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Abstract: The molecular mechanisms and evolutionary changes accompanying synapse
development are still poorly understood. Here, we generated a cross-species proteomic map of
synapse development in the human, macaque, and mouse neocortex. By tracking the changes of
>1,000 postsynaptic density (PSD) proteins from midgestation to adolescence, we found that PSD
maturation in humans separates into three major phases that are dominated by distinct pathways.
Cross-species comparisons reveal that the human PSD matures about three times slower than other
species and contains higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the
perinatal period. Enhancement of the RhoGEF signaling in human neurons delays the
morphological maturation of dendritic spines and functional maturation of synapses, potentially
contributing to the neotenic traits of human brain development. In addition, PSD proteins can be
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divided into four modules that exert stage- and cell type-specific functions, possibly explaining
their differential associations with cognitive functions and diseases. Together, our proteomic map
of synapse development provides a blueprint for studying the molecular basis and evolutionary
changes of synapse maturation.

Main Text:

Synapses establish the neuronal networks that mediate information processing in the brain.
Synaptic dysfunction plays a critical role in most, if not all, brain diseases, including disorders that
typically occur in childhood, adolescence, or adulthood (/—3). Therefore, understanding the
formation, maturation, and specification of synapses is essential for understanding human
cognition and mental disorders.

The postsynaptic density (PSD) is a highly specialized structure located beneath the postsynaptic
membrane of excitatory synapses. Biochemical isolation of PSDs from the adult brain followed by
mass spectrometry revealed that the PSD is a highly sophisticated protein complex composed
of >1,000 proteins including cytoskeletal proteins, neurotransmitter receptors, signaling enzymes,
ribosomal proteins, and scaffolding proteins (4). Mutations in these proteins cause over 130 brain
diseases (9).

Excitatory synapses and associated PSDs undergo profound changes at both morphological and
compositional levels during brain development (6—70). In particular, developmental increases in
the ratio of N-methyl-D-aspartic acid (NMDA) receptor subunits GRIN2B to GRIN2A and of PSD
scaffolding proteins DLG3 to DLG#4 are critical for the functional maturation of synapses (//—13).
However, studies to understand the developmental changes of the PSD are limited to dozens of
well-known PSD proteins typically identified in the adult brain (6, 8, 9). Unbiased, systematic
characterization has been lacking. In addition, density, composition, and maturation rates of
synapses differ between species, potentially contributing to the evolutionary variation of
neurotransmission properties, cognitive ability, and behavioral repertoire (/4—20). For example,
prolonged maturation or neoteny of human synapses has been suggested as a possible explanation
for the emergence of human-specific cognitive traits (2/-23). But we still know little about the
underlying molecular mechanisms.

Here, we generate a cross-species proteomic map of synapse development in the neocortex,
identifying the dynamics of >1,000 PSD proteins and the molecular pathways that govern
individual phases of synapse maturation. A comparison of the maturing PSDs in humans to those
in macaques and mice reveals that PSD maturation in humans is approximately three times slower
than that in other species. Moreover, Rho guanine nucleotide exchange factors (RhoGEFs), which
serve to delay synapse maturation, are more abundant in human PSDs in the perinatal phase,
possibly contributing to the neotenic traits of human synapses. Integrating these data with
transcriptomic and genetic data, we further determine the gene regulatory network, cell type
specificity, and selective disease vulnerability of synapse maturation. Our data provide a temporal
map of the topology of synapse development in the neocortex and offer insight into the
evolutionary mechanisms of synaptic neoteny in humans.

Results
Changes in PSD composition during human neocortical development

To understand the molecular changes of the PSD in the developing human neocortex, we obtained
neocortical samples across six major developmental stages ranging from the second trimester to
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adolescence (Fig. 1A and table S1). The six stages were chosen to cover major developmental
events including neurogenesis, neuronal migration, synaptogenesis, myelination, and synaptic
pruning. PSDs were isolated from each sample as described previously (24). Isolation of the PSD,
including from immature human brain samples, was successful as indicated by the following
quality control metrics. Integral components of the PSD, but not presynaptic (SYP) or cytoplasmic
(GAPDH) proteins, were enriched in the PSD fraction of early-stage samples (fig. S1A). In
addition, electron microscopy identified typical PSD-like electron-dense structures in the PSD
fraction of immature samples (fig. S1B). Furthermore, GRIN2B and DLG4, two PSD proteins that
decrease and increase, respectively, during PSD maturation (&), showed the expected abundance
patterns in isolated PSDs (fig. S1C). Finally, the yield of PSDs correlated well with the estimated
number of synapses (fig. S1D).

