

1 Molecular basis of SARS-CoV-2 Omicron variant evasion from shared 2 neutralizing antibody response

3 Anamika Patel^{1,\$}, Sanjeev Kumar^{2,\$}, Lilin Lai^{3,5}, Chennareddy Chakravarthy^{4,5}, Rajesh
4 Valanparambil^{4,5}, Elluri Seetharami Reddy^{2,6}, Kamalvishnu Gottimukkala², Prashant
5 Bajpai², Dinesh Ravindra Raju^{1,7}, Venkata Viswanadh Edara³, Meredith E. Davis-Gardner³,
6 Susanne Linderman^{4,5}, Kritika Dixit², Pragati Sharma², Grace Mantus^{3,5}, Narayanaiah
7 Cheedarla⁸, Hans P. Verkerke^{8,9} Philipp Frank¹, Andrew S. Neish⁸, John D. Roback⁸, Carl W.
8 Davis^{4,5}, Jens Wrammert^{3,5}, Rafi Ahmed^{4,5}, Mehul S. Suthar^{3,4,5}, Amit Sharma^{10*}, Kaja
9 Murali-Krishna^{2,3,5,*}, Anmol Chandele^{2,*}, Eric A. Ortlund^{1,*}

10 ¹Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322,
11 USA.

12 ²ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and
13 Biotechnology, New Delhi, 110067, India

14 ³Department of Pediatrics, Emory National Primate Center, Emory University School of
15 Medicine, Emory University, Atlanta, GA 30322, USA

16 ⁴Department of Microbiology and Immunology, Emory University School of Medicine,
17 Emory University, Atlanta, GA 30322, USA

18 ⁵Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA

19 ⁶Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi,
20 110016, India

21 ⁷Georgia Tech, Atlanta, GA 30332, USA

22 ⁸Department of Pathology and Laboratory Medicine, Emory University School of
23 Medicine, Atlanta, GA 30322, USA

24 ⁹Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA

25 ¹⁰Structural Parasitology Group, International Center for Genetic Engineering and
26 Biotechnology, New Delhi, 110067, India

27 ^{\$}Co-First Authors / These authors contributed equally

28
29 *Correspondence: eortlun@emory.edu (E.A.O.), chandeleanmol@gmail.com (A.C.),
30 murali.kaja@emory.edu (K.M.K.), amit.icgeb@gmail.com (A.S.)

31 **Keywords**

32 COVID-19, SARS-CoV-2 variants, human monoclonal antibodies, Cryo-EM structure,
33 neutralizing antibodies

34 **Abstract**

35 A detailed understanding of the molecular features of the neutralizing epitopes
36 developed by viral escape mutants is important for predicting and developing vaccines
37 or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we
38 report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered
39 individuals during first wave of pandemic in India. These mAbs had publicly shared near
40 germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized
41 Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural
42 analysis of these three mAbs in complex with trimeric spike protein showed that all three
43 mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one
44 targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of
45 immunogenetic makeup, structure, and function of these three mAbs with our recently
46 reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants
47 revealed precise antibody footprint, specific molecular interactions associated with the
48 most potent multi-variant binding / neutralization efficacy. This knowledge has timely
49 significance for understanding how a combination of certain mutations affect the binding
50 or neutralization of an antibody and thus have implications for predicting structural
51 features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic
52 antibodies against these.

53 **Introduction**

54 SARS-CoV-2 Omicron subvariants are continuously emerging and escaping therapeutic
55 monoclonal antibodies (mAbs) and vaccines (1-3). Mutations acquired in the spike
56 protein of SARS-CoV-2 variants, a target for neutralizing antibodies (nAbs), are primarily
57 responsible for this immune escape (1, 4). Identifying nAbs / non-nAbs to these variants
58 and determining their prevalence in human population allows us to understand the
59 shared mechanisms of immune protection among diverse populations (5, 6). Since the
60 emergence of COVID-19, >11,000 SARS-CoV-2 mAbs have been identified (7). Among
61 these, nAbs encoded by human antibody heavy chain variable germline genes such as
62 IGHV3-53/3-66, IGHV1-58, IGHV3-30 and IGHV1-69 are commonly observed in many
63 individuals across the globe (7). These related rearrangements, known as a public
64 antibody response, suggest a shared immune response with a similar genetic makeup and

65 modes of antigen recognition that has been found in large number of individuals infected
66 with influenza, dengue, malaria, HIV and SARS-CoV-2 (5, 6, 8–13). Mapping the
67 immunogenetic makeup, structure, and function of these public clonotypes allows us to
68 better understand how certain mutations affect the binding of an antibody and thus
69 potentially expedite antibody re-purposing for emerging variants. It is established that
70 SARS-CoV-2 variants bearing K417N/N501Y mutations evade IGHV3-53/3-66 RBD mAbs
71 (5, 13). These antibodies are primarily encoded by near germline sequences and are
72 commonly found in populations residing in distinct geographical regions (5, 12, 13).
73 However, SARS-CoV-2 variant evasion from the IGHV3-30 shared antibody response is
74 unclear.

75 We recently published a panel of 92 RBD-binding monoclonal antibodies (mAbs) isolated
76 from five individuals infected with the ancestral SARS-CoV2 strain in India and identified
77 a potent class-3 broad-spectrum antibody capable of neutralizing all highly evasive
78 Omicron variants (14, 15). Here, we focused on three mAbs that potently neutralize the
79 ancestral WA.1 strain, but differentially neutralize SARS-CoV-2 variants for further
80 characterization. The immunogenetic analysis confirms that all three mAbs were
81 encoded by IGHV3-53/66 and IGHV3-30 genes and were publicly shared (14). While the
82 Cryo-EM structure of all three mAbs showed bivalent spike binding, two mAbs (002-02
83 and 034-32) targeted the class-1 RBD epitope whereas mAb 002-13 targeted a relatively
84 conserved class-4 epitope. Detailed look of molecular interactions at each mAb's epitope-
85 paratope surface allowed us to predict how mutations of certain residues in key variants
86 of concern (VOCs) might impact antibody functionality and their role in immune evasion.

87 **Results**

88 ***Identification and characterization of shared human mAbs to SARS-CoV-2***

89 In this study, we have selected three out of 92 previously identified RBD-specific mAbs
90 for further characterization (14). These three mAbs, referred to as 002-13, 002-02, and
91 034-32 have heavy chain VJ pairings encoded by IGHV3-30, IGHD2-8, IGHJ4; IGHV3-66,
92 IGHD4-17, IGHJ4 and IGHV3-53, IGHD1-1, IGHJ6 immunoglobulin genes, respectively,
93 whereas their light chain VJ pairings were encoded by IGLV6-57, IGLJ2; IGK3-20, IGKJ4
94 and IGK1-9, IGKJ3 genes, respectively (**Figure 1A**). Genetic analysis of these three mAbs
95 showed that heavy chain variable (V)-genes of all three mAbs were encoded by a shared

96 public antibody response (**Figure 1B, 1C, 1D, 1E and S1**) as documented in the CoV-
97 AbDab database of all RBD-specific mAbs (n=6520) isolated from SARS-CoV-2
98 infected/vaccinated individuals (7). Interestingly, the antibody gene IGHV3-30,IGHJ4 of
99 002-13 mAb is the most frequent VJ pairing used by SARS-CoV-2 RBD mAbs (**Figure 1D**).
100 Heavy chain V-gene IGHV3-30 of mAb 002-13 is the second most frequently used IGHV
101 gene among all RBD mAbs (**Figure 1B**). Interestingly, 002-13 like shared mAbs exhibit
102 the presence of a conserved CxGGxC motif in their 22-residue long complementarity
103 determining region (CDR) H3 (CDRH3) (**Figure S1A**) encoded by a IGHD2-8 gene (7). The
104 IGHV genes of 002-02 (IGHV3-66) and 034-32 (IGHV3-53) have already been described
105 earlier in detail as a shared clonotype antibody response that shows the characteristic
106 motifs of NY and SGGS in their CDRH1 and CDRH2 regions, respectively, preferred IGHD4-
107 17 gene and a short CDRH3 length of 9 – 12 amino acids with high sequence diversity (5,
108 12, 13) (**Figure S1B and S1C**) (7).

109 Next, we revealed that all three mAbs strongly bind spike protein with Kd values in low
110 nM to pM range, by both BLI (**Figure S2**) and Mesoscale binding assay (Mesoscale
111 Discovery) (**Figure 2A**). Additionally, in agreement with binding data they all potently
112 neutralize the ancestral WA.1 live virus in a focus-reduction neutralization mNeonGreen
113 (FRNT-mNG) assay (**Figure 2B and 2C**) (14, 15). Taken together, these results confirm
114 high binding affinity and potent neutralizing capacity of all three shared mAbs against the
115 SARS-CoV-2 WA.1 strain.

