaging across the rows of the expression matrix. In a second
simulation, we excluded experiments where a gene was not expressed (z;; = 0) from the
calculation of average expression.

2.8 Average expression, length, GC content, family size

Calculating the average expression of each gene was a three-step process. First, we
averaged together runs with matching SRA experiment IDs because these runs

represented technical replicates of the same biological sample and treatment conditions.

Second, we partitioned our gene-by-experiment expression matrix by the tissue type
each sample came from. Finally, for each tissue type’s expression matrix, we averaged
across all of the expression values of each gene across all experiments, excluding values |
5 transcripts per million (TPM). We excluded values | 5 TPM from the average
expression calculation to avoid a high correlation between average expression and
treatment-specificity, as has been reported in previous studies [70]. This high
correlation occurs because an environment-specific gene will by definition also have low
average expression across environments it is rarely expressed in. Furthermore, we
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excluded values | 5 TPM to avoid including small expression values that could be
artifacts of alignment error.

The length and GC content of each gene was measured using the bedtools nuc
command (v2.29.2) and included each gene’s introns and untranslated regions when
present. We included introns and untranslated regions in the estimate of gene length
because they play important roles in determining rates of protein evolution [8], 23].
Finally, the family size for each gene was estimated as the number of A. thaliana genes
in their respective orthogroups output by OrthoFinder.

2.9 Partial correlation analysis

Not all treatment-tissue combinations were sampled in the overall RNA-seq dataset,
causing confounding between the treatment and tissue labels. We resolved this in two
ways. First, we subset the data to only the treatment conditions where all tissue types
were represented. Second, we subset the data by tissue type and analyzed each subset
separately. For each subset, we calculated partial spearman correlations between
treatment specificity and our measures of selection (dN, 7wy, Tajima’s D, and DoS)
after accounting for average expression (excluding values TPM | 5), gene length, and
GC content using the ppcor R package [37]. For partial correlation analyses involving
7wy and Tajima’s D, we also controlled for gene family size. We did not account for gene
family size in partial correlation analyses involving dN or DoS because these metrics
apply to only genes with one family member in this study. When calculating partial
correlations involving dN, we excluded any genes with saturating divergence (dS > 1).
All statistical analyses and data visualizations used R v4.0.3 and used color palettes in
the scico R package [16], [63].

2.10 Surrogate variable analysis

We recalculated treatment specificity and repeated all partial correlation analyses after
correcting each data subset for technical between-experiment variation (i.e. batch
effects), following an approach from [26]. Batch effects include variables that influence
gene expression measurements but are not of interest to this study, such as the
sequencing platform and the library prep protocol used in each experiment. First, with
our data already subset by tissue type, we further subset to only include treatments with
RNA-seq runs from at least two studies. This minimizes confounding between-treatment
variation with the technical between-experiment variation we aimed to account for. We
then applied surrogate variable analysis (SVA) using the svaseq() function within the
SVA package [45] to each of these subsets. Briefly, SVA models gene expression as:

w5 = pi + f(yi) + e 9)

Where x;; is the expression of gene ¢ in experiment j, u; is the average expression of
gene i across all experiments, and y; is the value of a predictor variable of interest for
gene i. Furthermore, f(y;) gives the deviation of gene ¢ from its average expression
based on the value of y; and e;; is the residual error. SVA takes this model and
partitions the residual variance, e;;, into:

L

Tig = i+ F(yi) + > yeiges + € (10)
=1

Where ZzL:1 Yeige; gives the summed effects of L unmodeled variables (g¢;) for each
gene and e;; gives the gene-specific noise in expression. SVA does not attempt to
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Figure 1. Principal components analysis of all expression data. Each point represents a
different RNA-seq experiment and is colored by its associated tissue type. Experiments
from all treatment conditions are included in this analysis. Plotting order was randomized
to avoid overplotting.

estimate what the unmodeled variables influencing expression are, but rather find a set
of vectors (the surrogate variables) that span the same space as g:

K
wij = pi + fyi) + Z Akihig + €5 (11)
k=1

Where each hy is a surrogate variable and each Ak gives the effects of each surrogate
variable on gene expression. For our analyses, our predictor variable y; was treatment
type. To get a measure of expression where the effects of surrogate variables are
removed, we then subtracted off the effects of surrogate variables from both sides of the
above equation.