We performed liquid chromatography and tandem mass spectrometry (LC-MS/MS) analysis and
label-free quantification on 54 PSD samples. Each PSD sample was isolated from a different
neurologically normal individual and had passed screening for synaptic proteome preservation
(25). The identified proteins overlapped significantly with previously reported PSD proteins at
comparable stages (fig. S1E) (5, 26). After the removal of potential contaminants, we found a total
of 1765 PSD proteins in at least one of the six developmental stages (fig. S1F and table S2). To
assess the quality of the data, we first sought to determine whether developmental changes were
the main driver of variance. Principal component (PC) analysis revealed that samples from the
same age group were closely clustered (Fig. 1B). PC1, accounting for 39.5% of the variability,
was strongly correlated with the age of the samples, but not with other potential confounding
factors like sex or processing batch (fig. S1G). Moreover, variance across age groups explains a
median of 41.7% of the variation in the dataset, after correcting for processing batch, PSD quality,
and sex (fig. S1G). Hierarchical clustering also showed that samples were clustered by age (Fig.
1C). Proteins such as GRIN2A, GRIN2B, DLG3, and DLG4 showed the expected abundance
patterns during PSD maturation and were consistent with Western blotting data (Fig. 1C and fig.
S2, A and B). To validate the identified PSD proteins in situ in the immature human neocortex,
we performed immunostaining of several proteins that show enrichment at midgestation, including
the ribosomal subunit RPS6, B-catenin (CTNNB1), the vesicle trafficking regulator GDI1, and the
actin modulator cofilin (CFL1). All these proteins colocalized with the canonical PSD marker
DLG#4 in a subset of synapses (fig. S3, A to D).

We performed gene set enrichment analysis (GSEA) to identify molecular pathways with higher
activity at individual developmental stages compared with other stages. In general, PSD
maturation appears to undergo three major phases (midgestational, perinatal, and postnatal). The
midgestational phase, between gestational week 18 to 23, was enriched for translation-related
pathways (Fig. 1, D and E, and fig. S2C). The perinatal phase, between the third trimester and one
year of age, was enriched for Rho GTPase and protein folding pathways (Fig. 1, D and E, and fig.
S2D). The postnatal phase, above four years of age, was enriched for synaptic transmission-related
pathways (Fig. 1, D and E, and fig. S2E). These results suggest that local protein synthesis, actin
cytoskeleton reorganization, and enhancement of synaptic efficacy were sequentially activated
during PSD development. At the individual protein level, proteins from the same complex or
pathway generally tend to exhibit similar abundance changes during development (Fig. 1E and fig.
S2, C to E). However, relative changes in the abundance of homologous proteins such as
GRIN2A/GRIN2B and DLG3/DLG4, as shown above, are critical for synapse maturation (//—13).
Another example is the two predominant a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor subunits GRIA1 and GRIA2. We found that GRIA2 increased steadily during
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development, whereas GRIA1 remained relatively constant (Fig. 1E), consistent with
GRIA2-lacking, and thus calcium-permeable AMPA receptors being important for early synaptic
function (27). In addition to these proteins, we discovered many other homologous proteins that
exhibited reciprocal pattern changes (Fig. 1F and fig. S4, A to H) including drebrin/drebrin-like
proteins, whose abundance changes were further validated by immunostaining (Fig. 1G and fig.
S5, A to D). These newly identified reciprocal changes may also play important roles in PSD
maturation.