116 ***Epitope mapping of mAbs 002-02, 002-13 and 034-32***

117 To delineate the molecular determinants conferring epitope recognition and to
118 understand the mechanism of their potent neutralization against WA.1 strain, we solved
119 the Cryo-EM structures of WA.1 spike-6P (Spike-hexapro) in complex with each of the
120 three mAbs (002-13, 002-02 and 034-32) in their native full-length IgG form (**Figure 3**
121 **and 4**). The structures show bivalent binding modes for all three mAbs, revealing two
122 distinct neutralization mechanisms (**Figure S4**). Below we summarize our observations.

123 **mAb 002-13:** The Cryo-EM structure of 002-13 in complex with WA.1 spike-6P (**Figure**
124 **3 and S3**) resolved at 3.8 Å global resolution revealed a conserved epitope on the inner
125 face of the RBD, aligning with RBD-7/class-4 epitopes only accessible in up conformation.
126 There is clear intra-spike bivalent binding, where each Fab region of the full-length IgG

127 recognizes adjacent RBDs in a spike trimer (**Figure 3A and S4**). 002-13 mAb, belongs to
128 the public clonotype encoded by IGHV3-30 and IGLV6-57 that have not been structurally
129 characterized before. Notably, the 22-residue long CDRH3 region encoded by IGHD2-8
130 gene of 002-13 mAb contains a CxGGxC motif which is shared by other 81 RBD-specific
131 mAbs (**Figure S1A**) documented in CoV-AbDab database (7). Like other class-4
132 antibodies, 002-13 RBD binding is dominated by the heavy chain contributing ~76% of
133 total interaction with a total buried surface area of ~887 Å² (**Figure 3B**) (16, 17). Most of
134 the heavy chain interactions are mediated through the CDR3 region that forms a foot-like
135 loop, stabilized by an intra-loop disulfide bond between residues C105 and C110 of
136 CxGGxC motif (**Figure 3C and 3D**). We observe that multiple interactions involving the
137 residues in RBD region S371- C379 and the heavy chain CDR3 loop are responsible for
138 epitope recognition (**Figure 3C**). Heavy chain CDR2 residues D57 and S56 engage RBD
139 residue K386 through a salt bridge and hydrogen bond (**Figure 3E**). The light chain of
140 002-13 contributes minimally to RBD binding, only the CDR2 loop of light chain comes
141 into RBD proximity to make a hydrogen bond with the side chain of RBD residue T415
142 (**Figure 3F**). Although 002-13 binds outside the Receptor Binding Motif (RBM) surface,
143 it can sterically block ACE2 binding through its light chain orientation as previously
144 observed in ACE2 competition profiling (14).

145 Structural comparison of 002-13 with another class-4 monoclonal antibody (COVA1-16
146 and CR3032) shows a distinct binding pose for 002-13 (**Figure 3G**), additionally, a unique
147 small side chain-containing sequence in CxGGxC motif of the heavy chain CRD3 loop
148 allows it to go much deeper into the RBD pocket facilitating extensive interactions in this
149 region compared to other class-4 mAbs (**Figure 3H**).

150 We then marked key mutations present in Beta (yellow), Delta (red) and Omicron (green)
151 variants within the 002-13 epitope surface and observed that while all VOC except for
152 Omicron carry no mutations, Omicron carries three mutations (S371L, S373P and S375F)
153 within the 002-13 epitope (**Figure 3I**). This suggests that while the binding and
154 neutralization of 002-13 mAb will be preserved for most SARS-CoV-2 variants, it might
155 be impacted towards Omicron as these mutations are known to induce a local
156 conformational change in the Omicron RBD structure and thus, could exclusively evade
157 Omicron (18, 19).

158 **mAb 002-02 and 034-32:** Antibodies 002-02 and 034-32 were isolated from two
159 different individuals and are encoded by public clonotype genes IGHV3-53/3-66 (**Figure**
160 **1A**). They both show very similar properties with high binding specificity towards SARS-
161 CoV-2 RBD, effectively compete ACE2 and potently neutralize WA.1 (14) (**Figure 2**). To
162 define the details of epitope recognition, we determined the Cryo-EM structure of each
163 002-02 (**Figure 4 and S5**) and 034-32 (**Figure S6 and S7**) in complex with WA.1 Spike-
164 6P at a resolution of 3.8 and 4.3 Å, respectively. For both complexes, we observe intra-
165 spike bivalent binding, where each Fab region of IgG binds two neighboring RBDs in the
166 spike trimer in the “up” conformation. The RBD that does not engage in binding Fab
167 remains in the “down” conformation (**Figure 4A**). Both mAb structures recognize
168 epitopes in the top RBD pocket that aligns with the RBM surface suggesting direct ACE2
169 competition and based on this they are classified as RBD-2/class-1 antibodies. Since 002-
170 02 and 034-32 recognize the RBD in a very similar manner, we focus our structural
171 analysis on mAb-RBD recognition in the locally refined map for 002-02.

172 While all CDR loops are involved in epitope recognition (**Figure 4A and 4B**), most RBD
173 contacts are dominated by the heavy chain, contributing ~70% of the total of 1058 Å² of
174 buried surface between mAb and RBD (**Figure 4B**). Primary interactions in the heavy
175 chain are mediated by CDR1 and CDR2 regions. Most mAbs that belong to class-1
176 antibodies are encoded by public clonotype genes IGHV3-53/IGHV3-66 (5, 13). The
177 common features among these mAbs include a conserved NY and SGGS motif in CDR1 and
178 CDR2 regions, respectively, that contribute significantly toward RBD binding (12). We
179 also observed a network of hydrogen bonds with the RBD through the CDR2 SGGS motif.
180 The side chain of S53 and S56 in the CDR2 heavy chain engages in a hydrogen bond with
181 side chains of Y421 and D420 in RBD, respectively (**Figure 4C**). However, the CDR3 loop
182 heavy chain residues in this mAb class varies more. In 002-02, the heavy chain CDR3
183 residue D101 forms a hydrogen bond with K417 and Y453 in the RBD (**Figure 4D**). In the
184 light chain, CDR1 and CDR3 make some contact with the inner left side of the RBD. The
185 S30 and Y32 residue in the CDR1 region of the light chain makes a hydrogen bond with
186 Q498 and R403 in RBD, respectively (**Figure 4E**). Also, the S93 in the CDR3 region of the
187 light chain interacts with Y505 and D405 (**Figure 4F**).

188 Like 002-13, we also mapped mutations found in Beta (yellow), Delta (red) and Omicron
189 (green) variants onto the 002-02 / 034-32 epitope (**Figure 4G**). While Delta carries no

190 mutation within 002-02 / 034-32 epitope surface, three of the Beta mutations (K417N,
191 E484K, N501Y) fell within its epitope, suggesting no variation in binding and
192 neutralization for Delta but weakened binding and neutralization for Beta. However, six
193 Omicron mutations (K417N, S477N, Q493R, G496S, Q498R and N501Y) lied within the
194 002-02/ 034-32 epitope surface and predicted to evade Omicron binding and
195 neutralization. Collectively, based on these observations both 002-02 and 034-32 mAbs
196 will be less or ineffective towards both Beta and Omicron variants.

197 ***Assessing binding and neutralization breadth towards SARS-CoV-2 variants***

198 To link the paratope mutation landscape in VOC to the antibody function, we tested
199 binding and neutralization of these three mAbs against SARS-CoV-2 variants. In
200 agreement with the structure-based prediction, the binding of 002-13 (class-4 antibody)
201 remained unaffected towards Alpha, Beta and Delta variants as these variants contain no
202 mutations within the 002-13 epitope and showed moderately reduced (~2.7-fold)
203 binding to Omicron (**Figure 3I, Figure 5A and 5G**). In agreement with binding data, the
204 neutralization potency of 002-13 remained unperturbed in Alpha, Beta, Delta and
205 showed no observable neutralization of the Omicron virus (**Figure 5E and 5G**). Along
206 that line, binding of 002-02 and 034-32 (class-1 antibodies) retained for Alpha and Delta
207 variants to the same affinity as of WA.1, showed 3-fold and 150-fold reduced affinity to
208 Beta, respectively, and no observable binding to Omicron (**Figure 5B, 5C and 5G**).
209 Following this trend both 002-02 and 034-32 neutralize Alpha and Delta variants with
210 the same potency as WA.1, showed 4-fold and 17-fold reduced potency to Beta,
211 respectively and complete loss of neutralization to Omicron (**Figure 5E, 5F and 5G**). This
212 is further supported by the fact that unique K417N mutation (present in Beta but not in
213 Delta) would result in a loss of a hydrogen bond with D101 in heavy chain CDR3 (**Figure**
214 **4D**) and subsequent Beta-variant specific loss of binding and neutralization for 002-02
215 and 34-32. This was also confirmed by a 2-fold decrease in the calculated ddG value of -
216 46.23 +/- 10.5 kcal/mol based on molecular mechanics/ Poisson-Boltzmann surface area
217 (MM/PBSA) free energy for the single K417N mutant in 002-02-spike structure
218 compared to the WA.1 ddG value of -82.62 +/- 9.57 (**Figure S8**).
219 Altogether, this data catalogues the epitope class-specific antibody susceptibility towards
220 existing SARS-CoV-2 variant and can inform their action on a newly emerging variant.

