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Abstract

Single neuron correlates of reward value have been observed in brain regions along the
cortico-striatal pathway including ventral striatum, orbital, and medial prefrontal cortex.
Brain imaging studies in humans further validate these findings and suggest that value is
represented in a network of brain regions opposed to a particular area. Neural activity
oscillates at periodic frequencies to coordinate long-range communication in widespread,
dynamic networks. To explore how oscillatory dynamics across brain regions may
represent reward value, we measured local field potentials of male Long-Evans rats
during three distinct behavioral tasks, each probing a different aspect of reward
processing. Our goal was to use a data-driven approach to identify a common
electrophysiology property associated with reward value. We found that reward-locked
oscillations at beta frequencies, in both single units and local field potentials, were
markers of positive reward valence. More importantly, Reward-locked beta-oscillations
scaled with expected reward value on specific trial types and in a behaviorally relevant
way across tasks. Oscillatory signatures of reward processing were observed throughout
the cortico-striatal network including electrodes placed in orbitofrontal cortex, anterior
insula, medial prefrontal cortex, ventral striatum, and amygdala. These data suggests that
beta-oscillations reflect learned reward value in a distributed network, and this may serve

as a stable and robust bio-marker for future studies.
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Introduction

Reward processing comprises the set of neural systems associated with appetitive,
motivational, or pleasurable stimuli (1,2). Deficits in reward-processes are linked with
learning and decision-making impairments and likely contribute to anhedonia,
amotivation, and substance abuse problems observed in various psychiatric conditions
(1,3). Thus, identifying preclinical bio-makers of reward processing will help assess

behavioral deficits and expand treatment options that are currently limited (2-5).

Past studies highlight the relevance of cortico-striatal circuitry for reward learning. The
ventral striatum, and in particular the nucleus accumbens, is connected to the medial
prefrontal cortex, orbitofrontal cortex, and basolateral amygdala through cortico-striatal-
limbic reward-network projections (1,2,6—14). This extended “reward” network is
innervated by midbrain dopamine neurons originating from the ventral tegmental area,
which contribute to reward processing behaviors through reward-prediction error signals
(the difference between expected and actual rewards) (10,12,15-19). Thus, standard
models of reinforcement/reward learning posit that dopamine neurons carry a “RPE”
signal that then modulates distinct parts of the cortico-striatal reward network in specific

ways.

Single-unit activity is high-dimensional. Neurons from any brain region can encode a
diverse array of task-related processes (20-23). For example, single neurons in ventral
striatum, prefrontal and orbitofrontal cortex can be modulated both during reward

anticipation and delivery (13,23-29), and can be modulated by different types (6,30),
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magnitudes (6,24,31,32), and locations of reward (28). Low-dimensional representations
of population activity provide a more robust, stable, and simpler framework to identify

neuro-behavioral relationships and can be compared with human neuroimaging data
(20,21,33). Local field potentials (LFP) offer an opportunity to bridge micro- and
macroscopic levels of brain activity and (in the correct circumstance) can reflect low-

dimensional population level features of single-units(22,33-37).

We have previously used multi-site LFP recordings to characterize networks operating
at distinct oscillatory frequencies to support behavioral inhibition and default-mode-like
processing (38,39). Here we utilize our multi-site LFP approach to identify
electrophysiology markers linked with reward expectation and outcome. It is unclear
whether a neural signature may be unique to a specific domain of reward processing or
may represent a common substrate across domains. Therefore, to increase the
behavioral specificity of our electrophysiological markers, we examined data from three
distinct behavioral tasks (with different animals trained up on each task). The behavioral
tasks used each contribute a separate dimension of reward learning (Table 1): 1) A
go/wait behavioral inhibition task was used to identify signals related to the valence of
feedback (reward vs. no reward), with reward essentially scaled to performance; 2) A
temporal discounting task was used to identify how reward-locked signals scale with
subjective value of both reward magnitude (high vs. low reward) and temporal delay
(0.5 to 20s) ; 3) Finally, a probabilistic reversal learning task was used to identify signals

modulated by the learned probability of reward delivery (high vs. low-probability).
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Go/Wait Behavioral

Temporal Discounting

Probabilistic Reversal

Inhibition Learning
Local Field Potential Recordings
Subjects 12 10 7
with histology 6 9 7
Behavioral Sessions 67 124 79
with electrophysiology | 67 124 36

Time Window

500 — 2500ms after response

0-1000ms after reward onset

500- 2500ms after response

Contrasts go-cue vs. wait-cue trials high vs. low reward magnitude | high vs. low probability of reward
reward vs. no reward temporal delay reward vs. no reward
(0.5,1,2,5,10, 20s)
Single Unit Recordings

Subjects 8

with histology 5
Behavioral Sessions 62

with electrophysiology | 62

Time Window
Contrasts

0 — 2000ms after response

Go-Cue vs. Wait-Cue Trials
Reward vs. No Reward

Table 1: The experimental design including number of subjects, behavioral session, time

windows of interest and contrasts for analysis are provided for each of the three behavioral tasks.

77
78
79
80
81
82
83
84
85
Results

86

87

with expected reward value.

Beta Frequency Oscillations Linked with Positive Valence Feedback

On each task, we first examined activity in the lateral orbitofrontal cortex (IOFC), a
cardinal brain region consistently identified for its role in evaluating reward outcomes
and expectancies to drive adaptive behavior (1,7,26,40—-42). Next, we analyzed
pertinent oscillatory markers from 12 of our 32 electrodes that were placed in areas
along the cortico-striatal pathway in brain regions previously identified as inter-
connected with the ventral striatum. We provide evidence of oscillatory activity at beta

and high-gamma frequencies found consistently across our three tasks that modulates
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A full description of behavior on the go/wait task in animals with LFP probes can be seen
in our prior publication describing inhibition and stimulus-response oscillatory signatures
(39). Animals were shown two visual stimuli, one which required an immediate response
(go-cued trials) and the other which required the animal to withhold from responding for
2s (wait-cued trials) (Fig. 1A). Across behavioral sessions, animals performed better on
go-cued trials compared to wait-cued trials (Fig. 1B). Animals could generally distinguish
between go and wait-cues indicated by a significant difference in reaction times (fe1) =17,
p<.001) and greater accuracy on go-cued trials (ts1) =18, p<.007). On go-cued trials
animals had a mean reaction time of 610 +/- 160ms and correctly responded within 2s of
the visual cue on 94.0 +/- 9.2% of trials (data averaged across 62 sessions from 12

animals). On wait-cued trials animals took longer to respond (1700 +/- 460ms) and were

able to correctly wait on 41.0 +/- 23.0% of trials (Fig. 1B).
For all tasks, we began by Abbreviation Brain Area
analyzing electrophysiological M2 Secondary Motor Cortex
L. . A32D Dorsomedial Prefrontal Cortex
activity, time-locked to the
A32V Ventromedial Prefrontal Cortex
response, from lateral OFC (IOFC)-
vOFC Ventral Orbitofrontal Cortex
a cardinal reward processing brain AL Arterolateral Motor Goriex
reg|0n |n the COI”[ICO-StI’IBf[BJ LFC Lateral Frontal Cortex
network. Then, after identifying Ains Anterior Insula
pertinent  oscillatory  frequency IOFC Lateral Orbitofrontal Cortex
VMS Ventromedial Striatum
Table 2: Electrode sites of interest are
NAcS Nucleus Accumbens Shell
listed in order from 1. Anterior to NACC Nucleus Accumbens Core
posterior 2. Dorsal to ventral. BLA Basolateral Amygdala
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108  bands of interest during reward-feedback, we performed a second linear mixed model to
109 analyze 12 electrodes in the cortico-striatal network (Table 2). The primary goal of our
110 first analysis was to identify electrophysiological markers that differentiated between
111  positive and negative feedback on the go/wait task. Feedback on correct trials consisted
112  of water delivery 400ms after the response at the rate of 10ul/sec, for a duration of 2s.
113 Feedback on incorrect trials consisted of a 5s flashing house-light and an auditory 1000Hz
114 tone with no water delivery. We analyzed mean time-frequency (TF) power across
115 sessions (N=62) from correct go-cued trials (animals received a go-cue and responded
116  within two seconds), correct wait-cued trials (animals received a wait-cue and waited two
117  seconds before responding) and incorrect wait-cued trials (animals received a wait-cue
118 but failed to wait two second before responding). Due to the high accuracy on go-cued
119 trials (Fig. 1B), there were very few incorrect go-cued trials (failing to respond within two
120 seconds) and thus we did not analyze this trial type in the subsequent analyses. In the
121 first linear mixed model, we took the average power across delta (1-4 Hz), theta (4-8 Hz),
122  alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz) and high gamma (70-150 Hz)
123 frequencies during a two second reward-feedback window from 500-2500ms after
124  response (corresponding to the timepoint of reward delivery) on the IOFC electrode

125  (Table 3).

Model Dimensions
Number of Covariance | Number of

Model I. LOFC electrode Levels Structure Parameters
Fixed Effects

Intercept 1 1

Trial Type 3 2

Frequency 6 5

Trial x Frequency 18 10
Random Effects

Subject 12 identity 1
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Session 12 identity 1
Repeated Effects

Trial x Frequency 18 identity 1
Model Fit

AIC 1659.47

BIC 1674.66
Fixed Effects F Sig.
Intercept 26.58 <.001
Trial Type 23.93 <.001
Frequency 29.91 <.001
Trial x Frequency 6.44 <.001

Wald Z Sig. 95% Cl 95% Cl
Covariance Parameters Estimate | SE Lower Upper
Repeated Measures Variance 0.22 0.01 23.95 <.001 | 0.20 0.24
Subject 0.02 0.01 2.06 0.04 0.01 0.05
Session 0.004 | 0.003 1.52 013 0001 1002
Number of | Covariance Number of

Model Il. Reward electrodes Levels Structure Parameters
Fixed Effects

Intercept 1 1

Trial Type 3 2

Electrode 12 11

Trial x Electrode 36 22
Random Effects

Subject 12 identity 1

Session 15 identity 1
Repeated Effects

Choice x Electrode 36 identity 1
Model Fit

AIC 3928.52

BIC 3945.80
Fixed Effects F Sig.
Intercept 9.02 0.01
Trial Type 118.72 <.001
Electrode 5.75 <.001
Trial x Electrode 0.31 1.00

Wald Z Sig. 95% ClI 95% ClI

Covariance Parameters Estimate SE Lower Upper
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Residual Variance
Subject
Session

0.28
0.05
0.16

0.01
0.02
0.64

34.01
2.22
2.53

<.001
0.03
0.01

0.27
0.02
0.08

0.30
0.13
0.35

Table 3: Linear mixed model design, fixed effects, and covariance parameter to explore

power differences during reward outcome on the go/wait inhibition task.