Protein modules and their coordinated functions in the PSD

Proteins with similar abundance patterns during PSD maturation could represent protein modules
with specific molecular functions. We identified four protein modules based on correlation by
weighted correlation network analysis (WGCNA) (Fig. 2A) (28). All four modules were
significantly enriched for protein-protein interactions (PPIs), whereas no enrichment was found
for proteins with no module assignment (the grey module) (Fig. 2B), suggesting that proteins in
the same module work synergistically by forming protein complexes. Indeed, pathway
overrepresentation analysis highlighted module-specific enrichment in particular biological
pathways (Fig. 2C and table S3). Proteins in the brown module had higher abundance in the second
trimester and became lowly abundant in the third trimester and thereafter (Fig. 2A). The brown
module was enriched with translation-related pathways, highlighting the role of local protein
synthesis in the midgestational phase of PSD development (Fig. 2C). The blue module also showed
high abundance in the second trimester. However, its level decreased more slowly compared with
the brown module and remained relatively high in the third trimester (Fig. 2A). The blue module
was enriched for signaling pathways related to axon guidance and Rho GTPases, highlighting the
roles of synapse specification and actin remodeling in both the midgestational and perinatal phases
of PSD maturation (Fig. 2C). The other two modules, turquoise and yellow, both peaked
postnatally, with the turquoise module peaking earlier shortly after birth (Fig. 2A). Rho GTPase
signaling was preferentially active in the turquoise module, indicating, again, a selective role of
actin remodeling in the perinatal phase of PSD maturation (Fig. 2C). Synaptic transmission
pathways were enriched in both modules, suggesting that the main theme of PSD maturation in
the postnatal phase is to make synapses more robust and efficient (Fig. 2C). Similar results were
obtained by synaptic gene ontology (SynGO) enrichment analysis (fig. S6A and table S3) (29). In
summary, abundance patterns and molecular functions of the PSD protein modules are consistent
with the GSEA results at individual developmental stages.

To visualize potential protein complexes and interactions in the PSD, we generated PPI-co-
abundance networks in each module (see Materials and Methods) (figs. S6B, S7, and S8). As
expected, proteins involved in the same pathway were clustered more closely, as indicated by a
shorter average path length to each other than to proteins outside the pathway (fig. S6, B and C).
PPIs and biological functions of a protein are often mediated by protein domains. We determined
the distribution of protein domains in the modules (Fig. 2D) and the domain architecture of
individual proteins (fig. S9 and table S4). Domains involved in vesicle trafficking (RAB and
t SNARE), cell adhesion ( LRR, CA, and ARM), signal transduction (S_TKc, C1, and C2), and
adult PSD scaffolds (PDZ, SH3, and GuKc) (9) were enriched in the brown, blue, turquoise, and
yellow modules, respectively (Fig. 2D). Interestingly, although both the blue and turquoise
modules were involved in Rho GTPase signaling (Fig. 2B), RhoGAP and RhoGEF domains were
selectively enriched in each of them (Fig. 2D). Indeed, Rho GTPase-activating proteins
(RhoGAPs), particularly those specific for Racl and Cdc42, were enriched in the blue module (Fig.
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2, E and F, and table S4). Instead, Rho guanine nucleotide exchange factors (RhoGEFs),
particularly those specific for Racl, were enriched in the turquoise module (Fig. 2, E and F). Given
the critical role of Rho GTPases in actin remodeling, these results suggest that Rho GTPase
signaling is dynamically regulated during PSD maturation to facilitate stage-specific cytoskeleton
reorganization requirements and morphological changes.

Transcription of PSD proteins and its cell type specificity

To understand the role of transcription in regulating PSD development, we compared the RNA
levels of PSD modules with their abundance patterns. Integrating the BrainSpan and
PsychENCODE transcriptomic data (30, 3/) from the developing human neocortex with our
proteomic data, we found that the general trends were preserved while the differences between the
brown and blue modules and between the turquoise and yellow modules were largely diminished
(Fig. 3A). For example, Rho GTPase regulators and PSD scaffolding proteins from the turquoise
and yellow modules, respectively, had distinct abundance patterns in the proteomic data, but they
had similar expression patterns in the transcriptomic data (Fig. 3B). To quantify the concordance
between RNA and protein, we calculated the Spearman's rank coefficient of correlation between
RNA and protein levels of all PSD proteins (table S5). We found that proteins in the blue and
yellow modules generally had high RNA-protein concordance (median Spearman r > 0.5) (Fig.
3C). In contrast, brown and turquoise modules had significantly lower concordance (Fig. 3C),
suggesting that post-transcriptional regulatory mechanisms such as protein transport play a key
role in recruiting proteins to the PSD in these two modules. Consistent with these results, module
density and connectivity preservation analysis (32) showed that although all four modules were at
least moderately preserved in the transcriptomic data, the brown and turquoises module were
among the least preserved (fig. SI0A).

Given their high RNA-protein concordance, we next focused on the blue and yellow modules to
study the regulatory mechanisms of their transcription. Transcription factor (TF) enrichment
analysis by ChEA3 revealed core TF networks targeting the two modules (Fig. 3D and table S5).
Some TFs in the networks such as FOXG1, MEIS2, MYTI1L, and RORB are known to be critical
regulators of neuronal differentiation and synapse development.