K
2ij — > Awihig = pi + f(yi) + € (12)
k=1

Where z;; — Zﬁil Akihi; gives us our expression values accounting for the effects of
surrogate variables. The net result here is a reduction in the amount of unexplained or
seemingly stochastic variation in expression because sources of variation have been
attributed to ”surrogates” that span the same space as real batch variables. We also
conducted principal component analysis in R before and after SVA to verify the removal
of batch effects.
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3 ReSU.ltS 283

3.1 Summary of tissue differentiation, treatment specificity, and .
selection in overall dataset 25

To understand how treatment specificity of gene expression affects evolutionary rates of s
proteins, we queried the Sequence Read Archive for all A. thaliana RNA-seq 287
experiments published before May 2022. We then annotated these experiments with 288
standardized tissue and treatment ontology terms, manually filtered the dataset, and 289
then processed all RNA-seq runs with a standardized pipeline. The number of 200
sequencing experiments associated with each combination of tissue and treatment labels 2a
is summarized in Tables S1. Overall, the most sampled tissue category was leaf (4,642 20

experiments) followed by root (3,348 experiments), whole plant (2,492 experiments), 203
seed (1,866 experiments), shoot (1,106 experiments), then fruit and flower (266 204
experiments). The four most sampled treatment categories were control (5,701 205

experiments), cold air exposure (675 experiments), short day length (561 experiments), 2
and short day length plus Botrytis cinerea exposure (407 experiments). Any sequencing 207
runs that shared an SRA experiment ID were averaged to produce individual gene 208
expression values for each SRA experiment. 209

We first looked at the distribution of mapping rates across all RNA-seq runs. The 30
median mapping rate was 72.39 % (Figure S1) and we excluded runs with a mapping 301
rate | 1% from further analyses. We next performed a principal components analysis 302
(PCA) on the expression matrix and observed strong differentiation between root and  s0s
non-root tissues along PC2 (Figure . We also observed that nearly all genes had some 30
degree of treatment specificity in their expression (Figures , S3). Furthermore, only a 305

small proportion of genes had strong signatures of selection based on dN/dS, ny/7g, 306
DoS, or Tajima’s D (Figure —D7 Figure S2). The treatment specificity of expression o
was lower on average in flower and fruit tissue compared to the other tissues (Figure 308
S3). However, tissue specificity did not vary widely depending on the treatment 309
condition (Figure S4). 310
3.2 Omitting samples with low expression disentangles s

expression level and specificity 312
Genes that are only expressed in one treatment or tissue will, by definition, have low 313
mean expression across all environments or tissues [86]. Thus, we sought a method of s
calculating expression level that was independent of treatment specificity. To better 315

understand the relationship between average expression and treatment specificity, we 316
calculated correlations between treatment-specificity and expression level while either a7

including or excluding low expression values (TPM | 5) on our real RNA-seq dataset. s
We found that excluding low expression values decreased the correlation between 319
average expression and treatment-specificity in leaf tissue samples (Figure |3) and other s
tissues (Figures S34 - S38) and replicated the result by simulating gene expression 321

matrices (Figure S39). Thus, for all later partial correlation analyses (see next section) s
we quantified each gene’s average expression after dropping experiments where the gene 32

was not expressed (TPM | 5). 324
3.3 Treatment specificity correlates with levels of 25
nonsynonymous diversity and divergence in genes 226

We next calculated partial correlations between treatment specificity and measures of = 3
selection after controlling for average expression, gene length, GC content, and tissue 328
specificity in expression. These partial correlations were calculated separately for 329
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expression data on each tissue type and did not account for batch effects (see next 330
section). Among leaf tissue samples, average expression had significant partial 331
correlations with dN (p = —0.19, p-value = 2.1 x 107!22) and 7y (p = —0.17, p-value 32
= 2.8 x 10717) after controlling for other factors (Figures A [B). Treatment specificity s
was more strongly correlated with dN (p = 0.10, p-value = 7.6 x 1073!) and 7y 33
(p = 0.10, p-value = 1.2 x 107%2) than Tajima’s D (p = 0.01, p-value = 3.1 x 1077) and 35
DoS (p = 0.04, p-value = 2.3 x 107 Figure 7 ) Furthermore, the top 25% most 33
treatment-specific genes in leaf tissue for our dataset have average dN and my values 337
nearly 2.5 times greater than the 25% least treatment-specific genes (dN = 0.025 vs 338
0.061; mnx = 0.0014 vs 0.0032). Meanwhile, the most and least treatment-specific genes 33

have average Tajima’s D values of are -0.44 and -0.43, respectively, and average DoS 340
values of -0.19 and -0.14, respectively. The strongest partial correlation generally 3
occurred between tissue specificity and treatment specificity (Spearman’s 2

p = 0.53 — 0.60, Figure |4). Gene family size had among the weakest partial correlations s
with 7w compared to other covariates, but strongly correlated with treatment specificity s
(p = 0.12, p-value = 6.3 x 10~84, Figure ) All of these findings generally held when s
average expression and treatment specificity were calculated on data from other tissues 34