221 **Discussion**

222 Understanding how SARS-CoV-2 mAbs achieve broad neutralization or are rendered
223 ineffective by viral mutations provides insight not only about natural immunity, but is
224 critical to develop broadly effective therapeutic mAbs and guide vaccine design (5, 12,
225 20–22). Moreover, defining antibody-antigen interactions is critical for the rapid re-
226 evaluation of existing antibody-based therapeutics towards continuously emerging
227 SARS-CoV-2 variants. This, overlaid with the immuno-genetic makeup of the antibodies
228 shared by large population further informs our understanding of the public immune
229 response and their antigenic drift from variants. For example, certain antibody responses
230 are repeatedly shared among large number of individuals regardless of their genetic
231 origins, as has been observed previously during different pathogen infections including
232 influenza, dengue, HIV and Malaria (8–11). With SARS-CoV-2, these are encoded by
233 IGHV3-53/66, IGHV1-58, IGHV3-30 and IGHV1-69 which are found both following
234 natural infection and post-vaccination (5, 6, 12). Such information can be collectively
235 used to fine tune the immune response focused on broad and potent neutralizing
236 epitopes through antigen design for a universal vaccine (20, 22). Recently, based on the
237 information from shared public clonotypes of HIV-1 bnAbs, a V2-apex region specific
238 immunogen has been successfully designed (23).

239 We recently reported the isolation of 92 SARS-CoV-2 RBD-specific mAbs from COVID-19
240 recovered individuals from India during the first wave of the pandemic and identified a
241 broadly neutralizing class-3 antibody (002-S21F2), capable of neutralizing all omicron
242 subvariants (14). Out of 92, three SARS-CoV-2 nAbs (002-13, 002-02 and 034-32)
243 characterized in this study, belong to shared public antibody responses. Sequence
244 analysis of 6520 published SARS CoV-2 RBD specific mAbs define 002-13 as a public
245 clonotype encoded by IGHV3-30,IGHJ4 genes with >80% of these exhibiting IGHD2-8
246 gene usage and presence of CxGGxC motif in their CDRH3 region that have not been
247 structurally characterized (7). While the other two mAbs, 002-02 and 034-32 mAbs are
248 encoded by shared IGHV3-53/3-66 antibody genes as previously shown by others (5, 12,
249 13). The Cryo-EM structures for these three mAbs in complex with trimeric spike protein
250 show class-4 epitope recognition by 002-13 and class-1 epitope recognition by 002-02
251 and 034-32. The structures further allowed us to define their epitope-paratope interfaces
252 in detail in relation to the locations of SARS-CoV-2 variants mutations to predict viral

253 immune escape. While there was no observable difference in the antibody functionality
254 for variants containing mutations that lie outside the mapped epitope surface of a
255 particular antibody, there was a remarkable drop in binding affinity, and neutralization
256 of the antibody when the mutations mapped to the antibody footprint. Most broad
257 neutralizing antibodies recognize all variants antigen that either carry no mutations
258 within their epitopes or the mutations in epitope region are favored by mAb specific
259 molecular interactions as we observed for class-3 mAb 002-S21F2 (14). Here, we show
260 all three mAbs potently neutralized the ancestral WA.1 strain, but differentially
261 neutralize other variants, primarily due to the presence of evading mutations present in
262 their epitope antigenic sites, similar to the other well characterized mAbs recognizing the
263 same epitope classes (**Figure 5H**) (7). Major mutations responsible for Beta evasion are
264 K417N, E484A for 002-02 and 034-32 mAbs, also observed previously for IGHV3-53/3-
265 66 shared antibody responses (5, 12). Omicron, which contains six epitope mutations
266 (K417N, S477N, Q493R, G496S, Q498R and N501Y) within 002-02/034-32 and three
267 mutations (S371L, S373P and S375F) within 002-13 binding site, would collectively lead
268 to major immuno-escape, especially as some mutation residues participate in direct
269 interaction with mAb. Although 002-13 showed only moderate reduction in binding
270 affinity, it showed no neutralization towards Omicron suggesting additional factors might
271 play a role in 002-13 specific Omicron escape. One explanation could be that Omicron
272 mutations that favor Spike “up” conformation would likely promote ACE2 interaction and
273 reduce 002-13 mAb competition (24). Our findings suggest that immune pressures
274 exerted by the shared antibody response to SARS-CoV-2 are likely to cause evolution
275 variants with mutations in the class-4 antibody epitope residues S371, S373 and S375.
276 These mutations must be tracked to find effective solutions to combat emerging variants.
277 Further, the structure guided prediction made for three SARS-CoV-2 shared nAbs that
278 potently neutralized the WA.1 strain holds true towards the functional efficacy of these
279 mAbs against SARS-CoV-2 variants, including Omicron.

280 In summary, this study vastly improves our understanding of how Omicron escaped from
281 shared antibody responses to SARS-CoV-2 elicited during the natural infection and has
282 implications towards concepts for fast-tracking effective broad range therapeutics
283 against continuously emerging SARS-CoV-2 variants.

284 **Materials and Methods**

285 **SARS-CoV-2 RBD-specific ELISA binding assays**

286 The recombinant SARS-CoV-2 RBD gene was cloned, expressed, purified and ELISAs were
287 performed as previously described (14, 15, 25). Briefly, purified RBD was coated on 96-
288 well MaxiSorp plates (Thermo Fisher, #439454) at a concentration of 1 μ g/mL in
289 phosphate-buffered saline (PBS) at 4°C overnight. The plates were washed with PBS
290 containing 0.05% Tween-20. Three-fold serially diluted purified mAb was added and
291 incubated at room temperature for 1 hr. Plates were washed and the SARS-CoV-2 RBD
292 specific IgG signal was detected by incubating with horseradish peroxidase (HRP)
293 conjugated - anti-human IgG (Jackson ImmunoResearch Labs, #109-036-098). Plates
294 were then washed thoroughly and developed with o-phenylenediamine (OPD) substrate
295 (Sigma, #P8787) in 0.05M phosphate-citrate buffer (Sigma, #P4809) pH 5.0, containing
296 0.012% hydrogen peroxide (Fisher Scientific, #18755). Absorbance was measured at
297 490 nm.

298 **Live SARS-CoV-2 neutralization assay**

299 Neutralization titers to SARS-CoV-2 were determined based on either a focus-reduction
300 neutralization mNeonGreen (FRNT-mNG) assay on Vero cells or FRNT assays based on
301 Vero TMPRSS2 cells as previously described (14, 15). Briefly, 100 pfu of SARS-CoV-2
302 (2019-nCoV/USA_WA1/2020), Alpha, Beta, Gamma, Delta and Omicron variants were
303 used on Vero TMPRSS2 cells. Purified monoclonal was serially diluted three-fold in
304 duplicate starting at 10 μ g/ml in a 96-well round-bottom plate and incubated for 1 h at
305 37°C. This antibody-virus mixture was transferred into the wells seeded with Vero-
306 TMPRSS2 cells the previous day at a concentration of 2.5×10^4 cells/well. After 1 hour,
307 the antibody-virus inoculum was removed and 0.85% methylcellulose in 2% FBS
308 containing DMEM was overlaid onto the cell monolayer. Cells were incubated at 37°C for
309 16-40 hours. Cells were washed three times with 1X PBS (Corning Cellgro) and fixed with
310 125 μ l of 2% paraformaldehyde in PBS (Electron Microscopy Sciences) for 30 minutes.
311 Following fixation, plates were washed twice with PBS and 100 μ l of permeabilization
312 buffer, was added to the fixed cells for 20 minutes. Cells were incubated with an anti-
313 SARS-CoV spike primary antibody directly conjugated with alexaflour-647 (CR3022-
314 AF647) for up to 4 hours at room temperature. Plates were then washed twice with 1x
315 PBS and imaged on an ELISPOT reader (CTL Analyzer). Foci were counted using Viridot

316 (counted first under the “green light” set followed by background subtraction under the
317 “red light” setting). IC₅₀ titers were calculated by non-linear regression analysis using the
318 4PL sigmoidal dose curve equation on Prism 9 (Graphpad Software). Neutralization titers
319 were calculated as 100% x [1- (average foci in duplicate wells incubated with the
320 specimen) ÷ (average number of foci in the duplicate wells incubated at the highest
321 dilution of the respective specimen)].