To examine transcription of the blue and yellow modules in a cell type-specific manner, we
integrated our PSD proteomic data with single-cell RNA-sequencing data from both the
developing and adult human neocortex (33, 34) (fig. S10, B to D). In the developing neocortex,
expression of genes in the blue module showed variation between neuronal subtypes but remain
relatively constant over time in the second trimester (Fig. 3E). In contrast, expression of genes in
the yellow module displayed distinct patterns in different neuronal subtypes (Fig. 3E). The yellow
module positively correlated with the temporal maturity of the PSD (Fig. 2A). Consistent with the
fact that synapses just start to form as neurons are migrating, yellow module genes remained lowly
expressed in immature excitatory neurons. For more mature glutamatergic neurons, the expression
levels were dependent on both sample age and neuronal birth order. Specifically, levels were
higher in (1) older samples and (2) earlier-born deep-layer neurons than later-born upper-layer
neurons (Fig. 3E). Interestingly, Cajal Retzius cells, which are the first glutamatergic neurons to
emerge in the neocortex, showed little change in yellow module levels, consistent with their
transient role in cortical organization rather than in synaptic circuit formation (Fig. 3E). Another
subclass of neurons, GABAergic interneurons, are generated in a similar time window as
glutamatergic neurons in the neocortex. However, their yellow module levels were lower than
those of most glutamatergic neuron subtypes (Fig. 3E), reflecting their long-range migration and
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late integration into the neocortex. Together, these results indicate that transcription of PSD
proteins is stage- and cell type-specific and is tightly controlled to regulate synapse formation and
maturation.

Although PSDs in GABAergic interneurons appeared to mature slower than those in glutamatergic
neurons during early development, they might reach a similar level of maturity later. Surprisingly,
we found that GABAergic interneurons had higher levels of genes in the blue module and lower
levels of genes in the yellow module in the adult neocortex (Fig. 3F and fig. SI11A). Thus,
compared with glutamatergic neurons, interneurons maintain higher expression of genes encoding
early-stage synaptic proteins at fully mature stages. This could be attributed to the differential
expression of TFs targeting the two modules (Fig. 3G and fig. S11B). Differences in transcription
and abundance of PSD proteins may contribute to the differential excitatory postsynaptic responses
observed in these two subclasses of cortical neurons (35).

Species differences in PSD development

Excitatory synapses and the PSD in humans, macaques, and mice are similar yet they differ at both
the morphological and molecular levels (17, 19, 36). However, the changes in PSD development
that contribute to these differences are not known. Therefore, we profiled macaque and mouse
neocortical PSDs using the same method at five time points (Fig 4A and table S7). These time
points roughly correspond to the developmental stages of our human samples (37). We identified
a total of 1572 proteins in both developing macaque and mouse PSDs (table S8 and S9). Most of
the identified proteins were found in multiple age groups, whereas some were stage-specific (fig.
S12, A and B). Both PC analysis and hierarchical clustering showed that samples clustered by age
group, confirming that developmental changes and not technical noise contributed to the variance
in the data (fig. S12, C to F). GSEA showed that, as in humans, translation-related pathways and
synaptic transmission-related pathways were more active in the early and late PSD development,
respectively, in both macaques and mice (Fig. 4B). However, enrichment of Rho GTPase signaling
and the Racl pathway found in the perinatal phase of PSD development in humans was largely
diminished in macaques and mice (Fig. 4B).

To quantitatively compare PSD samples from different species, we performed cross-species
similarity analysis. We calculated the Pearson correlation coefficients between PSD samples from
different species and found that human samples in the second trimester and above four years of
age correlated well with macaque and mouse samples at corresponding stages (Pearson r > 0.6)
(Fig. 4C and table S10). However, human samples between the third trimester and one year of age
(the perinatal phase) showed relatively low correlations with all age groups in other species. We
then sought to identify changes in PSD proteins that led to this difference.