We examined fixed effects of trial type (go-correct, wait-correct, wait-incorrect),
frequency, and their interaction. We examined random effects of subject and session. We
found a main effect of trial type (F(2,1147.03=23.93, p<.007), main effect of frequency
(F(5,1147.03=29.91, p<.0017), and a significant interaction between frequency and trial type
(F(10, 1147.03) =6.44, p<.001). Post-hoc analyses (Bonferonni corrected) revealed that the
main effect of frequency was driven by greater power on the IOFC electrode during
reward-feedback at beta (EMM= 0.50, SEM= 0.06, Cl= 0.38, 0.61) and high-gamma
frequencies (EMM= 0.46, SEM= 0.06, Cl= 0.34 0.58). (Fig. 1C;D). Importantly, oscillatory
activity at beta and high-gamma frequencies was different based on trial type. Beta power
was greater on rewarded trials (go-cue correct trials: EMM= 0.66, SEM= 0.07, Cl= 0.12,
0.41; wait-cue correct trials: EMM= 0.59, SEM= 0.07, Cl= 0.44, 0.73), compared to
unrewarded/ incorrect wait-cue trials (EMM= 0.24, SEM= 0.07, Cl= 0.1, 0.39) (Fig. 1C;D).
On rewarded trials the peak beta activity in IOFC occurred at 805ms after the response
(~400ms after reward onset) and lasted for around 2 seconds- the approximate time of
reward delivery (Fig. 1E). In this mixed effects model, the two random effects were subject
and session. Subject contributed to 8.2% of variance and was significant according to a
WaldZ metric (Wald Z= 2.06, p=0.04) (Supp Fig. 1). Session accounted for only 1.7% of

variance in the model and was not a significant contributor.


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

148 Dopaminergic signals related to reward are often linked with a “reward-prediction-error”,
149 i.e. they are typically positively modulated by difference between expectation of reward
150 and reward delivery. By contrast, single neurons within OFC has been observed to predict
151  the opposite of an RPE - i.e. they are related to reward-prediction (43). To understand
152  whether IOFC beta-power was linked with reward-prediction vs. an RPE on this task, we
153  focused on whether the average beta-power during the wait-cue trials was linked with
154  accuracy on that session using a linear regression analysis between session performance
155 and mean session beta-power. We hypothesized that, if related to an RPE, beta power
156  would be negatively correlated with wait-cue accuracy whereas if it was related to reward
157  prediction it should be positively correlated with performance. We found that IOFC beta
158  power was significantly positively correlated with wait accuracy (FDR corrected) from 500-
159  1000ms on wait-cue rewarded trials. The difference between the correct and incorrect
160 trials for the wait-cue also predicted greater accuracy on wait-cued trials. (Fig. 1F). This
161  relationship importantly indicated two things: 1) beta-power is unlikely to be a trivial
162 artifact or related to noise, as noise wouldn’t obviously be correlated with performance;
163  2) IOFC beta-power was a marker of reward-prediction and not RPE.

164

165 To better understand the spatial distribution of the reward-prediction beta activity beyond
166 IOFC, we next analyzed beta power from 12 of our 32 electrodes (M2, A32D, A32V,
167 VvOFC, ALM, LFC, Ains, IOFC, VMS, NAcS, NAcC, BLA) (Table 2), chosen based on
168  cortico-striatal regions connected with ventral striatum for whom we had electrode
169 locations and were large enough regions to make LFP a meaningful measure. We
170 examined LFP activity across divisions of medial prefrontal cortex, orbitofrontal cortex,

171  ventral striatum, anterior insula, and basolateral amygdala. As seen on the IOFC

10
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172  electrode, there was a main effect of trial type (F@2.2313.76)=118.72, p<0.007) on beta
173  frequency power during reward-feedback (Fig. 1G). There was also a main effect of
174  electrode (F(11,2313.76)=5.75 p<0.007) but no significant trial x electrode interaction
175  (F2,231.76)=0.31, p=1.0). Post-hoc (Bonferroni corrected) tests revealed the main effect of
176  electrode was driven by increased power on the BLA electrode (EMM= 0.53, SEM= 0.13,
177  Cl=0.26, 0.79) that was greater for rewarded vs. non-rewarded trial types. LOFC (EMM=
178 0.45, SEM-0.13, CI=0.19, 0.72) and VMS (EMM= 0.48, SEM= 0.13, CI=0.21, 0.75) also
179  had increased beta-frequency power on rewarded trials (Fig. 1G). Subjects contributed
180 to 11% of variance in the model, which was significant according to a Wald Z metric (Wald
181 z=2.22, p=0.03). Session contributed to 32.6% of variance in the model which was also
182  significant (Wald z= 2.526, p=0.01).

183

184 Beta-Oscillations Related to Single-unit Activity in OFC During Reward Feedback

185 Despite the name, “local” field potentials are challenging to properly localize (35,44,45).
186  To better understand whether the beta frequency activity observed during positive
187 reward-feedback was related to local spiking activity within a particular brain region, we
188  recorded single-units from the OFC of 8 different male Long-Evans rats performing the
189  go/wait task (Table 1). The version of the task used for single-unit recordings was slightly
190 modified (due to a slight change in coding up of this version of the task), from a 400ms
191 delay between response and reward as noted above, to only a 30ms delay. As we were
192 focused on the period post-feedback and not during the anticipation period, this
193  modification did not affect task performance. We recorded 376 neurons across 62
194  sessions (5.81 units +/- 0.03 per session). While performance on the task was worse in
195 these animals compared to those with LFP implants, rats were still able to discriminate

11
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196  between go-cue and wait-cue trials. Reaction time was different between trial types
197  (te1=7.8, p<.0017): 800 +/- 180ms on go-cue trials and 1100 +/- 330ms on wait-cue trials.
198  Accuracy on go-cue trials was 73.0 +/-24.0%, compared to 30.0 +/- 20.0% on wait-cue
199 trials (#61)=8.7, p<.0017) (Fig. 2A).

200

201  After excluding sessions with a limited trial number (< 30 trials) and units with low firing
202 rates (< 2 spikes/s), 228 units were included for subsequent analyses. 125 neurons (33%)
203  were defined as task-modulated based on our criteria of an increase/decrease of two
204 standard deviations above baseline for >75 consecutive ms. This included single units
205  with both peak firing rate increases or decreases that occurred both prior to the response
206  (action-related) or after the response (outcome or feedback-related) (Fig. 2B). The
207 average peak firing rate activity of action-related neurons was 375ms before the response
208 (time 0). The average peak firing rate of outcome-related neurons was 225ms after
209 response (~195ms after reward onset). 103 neurons were not task-modulated based on
210  our criteria.

211

212 Our main goal for studying single units was to determine whether they were modulated
213 by reward-related beta-oscillations. We first used spike-field-coherence (SFC) to assess
214  the relationship between spiking and oscillatory activity during the reward-feedback
215 period (0 to 2000ms after response) (44,46-48). Units with significant task-related
216  suppression or missing LFP data stream were not included in SFC analysis (173 units
217  remaining). We observed that neurons with greater firing rate on rewarded, go-cue correct
218 trials compared to non-rewarded, wait-cue incorrect trials (“correct preferring”) showed
219 increased beta frequency SFC modulation on correct trials vs. incorrect during reward-

12
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220 feedback (example neuron, Fig. 2C). By contrast, outcome-related neurons with greater
221  firing rate on wait-cue incorrect trials (“incorrect preferring”) did not show as great of SFC
222  modulation at beta frequencies (example neuron, Fig. 2C).

223

224  We grouped neurons into two categories solely based on their beta SFC value during the
225 reward-feedback period, and measured how this grouping was linked with firing rate for
226 both correct and incorrect trials. The “high-SFC” neurons were identified as neurons with
227 one standard deviation higher-than-average beta-SFC; and “low-SFC” neurons were
228 identified as neurons with one standard deviation lower-than-average beta-SFC. We
229 found a main effect of SFC category (high vs. low) (F1,314= 5.11, p=0.024) on reward-
230 feedback firing rate, and a significant interaction (F (1,314= 4.45, p=0.036) between SFC
231  category and trial type (go-cue correct vs. wait-cue incorrect) (Fig. 2D). Neurons in the
232 “high” SFC group had an average firing rate of 0.66 +/-0.41 spikes/s on go-cue correct
233  trials compared to the “low” SFC group neurons which had an average firing rate of -
234 0.78+/-0.30 spikes/ s. On wait-cue incorrect trials, firing rate was not modulated based on
235  SFC value. Neurons in the “high” SFC group had an average firing rate of -0.20 +/- 0.27
236  spikes/s on wait-cue incorrect trials and “low” SFC neurons had an average of -0.15 +/-
237 0.17 spikes/s. The firing rate of “high” and “low” SFC neurons was similar on non-
238 rewarded (wait-cue incorrect) trials but was significantly different on rewarded (go-cue
239  correct) trials (mean difference [high-low]= 1.44, corrected p=0.004) (Fig. 2D). Thus, we
240 found that single-units from OFC with higher reward-locked beta SFC are also more likely
241  to be positively modulated by reward while those with low reward-locked SFC are more
242  likely to be suppressed by rewards.