322 **Immunogenetic analyses of antibody genes**

323 The plasmid sequences were verified by Sanger sequencing (Macrogen sequencing, South
324 Korea). The immunogenetic analysis of both heavy chain and light chain germline
325 assignment, framework region annotation, determination of somatic hypermutation
326 (SHM) levels (nucleotides) and CDR loop lengths (amino acids) was performed with the
327 aid of IMGT/HighV-QUEST (www.imgt.org/HighV-QUEST) (26).

328 **Expression of human monoclonal antibodies**

329 All transfections were done as described earlier (14). Briefly, expi293F cells were
330 transfected with antibody expression plasmids at a density of 2.5 million cells per/ml
331 using 1 mg/ml PEI-Max transfection reagent (Polysciences). Supernatants were
332 harvested 4-5 days post-transfection and tested for their SARS-CoV-2 RBD binding
333 potential by enzyme-linked immunosorbent assay (ELISA). Supernatant with positive
334 RBD binding signals was next purified using Protein A/G beads (Thermo Scientific),
335 concentrated using a 30 kDa or 100 kDa cut-off concentrator (Vivaspin, Sartorius) and
336 stored at 4°C for further use.

337 **Electrochemiluminescence antibody binding assay**

338 Binding analysis of SARS-CoV-2 mAb to spike protein was performed using an
339 electrochemiluminescence assay as described earlier (14). Briefly, V-PLEX COVID-19
340 Panel 24 (Meso Scale Discovery) was used to measure the IgG1 mAb binding to SARS-
341 CoV-2 spike antigens following the manufacturer’s recommendations. antigen coated
342 plates were blocked with 150 µl/well of 5% BSA in PBS for 30 minutes. Plates were
343 washed 3x with 150 µl/well of PBS with 0.05% Tween between each incubation step.
344 mAbs were serially diluted for concentrations ranging from 10 µg/ml to 0.1 pg/ml and

345 50 μ l/well were added to the plate and incubated for two hours at room temperature
346 with shaking at 700rpm. mAb antibody binding was then detected with 50 μ l/well of MSD
347 SULFO-TAG anti-human IgG antibody (diluted 1:200) incubated for one hour at room
348 temperature with shaking at 700rpm. 150 μ l/well of MSD Gold Read Buffer B was then
349 added to each plate immediately before reading on an MSD QuickPlex plate reader.

350 **Octet BLI analysis**

351 Octet biolayer interferometry (BLI) was performed using an Octet Red96 instrument
352 (ForteBio, Inc.) as described earlier (14). A 5 μ g/ml concentration of each mAb was
353 captured on a protein A sensor and its binding kinetics were tested with serial 2-fold
354 diluted RBD (600 nM to 37.5 nM) and spike hexapro protein (100 nM to 6.25 nM). The
355 baseline was obtained by measurements taken for 60 s in BLI buffer (1x PBS and 0.05%
356 Tween-20), and then, the sensors were subjected to association phase immersion for
357 300 s in wells containing serial dilutions of RBD or trimeric spike hexapro protein. Then,
358 the sensors were immersed in BLI buffer for as long as 600 s to measure the dissociation
359 phase. The mean K_{on} , K_{off} and apparent KD values of the mAbs binding affinities for RBD
360 and spike hexapro were calculated from all the binding curves based on their global fit to
361 a 1:1 Langmuir binding model using Octet software version 12.0.

362 **Spike protein expression and purification**

363 SARS-CoV-2 Spike-6P trimer protein carrying WA.1 was expressed and purified by
364 transfecting expi293F cells using WA.1-spike-6P plasmids as described previously (14).
365 Transfections were performed as per the manufacturer's protocol (Thermo Fisher).
366 Briefly, expi293F cells (2.5×10^6 cells/ml) were transfected using ExpiFectamineTM 293
367 transfection reagent (ThermoFisher, cat. no. A14524). The cells were harvested 4-5 days
368 post-transfection. The spike protein was purified using His-Pur Ni-NTA affinity
369 purification method. Column was washed with Buffer containing 25 mM Imidazole, 6.7
370 mM NaH₂PO₄.H₂O and 300 mM NaCl in PBS followed by spike protein elution in elution
371 buffer containing 235 mM Imidazole, 6.7 mM NaH₂PO₄.H₂O and 300 mM NaCl in PBS.
372 Eluted protein was dialyzed against PBS and concentrated. The concentrated protein was
373 loaded onto a Superose-6 Increase 10/300 column and protein eluted as trimeric spike
374 collected. Protein quality was evaluated by SDS-PAGE and by Negative Stain-EM.

375 **Negative Stain – Electron Microscopy (NS-EM)**

376 Spike protein was diluted to 0.05 mg/ml in PBS before grid preparation. A 3 μ L drop of
377 diluted protein (~0.025 mg/ml) was applied to previously glow-discharged, carbon-
378 coated grids for ~60 sec, blotted and washed twice with water, stained with 0.75% uranyl
379 formate, blotted and air-dried. Between 30-and 50 images were collected on a Talos
380 L120C microscope (Thermo Fisher) at 73,000 magnification and 1.97 \AA pixel size. Relion-
381 3.1 (27) or Cryosparc v3.3.2 (28) was used for particle picking and 2D classification.

382 **Sample preparation for Cryo-EM**

383 SARS-CoV-2 spike-6P trimer incubated with the mAb (full-length IgG) at 0.7 mg/ml
384 concentration. The complex was prepared at a 0.4 sub-molar ratio of mAb to prevent
385 inter-spike crosslinking, mediated by bi-valent binding of intact antibody. The complex
386 was incubated at room temperature for ~5 min before vitrification. Three μ L of the
387 complex was applied onto a freshly glow-discharged (PLECO easiGLOW) 400 mesh,
388 1.2/1.3 C-Flat grid (Electron Microscopy Sciences). After 20 s of incubation, grids were
389 blotted for 3 s at 0 blot force and vitrified using a Vitrobot IV (Thermo Fisher Scientific)
390 under 22°C with 100% humidity.

391 **Cryo-EM data acquisition**

392 Single-particle Cryo-EM data for WA.1 spike-IgG complexes of mAb 002-02, 002-13 and
393 034-32 were collected on a 300 kV Titan Krios transmission electron microscope
394 (ThermoFisher Scientific) equipped with Gatan K3 direct electron detector behind 30 eV
395 slit width energy filter. Multi-frame movies were collected at a pixel size of 1.0691 \AA per
396 pixel with a total dose of 63 e/ \AA^2 at defocus range of -0.7 to -2.7 μ m.

397 **Cryo-EM data analysis and model building**

398 Cryo-EM movies were motion-corrected by Patch motion correction implemented in
399 Cryosparc v3.3.1 (28). Motion-corrected micrographs were corrected for contrast
400 transfer function using Cryosparc's implementation of Patch CTF estimation.
401 Micrographs with poor CTF fits were discarded using CTF fit resolution cutoff to ~6.0 \AA .
402 Particles were picked using a Blob picker, extracted and subjected to an iterative round
403 of 2D classification. Particles belonging to the best 2D classes with secondary structure

404 features were selected for heterogeneous 3D refinement to separate IgG bound Spike
405 particles from non-IgG bound Spike particles. Particles belonging to the best IgG bound
406 3D class were refined in non-uniform 3D refinement with per particle CTF and higher-
407 order aberration correction turned on. To further improve the resolution of the RBD-IgG
408 binding interface a soft mask was created covering one RBD and interacting Fab region
409 of IgG and refined locally in Cryosparc using Local Refinement on signal subtracted
410 particles. All maps were density modified in Phenix (29) using Resolve Cryo-EM. The
411 combined Focused Map tool in Phenix was used to integrate high resolution locally
412 refined maps into an overall map. Additional data processing details are summarized in
413 **Figure S3-S6 and Table S1-2.**

414 The initial spike models for WA.1 (PDB:7lrt) as well as individual heavy and light chains
415 of the Fab region of an IgG (generated with AlphaFold) (30) were docked into combine
416 focused Cryo-EM density maps using UCSF ChimeraX (31). The full Spike-mAb model was
417 refined using rigid body refinement in Phenix, followed by refinement in Isolde (32). The
418 final model was refined further in Phenix using real-space refinement. Glycans with
419 visible density were modelled in Coot and validated by Privateer (33, 34). Model
420 validation was performed using Molprobity (35). PDBePISA (36) was used to identify
421 mAb-RBD interface residue, to calculate buried surface area and to identify polar
422 interaction. Figures were prepared in ChimeraX (31) and PyMOL (37).

423 **Molecular dynamics simulation**

424 Molecular dynamics simulations were carried out to understand the effect of RBD
425 mutations on the mAb binding. MD simulations were carried using AMBER99SB force
426 field as implemented in GROMACS 2019. The system was solvated with TIP3P water
427 model and neutralized with salts ($[\text{NaCl}] = 0.15 \text{ M}$). Electrostatics were calculated using
428 the PME method [24] with a real space cut-off of 10 Å. Van der Waals interactions were
429 modelled using Lennard-Jones 6-12 potentials with a 14 Å cut-off. The temperature was
430 maintained at 300 K using V-rescale; hydrogen bonds were constrained using the LINCS
431 algorithm [25]. Energy minimization was carried out to reach a maximum force of no
432 more than 10 kJ/mol using steepest descent algorithm. The time step in all molecular
433 dynamics simulations was set to 2 fs. Prior to the production run, the minimized systems
434 were equilibrated for 5ns with NVT and followed with NPT at 300 K.