Different species have distinct developmental timescales, making it hard to directly compare the
abundance of PSD proteins. We therefore applied a regularized linear approach (see Materials and
Methods) to unbiasedly predict the equivalent PSD ages of all three species based on their
proteomic profiles (Fig. 4D and table S10). We found that multiplicative changes in real age were
approximately linearly associated with multiplicative changes in the predicted equivalent human
PSD age, except that macaque samples appeared to undergo two different stages separated by one
year of age (Fig. 4D). We thus regressed the log-transformed humanized ages against the real log-
transformed ages using a linear model (or a linear spline model for macaque samples) and obtained
the slope coefficients as an estimator of PSD maturation rate normalized to the developmental
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timescale of individual species. This analysis revealed that PSD maturation was about three times
slower in humans than in mice and macaques (< 1 year) (Fig. 4D).

Based on the equivalent PSD ages, we compared the abundance patterns of the human PSD
modules in all three species. While the patterns of the blue and yellow modules were similar across
all species, the brown and turquoise modules displayed species-specific differences (Fig. 4E).
Specifically, the brown module was less abundant, and the turquoise module was more abundant
in humans at the perinatal phase, likely causing the low correlation we observed in the similarity
analysis at this developmental stage. Accordingly, module density and connectivity preservation
analysis showed that the brown and turquoise modules were among the least preserved in
macaques and mice (fig. S12, G and H). In conclusion, human PSD matures at a slower rate and
the perinatal phase of its development is less represented in macaques and mice.

Enhancement of RhoGEF signaling promotes neoteny of human synapses

The slower maturation rate of the human PSD could result from the increased abundance of
turquoise module proteins and enrichment of Rho GTPase regulators at the perinatal phase. To test
this hypothesis, we further investigated the increase of RhoGEF signaling in the human PSD.
Indeed, all RhoGEF proteins in the turquoise module were drastically increased at the perinatal
phase in humans and remained more abundant than in other species thereafter in our proteomic
data (Fig. 5A). This finding was further confirmed by Western blotting (Fig. 5B and fig. S13A)
and immunostaining (Fig. 5C and fig. S14). Postmortem accumulation could lead to an artificial
increase in PSD proteins as has been reported for tubulins (38). To rule out the possibility that
postmortem accumulation caused the observed increase in RhoGEF proteins, we compared PSDs
prepared from postmortem samples (postmortem interval between 14 to 17 hours) with those from
neurosurgical biopsy and found that RhoGEF levels were comparable (fig. S13B). Next, we tested
whether the increase in RhoGEF proteins led to the activation of their known downstream
pathways. A majority of RhoGEF proteins in the turquoise module target Racl for Rho GTPase
activation. We found that phosphorylation of PAK, an indicator of Racl activity, increased in
human synaptosomes along with RhoGEFs during synapse maturation (Fig. 5D). However, no
change was observed in mouse neurons (Fig. 5D). Taken together, these results validated the
enhancement of RhoGEF signaling in the human PSD.

To understand the role of RhoGEF proteins in human synapse maturation, we individually
overexpressed two RhoGEF proteins in the turquoise module, ARHGEF7 and RASGRF2, in
developing human cortical neurons (fig. S15). The density of synapses, quantified by DLG4 and
SYNI co-staining, was similar (Fig. SE), indicating that synaptogenesis was not affected. However,
analysis of the morphology of dendritic spines revealed that overexpressing either ARHGEF7 or
RASGRF2 increased spine length and promoted the formation of immature-looking, filopodia-like
spines (Fig. 5E). We also observed a significant increase in spine density in RhoGEF
overexpressing neurons (Fig. SE). To test whether these morphological changes translate into
functional consequences, we recorded miniature excitatory postsynaptic currents (mEPSCs) in
human neurons with and without RhoGEF overexpression. We found that mEPSC frequency was
significantly decreased in neurons overexpressing either ARHGEF7 or RASGRF2 (Fig. 5F).
Moreover, the surface level of AMPA receptor GRIA1 was reduced by ARHGEF7 or RASGRF2
overexpression (Fig. 5G and fig. S16). These data demonstrate that overexpression of specific
RhoGEF proteins inhibits the functional maturation of synapses. Altogether, our results suggest
that the human-specific increase in selective RhoGEF proteins delays maturation and promotes
neoteny of human synapses.
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PSD modules in human cognition and brain disorders

We next investigated whether genetic variants associated with human cognition converge onto the
human PSD modules, identifying that the turquoise module was enriched for GWAS signals of
processing speed and fluid intelligence (the UK Biobank) (Fig. 6A). The turquoise module has its
peak expression shortly after birth, at which time infants perceive a wealth of external stimuli.
Thus, we posited that proteins in this module were important for activity-dependent synaptic
remodeling. Indeed, the turquoise module was highly enriched for activity-dependent proteins in
neurons (Odds ratio > 3; Fig. 5B and table S11) (39), including TRIM3 (an activity-dependent
ubiquitin ligase for PSD scaffolding proteins) (40), GRIPAP1 (a recycling endosome regulator
critical for synaptic plasticity) (47), and RhoGEF proteins such as ABR and NGEF (fig. S17A).
Combined with the fact that the turquoise module is more abundant in the human PSD and that
RhoGEF proteins in this module promote synaptic neoteny, these results highlight the possible
significance of this module in the evolutionary enhancement of human cognitive function.