243

13
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244  Beta Power Reflects Dimensions of Reward Prediction and Value

245  Our data from the go/wait task suggested that beta activity within IOFC and other cortico-
246  striatal regions relates to positive valence (i.e. rewards) and may relate to reward
247  prediction or expected value. However, as this task was not specifically designed to
248  modulate aspects of reward value, it was still possible that, on a different task, we would
249  see a different relationship between beta oscillations and reward. Using a new group of
250 animals to study reward prediction signals on a different task allows for replication and to
251 rule out beta as related to some non-specific aspects of reward consumption unrelated to
252  subjective value or prediction. To further explore these hypotheses, we recorded LFP
253  activity on a new set of animals (N=10) trained to perform a temporal discounting task
254  (Fig. 3A). On this task, animals were given the choice of a low-value reward delivered
255  with a fixed delay of 500ms after response or a higher-value reward delivered at variable
256 delays of between 500ms to 20 seconds. To allow for greater numbers of trials for
257  electrophysiological analysis, delays on the high-reward condition were kept constant
258  throughout each session but varied across sessions. Low-value rewards consisted of 10ul
259  whereas high-value rewards were 30ul (both delivered at a rate of 10 ul/sec). Previous
260  work suggests reward value is negatively influenced by temporal costs associated with
261 earning a reward (19,31,49-51). In the context of this task, the subjective value of the high
262  reward choice decreases as the length of the delay required to obtain reward (temporal
263  cost) increases. Results from the temporal discounting task are based on 124 total
264  sessions (average for each rat was 2 sessions/ variable delay) (Table 1). As expected,
265 animals’ preference shifted from high-value choice to the low-value choice as the delay
266  to reward increased (Fs,45 =30.9, p =<0.001, two-way ANOVA) (Fig. 3B). When delays
267 of each choice were the same (500ms), animals strongly prefer the high-value (30ul)
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268 reward (90.4 +/- 1.4 % high-value choices per session). When the high-value reward
269 follows a 20s delay, rats only select the high reward choice 24.2 +/- 6.8% of trials, showing
270  aclear preference for the immediate, low-value reward. We do see individual differences
271  emerge in the average rate of discounting across delays (F(9,45=7.02, p<0.001, two-way
272 ANOVA) (Fig. 3B).

273

274  The first question we asked was whether IOFC beta power is modulated by expected
275 reward value. Specifically, we hypothesized that if beta reflects an aspect of expected
276  reward value, then power should be greater for the high (30ul) compared to the low

277  (10ul) reward magnitude when delays were the same (500ms for both). We analyzed
278  only the first second of activity post-reward to ensure that, for both trial types, animals
279  were receiving the same quantity of reward during the period of analysis (i.e., during the
280 first second of reward deliver for both reward types there was an equivalent reward

281 delivery). Using a linear mixed model to account for subject and session variance, we
282 first investigated data across all frequencies (delta: 1-4 Hz; theta: 4-8 Hz; alpha: 8-12
283  Hz; beta: 15-30 Hz; low gamma: 50-70 Hz; and high gamma: 70-150 Hz) at the IOFC
284  electrode. Our model measured base-line normalized power modulation (the ratio of

285  activity at a particular time point relative to base-line) as the dependent variable across
286 different frequency bands (delta, theta, alpha, beta, low gamma, high gamma) and trial
287  type (high or low reward choice) with subject and session variance as random effects

288 (Table 4).

Model Dimensions

Number of Covariance | Number of
Model I. LOFC electrode Levels Structure Parameters
Fixed Effects
Intercept 1 1
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Choice 2
Frequency 6
Choice x Frequency 12
Random Effects
Subject 9 identity
Session 3 identity
Repeated Effects
Choice x Frequency 12 identity
Model Fit
AlC 6709.37
BIC 6724.82
Fixed Effects F Sig.
Intercept 217 0.19
Choice 19.00 <.001
Frequency 40.60 <.001
Choice x Freguency 5.09 <.001
Wald | Sig. 95% Cl 95% Cl
Covariance Parameters Estimate | SE Z Lower Upper
Repeated Measures Variance 10.08 0.40 25.24 | <.001 |9.32 10.89
Subject 336 1.72 1.96 0.05 1.23 9.14
Session 0.97 1.01 0.96 0.34 0.13 7.47
Number of | Covariance Number of
Model Il. Reward electrodes Levels Structure Parameters
Fixed Effects
Intercept 1 1
Delay 6 5
Choice 2 1
Electrode 12 11
Delay x Choice 12 5
Delay x Electrode 72 55
Choice x Electrode 24 11
Delay x Choice x Electrode 144 55
Random Effects
Subject 12 identity 1
Session 5 identity 1
Repeated Effects
Choice x Electrode 24 identity 1
Model Fit
AIC 13265.52
BIC 13283.06
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Fixed Effects F Sig.
Intercept 12.83 0.01
Delay 22.52 <.001
Choice 2.13 0.15
Electrode 1.72 0.06
Delay x Choice 27.60 <.001
Delay x Electrode 0.44 1.00
Choice x Electrode 0.22 1.00
Delay x Choice x Electrode 0.24 1.00

Wald Z Sig. 95% Cl | 95% Cl
Covariance Parameters Estimate SE Lower Upper
Residual Variance 8.56 0.24 35.68 <.001 | 8.10 9.04
Subject 270 1.26 2.14 0.03 1.08 6.75
Session 1.01 1.03 0.98 0.33 0.14 7.42

Table 4: Linear mixed model design, fixed effects, and covariance parameter to explore

power differences during reward outcome on the temporal discounting task.

When delays for each choice were equal (500ms), the linear mixed model revealed a
main effect of choice (high vs. low reward) (F(1,1274.92=19.00, p <0.007), a main effect of
frequency (F (5,1273.94) = 40.60, p<0.007) and an interaction between choice and frequency
(F(5,1273.94) =5.09; p<.0017). Post-hoc tests (Bonferroni corrected) show the significant
interaction was driven by a difference in power between high reward choice (EMM= 3.86,
SE=0.89, Cl=1.83, 5.90) and low reward choice (EMM= 1.72, SE=0.89, Cl =-0.87, 3.22)
at beta and high-gamma (high reward choice; (EMM = 2.74, SE=0.89, Cl= 0.70, 4.77) low
reward choice (EMM= 2.16, SE=0.89, Cl=0.11, 4.20) frequencies (Fig. 3C). Sessions
contributed to only 6.7% of the total variance, but subjects contributed to 23% of the
variance- a significant effect (Waldz 1.96, p<.05). Subjects did show individual differences
in beta power values on high and low reward choices at matching delays (500ms) (Supp

Fig. 2).
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304

305 The next question we asked is whether reward-locked beta power was sensitive to the
306 temporal delays of reward. If beta power reflected reward value, we hypothesized that the
307 difference between high and low- rewards should be modulated with increasing delays,
308 reflecting the discounted value of the delayed high-value choice. We used a second linear
309 mixed model design to statistically measure whether there was an effect of delay length
310 (0.5,1,2,5,10,20s), choice (high vs. low reward) and electrode location (M2, A32D, A32V,
311 vOFC, ALM, LFC, Ains, LOFC, VMS, NAcS, NAcC, and BLA) on beta power (dependent
312  variable) during reward feedback. Subject and session were used as random effects to
313  observe their contribution to the model. We found a main effect of high-reward delay
314  (F(s.2533.84)= 22.52, p <0.007) and an interaction between delay and choice (F,2550.09)
315 =27.60; p<.001). Post-hoc (Bonferroni corrected) tests performed for the IOFC electrode
316  at each delay condition showed that at low delays (0.5s, 1s) there was greater beta activity
317 for high-value choices (0.5s delay, estimated marginal mean (EMM) difference [high-low]
318 in power = 2.69, SE of difference= 0.03; 1s delay, EMM difference = 1.02, SE of
319 difference= 0.02). At a moderate delay (2s) there was no difference in power ([high-low]
320 EMM =- 0.06, SE of difference= 0.06); and with longer delays (5s, 10s, 20s) there was
321 greater beta power on low-value choices (5s delay EMM [high-low] =-0.60, SE of
322 difference= 0.02; 10s delay EMM difference =-1.33, SE of difference= 0.00; 20s delay
323 EMM difference = -1.26, SE of difference= 0.08) (Fig. 3D). Thus, reward-locked power at
324  beta frequencies in IOFC significantly decreases as value of high reward is less at larger
325 temporal delays. Across the 12 putative reward regions (M2, A32D, A32V, vOFC, ALM,
326 LFC, Ains, IOFC, VMS, NAcS, NAcC, BLA) there was no significant difference in beta
327 power between electrode locations (p<0.06) (Fig. 3E). Thus, temporal discounting of beta
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328 power seems to reflect a value signal that is dispersed broadly across areas of the cortico-
329 striatal reward network. Each subject had a slightly different beta power discounting curve
330 (Supp Fig. 2) shown at the IOFC electrode.

331

332  Finally, to understand whether beta-oscillatory activity within this reward network was
333 related to behavioral choice (i.e., preference for selecting either the high or low-value
334 choice), we performed a logistic regression analysis with mean beta frequency power on
335 a particular session as the dependent variable and the overall likelihood of choosing the
336 high-value choice in that session as the independent variable. A positive beta value
337 indicated a significant relationship between relative difference in beta power and the
338 percent of high-value choices. We ran this analysis for each of the 12 brain regions,
339 followed by FDR correction, using power from the difference (high-low reward) between
340 trials. All 12 brain areas showed significant (FDR-corrected) positive relationships with
341 high-reward choice and the differential beta power from the high and low-value responses
342  (Fig. 3F). This suggests that the relative difference in beta power between high and low
343  reward reflects value-related value that is directly linked, on a session by session basis
344  with the choice animals make.

345

346 Beta Power Reflects Reward Certainty and Updates after Reversal

347 On a probabilistic reversal learning (PRL) task, subjects first learned that one response
348 leads to a high-probability of reward (“target”) and an alternate response would lead to a
349 low-probability of reward (“non-target”), then subjects flexibly updated this representation
350 after contingencies were reversed. In our version of this task, each day one response port
351  would be randomly assigned to start as the target NP (rewards delivered 80% of the time)
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352  while the other, non-target, port would deliver rewards 20% of the time and reverse when
353 8 out of the last 10 trials were target choices (regardless of reward outcome) (Fig. 4A).
354 Thus, on any session, subjects needed to dynamically modulate their behavior to track
355 reward contingencies. The following analyses are from 79 behavioral sessions, from 7
356 male rats. The minimum number of behavioral sessions/ rat was 7. 36 PRL sessions
357 included LFP data (average= 5 LFP sessions/ rat) (Table 1). On the first session rats
358 performed an average of 1.33 reversals (SEM=0.211) and each animal showed
359 significant improvement in number of reversals across time (i) = 4.39, p=.007, paired t-
360 test) (Fig. 4B). On the last session rats performed an average of 10.7 reversals
361 (SEM=2.03). Rats tended to make the same choice after receiving a reward (termed a
362  “win-stay” response). On 64.2 +/- 10.9% of rewarded trials, rats returned to the same
363  response port on the subsequent trial (Fig. 4B).