435 To calculate the Binding energies for the wild and the mutants, 200 snapshots were
436 extracted from the last 20 ns of the 80ns production run. The extracted 400 frames for
437 the wild and the variant subjected to MM/PBSA calculations using the gmx MMPBSA tool.
438 Before executing the calculations using gmx MMPBSA, PBC conditions were removed
439 from the GROMACS output trajectory and protein-mAb complex were indexed. The
440 AMBER99SB force field5 was used to determine the internal term (Eint), van der Waals
441 (EvdW), and electrostatic (Eele) energies. Whereas GB-Neck2 model (igb = 8) was used
442 to estimate the polar component of the solvation energy (GGB), while the non-polar
443 solvation free energy (GSA) was calculated using the equation: $\Delta GSA = \gamma \cdot \Delta SASA + \beta$.
444 Here the values of γ and β are 0.0072 kcal·Å⁻²·mol⁻¹ and 0.

445 **Data availability**

446 Atomic coordinates and Cryo-EM maps for reported structures are deposited into the
447 Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB) with accession
448 codes PDB-7U0Q and EMD-26263 for WA.1 Spike-6P in complex with mAb 002-02, PDB-
449 7U0X and EMD-26267 for WA.1 Spike-6P in complex with mAb 002-013, PDB-7UOW and
450 EMD-26656 for WA.1 Spike-6P in complex with mAb 034-32. Immunoglobulin sequences
451 are available in GenBank under accession numbers ON882061 - ON882244. All data
452 needed to evaluate the conclusions in the paper are present in the paper and/or the
453 Supplementary Materials. For materials requests, please reach out to the corresponding
454 author.

455 **Statistical/Data analysis**

456 Statistical analysis was performed with Prism 9.0.

457 **Acknowledgements**

458 We thank Vineet D. Menachery and Pei-Yong Shi (The University of Texas Medical
459 Branch) for providing the SARS-CoV-2mNG for the neutralization assays; Jason McLellan
460 (The University of Texas) for providing the SARS-CoV-2 hexapro spike expression
461 plasmid; Vinay Gupta (BD Biosciences India) and Aditya Rathee (ICGEB-TACF facility) for
462 single-cell sorting; Satendra Singh and Ajay Singh (ICGEB, New Delhi) for technical
463 support. The Cryo-EM data sets on the Titan Krios were collected at the National Center

464 for CryoEM Access and Training (NCCAT) and the Simons Electron Microscopy Center
465 located at the New York Structural Biology Center, supported by the NIH Common Fund
466 Transformative High Resolution Cryo-Electron Microscopy program (U24 GM129539,)
467 and by grants from the Simons Foundation (SF349247) and NY State Assembly. We also
468 thank the staff of Robert P. Apkarian Integrated Electron Microscopy Core (IEMC) at
469 Emory University, Atlanta for their support with preliminary sample screening on Talos
470 Arctica.

471 **Funding**

472 This research was supported by the Indian Council of Medical Research VIR/COVID-
473 19/02/2020/ECD-1 (A.C.). S.K. is supported through DBT/Wellcome Trust India Alliance
474 Early Career Fellowship grant IA/E/18/1/504307. Both E.A.O and A.P are supported by
475 the National Institute of Biomedical Imaging and Bioengineering of the National
476 Institutes of Health (under award numbers 75N92019P00328, U54EB015408, and
477 U54EB027690) as part of the Rapid Acceleration of Diagnostics (RADx) initiative. A.P. is
478 also supported through CCHI grant 5U19 AI14237-04 (subaward 000520244-SP008-
479 SC014). Both K.N. and E.S.R. are supported through Dengue Translational Research
480 Consortia National Biopharma Mission BT/NBM099/02/18 (A.C.). K.G. was supported
481 through DBT grant BT/PR30260/MED/15/194/2018 (A.C, K.M). C.W.D. is supported
482 through the National Institute of Allergy and Infectious Diseases (NIAID) U19 AI142790,
483 Consortium for Immunotherapeutics against Emerging Viral Threats. Work done in M.S.S.
484 lab was funded in part with Federal funds from the National Institute of Allergy and
485 Infectious Diseases, National Institutes of Health, Department of Health and Human
486 Services, under HHSN272201400004C (NIAID Centers of Excellence for Influenza
487 Research and Surveillance, CEIRS). This work was supported in part by grants (NIH
488 P51OD011132 and NIH/NIAID CEIRR under contract 75N93021C00017 to Emory
489 University) from the National Institute of Allergy and Infectious Diseases (NIAID),
490 National Institutes of Health (NIH) and by intramural funding from the NIAID. This work
491 was also supported in part by the Emory Executive Vice President for Health Affairs
492 Synergy Fund award, COVID-Catalyst-I3 Funds from the Woodruff Health Sciences Center
493 and Emory School of Medicine, the Pediatric Research Alliance Center for Childhood
494 Infections and Vaccines and Children's Healthcare of Atlanta, and Woodruff Health
495 Sciences Center 2020 COVID-19 CURE Award.

496 **Author contributions**

497 Experimental work, data acquisition and analysis of data by A.P., S.K., L.L., C.R.C., R.V.,
498 E.S.R., K.V.G., D.R.R., P.B., V.V.E., M.E.D.G., K.D., P.S., G.M., F.F., N.C., H.V., A.S.N., J.D.R., C.W.D.,
499 J.W., M.S.S., and E.A.O. Conceptualization and implementation by S.K., A.P., E.O., M.S.S., A.S.,
500 R.A., M.K.K., A.C. Manuscript writing by S.K., A.P., E.A.O., A.C., and M.K.K. All authors
501 contributed to reviewing and editing the manuscript.

502 **Competing interests**

503 The International Centre for Genetic Engineering and Biotechnology, New Delhi, India,
504 Emory Vaccine Center, Emory University, Atlanta, USA, Indian Council of Medical
505 Research, India and Department of Biotechnology, India have filed a provisional patent
506 application on human monoclonal antibodies mentioned in this study on which A.C., S.K.,
507 M.K.K., and A.S. are inventors (Indian patent 202111052088). N.C., H.V., A.S.N., and J.D.R.
508 are co-inventors on a pending patent related to SARS-CoV-2 WT, Delta and Omicron spike
509 protein structures and ACE2 Interactions from BoAb assay technology filed by Emory
510 University (US Patent Application No. 63/265,361, Filed on 14 December 2021). M.S.S.
511 has previously served as a consultant for Moderna and Ocugen. J.D.R. is a Co-founder and
512 Consultant for Cambium Medical Technologies. J.D.R. is a Consultant for Secure
513 Transfusion Services. All other authors declare no competing interests.

514 **References**

- 515 1. W. T. Harvey, *et al.*, SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev Microbiol* **19**, 409–424 (2021).
- 517 2. E. Cameroni, *et al.*, Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron
518 antigenic shift. *Nature* **602**, 664–670 (2022).
- 519 3. S. Cele, *et al.*, Omicron extensively but incompletely escapes Pfizer BNT162b2
520 neutralization. *Nature* **602**, 654–656 (2022).
- 521 4. P. Bajpai, V. Singh, A. Chandele, S. Kumar, Broadly Neutralizing Antibodies to SARS-
522 CoV-2 Provide Novel Insights Into the Neutralization of Variants and Other Human
523 Coronaviruses. *Frontiers in Cellular and Infection Microbiology* **12** (2022).
- 524 5. M. Yuan, *et al.*, Structural basis of a shared antibody response to SARS-CoV-2. *Science*
525 **369**, 1119–1123 (2020).

526 6. P. He, *et al.*, SARS-CoV-2 Delta and Omicron variants evade population antibody
527 response by mutations in a single spike epitope. *Nat Microbiol* **7**, 1635–1649 (2022).

528 7. M. I. J. Raybould, A. Kovaltsuk, C. Marks, C. M. Deane, CoV-AbDab: the coronavirus
529 antibody database. *Bioinformatics* **37**, 734–735 (2021).

530 8. S. F. Andrews, A. B. McDermott, Shaping a universally broad antibody response to
531 influenza amidst a variable immunoglobulin landscape. *Current Opinion in
532 Immunology* **53**, 96–101 (2018).

533 9. P. Parameswaran, *et al.*, Convergent Antibody Signatures in Human Dengue. *Cell Host
534 & Microbe* **13**, 691–700 (2013).