Synaptic dysfunction contributes to both neurodevelopmental and psychiatric disorders, often
caused by de novo and common variants, respectively. Regarding de novo variants, genes encoding
PSD proteins were more intolerant of protein-truncating variants (PTVs) (lower LOEUF scores)
and missense variants (higher missense Z-scores) compared with all genes expressed in the
neocortex (Fig. 6C), suggesting that mutations in these genes are more likely to cause human
diseases. Remarkably, the turquoise module was particularly intolerant of missense variants (Fig.
6C). No difference was observed for synonymous mutations (fig. S17B). Accordingly, we found
that genes encoding PSD proteins were enriched for de novo nonsynonymous variants associated
with neurodevelopmental disorders including epilepsy, developmental delay (DD), and intellectual
disability (ID) (denovo-db) (Fig. 6D, fig. S17, C and D, and table S11). In particular, the turquoise
module had an excessive number of missense variants, whereas the yellow module was enriched
for both missense variants and PTVs. Turquoise module genes with disease-associated missense
variants included genes encoding ion channels such as KCNQ2 and SCN2A4 and molecular motors
such as DYNCIHI and KIFIA. Some of these missense variants may be gain-of-function or
dominant-negative mutations that have different pathogenic effects compared with PTVs (42, 43).
In contrast, many yellow module genes with PTVs were genes encoding enzymes that regulate
PSD organization and postsynaptic receptor trafficking, such as SYNGAPI, IQSEC2, and CDKLS5.
Therefore, although mutations in both modules contribute to neurodevelopmental disorders, the
different patterns of module abundance and variant type enrichment suggest that they do so by
different mechanisms that target distinct stages of synapse maturation.

For psychiatric disorders, the brown module was enriched for GWAS signals of diseases that
generally manifest in young adulthood, including schizophrenia (SCZ), bipolar disorder (BPD),
and major depressive disorder (MDD) (The Psychiatric Genomics Consortium) (Fig. 6E, fig. SI8A,
and table S11). Proteins in the brown module had peak abundance at midgestation, indicating an
early etiology involving synapse development for these adolescence/adult-onset disorders.
However, after the onset of these psychiatric disorders, genes encoding PSD proteins in the late
modules (turquoise and yellow) were downregulated compared with controls (Fig. 6F, fig. S18, B
and C, and table S11). This is likely the consequence of a downstream cascade of biological events
following earlier-acting genetic risk factors that disrupt synapse development.

Discussion
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Although synapses and the PSD are known to undergo profound remodeling in brain development
to enable the formation and reorganization of brain networks (6, 8, 44), we have had limited
knowledge of the molecular changes that occur during this remodeling. In this study, we generated
a cross-species proteomic map of synapse development and revealed the temporal dynamics
of >1,000 PSD proteins. We demonstrate that the human PSD undergoes three major phases of
maturation. By relating the abundance of PSD proteins to each other, we further uncovered
individual protein modules and networks that exert stage-, cell type-, and species-specific
functions. Furthermore, we found that the PSD develops about three times slower in humans than
in other species and that the increased abundance of RhoGEF proteins, as expressed in the
turquoise module, contributes to this difference. The turquoise module is also associated with
synaptic plasticity, human cognitive function, and mental disorders. Together, these data provide
a blueprint for studying the molecular and evolutionary mechanisms of synapse maturation in
humans.