364

365 Based on data gathered from the temporal discounting task, we hypothesized that beta
366  power may reflect subjective value, dynamically adjusting according to the value

367 representation within a specific context. Thus, we expected to see greater beta power
368 on rewarded target choices (high reward probability), compared to rewarded non-target
369 choices (low reward probability). We predicted that beta-oscillations would dynamically
370 track the choice leading to the higher-expected value and shift power after a reversal.
371 To statistically model the effects of choice on beta power, we used a linear mixed model
372  to compare power (dependent variable) on the IOFC electrode during the reward

373  outcome period with frequencies (delta, theta, alpha, beta, low-gamma, high-gamma),

374  choice (target vs. non-target) and outcome (reward or no reward) (Table 5).

‘ Model Dimensions ‘ ‘
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Number of Covariance | Number of
Model I. LOFC electrode Levels Structure Parameters
Fixed Effects
Intercept 1 1
Choice 2 1
Qutcome 2 1
Frequency 6 5
Choice x Outcome 4 1
Choice x Frequency 12 5
Outcome x Frequency 12 5
Choice x Outcome x Frequency 24 5
Random Effects
Subject 7 identity 1
Session 6 identity 1
Repeated Effects
Choice x Outcome x Frequency 24 identity 1
Model Fit
AlC 2826.47
BIC 2840.15
Fixed Effects F Sig.
Intercept 1.80 0.22
Choice 13.12 <.001
Qutcome 67.49 <.001
Frequency 6.79 <.001
Choice x Outcome 10.14 0.002
Choice x Frequency 0.76 0.58
Qutcome x Frequency 10.86 <.001
Choice x Outcome x Freguency 0.60 0.70
Wald | Sig. 95% Cl 95% Cl
Covariance Parameters Estimate | SE Z Lower Upper
Repeated Measures 2.744 0.15 18.63 | <.001 2.47 3.05
Number of Covariance | Number of
Model ll. Reward electrodes Levels Structure Parameters
Fixed Effects
Intercept 1 1
Choice 2 1
Electrode 12 11
Choice x Electrode 24 11
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Random Effects
Subject 7 identity 1
Session 6 identity 1
Repeated Effects
Choice x Electrode 24 identity 1
Model Fit
AlC 2538.54
BIC 2552.24
Fixed Effects F Sig.
Intercept 0.13 0.73
Choice 20.65 <.001
Electrode 6.74 <.001
Choice x Electrode 0.76 0.68
Covariance Parameters Estimate SE Wald Z Sig. 95% Cl Lower | 95% CI Upper
Residual Variance 1.76 0.09 18.70 <.001 1.59 1.96
Subject 0.57 0.36 1.59 0.11 0.17 1.94
Session 0.08 0.06 1.32 0.186 0.02 0.34
Model lll. Reward electrodes Number of Covariance | Number of
Win stay/ Win Go Levels Structure Parameters
Fixed Effects
Intercept 1 1
Trial 2 1
Electrode 12 11
Trial x Electrode 24 11
Random Effects
Subject 7 identity 1
Session 6 identity 1
Repeated Effects
Trial x Electrode 24 identity 1
Model Fit
AlC 2921.95
BIC 2941.32
Fixed Effects F Sig.
Intercept 0.51 0.49
Trial 8.74 0.003

Table 5: Linear mixed model design, fixed effects, and covariance parameter to explore

power differences during reward outcome on the probabilistic reversal learning task.
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Electrode 0.37 0.97
Trial x Electrode 0.03 1.0

Wald Z | Sig. 95% Cl 95% Cl
Covariance Parameters Estimate SE Lower Upper
Repeated Measures Variance 4.79 0.27 17.73 <001 |4.29 .35
Subject 0.95 0.59 1.63 0.10 0.29 3.18
Session 0.43 0.30 1.42 0.16 0.11 1.69

Subject and session were investigated as random effects. On the IOFC electrode, there
was a main effect of choice (F(1,69874= 13.12, p<.007), outcome (F(1,697.98= 67.49,
p<.001), and frequency (Fs.694.38) =6.79, p<.007) and significant interactions between
choice and outcome (F,696.26) = 10.14, p=0.002) and outcome and frequency (F(5,694.33)
=10.86, p<.007) (Fig. 4C). Power was greater for rewarded (EMM=0.78, SEM= 0.21, Cl=
0.30, 1.26) compared to non-rewarded outcomes (EMM= -0.24, SEM=0.21, Cl= -0.72,
0.24) across all frequencies (main effect of outcome). There was also greater power for
target choice (EMM=0.50, SEM=0.21, CI=0.02, 0.98) compared to non-target choice
(EMM= 0.05, SEM= 0.21, Cl=-0.43, 0.53) across all frequencies (main effect of choice).
The interaction between outcome and choice showed beta and high gamma frequencies
had the greatest power for target choice rewarded outcomes. Beta activity on the IOFC
electrode during reward outcome was greater for target choice rewards (EMM= 2.39,
SEM= 0.35, Cl= 1.69, 3.09) compared to non-target choice rewards (EMM=0.90,
SEM=.36, CI=0.19, 1.60). High-gamma power was also greater for target choice rewards
(EMM= 2.69, SEM=0.35, Cl= 1.99, 3.38) compared to non-target choice rewards
(EMM=1.35, SEM=0.36, Cl= 0.64, 2.06) . Neither frequency showed significant
differences in beta activity for non-rewarded target vs. non-target choices. (Fig. 4C). The
shaded error plot illustrates the increased beta power during rewarded trials that is greater

for high-probability (target) compared to low-probability (non-target) rewards at the IOFC
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399 electrode (Fig. 4D). Subject accounted for 6.0% of variance in our model and session
400 accounted for 2.0%, neither which were not significant contributors to overall variance.
401

402 We followed this up with a linear mixed model to measure beta power (dependent
403 variable) during rewarded outcomes across the other 12 reward-related electrodes for
404 target and non-target choice (Table 5). There was a significant main effect of choice
405  (F(1,701.04) =20.65, p<.0017) and a main effect of electrode (F(11, e99.25) =6.74, p<.001), but
406 no significant interaction between choice and electrode (F(11, 699.21) =0.76, p=.68) (Fig.
407 4E). Post-hoc (Bonferroni corrected) tests revealed the main effect of electrode was
408 influenced by increased power within anterior insula (EMM= 1.25, SEM=0.83, Cl=-0.81,
409 3.30) and IOFC (EMM= 0.92, SEM= 0.83, Cl= -1.14, 2.97) brain regions showing overall
410 greater reward-related activity compared to others. Subjects contributed to 23.7% of the
411 variance and session to 3.3%. Neither were significant contributors based on the Waldz
412  test.

413

414  We next performed an analysis to see if beta-power on a trial was linked with activity on
415  the subsequent (next) trial. Using a linear mixed model, we compared beta power for “win-
416  stay” trials (rewarded trials in which animals chose the same response on a subsequent
417  trial) and “win-go” trials (rewarded trials in which animals chose the different response on
418 the subsequenttrial) in all 12 electrodes. We observed a main effect of trial type (F(1, 630.66)
419 = 8.74; p=<0.007), and no significant interaction between trial type and electrode (F(11,
420 e28.38) =0.03, p=0.97) (Fig. 4F). Across electrodes, beta power was greater on win-stay

421  trials (EMM=0.59, SEM=0.47, Cl=-0.46, 1.63) than win-go trials (EMM= 0.08, SEM=0.48,
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422  Cl-0.97, 1.13). Subject accounted for 15.4% of variance and session for 7.0%. Neither
423  were significant contributors according to a Waldz test.

424

425  Finally, pooling data across all 12 brain regions, we examined how beta power reflected
426  a change in reward contingencies. We used a two-way ANOVA to compare beta power
427  on rewarded and non-rewarded target choices before and after a reversal. Specifically,
428 we analyzed the last four “target” and “non-target” rewarded trials pre-reversal and the
429 first four “target” and “non-target” rewarded trials post-reversal from the “new” target; and
430 the same for non-rewarded trials. Analyzing the data this way we found a main effect of
431 reward outcome (F1,332=12.0, p<0.007) on beta power in reward regions, no main effect
432 of reversal (pre vs. post) (p=0.133), but a significant interaction between reward outcome
433 and reversal (Fn332=13.4, p<0.001) (Fig. 4G). Post-hoc (Bonferroni corrected)
434  comparisons show a selective decrease in beta power after a reversal that only occurs
435  on rewarded target trials. The mean difference of beta power pre vs. post reversal was
436 0.521, SE of difference= 0.062, corrected p <0.001 on rewarded trials. The mean
437  difference of beta power pre-post reversal was -0.108, SE of difference= 0.062, corrected
438 p=0.166, on non-rewarded trials (Fig. 4G). This is largely consistent with the idea that
439  beta power reflects the expected outcome value which, immediately after a reversal, is
440  still low for the “new” target. Beta-oscillations thus seem to reflect accumulating evidence
441 about rewarded outcomes and modulating expectancy by tracking repeated positive
442  outcomes and does not meaningfully reflect a signal related to the lack of reward
443  (expected or unexpected).

444

445  Verification of LFP Probe Locations at Target Brain Areas
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446  Coronal sections stained with thionine to capture cell bodies were used to verify the
447  electrode placement in target brain regions. For each cannula (1-8), a graphical
448  representation of a rat brain atlas ((52) shows the identified center of recording sites at
449 each DV location (four per cannula) (Supp Fig. 3). Colored dots represent the task the
450 animals belong to (green: go/wait N= 6/11; pink: temporal discounting N= 9/10; blue: PRL
451  N=7/7). An example coronal slice at the corresponding AP location is also shown for each
452  cannula placement with magnification of each track in the brain. The table includes the
453 AP, ML, and DV coordinates for all 32 electrodes and their corresponding nomenclature.
454  The location of single-unit OFC recording electrodes is also shown (B) from a range of
455  +4.2 AP through +3.25 AP relative to bregma. The LO/VO subdivisions are outlined on
456 the example coronal sections taken from the rat brain atlas. Electrodes span both
457  divisions. The graphical representation includes all electrode tracks (N=5/8 rats) (Supp
458  Fig. 3).