(Table S2, Figures S6-S10). 47
3.4 Correlations between treatment specificity and 345
nonsynonymous variation persist after controlling for batch
effects and dataset imbalance 350

While combining gene expression data across multiple studies can increase the statistical s
power of an analysis, there are some potential concerns. First, if many tissue-treatment ss
combinations are not sampled, the dataset will be unbalanced and the effects of tissue 353

and treatment variation on expression could be confounded. Consistent with this 354
expectation, there was a high correlation between tissue specificity and treatment 355
specificity in our initial analyses (Figure |4} S6-S10). Furthermore, combining data from s
multiple laboratories could generate batch effects [44]. To address the issues of 357
imbalance and batch effects, we first subset our data to only include treatments where 358
all tissue types were represented. This subset included the treatments of control, 350

abscisic acid, continuous light, warm/hot air temperature, and cold air temperature. We 360
then used SVA to correct for the influence of unknown batch effects on this data subset 3o
[45]. After SVA, treatment specificity positively correlated with dN (p = 0.10, p-value  se
= 1.6 x 10732) and 7n (p = 0.07, p-value = 1.5 x 10723) when average expression and s
treatment specificity were calculated on combined fruit and flower data (Figures S33). s
However, treatment specificity in other tissue types generally did not correlate with our ses
measures of selection (Figures S28-S33, Table S4). 366

The inclusion of only five treatments in the above analysis could limit quantification e
of a gene’s treatment specificity. Thus, in order to include data from a larger number of s
treatments, avoid dataset imbalance, and avoid batch effects, we split our expression 369
matrix into six subsets by tissue category. We then further removed treatments that 370
only had expression data from one study to avoid confounding treatment effects with an
study-specific batch effects. We applied SVA [45] to each of these tissue-specific subsets. s
After SVA, the expression profiles of most genes appear less treatment-specific (Figures
S16-S21 panels A vs B). We also observed less separation in PCA space within 374
treatment groups after SVA (for example, see Figures S16C and S16D). Average 375
expression levels before SVA were generally correlated with expression levels after SVA 16
(Figures S16-S21 panels A and B). In partial correlations on each SVA-corrected subset, a7
treatment specificity significantly correlated with dN (p = 0.13, p-value = 6.9 x 107°0) a7
and my (p = 0.16, p-value = 3.9 x 107128) but less strongly correlated with Tajima’s D a7
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(p = 0.04, p-value = 6.6 x 1071%) and DoS (p = 0.05, p-value = 2.0 x 10~%) for the leaf
tissue data subset (Table 1, Figures [5). These patterns were similar in other tissue types
(Figures S11-S15, Table S3).

4 Discussion

Our main finding is that genes with more treatment-specific expression patterns are, on
average, under weaker selective constraint in A. thaliana. This is evident by
treatment-specific genes generally having higher values of 7y and dN, but not higher
values of Tajima’s D and DoS, compared to genes with more constitutive expression
(Figures . Our result does not refute the possibility of strong positive selection on
treatment-specific genes, as is the case for nucleotide binding site leucine rich repeat
proteins (NBS-LRRs) in A. thaliana [51]. Rather, treatment-specific genes are simply
under weaker selection on average compared to less treatment-specific genes. Altogether,
this pattern is consistent with the hypothesis that a trade-off between the strength of
selection and the treatment specificity of expression helps maintain variation in
plasticity for A. thaliana [71 [79)].