535 10. K. Pieper, *et al.*, Public antibodies to malaria antigens generated by two LAIR1
536 insertion modalities. *Nature* **548**, 597–601 (2017).

537 11. I. Setliff, *et al.*, Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals
538 the Existence of Public Antibody Clonotypes in HIV-1 Infection. *Cell Host & Microbe*
539 **23**, 845-854.e6 (2018).

540 12. T. J. C. Tan, *et al.*, Sequence signatures of two public antibody clonotypes that bind
541 SARS-CoV-2 receptor binding domain. *Nat Commun* **12**, 3815 (2021).

542 13. Q. Zhang, *et al.*, Potent and protective IGHV3-53/3-66 public antibodies and their
543 shared escape mutant on the spike of SARS-CoV-2. *Nat Commun* **12**, 4210 (2021).

544 14. S. Kumar, *et al.*, Structural insights for neutralization of Omicron variants BA.1, BA.2,
545 BA.4, and BA.5 by a broadly neutralizing SARS-CoV-2 antibody. *Science Advances* **8**,
546 eadd2032 (2022).

547 15. K. Nayak, *et al.*, Characterization of neutralizing versus binding antibodies and
548 memory B cells in COVID-19 recovered individuals from India. *Virology* **558**, 13–21
549 (2021).

550 16. H. Liu, *et al.*, Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally
551 Conserved Site Is Mediated by Avidity. *Immunity* **53**, 1272-1280.e5 (2020).

552 17. M. Yuan, *et al.*, A highly conserved cryptic epitope in the receptor binding domains
553 of SARS-CoV-2 and SARS-CoV. *Science* **368**, 630–633 (2020).

554 18. J. Lan, *et al.*, Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction.
555 *Cell Res* **32**, 593–595 (2022).

556 19. M. McCallum, *et al.*, Structural basis of SARS-CoV-2 Omicron immune evasion and
557 receptor engagement. *Science* **375**, 864–868 (2022).

558 20. M. Yuan, *et al.*, A broad and potent neutralization epitope in SARS-related
559 coronaviruses. *Proceedings of the National Academy of Sciences* **119**, e2205784119
560 (2022).

561 21. C. O. Barnes, *et al.*, Structures of Human Antibodies Bound to SARS-CoV-2 Spike
562 Reveal Common Epitopes and Recurrent Features of Antibodies. *Cell* **182**, 828-
563 842.e16 (2020).

564 22. Y. Wang, *et al.*, A large-scale systematic survey reveals recurring molecular features
565 of public antibody responses to SARS-CoV-2. *Immunity* (2022)
566 <https://doi.org/10.1016/j.immuni.2022.03.019> (April 21, 2022).

567 23. J. R. Willis, *et al.*, Human immunoglobulin repertoire analysis guides design of
568 vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody
569 precursors. *Immunity* **0** (2022).

570 24. G. Cerutti, *et al.*, Cryo-EM structure of the SARS-CoV-2 Omicron spike. *Cell Reports*
571 **38** (2022).

572 25. M. S. Suthar, *et al.*, Rapid Generation of Neutralizing Antibody Responses in COVID-
573 19 Patients. *Cell Rep Med* **1**, 100040 (2020).

574 26. M.-P. Lefranc, *et al.*, IMGT, the international ImMunoGeneTics information system.
575 *Nucleic Acids Res.* **37**, D1006-1012 (2009).

576 27. S. H. W. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM
577 structure determination. *Journal of Structural Biology* **180**, 519-530 (2012).

578 28. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: algorithms for
579 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296
580 (2017).

581 29. P. D. Adams, *et al.*, PHENIX: a comprehensive Python-based system for
582 macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221
583 (2010).

584 30. J. Jumper, *et al.*, Highly accurate protein structure prediction with AlphaFold. *Nature*
585 **596**, 583-589 (2021).

586 31. T. D. Goddard, *et al.*, UCSF ChimeraX: Meeting modern challenges in visualization
587 and analysis. *Protein Sci* **27**, 14-25 (2018).

588 32. T. I. Croll, ISOLDE: a physically realistic environment for model building into low-
589 resolution electron-density maps. *Acta Crystallogr D Struct Biol* **74**, 519-530 (2018).

590 33. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot.
591 *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

592 34. J. Aguirre, *et al.*, Privateer: software for the conformational validation of carbohydrate
593 structures. *Nat Struct Mol Biol* **22**, 833-834 (2015).

594 35. C. J. Williams, *et al.*, MolProbity: More and better reference data for improved all-
595 atom structure validation. *Protein Sci* **27**, 293-315 (2018).

596 36. E. Krissinel, K. Henrick, Inference of Macromolecular Assemblies from Crystalline
597 State. *Journal of Molecular Biology* **372**, 774–797 (2007).

598 37. R. E. Rigsby, A. B. Parker, Using the PyMOL application to reinforce visual
599 understanding of protein structure. *Biochem Mol Biol Educ* **44**, 433–437 (2016).

600

601 **Figure Legends**

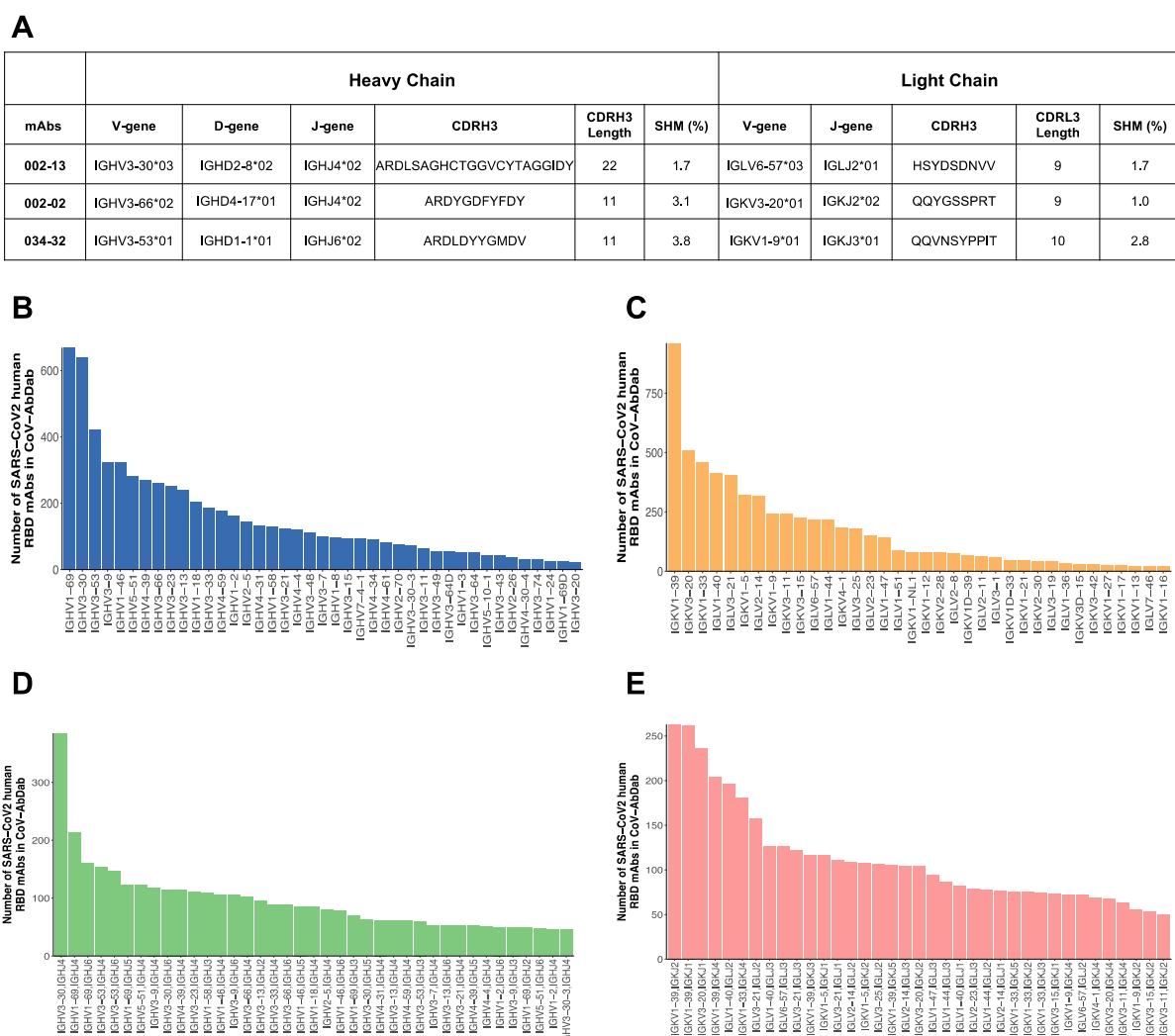
602 **Figure 1: Genetic information of SARS-CoV-2 RBD specific shared mAbs.** (A)
603 Immunogenetic information of the three SARS-CoV-2 mAbs. (B) Heavy chain variable
604 gene distribution of SARS-CoV-2 RBD-specific human mAbs (N=6520) documented in
605 CoV-AbDab dataset. (C) Light chain variable gene distribution of SARS-CoV-2 RBD-
606 specific human mAbs documented in CoV-AbDab dataset. (D) Heavy chain VJ-gene bar
607 plot of SARS-CoV-2 RBD-specific human mAbs documented in CoV-AbDab dataset. (E)
608 Light chain VJ-gene bar plot of SARS-CoV-2 RBD-specific human mAbs documented in
609 CoV-AbDab dataset.