459

460 Discussion

461  Our results show changes in beta (15-30 Hz) and high-gamma (>70 Hz) frequencies that,
462  across multiple distinct tasks scaled dynamically according to markers of learned and
463  expected reward value. Each task contributed something unique to our findings and using
464  different cohorts of animals offered replication for greater certainty of our findings. For
465 example, measuring LFP on a behavioral inhibition task (go/wait), we identified beta
466  power-related changes that signaled positive valence (rewarded) trials during reward-
467 feedback. Firing rates of single-units in OFC were also modulated at beta frequencies
468  during positive reward outcome; and the magnitude of the beta power was correlated with
469 overall performance on that session, suggesting a relationship between beta power and
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470 reward expectation. On a temporal discounting task, beta power corresponded to
471  subjective reward value and was significantly linked with choice for the immediate vs. the
472  delayed condition. On a PRL task, beta was elevated for high-probability target choices;
473  and higher beta power was associated with selecting the same trial following a rewarded
474  outcome. We generally see evidence of a beta reward processing signal broadly
475  throughout the cortico-striatal network, but there are instances where distinct brain
476  regions are more/less engaged based on task-dependent features. A32D, IOFC, and
477  anterior insula electrodes showed the most consistently elevated beta power across tasks
478  during positive reward feedback, suggesting this effect was strongest in those cortical
479  regions. Subtle variations in activity between tasks may represent examples of functional
480  segregation between cortical subdivisions seen previously on other reward-guided tasks
481  (9,29,41,53-55). For instance, ventral regions of striatum and orbitofrontal cortex show
482 large increases in beta frequency power during rewarded outcomes only in the go/wait
483  task where reward valance certain and less subjective. Moreover, elevated beta power
484 may not always promote optimal behavior based on brain region and task-specific
485 parameters. For instance, researchers using 20Hz (beta frequency) optogenetic
486  stimulation of glutamatergic ventral medial OFC neurons found that activation impaired
487  PRL performance whereas inhibition increased the number of reversals (56). We find a
488  positive relationship between IOFC reward-locked beta power and behavior, but that
489 relationship is likely different amongst cortical subregions. Thus, in the cortico-striatal
490 network we find reward-locked oscillations at beta frequencies, in both single units and
491 local field potentials, that mark positive reward valence and scale with reward expectation.
492  Our findings are consistent across three different reward processing tasks suggesting that
493  beta-oscillations may serve as a stable and robust bio-marker for future studies.
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494

495 Data from each of these tasks, when considered alone, could have multiple explanations
496 and confounds — however, the similar relationships between beta power and expected
497  value observed across animals/tasks help define the role of beta-oscillations in reward
498  processing. The most trivial explanation of our findings is that beta activity reflects a non-
499 neural artifact time-locked with reward delivery such as movement (i.e. muscle/EMG-
500 related contamination during reward consumption) or electrical noise associated with
501 reward- delivery. However, it is not obvious how this explanation would show why on
502 matched delays (500ms) on the temporal discounting task there was greater beta power
503 for high-value compared to low-value trials during the first second following reward
504 delivery when movements and electrical noise would at least in theory be matched.
505 Similarly, data from the PRL task indicates beta power was greater for high-probability
506 responses which also has identical reward delivery to low-probability responses.

507

508 A different possibility is that the beta activity is neuro-physiological in nature but reflects
509 a motor, opposed to reward, process. Beta-oscillations have been well-characterized
510  within motor cortex (57—61) and dorsolateral striatum (58,60,62,63) and tend to be largest
511 pre/post-movement, but are classically reduced during movement (59,61,64,65). This
512  functional description fits with observations of beta activity in Parkinson’s disease patients
513  who have trouble initiating movements and show increased beta-oscillations related to
514 symptom severity (59,62-64,66). Thus, one explanation is that increased beta power
515 reflects motor inhibition that might occur and be linked with reward consumption.
516 However, we believe our data is not compatible with this hypothesis in a few ways. First,
517 sensorimotor beta-oscillations, as previously described, are more localized within motor
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518 and dorsal striatum, whereas we observe oscillations (and single-units related to beta-
519 oscillations) more strongly within ventral brain regions (orbitofrontal cortex and insula, for
520 example). Second, as before, we believe our data comparing high vs. low value reward
521 (temporal discounting) and high-probability vs. low-probability reward (PRL) argues
522 against this interpretation, as it is unclear why animals would be more stationary when
523 consuming rewards on these trials where motor requirements should in theory be
524 matched. It may be possible that animals more vigorously consume reward when there
525 is a greater expectation of reward — in other words, that the neurophysiological processes
526 we observe are, indeed, matched by a physical aspect. If this is the case, our results
527  would still be valid, though the interpretation would be different. We do not currently have
528 the data we need (high-frequency video of the licks) to distinguish this, and this will need
529 to be clarified with further research.

530

531 If beta-oscillations reflect reward processing, then what specific aspect of reward might
532 they represent? We hypothesize that beta-oscillations reflect activity within a cortico-
533 striatal network that drives optimal decision-making based on expected reward-value. We
534  provide evidence that beta-oscillations during reward feedback modulate activity based
535 on task variables such as reward magnitude, temporal delay, and probability of reward.
536 Growing research has identified beta-oscillations outside of sensorimotor networks
537 related to attention (67,68), top-down processing ((65,69), working memory (67,70-
538 72)and outcome evaluation (45,73). Beta frequency impairments have been observed in
539 cases of depression, bipolar disorder, schizophrenia, attention disorders, and addiction
540 (opioid and alcohol) (74). Consistent with our findings, beta-oscillations during reward-
541 feedback have previously been observed in humans and animals. EEG and MEG
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542 measures in humans find beta oscillations during positive-valence reward within frontal-
543  striatal circuits that is sensitive to reward valence, magnitude, and predicts subsequent
544  choice ((71,75-79). Similarly, increased beta power in cortico-striatal regions has been
545 observed in rodents approaching reward locations (47,80)that was modulated by reward
546 magnitude ((80)and stabilized with task experience (28,47). Recently, it was observed
547 that during a reward discrimination task, increased beta power 100-200ms after reward
548 feedback in the anterior cingulate cortex and nucleus accumbens of rodents that was
549 correlated with response bias (81)Our work extends this prior data by conclusively
550 demonstrating a relationship between beta power and reward expectation across multiple
551 task contexts. It further suggests that beta-oscillations can be utilized as a cross-species
552 translational marker of value estimation that is linked to reward-guided behavior and could
553  be used to predict reward sensitivity, risk-taking behavior, and impulsivity.

554

555  The feedback-related negativity ERP signal classically observed in humans is thought to
556 reflect dopamine transmission (81-83), but the signal gets more negative following
557  positive reward valence (81); the opposite of our beta oscillatory signal. Dopamine activity
558 s linked with both reward-prediction and reward-prediction errors (RPE) (10,16,78,84) .
559  Previous research in humans explored the possibility of frontal beta-oscillations as an
560 RPE signal but found that stimuli signaling expected rewards elicited more beta power
561 than unexpected rewards; the inverse of an RPE (78). Our results are consistent with an
562 inverse correlation between beta activity and the dopaminergic RPE signal. First, on the
563 go/wait task we find beta power signals positive reward outcomes and correlates with
564  more accurate task performance, whereas dopamine transmission would be higher when
565 rats are performing poorly (more unpredictable). In the temporal discounting paradigm
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566 dopaminergic activity is greater for longer delay periods (19) corresponding with the
567 reduction in beta power we observed during longer delays. Finally, more dopamine is
568 observed for unexpected rewards, but on the PRL task we see higher beta power on
569 expected reward outcomes that rapidly decays after a reversal when expectancy signals
570 are not defined. Moreover, we find single-units in OFC that are correlated with beta
571 oscillations during reward delivery that may be consistent with reward prediction rather
572 than an error in prediction (43). Increased beta oscillations in frontal cortex could
573 therefore be a marker of a suppression in dopamine release. Strikingly, an inverse
574  relationship between dopamine and beta-oscillations has been observed in motor cortex
575 and dorsolateral striatum as well (10,63). Therefore, a similar relationship between beta-
576  oscillations and dopamine may exist within ventral striatum and prefrontal cortex. In this
577  way, beta signals may represent a common modality of communication across distributed
578  cortico-striatal networks: cortico-thalamic-basal ganglia pathways for motor controls
579 (60,66)and cortico-striatal-limbic pathways for reward processing (2,6,8,11,12,18,85)
580 (Schultz et al., 2000; Dalley et al., 2004; Abler et al., 2006; Berridge and Kringelbach,
581 2008; Haber and Knutson, 2010; Chau et al., 2015). A common striatal-beta generating
582 mechanism could explain how increases in attention, motor inhibition, and reward
583  processing information are linked to beta-oscillations in distributed brain networks (59,67),
584  and suggests that, perhaps, dopamine influences this transmission similarly across these
585  cortico-striatal networks.

586

587 We acknowledge there are many subsequent analyses to be completed for each task.
588 Here, we present a comprehensive overview of reward processing activity in all tasks
589  opposed to the fine intricacies of each which may be best explored by fitting reinforcement
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590 models to examine trial x trial decision making behavior and oscillatory activity Future
591 analyses will investigate network-level connectivity to determine whether beta-oscillations
592 originate in brain areas, like the striatum, or if they are an emergent property of cortico-
593 striatal networks. Moreover, investigations will need to extend beyond power measures
594 to include phase dynamics which can determine temporal relationships between brain
595 areas. Across our tasks, we also see evidence of increased high-gamma power during
596 reward-feedback. Much like theta-gamma coupling is linked to learning and memory in
597 rodents (87—-89), beta-high-gamma coupling may be linked to reward processing or reflect
598 spike coherence. Researchers have described beta/gamma event-related
599  synchronization that occurs after reward feedback in lateral prefrontal cortex of humans
600 (71,78). Additionally, our results are limited to only male rats. We are now repeating this
601 set of studies in a balanced cohort of male/females to understand whether these findings
602 generalize across sexes. Finally, further analysis of movements/video-tracking would
603 lend greater certainty to our findings and rule out movement-related artifacts. Based on
604 the preponderance of evidence across animals and tasks, we propose that beta-
605  oscillations during reward-feedback may present a phenotype that can be used to identify

606  disturbed reward-related processing deficits in psychiatric disorders or brain injury.
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607 Material and Methods

608 Ethics Statement

609  This research was conducted in strict accordance with the Guide for the Care and Use of
610 Laboratory Animals of the National Institutes of Health. The protocol was approved by the
611 San Diego VA Medical Center Institutional Animal Care and Use Committee (IACUC,
612  Protocol Number A17-014).