Synapse development is regulated at both the RNA and protein levels (45). By integrating PSD
proteomic data with bulk RNA-sequencing data, we found that different PSD modules exhibit
different RNA-protein concordance, suggesting that they are differentially regulated by post-
transcriptional mechanisms. Focusing on the modules with high RNA-protein concordance, we
inferred neuronal subtype-specific PSD signatures from single-cell RNA-sequencing data. Our
analysis revealed major differences in the PSD between glutamatergic and GABAergic neuronal
subtypes in both the developing and adult neocortex. This is consistent with previous studies
showing that the composition of the PSD is diverse among neuronal subtypes (46—48). One
limitation of this inference is that single-cell RNA-sequencing does not include RNAs in dendrites
that could contribute to the PSD through local translation. Although somatic and dendritic RNAs
are significantly correlated (49), future studies to determine the proteomic profiles of neuronal
subtype-specific PSDs will help expand these findings.

Previous studies identified a critical role of a RhoGAP protein, SRGAP2, in the human-specific
developmental delay in synapse maturation and increase in synaptic density (50—52). It has been
shown that the Rac1-GAP activity of the ancestral protein SRGAP2A limits the spine neck length
and density in neocortical neurons. Human-specific partial duplications of SRGAP2 inhibited the
function of SRGAP2A, resulting in longer spine necks and higher spine density in humans. In our
study, we found that multiple RhoGEF proteins targeting Racl have increased abundance in the
human PSD starting at the perinatal stages. Enhancement of RhoGEF signaling in human neurons
not only increased spine length and density but also delays functional maturation of synapses.
Given that RhoGAP and RhoGEF proteins exert antagonistic functions in activating Racl, our
results are consistent with the previous findings and suggest that increased synaptic Racl activity
contributes to the neoteny of human synapses. Moreover, RhoGEF proteins are enriched in the
turquoise module associated with human cognitive function. Thus, our analysis provides molecular
evidence that links synaptic neoteny to the evolution of human cognition.

Early synaptic connections before the third trimester are often transient stepping-stones toward
functional synaptic circuits in mature brains (53). Surprisingly, genetic variations of PSD proteins
specifically abundant at midgestation are associated with adolescent-onset psychiatric disorders.
Given the dysregulation of late-stage synaptic proteins after the onset of these disorders, our
findings highlight the importance of early synaptic connections for shaping neuronal wiring and
higher-order brain functions of the mature brain.
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There are several limitations to this study. Isolation of PSDs by subcellular fractionation can
include contaminants from other cellular compartments or associated structures (54). We have
therefore applied multistep orthogonal data filtering to minimize the effect of contamination.
Additional independent validation such as proximity proteomics or immunogold labeling will
further determine if the proteins reported here are bona fide PSD components. Moreover,
alternative splicing and the isoforms they produce play a key role in regulating synapse
development (55, 56), but due to technical limitations, our proteomic analysis does not include
quantifications at the isoform level. With the development of novel methods, future studies that
determine developmental changes of the synaptic proteome at the isoform level across different
brain regions and cell types will provide further insight into the mechanisms of brain development,
evolution, and disease.
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Fig. 1. Changes in PSD composition during human neocortical development.

(A) Flow chart of the overall approach.

(B) PCA plots of the samples colored by their age groups.

(C) Hierarchical clustering of the samples based on proteins with differential abundance.

(D) Gene set enrichment analysis for individual age groups. NES: normalized enrichment score.
(E) Abundance patterns of representative PSD proteins.

(F) Abundance patterns of DBN1 and DBNL.

(G) Immunostaining of DBN1 and DBNL at DLG4 loci in the human neocortex (n = 3, 3
samples, scale bar: 2 um). *p < 0.05; unpaired two-tailed ¢ test.
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Fig. 2. Protein modules of the developing human PSD with distinct functions.

(A) Scaled abundance patterns (module eigengene values) of four protein modules of the human
PSD identified by WGCNA.

(B) Kernel density estimation of the null distributions of protein-protein interaction (PPI)
numbers assuming no enrichment of PPI in individual modules; the vertical red lines indicate the
observed PPI numbers in each module.

(C) Pathway enrichment analysis of each module (hypergeometric test).

(D) Distribution of protein domains in each module.

(E) Proportions of RhoGAPs and RhoGEFs and their subtypes in each module.

(F) Abundance patterns of RhoGAPs in the blue module and RhoGEFs in the turquoise module.
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Fig. 3. Transcription of PSD proteins and cell type specificity.

(A) Scaled median expression patterns of genes encoding proteins of the four PSD modules in
the BrainSpan data.

(B) Scaled protein abundance and gene expression patterns of DLG1, DLG4, NGEF, and
RASGRF2.

(C) Spearman correlation coefficients between protein abundance and gene expression of PSD
proteins in each module.