610 **Figure 2: Binding, neutralization and affinity analysis of selected mAbs towards the**
611 **WA.1 strain.** (A) Three SARS-CoV-2 mAbs were tested for binding to the WA.1 RBD
612 protein. (B) Live virus neutralization curves of the three mAbs against live WA.1 SARS-
613 CoV-2. Neutralization was determined on using a focus reduction neutralization
614 mNeonGreen (FRNT-mNG) assay on Vero cells. (C) 50% focus reduction neutralization
615 titres (FRNT₅₀) for the three SARS-CoV-2 mAbs against WA.1 are shown.

616 **Figure 3. Cryo-EM structure of 002-13 in complex with WA.1 Spike trimer explains**
617 **its broad neutralization activity.** (A) Cryo-EM structure of WA.1 Spike-6P trimer in
618 complex with mAb 002-13. Overall density map at contour level of 5.4 σ showing the
619 antibody binding in the RBD “up” conformation. Each Spike protomer is shown in gray,
620 yellow or green; light and heavy chains of each Fab region are shown in blue/ magenta
621 and light blue/ pink, respectively. A model for one complex between Fab and RBD is
622 shown to the right. The positions of all Fab complementarity-determining region (CDR)
623 regions are labelled. (B) Surface representation of RBD with relative positions of all CDR
624 loops. The mapped epitope surface in the RBD is highlighted in magenta. (C, E, F)
625 Interaction details at the 002-13-RBD interface. (D) Heavy chain CDR3 loop in density
626 map. (G) Comparison of 002-13 binding mode with other Class-4 mAbs. (H) Zoom in view
627 comparing the heavy chain CDR3 loop positions of 002-13 vs COVA1-16. CDR3 amino acid
628 sequence of 002-13 and COVA1-16 is shown below. (I) Locations of beta (yellow), delta
629 (red) and omicron (green) mutations on the RBD relative to the 002-13 epitope site
630 (black outline).

631 **Figure 4. Cryo-EM structure of 002-02 in complex with WA.1 spike trimer.** (A) Cryo-
632 EM structure of WA.1 spike-6P trimer in complex with mAb 002-02. Overall density map
633 at contour level of 3.6 σ showing the antibody binding two RBDs in the “up” conformation.
634 Each protomer of Spike is shown in gray, yellow or green; the light and heavy chains of
635 each Fab region are shown in blue/ magenta and light blue/ pink, respectively. A model
636 one Fab-RBD complex is shown to the right and the positions of all Fab CDR regions are
637 labelled. (B) Surface representation of the RBD showing the relative positions of all CDR
638 loops. The mapped epitope surface in the RBD is highlighted in orange. (C-F) Interaction
639 details of the 002-02-RBD interface. (G) locations of Beta (yellow), Delta (red) and
640 Omicron (green) mutations on RBD relative to the 002-02 epitope site (black outline).

641 **Figure 5: Binding affinity and neutralization analysis of selected mAbs against**
642 **SARS-CoV-2 variants.** (A-C) Three potent neutralizing mAbs were tested for binding to
643 spike proteins of SARS-CoV-2 WA.1, Alpha, Beta, Delta and Omicron (BA.1) variants of
644 concern (VOCs). Curves shown are the best fit one-site binding curves calculated by Prism
645 9.0 (D-F) Live virus neutralization curves and FRNT₅₀ values of three potent mAbs for


646 WA.1, Alpha, Beta, Delta and Omicron (BA.1) SARS-CoV-2 VOCs are shown. Neutralization
647 was determined on Vero-TMPRSS2 cells using a focus reduction neutralization assay. **(G)**
648 Table summarizing the dissociation constant (K_D) and neutralization potency of mAbs
649 against SARS-CoV-2 variants. **(H)** Comparison of three mAbs with other similar RBD
650 epitope class recognizing mAbs and their reported neutralization to SARS-CoV-2 variants
651 (variants in Bold show reduced potency) (7).