613

614 Experimental Design

615 Subjects: 37 male Long-Evans rats obtained from Charles River Laboratories were used
616 for these experiments. When received, rats were ~ one month old weighing 150g.
617 Habituation and pre-training was initiated two weeks after arrival. Depending on the task,
618 rats trained for 5-14 weeks before receiving surgery. Rats were housed in pairs during
619  prior to electrode implantation, and individually housed thereafter, in a standard rat cage
620 (10 x 10.75 x 19.5 in, Allentown, NJ, USA) with free access to food and on a standard
621 light cycle (lights on at 6 am / off at 6 pm). During behavioral training, animals underwent
622  water scheduling (free access to water for two hours/day) to maintain motivation for water
623  reward in the tasks. Water was unrestricted on non-training days and rats were weighed
624  weekly to ensure that water scheduling did not lead to reduced food intake. Different
625 cohorts of rats were trained to perform one of three tasks designed to measure distinct
626  aspects of reward processing12 rats with multi-site LFP probes were trained on a go/wait
627 response inhibition task, 10 on a temporal discounting task, and 7 on a probabilistic
628 reversal learning (PRL) task (Table 1). Additionally, 8 rats trained on the go/wait task
629  were used for single-unit recordings to supplement LFP findings (Table 1). Subjects with
630 chronic implants were monitored daily for signs of infections, injuries, and bleeding.
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631

632 Operant Chamber and Training: The same custom-designed operant chamber was
633 used for all three tasks. The chamber had five nose-ports (NP), each with an LED, IR
634 sensor and metal cannula for water delivery. The chamber also contained two auditory
635 tone generators, a house-light, a screen to display visual stimuli, and five peristaltic
636  stepper motors/water pumps that delivered the water rewards into NPs. The chamber
637 was 6.2 x4.7x 6.23 inches with a ceiling opening that allowed electrophysiology tethers
638 to move freely. Simulink (Mathworks) installed directly onto a Raspberry Pi system
639  controlled the behavioral programs. Behavioral outputs from the operant chambers were
640 synchronized with electrophysiological signals using lab-streaming-layer, a protocol
641 designed to integrate multiple behavioral and physiological streams into a common timing
642 stream (90,91). The design, operation and software control of this chamber has been
643 described previously (90). Animals first went through a pre-training period (5-10
644  sessions), to learn that a NP with an LED “on” signaled an available response port; that
645 responding in an available NP would trigger a water reward; and finally that there was a
646  sequential nature to the task (animals start a “trial” by first entering the middle NP (3),
647  after which they could use either of the neighboring ports (2 or 4) to respond and collect
648 an immediate reward). This standard pre-training paradigm was used for all three final
649 behavioral paradigms. Animals advanced to the next stage of training when they
650 consistently performed =100 trials in a 60 min session.

651

652 Behavioral Tasks: . Go/Wait Response Inhibition Task. The visual-cue go/wait task
653  was used to observe brain activity associated with positive valence on successful go-cue

654 trials (rewarded) compared to unsuccessful wait-cue trials (not rewarded). Animals began
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655 a trial by entering the middle NP (3), ensuring animals were in an identical position on
656 every trial when the visual stimulus appeared. After a fixed delay of 30ms, a visual
657 stimulus appeared on the screen denoting the trial as either a “go-cue” trial (animal
658  required to respond within 2s to attain a reward) or a “wait-cue” trial (animal required to
659  withhold response for 2s to attain a reward). The stimulus remained on the screen until
660 the animal responded. If animals responded correctly, a water reward was delivered into
661 the middle NP (3) after a delay of 400ms. If animals responded incorrectly, the house light
662 flashed for a 5 second “time-out” period and no reward was given. Rewards consisted of
663 20 pL of water delivered over a two second period using a stepper-motor (the motor sound
664  provides an instantaneous cue regarding reward delivery). After water delivery, there was
665 a 5s inter-trial-interval before the next trial began. The trials were distributed randomly as
666 25% “go-cue” and 75% “wait-cue” trials. Animals were trained for ~14 weeks until
667  behavior typically stabilized (>80% accuracy on go-cue trials), after which they were
668 implanted with electrodes (described below). We waited two weeks for animals to recover
669  from surgery prior to resuming water-scheduling. LFP analyses are based on data from
670 67 recording sessions from 12 rats (Table 1). Single-unit analyses are based on data
671 from 62 recording sessions from 8 rats (Table 1).

672

673 Il. Temporal Discounting Task. A different cohort of animals were trained on a temporal
674  discounting task to contrast electrophysiology activity at different reward magnitude

675 choices (high vs. low reward) delivered at increasing temporal delays (0.5 to 20s).

676  Generally, temporal discounting tasks center around choosing between a low-value

677 reward delivered immediately, or a high-value reward delivered after a delay. In our

678  version of the task, subjects chose between a low-value (1x) reward delivered

35


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

679 immediately (500ms after response) or a high-value (3x) reward delivered at a variable
680 delay. In separate behavioral sessions the high-value delay ranged from 500ms to 20s
681  after the response. Each session began with 6 forced-choice trials, orienting the rat to
682  both the low-value (NP 2) and high-value (NP 4) options. The houselights were on, and
683  LED lights signaled the available response port, alternating between low-value (NP 2)
684  response and high-value (NP 4) response. Reward following either response was

685 delivered immediately (500ms) after response during forced-choice trials. After the 6
686 trials were complete, the houselights dimmed and rats began the full, self-paced, trial
687  sequence. Response port (2 and 4) LEDs were on, signaling the rat to choose.

688  Selecting the low-value response port (2) turned on the houselights, the middle NP LED
689  (3), and a tone (500ms duration) to indicate a choice was made. A small reward (10uL
690 delivered over a 1s duration) was delivered immediately (500ms after response) from
691 NP 3. Selecting the high-value response port turned on the houselights, the middle NP
692 LED (3), and a tone (500ms duration) signaled the choice. Between sessions there was
693 avariable delay (0.5s, 1s, 2s, 5s, 10s, 20s) until the high-value reward (30uL over a 3s
694  duration) was delivered out of NP 3. The motor delivering water made an audible sound,
695 to cue reinforcement delivery onset and amount of reward. The high-value delay

696 alternated between behavioral sessions but remained the same throughout the entire
697 (60 min) session. The houselights turned off when water was delivered out of NP3 and
698 a 5sinter-trial interval began after water delivery. To learn to discriminate magnitude
699 differences, rats were trained on the immediate delay condition (500ms) for both high-
700 value and low-value choices. Once they showed a clear preference for the high-value
701  choice (=270% high-value responses/session) and consistently performed =100 trials,
702  they were advanced to the other delay conditions. Training (including pre-training

36


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

703  sessions) on average lasted 18 sessions across 5 weeks. After implantation we waited
704  two weeks to allow animals to recover from surgery before electrophysiology recording
705  began. Recording sessions lasted 60 minutes and occurred 3-4 days a week. LFP

706  analyses are based on data from 124 recording session from 10 rats (Table 1). There
707 was an average of 20 recording sessions per delay condition (two sessions at each

708 delay condition per rat; N=19 sessions at 0.5s; N=23 sessions at 1s; N=15 sessions at
709  2s; N=28 sessions at 5s; N=18 sessions at 10s; N=21 sessions at 20s).

710

711 lll. Probabilistic Reversal Learning Task. The probabilistic reversal learning task (PRL)
712  was used to examine brain activity associated with learned reward likelihood (high vs.
713  low-probability choice) and tests the subjects’ ability to update information after reward
714  contingencies are reversed. In our version of the PRL task, rats must choose between
715  two nose ports: the high-probability choice (“target”) delivers water 80% of the time, and
716  the low-probability choice (“non-target”) only 20% of the time. The PRL task is self-paced.
717  Each trial began with houselights off and the middle NP LED (3) on. Once a rat
718 responded, LEDs in NP 2 and 4 turned on, indicating an available choice between the
719 response ports. Each NP is randomly assigned as the target or non-target NP in each
720 session. Selecting the target choice led to 2s (20uL) of water on 80% of trials and no
721  water only 20% of the time. Selecting the non-target choice led to 2s (20uL) of water only
722 20% and no water 80% of the time. A response in NP 2 or 4 caused the other LED to turn
723 off. On rewarded trials, the houselights remained off and water was delivered out of the
724  selected NP (2 or 4) 500ms after the response. There was a 5s inter-trial interval that
725  started with water delivery. On unrewarded trials, a tone (500ms in duration) signaled no

726  water delivery, the houselights turned on, and a 5s inter-trial interval began. Throughout
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727 a session, the NP contingencies reversed based on the rats’ behavior. Reversals
728 occurred when a rat made 80% target responses (rewarded or non-rewarded) over a 10-
729 trial moving window (8 of the last 10 responses are “targets”). To perform PRL effectively,
730 rats must respond appropriately to correct feedback (“target” rewards; “non-target” no
731  reward) while also ignoring misleading feedback due to the probabilistic nature of our task
732 (“target” no reward; “non-target” reward). Rats received at least two weeks of pre-training
733  (described above) prior to surgical implantation of LFP probes but were naive to the PRL
734  task. Two weeks after surgery rats began training on the PRL task. Performance was
735 measured by counting the number of reversals/ sessions, the target choice percentage,
736  and win-stay behavior (propensity to choose the same NP after receiving a reward on the
737  previous trial). On average, rats took 15 sessions to train on the PRL task (~3.5 weeks).
738  Once rats were consistently performing at least one reversal and performing 2100 trials
739  we started to record LFP. Rats ran 60 min sessions 3-4 days a week. Behavioral data
740 was collected from 7 rats across 79 PRL sessions, 36 of which included LFP recording
741  (average of 5 sessions per rat) (Table 1).

742

743 Surgery

744  Aseptic surgeries were performed under isoflurane anesthesia (SomnoSuite, Kent
745  Scientific, CT, USA with all instruments autoclaved prior to start. Animals received a
746  single dose of Atropine (0.05 mg/kg) to diminish respiratory secretions during surgery, a
747  single dose of Dexamethasone (0.5 mg/kg) to decrease inflammation, and 1mL of 0.9%
748  sodium chloride solution prior to surgery. The area of incision was cleaned with 70%
749  ethanol and iodine solution. A local anesthetic, Lidocaine (max .2cc), was injected under
750  the skin at the incision site while the animal was anesthetized but before surgery initiation.
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751  The fabrication and implantation procedures of our custom fixed field potential and single-
752  unit probes are described in detail (37).