(D) Transcription factor (TF) networks that regulate genes in the blue and yellow modules.

(E) Scaled median expression values of the blue and yellow modules in individual neuronal
subtypes of the developing human neocortex.

(F) Scaled median expression values of the blue and yellow modules in individual neuronal
subtypes of the adult human neocortex.

(G) Scaled median expression values of the TFs regulating the blue and yellow modules in
individual neuronal subtypes of the adult human neocortex.
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Fig. 4. Comparison of PSD development across humans, macaques, and mice.
(A) Schematic illustrating the developmental stages of macaque and mouse samples.

(B) Gene set enrichment analysis for individual age groups across species. NES: normalized
enrichment score.

(C) Similarity matrices representing pairwise Pearson correlations between human, macaque,
and mouse samples.

(D) Predicted equivalent human PSD ages. B indicates the coefficients of slope of the linear
regression models in each species.

(E) Abundance patterns of the four PSD modules across species.
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Fig. 5. Enhancement in RhoGEF proteins promotes neoteny of human synapses.
(A) Abundance patterns of RhoGEFs in the turquoise module across species.

(B) Immunoblots and quantification of representative RhoGEFs in the developing human (n = 4,
4, 4 samples) and mouse (n =2, 2, 2, 2, 2, 2, 2 samples) PSD. *p <0.05, **p <0.01, ***p <
0.001; one-way ANOVA with Holm-Sidak's multiple comparisons test.

(C) Immunostaining of ARHGEF7 at DLG4 loci in the developing human and mouse neocortex
(n=3, 3, 3, 3 samples, scale bar: 2 um). **p < 0.01; unpaired two-tailed ¢ test.

(D) Immunoblots and quantification of representative RhoGEFs and downstream PAK signaling
activity in the synaptosomes of culture primary human (n = 3, 3 samples) and mouse cortical
neurons (n = 3, 3 samples). **p <0.01; one-way ANOVA with Holm-Sidak's multiple
comparisons test.

(E) Immunostaining of dendrites from primary human cortical neurons cultured six weeks in
vitro transfected with mEGFP-C1 and vectors expressing mCherry, mCherry-ARHGEF7, or
mCherry-RASGRF2 (n = 20, 20, 20 neurons, scale bar: 5 pm). **p < 0.01, ****p <0.0001; one-
way ANOVA with Holm-Sidak's multiple comparisons test.

(F) Miniature excitatory postsynaptic current (mEPSC) recording of primary human cortical
neurons cultured six weeks in vitro transfected with mEGFP-C1 and vectors expressing
mCherry, mCherry-ARHGEF7, or mCherry-RASGRF2 (n = 14, 10, 10 neurons). *p.adj < 0.05;
Kruskal-Wallis test.

(G) Immunostaining against surface GRIA1 of dendrites from primary human cortical neurons
cultured six weeks in vitro transfected with mEGFP-C1 and vectors expressing mCherry,
mCherry-ARHGEF7, or mCherry-RASGRF2 (n = 14, 15, 15 neurons, scale bar: 5 pm). ***p <
0.001; one-way ANOVA with Holm-Sidak's multiple comparisons test.
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Fig. 6. Association of human PSD modules with cognitive functions and brain disorders.

(A) Enrichment of common variants associated with human cognitive functions in PSD modules.
The numbers indicate the MAGMA linear regression coefficient . The blue borders denote p.ad;
<0.05; MAGMA analysis on GWAS summary statistics.

(B) Enrichment of neuronal activity-dependent proteins in PSD modules. The numbers indicate
the odds ratio. The blue borders denote p.adj < 0.05; hypergeometric test.

(C) Distribution of gnomAD LOEUF scores and missense Z-scores of genes in each category.
Kruskal-Wallis test.

(D) Enrichment of de novo variants associated with neurodevelopmental disorders in PSD
modules. The numbers indicate the odds ratio. The blue borders denote p.adj < 0.05;
hypergeometric test.

(E) Enrichment of common variants associated with psychiatric disorders in PSD modules. The
numbers indicate the MAGMA linear regression coefficient . The blue borders denote p.adj <
0.05; MAGMA analysis on GWAS summary statistics.

(F) Enrichment of misexpressed genes after the onset of psychiatric disorders in PSD modules.
The numbers indicate the odds ratio. The blue borders denote p.adj < 0.05; hypergeometric test.
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