There are a few ways to think about the biological relevance of the correlations of
treatment specificity with 7 and dN. First, the magnitude of treatment specificity’s
correlation with 7y and dN was generally half the magnitude of average expression’s
correlation with 7y and dN and similar to tissue specificity’s correlation with 7y and
dN. Both tissue specificity and average expression are thought to be important
determinants of protein evolution [7, [87], suggesting the comparable effects of treatment
specificity may be important too. Second, the effect of treatment specificity on 7 and
dN persisted even after simultaneously controlling for expression level, tissue specificity,
gene length, GC content, and batch effects. Finally, the top 25% most
treatment-specific genes in our dataset have average dNN and 7y values nearly 2.5 times
greater than the 25% least treatment-specific genes (dN = 0.025 vs 0.061; 7 = 0.0014
vs 0.0032), but relatively similar Tajima’s D and DoS values (Tajima’s D = -0.44 vs
-0.43; DoS = -0.19 vs -0.14). These observations together suggest that treatment
specificity is an important determinant of protein evolution.

This study disentangles several processes that were often difficult to resolve in
previous research. First, many previous studies focus mainly on explaining trends in
dN/dS [70, 27, [7], but both relaxed negative selection and increased positive selection
can lead to increases in dN/dS. To tease apart these two processes, we additionally
investigated treatment specificity’s relationship with Tajima’s D and DoS. Treatment
specificity’s weaker correlation with Tajima’s D and DoS, compared to dN and my,
suggests that relaxed negative selection plays a larger role than increased positive
selection in explaining the high evolutionary rates of treatment-specific genes.
Furthermore, measures of expression specificity are often highly correlated with
expression level [0, Bl [30]. When calculating a gene’s expression level, we only included
samples where said gene was expressed (TPM ¢ 5) to get an estimate of expression level
that was still correlated with dN and 7, but was independent of expression specificity,
allowing us to better disentangle these factors. Finally, previous studies have struggled
to partition the factors that influence selection on genes in the presence of predictor
variables with considerable error, such as expression level [21] 65 [90]. Error in
expression measurements can often be attributed to unmeasured differences between

RNA-sequencing experiments [44] and we accounted for these differences using SVA [45].

Even after SVA, treatment specificity was strongly correlated with dN and 7wy (Figures
5IA-B), suggesting our results are not an artifact of errors in expression measurement or
combining expression data across many studies.

Surprisingly, nearly all genes in A. thaliana have some degree of treatment specificity
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in their expression (Figures , S3), reflecting results of previous studies on tissue
specificity [23]. The high prevalence of treatment specificity in our dataset is partly
explained by batch effects because SVA significantly lowered the apparent treatment
specificity of most genes (Figures S16B-S21B) and reduced within-treatment
differentiation in PCA space (for example, see Figures S16C and S16D). This reduction
in treatment-specificity likely happened because batch effects can include unrecorded
between-treatment differences (e.g. the humidity of the growth chamber, light intensity,
watering schedule, etc.). Controlling for these unrecorded between-treatment differences
thus causes the expression of genes to be less treatment-specific. However, even after
batch correction most genes still showed some degree of treatment specificity (Figures
S16B-S21B), suggesting it is rare for a gene to be expressed at the same level across
many environments.

We also observed that genes with higher treatment specificity generally belonged to
larger gene families. We expected gene family size to correlate with selection because
singleton and duplicated genes often evolve at different rates [33, [19]. Theory also
suggests that gene duplication leads to relaxation of selection on duplicates, allowing for
neo- and sub-functionalization [48] [T]. We could not investigate how gene family size
correlates with dINV or DoS because measuring these quantities requires identifying
substitutions between orthologous genes. Thus, dIN and DoS' can only be reliably
measured for 1:1 orthologs between A. thaliana and A. lyrata. However, wn and
Tajima’s D can be calculated for genes in larger families and we did observe persistent
correlations between family size and Tajima’s D (For Figure : p = 0.05, p-value =
3.1 x 10712; also see Figures S6C-S15C, S28C-S33C). Altogether, these correlations
suggest that processes of gene duplication, neofunctionalization, and

subfunctionalization could be connected to evolving some degree of treatment specificity.

Gene length was generally the second most correlated factor with dN and 7y in our
study, just behind average expression. This is consistent with previous work suggesting
that longer proteins require more energy to synthesize and are thus under stronger
selective constraints [76] [8 23] [77]. However, while some previous studies in A. thaliana
observe this same trend [7], others do not [70]. This discrepancy could be due to
differences in how gene length is defined between studies. In this study, each gene’s
length included coding sequence as well as introns and untranslated regions, whereas
other studies break down gene length into individual features [7]. The goal of this study
was not to understand differences in evolution between different gene features, so we
included all gene features in our estimate of gene length. However, introns and
untranslated regions experience different evolutionary patterns than coding sequences;
for example, highly expressed genes being under selection for shorter introns [8], 23].
Therefore, future studies must clearly define even seemingly simple features like gene
length to ensure that results are comparable across studies.