753

754 LFP Probe Implantation: Briefly, our LFP probe targets 32 different brain areas
755  simultaneously. 50um tungsten wire (California Fine Wire, CA, USA) used for our
756  electrodes was housed in 30-gauge stainless steel metal cannula (Mcmaster-Carr,
757  Elmhurst, IL, USA) cut 8-9mm long. Each cannula (N=8) contained four electrode wires
758 cut to their unique D/V length. The average impedance of our blunt-cut tungsten
759  microwires is 50 kOhms at 1 kHz. During surgery, 8 holes were drilled in the skull (one
760 for each cannula) at predetermined stereotactic locations (see Supp Fig. 3). Additional
761  holes were drilled for a ground wire and anchor screws (3-8). The ground wire was
762  soldered to an anchor screw and inserted above cerebellum. Electrodes were slowly
763  lowered to desired depth, pinned to the EIB board, and secured with superglue followed
764 by Metabond (Parkell, NY, USA). The entire head stage apparatus was held to the skull
765 and encased with dental cement (Stoelting, IL, USA).

766

767  Single-unit Probe Implantation: To record single-units we used a 32-channel stationary
768 array with microwires arranged in a brush-like formation (see (37). Initial preparation of
769 the animal and location of ground screws was identical to the LFP probe surgical
770  procedures described above. A cranial window with diameter of 2mm was drilled with a
771 0.7mm micro drill (Stoelting, IL, USA) centered at the OFC target location. Three probes
772  targeted ventral OFC (AP:+3.5mm, ML: +/-1.5mm, DV: 5.0mm), four targeted lateral OFC
773 (AP: +3.5mm, ML:+/-2.5mm, DV: 5.0mm), and one implant had 16 electrodes in each
774  region (Supp Fig. 3). The implant was lowered to desired depth slowly under stereotactic
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775  control. A thin layer of superglue was applied to the skull followed by a layer of Metabond
776 (Parkell Inc., NY, USA) to seal the craniotomy. The implant was secured to anchor screws
777  and attached to the dry skull with dental cement (Stoelting, IL, USA). The ground wire
778 was pinned to the channel on the EIB board, and the remaining exposed wires covered
779 in dental cement.

780

781 At the conclusion of surgery, the skin was sutured closed, and rats were given a single
782 dose (1mg/kg) of buprenorphine SR for pain management. Rats recovered from surgery
783 on a heating pad to control body temperature and received sulfamethoxazole and
784  trimethoprim in their drinking water (60mg/kg per day for 8 days) to prevent infections.
785

786  Electrophysiology

787 LFP data was recorded using a 32-channel RHD headstage (Intan Technologies, CA,
788 USA; Part C3324) coupled to a RHD USB interface board (Intantech, Part C3100) and
789  SPIl interface cable. We used plug-in GUI (Open Ephys) software for acquisition. Data
790 was recorded at 1Khz, with a band-pass filter set at 0.3 to 999 Hz during acquisition.
791 Physiology data was integrated with behavioral data using a lab-streaming-layer (LSL)
792  protocol (Ojeda et al., 2014), as described previously (90).

793

794  Single-unit data was recorded using a 32-channel RHD headstage with signal amplified
795 using a PZ5 Neurodigitizer and RZ2 bioamp processor (TDT, FL, USA). Recorded signals
796  were processed using Synapse software (TDT) at a sampling rate of 25KHz, high-pass
797 filter of 300Hz and low-pass filter of 3000Hz. Behavioral markers were also integrated

798  using LSL protocol.
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799

800  Statistical Analysis

801 LFP Time Frequency Analysis: We carried out standard pre-processing and time
802 frequency (TF) analyses using custom MATLAB scripts and functions from EEGLAB (37—
803 39). 1) Data epoching: We first extracted time-points for events of interest during each
804 task. This paper focuses on neural activity time-locked to response/reward (opposed to
805 trial onset) to examine neural activity during the reward-feedback period. Time-series data
806 was extracted for each electrode (32), for each trial and organized into a 3D matrix
807 (electrodes, times, trials). 2) Artifact removal: Activity was averaged across the
808 time/electrodes to get a single value for each trial. Trials with activity greater than 4X
809 standard deviation were treated as artifact and discarded. 3) Median reference: At each
810 time-point, the “median” activity was calculated across all electrodes (32) and subtracted
811 from each electrode as a reference. 4) Time-Frequency Decomposition: A trial by trial
812 time-frequency decomposition (TF decomposition) was calculated using a complex
813  wavelet function implemented within EEGLAB (newtimef function, using Morlet wavelets,
814  with cycles parameter set to capture frequency windows of between 2 to 150 Hz (2 to 70
815 Hz in the go/wait task) and otherwise default settings used. We calculated the analytic
816 amplitude of the signal (using the abs function in MATLAB). 5) Baseline normalization:
817 To measure evoked activity (i.e. change from baseline) we subtracted, for each electrode
818 at each frequency, the mean activity within a baseline window (1000-750ms prior to the
819  start of the trial). 6) Trial averaging: We next calculated the average activity across trials
820 for specific trial types at each time-point and frequency for each electrode, thus creating
821 a 3D matrix (time, frequency, and electrode) for each behavioral session. Trials of interest
822  were different for each task: In the go/wait task we analyzed go-cue rewarded trials, wait-
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823 cue rewarded trials and wait-cue unrewarded trials (go-cue unrewarded trials were too
824 few to include); temporal discounting task we separated high and low-reward choice at
825 each delay condition; and PRL task we separately analyzed high-probability (target) vs.
826 low-probability (non-target) choices and their reward outcomes. 8) Comparison across
827 animals: Prior to averaging across sessions/animals, we “z-scored” the data recorded
828 from each behavioral session by subtracting the mean and dividing by the standard
829 deviation of activity in each electrode (at each frequency) over time. Z-scoring was helpful
830 for normalizing activity measured from different animals prior to statistical analysis.
831 Because we had already performed a “baseline” subtraction (as described above), this
832 analysis captured whether there was a significant increase or decrease in activity
833 compared to baseline. FDR-correction was performed across all time-frequency-
834 electrodes (FDR-corrected p-value threshold set to 0.05). These pre-processing steps
835 resulted, for each session, in a 3D time-frequency-electrode matrix of dimensions
836 200x139x32 which was used for further statistical analyses as described below.

837

838 LFP Linear Mixed Models: We analyzed the time-frequency-electrode (TFE) data at the
839 level of each session using linear mixed models in IBM SPSS Statistics v.28 (New York,
840 United States) to account for subject and session variance. Across all three tasks we first
841 used a LMM to compare normalized power (dependent variable) at each oscillatory
842 frequency band in the LOFC electrode at trial types of interest. We used the following
843  frequency bands: delta power (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15 -30 Hz),
844 gamma (40-70Hz) and high gamma (70-150 Hz). Next, we used different LMMs to explore
845 power (dependent variable) across 12 electrodes (M2, A32D, A32V, vOFC, ALM, LFC,
846 Ains, IOFC, VMS, NAcS, NAcC, BLA) at time points of interest. Each model’s parameters
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847 including fixed, random, and repeated effects are specified for each analysis (Table 3-5).
848 Data from the go/wait and PRL tasks was time-locked to response. We analyzed the full
849 two second window of reward-feedback (500-2500ms after response). To account for the
850 variable delay-to-reward conditions in the temporal discounting task, data was time-
851 locked to reward delivery. We analyzed the first second of activity post-reward (Oms to
852 1000ms after reward onset) to control for the difference in water delivery between the
853  high (8s) and low (1s) reward magnitudes.

854

855 We compared the Akaike information criteria (AIC) and Bayesian information criterion
856 (BIC) of four commonly used covariance models (compound symmetry, scaled identity,
857 AR(1), and unstructured) to determine the best fit (92,93)The scaled identity model,
858 assuming repeated measures may be independent but with equal variance (92,93),
859 provided the lowest AIC and BIC scores. We used a Restricted Maximum Likelihood
860 (REML) model with the Satterthwaite approximation in SPSS. The fixed effects and
861 estimates of each covariance parameter are reported for each test. Significant
862 interactions with followed up with pairwise comparisons (Bonferroni corrected) in SPSS.
863 Main effects of the Estimated Marginal Means of factors and their interactions were
864  Bonferroni corrected. Linear Mixed Models account for missing data which was present
865 in the subsequent analyses. For instance, the total number reported may be less than 12
866 brain areas x 128 sessions because in some sessions a particular electrode may not have
867 provided usable data (noise/ broken channels, etc.).

868

869 LFP Related to Behavioral Performance:
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870 In the go/wait task, the significant oscillatory frequencies (identified with the linear mixed
871 model and post-hoc tests) were correlated with choice accuracy (in MATLAB). We
872  correlated power on the IOFC electrode during wait-cue correct (rewarded) wait-cue
873 incorrect (non-rewarded) and the difference in power between trial types with accuracy
874  on wait-cue trials during the reward-outcome period (from 500 to 2500ms after response).
875  We calculated correlations across all sessions/animals, followed by FDR correction.

876

877 In the temporal discounting task, we used regression models with the general linear
878 model framework (in MATLAB) to compare the mean oscillatory frequency power (from 0
879 to 1000ms after reward) on a particular session was the dependent variable and the
880 overall likelihood of choosing the high-reward choice on that session was the independent
881 variable. We did not control for delay condition as we already determined in subsequent
882 analyses that it was indeed a significant factor in modulating reward-related activity. We
883 calculated correlations across all sessions/ animals for each of the 12 reward-related
884  brain regions, followed by FDR correction.

885

886 In the PRL task, we used a two-way ANOVA to determine how significant oscillatory
887 activity (defined in the linear mixed model) updated with reward contingency reversals. In
888 asingle session, we calculated the average power for the first four trials before a reversal
889 and four trials following a reversal across all 12 electrodes during the reward outcome
890 period (500-2500ms after response). Average activity before and after reversal was
891 calculated separately at each electrode for each reversal pooled across
892  animals/sessions.

893

44


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

894  Single-unit Analyses: Single-unit activity was recorded in 8 animals performing the
895 go/waittask. We extracted behavioral markers of interest, LFP streams, and spiking data.
896 Neural data was cleaned and referenced off-line using Wave Clus v.2.5., a Matlab-based
897  spike-sorting program (94). Signals were processed as two polytrode (16- electrode)
898  groups with median referencing applied to each channel (see (37)). A threshold of spike
899 detection was set at 5 times standard deviation of voltage potential for each channel.
900 Broken channels, with large impedances beyond 10 MOhm were excluded from
901 referencing/ clustering. Spikes in each polytrode group, as identified by Wave_Clus, were
902 examined manually for characteristics of single-units (average spiking rate within the
903 whole session was more than 0.5Hz, fewer than 1.5% inter-spike interval violations
904 (<3ms), waveform resembling action potentials as opposed to sinusoidal noise artifacts,
905 and clusters distinct from others in the principal component space) (95-97). Spikes
906 meeting criteria were time-locked with behavioral events in MATLAB.