652

653

654 **Figures**

655 **Figure-1**

656

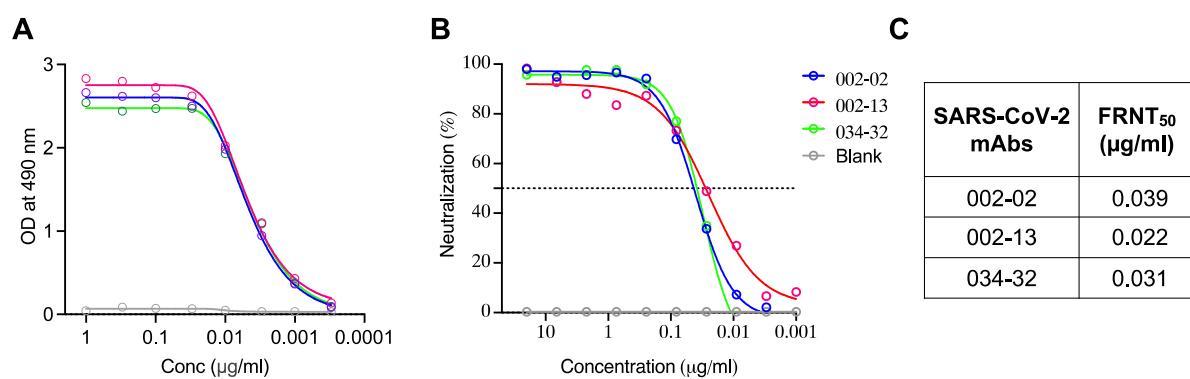
657

658

659

660

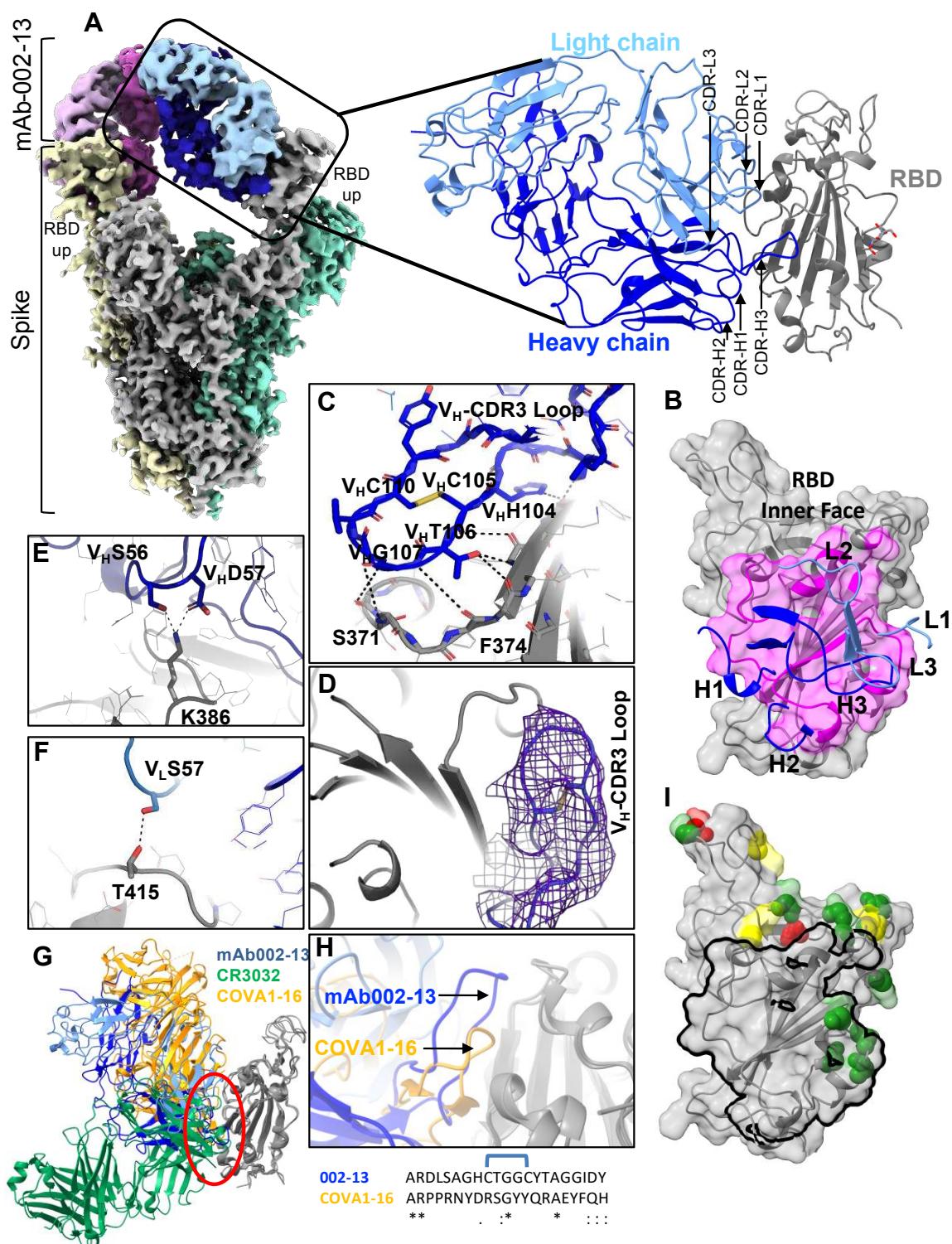
661


662

663

664

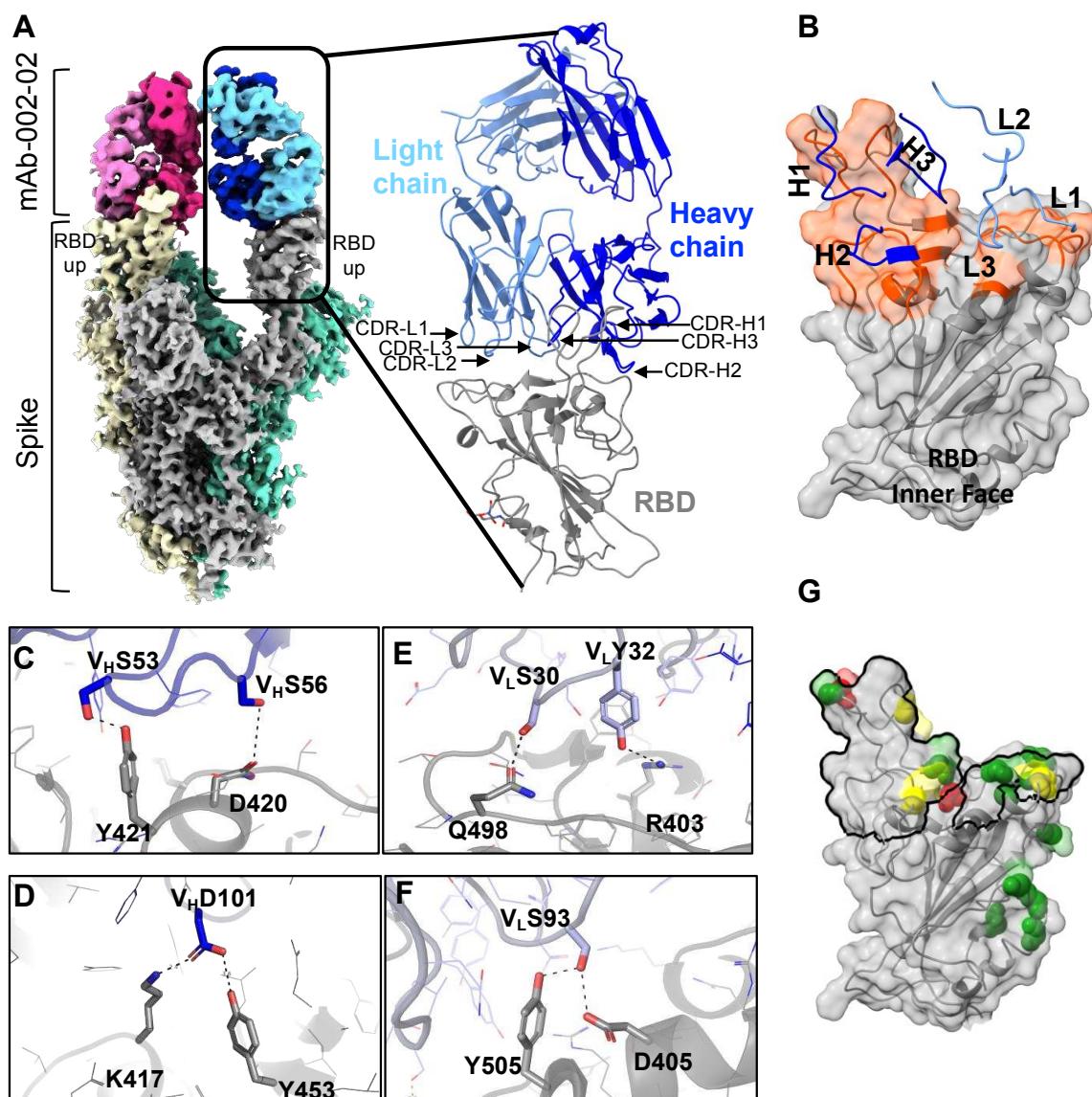
665


666 **Figure-2**

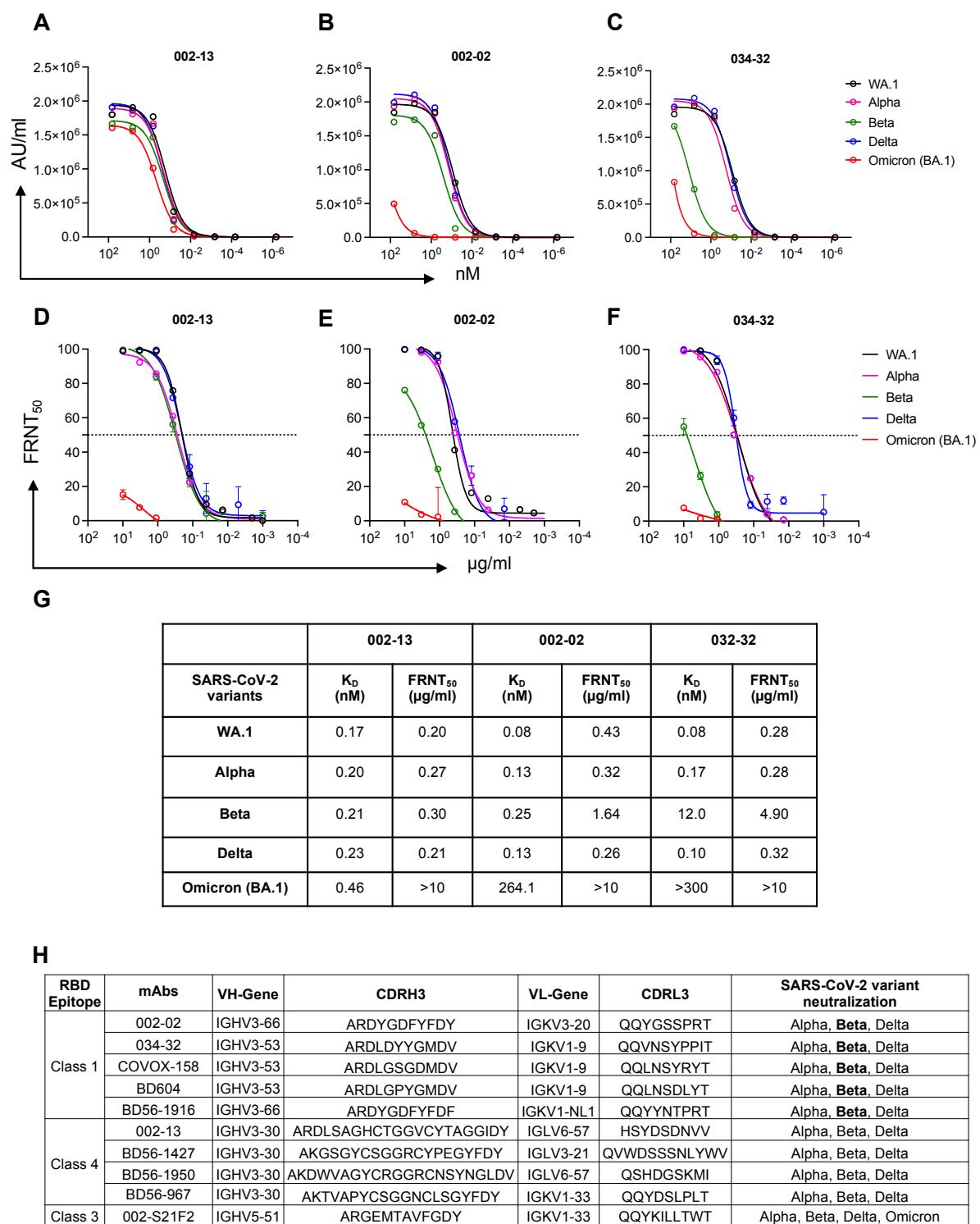
667

668

669 **Figure-3**



670


671

672

673 **Figure-4**

681 **Figure-5**

682

683