Although we focused on testing the idea that treatment specificity is responsible for
relaxed negative selection in some genes, it is also possible that relaxed selection caused
the evolution of treatment specificity. There is some evidence that relaxation of
selection occurs before the evolution of expression specificity [32] and may better
explain cases of neo- and subfunctionalization [48] [I]. Future experiments that look at
the evolution of treatment specificity and sequence evolution across a broader
phylogenetic scale may be helpful for determining the order of these processes.

In summary, this study investigates a trade-off between the treatment-specific
expression of a gene and the strength of selection said gene experiences, which is
hypothesized to limit plasticity evolution. Consistent with this hypothesis, genes in A.
thaliana with more treatment-specific expression are under weaker selection compared
to more evenly expressed genes. While we find that this trade-off exists, we could not
dissect the direction of causality in the trade-off or determine how much this trade-off
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constrains plasticity evolution relative to other processes. However, these are exciting 4
areas of future research. Future studies should ideally generate fully balanced datasets s
on gene expression acquired across natural environmental gradients. Taking these steps s

will contribute to a comprehensive understanding of the constraints on plasticity and a5
protein evolution. 4g6
5 Data availability wr
All code for our bioinformatic workflows, data analysis, and figure creation can be found 4ss
here: 489
https://github.com/milesroberts-123/arabidopsis-conditional-expression. 490

The tissue type and treatment annotations for RNA-seq runs in our study can be found
in Table S5. Genomic references as well as a table of expression specificity, nucleotide

diversity, and substitution rate values estimated for all A. thaliana genes included in 493
this manuscript’s analyses is available at: XXX (url inserted at publication). The 404
genome assembly and annotation used in this study was originally downloaded from 405
Phytozome: https://phytozome-next.jgi.doe.gov/. 406
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Figure 2. Density plots of key variables measured in this study. (A) Distribution of
treatment specificity in leaf tissue expression across all genes included in this study. The
area underneath the curve in a given interval of treatment specificity represents the
proportion of genes in this study that fall within that range of treatment specificity. (B)
Distribution of dN/dS across all genes included in this study. The area to the right of
the dashed line represents the proportion of genes in this study with dN/dS > 1. (C)
Distribution of 7y /mg across all genes included in this study. The area to the right
of the dashed line represents the proportion of genes in this study with 7y /7g > 1.
(D) Distribution of DoS across all genes in this study. Area to the right of the dashed
line represents the propotion of genes with DoS ; 0, which is interpreted as evidence of
adaptive evolution.
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Figure 3. Correlation between the average expression in transcripts per million (TPM)
and treatment specificity of genes when samples with low expression (< 5 TPM) are
included (A) vs excluded (B). Expression level and treatment specificity were calculated
using only data from leaf tissue samples. Line is a smoothing line with 95 % confidence
intervals and values in parentheses give spearman correlation.

Table 1. Partial correlations between treatment-specificity and different measures of
selection pre-SVA and post-SVA
Pre/post-SVA Measure of selec- Partial cor- p-value’
tion relation be-
tween selection
and treatment-
specificity ¢

Pre dN 0.10 7.6 x 10731
Post dN 0.13 6.9 x 1050
Pre ™~ 0.10 1.2 x 10762
Post TN 0.16 3.9 x 107128
Pre Tajima’s D 0.03 3.1x 1077
Post Tajima’s D 0.04 6.6 x 10710
Pre DoS 0.04 2.3%x10°°
Post DoS 0.05 2.0x 108

2All correlation coefficients are spearman coefficients and are calculated only on leaf tissue samples
bAll p-values represent whether correlation coefficient significantly differs from 0.
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Figure 4. Partial correlation analysis including either (A) dN, (B) ny, (C) Tajima’s
D, or (D) direction of selection (DoS) as a covariate. Average expression excludes values
i 5 TPM and was calculated using only leaf tissue samples. Treatment specificity was
also calculated using only leaf tissue samples. Tissue specificity was calculated using
only control samples across all tissue categories. The number of genes included in each
partial correlation analysis (n) is listed at the top of each heatmap.
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Figure 5. Partial correlations for (A) dN, (B) my, (C) Tajima’s D, and (D) direction
of selection (DoS) based on leaf tissue data subset after applying SVA. Data was further
subset to include only treatment groups with data from more than one study before
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