907

908 MATLAB functions were used to create peri-stimulus time histograms and raster plots at
909 trial types of interest (go-cue rewarded / wait-cue unrewarded trials) to compare reward
910 valence. Activity was time-locked to response (time point 0). PSTH (spikes/second)

911 were made in 25ms bins from -2s to +2s after response and gaussian filtered for

912  smoothing. Activity was baseline normalized by subtracting the average firing rate

913  during the pre-response baseline (first 750ms from trial onset) on go-cue correct trials
914  from firing rate in subsequent time bins. Units from recording days with at least 30 trials
915 and a minimum baseline firing rate of 2 spikes/s were further analyzed for their task-

916 related activity. A unit was considered “task- modulated” if the average firing rate was 2
917 standard deviations above or below the baseline activity for > 75 consecutive ms in
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918 either go-cued correct or wait-cued incorrect trials. Task-modulated units were

919 categorized further based on the timing of their activation/ suppression relative to

920 response. Anything with significant (+/- 2 standard deviations) activation or suppression

921 from -500 to Oms from response was considered pre-response activity (action).

922  Anything with later activation or suppression (0 to 2000ms) was considered post-

923  response (outcome) activity.

924

925 Finally, we calculated spike-field coherence (SFC) to relate spiking activity to field-
926  potential oscillations. SFC ranges from 0 (spikes operate independently from LFP) to 1
927 (spikes are completely aligned to LFP) (44,46,48). To calculate SFC, we matched spike
928 times to the continuous LFP signal from an electrode with minimal artifacts by multiplying
929 the sampling rate of the LFP (1.0173). Next, we down sampled to normalize non-standard
930 sampling frequencies and epoched the LFP data to align with task events (described
931 above). SFC was analyzed separately at each oscillatory frequency (delta, theta, alpha,
932 beta, gamma) for each trial type (go-cue correct and wait-cue incorrect), time-locked to
933 response. Units were categorized as “high” or “low” SFC by using a median split based
934 on beta frequency SFC values from 500-2500ms after response (reward feedback) on
935 go-cued correct trials. Units one standard deviation above the median SFC value were
936 categorized as “high” and units one standard deviation below were categorized as “low”.
937 A two-way ANOVA was used to compare firing rate on go-cue correct vs. wait-cue
938 incorrect trials x SFC value at beta frequencies (classified as “high” or “low”).

939

940 Histology
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941 Histological analyses were completed for 22/ 28 rats with LFP implants (go/wait task
942  N=6/11; temporal discounting N=9/10; probabilistic reversal learning N=7/7) and for 5/8
943  rats with single-unit implants. At completion of recording sessions wire tips were marked
944 by passing 12pA current for 10s through each electrode (Nano-Z, Neuralynx, MO, USA).
945 Rats were sacrificed under deep anesthesia (100 mg/kg ketamine, 10 mg/kg xylazine IP)
946 by transcardiac perfusion of physiological saline followed by 4% formalin. Brains were
947 extracted and immersed in 4% formalin for 24 hours and then stored in 30% sucrose until
948 ready to be sectioned. Tissue was blocked in the flat skull position using a brain matrix
949 (RWD Life Science Inc., CA, USA). Brains with field potential probes were sectioned
950 frozen in the coronal plane at 50pm thick. Brains with single-unit electrodes were paraffin
951 embedded and sectioned 20 um thick due to diameter difference in wires (processed by
952 Tissue Technology Shared Resource; CCSG Grant P30CA23100). Brain slices were
953  Nissl stained using thionin to identify the course of the electrode tracks. Sections were
954 processed with a slide scanner at 40x magnification (Zeiss, Oberkochenn, Germany;
955 Leica Biosystems, IL, USA). Positions of electrodes were inferred by matching landmarks
956 in sections to the rat atlas (52) when electrode tips could not be identified (Supp. Fig 3).
957
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1266

1267 Figure 1: Positive Valence Representation on the Response Inhibition Task.

1268  (A) Trial structure of the go/wait task. Animals were shown two visual stimuli: a striped
1269  vertical rocket indicated a go-cue trial (respond within 2s) and a solid horizontal rocket
1270  denoted a wait-cue (withhold from responding for 2s). On correct trials rats were given
1271 2s (10pL/s) of water. (B) Behavior on the go/wait task of animals with LFP implants (N=
1272 67 sessions). Violin plot shows the median (thick dotted line), interquartile range (thin
1273  dotted line), and distribution shape of reaction times (s) on go-cue and wait-cue trials.
1274  Red horizontal line represents the 2s time to response on go-cue trials and time needed
1275  to withhold on wait-cue trials. Bar plots shows the mean and SEM of proportion correct
1276  trials on go-cue (respond within 2s) and wait-cue (withhold for 2s) trials. Dots show
1277  individual values per session. (C) Time-frequency plots of z-scored IOFC power time-

1278 locked to response for frequencies ranging from 0-150 Hz on correct go-cue correct
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1279  (reward), wait-cue correct (reward) and wait-cue incorrect (no reward) trials. Vertical
1280 lines represent the response time and reward onset time. (D) Average IOFC power
1281  across delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), and low gamma
1282  (50-70 Hz) and high gamma (70-150 Hz) frequencies during the reward-feedback period
1283  (500-2500ms after response). We used a linear mixed model to quantify differences in
1284  power across frequency bands on the LOFC electrode for go-cue correct (dark), wait-
1285 cue correct (light) and wait-cue incorrect trials (striped). Mean and SEM are plotted. (E)
1286  Line plots show mean (middle line) and SEM (outer boundaries and shaded region)
1287 beta power on IOFC electrode time-locked to response onset for go-cue correct (dark),
1288  wait-cue correct (light), and wait-cue incorrect trials (dashed). (F) Line plots show

1289  correlation between IOFC beta power and wait trial accuracy. Separate lines are plotted
1290 for wait-cue correct (dark), wait-cue incorrect (dashed), and the difference between
1291  correct and incorrect trials (light). (G) Beta power from 12 putative reward-related brain
1292  regions on go-cue correct (dark), wait-cue correct (light) and wait-cue incorrect trials
1293  (striped) during the reward-feedback period (1550ms-2550ms). The mean and SEM for
1294  each trial type and brain region of interest are shown. Brain areas are shown in order
1295 from 1. anterior to posterior and 2.dorsal to ventral.

1296
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Figure 2: Single-Units Related to Positive Valence Reward Outcome.

(A) Behavior on the go/wait task of animals with single unit implants (N= 62 sessions).

Violin plot shows the median (dark dotted line), interquartile range (light dotted line), and

distribution shape of reaction times (s) on go-cue trials and wait-cue trials. Red line

drawn at 2s represents the time to respond on go-cue trials and the time needed to
withhold on wait-cue trials. Bar plots show proportion of correct trials on go-cue and
wait-cue trials. Dots show individual values per session. (B) Individual examples of an

action-related neuron (peak firing rate increases or decreases prior to the response)
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1306 and an outcome-related neuron (peak firing rate increases or decreases after the

1307 response). Activity of each neuron is plotted for go-cue correct (reward) and wait-cue
1308 incorrect (no reward) trials time-locked to the response (time 0). Raster plots (top-panel)
1309  show spiking activity across trials (each horizontal line). Red dots indicate trial onset.
1310  Peri-event stimulus histograms (bottom panel) show firing rate (counts per bin) time-
1311 locked to response. Red lines indicate the mean activity of the unit across trials. (C)
1312 Individual examples of a correct preferring (more activity on rewarded trials) and an
1313  incorrect preferring (more activity on non-rewarded trials) unit. Firing rate (counts/bin)
1314  from go-cue correct (blue) and wait-cue incorrect (red) trials are plotted on top of each
1315  other time-locked to response for comparison (top-panel). Examples of beta-frequency
1316  SFC are shown for the same correct and incorrect preferring neurons on go-cue correct
1317  (blue) and wait-cue incorrect (red) trials (bottom-panel). Coherence values are time-
1318 locked to response. (D) Normalized firing rate (spikes/s) of neurons split into “high” or
1319  “low” groups based on their beta-SFC values during reward-feedback. Firing rates are
1320 plotted separately for go-cue correct (blue) and wait-cue incorrect (red) trials. Error bars

1321 indicate SEM.
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1322

1323  Figure 3: Subjective Value Representation on the Temporal Discounting Task.
1324  A) Trial structure of the temporal discounting task. Animals were given the choice of a
1325 low magnitude reward (10uL) delivered immediately (delay of 500ms after response), or
1326  a high magnitude reward (30uL) delivered at variable delays of 0.5s up to 20s. Delays
1327  on the high-value choice were kept constant throughout each session but varied across
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1328 sessions. (B) Behavior on the temporal discounting task shown as proportion of high-
1329  value choices per session (N=124 sessions). The group mean and SEM are shown at
1330 each delay condition (0.5, 1, 2, 5, 10, and 20s). A horizontal line is drawn at 0.5 to

1331 indicate when proportion of high-value choices fall below the 50/50 mark. The average
1332 proportion of high-value choices at each delay condition is also plotted separately for
1333  each rat to show individual differences in discounting rates. (C) Average power across
1334  delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz)
1335 and high gamma (70-150Hz) frequencies on the IOFC electrode one second after

1336 reward onset on equal low value and high value delay sessions (0.5s). Error bars

1337  represent SEM. (D) The normalized beta power on the IOFC electrode at each high-
1338  value delay condition (0.5, 1, 2, 5, 10, 20s). Power is averaged across the first second
1339  following reward delivery and the mean/SEM are plotted separately for high-reward
1340 choices (solid line) and low-reward choices (dashed line). (E) The difference in power
1341  on high reward and low reward choices (high-value choice — low-value choice) across
1342 12 brain regions. Beta power during reward-feedback (averaged activity one second
1343  after response) is plotted at each delay condition (0.5, 1, 2, 5, 10, 20s) for each brain
1344  region. Brain regions are organized from 1. anterior to posterior and 2. dorsal to ventral.
1345 (QG) Beta values from the logistic regression analysis for 12 brain regions using power
1346  for the difference of trial types (high-value — low-value). Asterisks indicate brain regions
1347  with significant p-values after FDR-correction.

1348
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A Probabilistic Reversal Learning Task Structure
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Figure 4: Likelihood of Reward Outcome Represented on the PRL Task.

(A) Trial structure of the probabilistic reversal learning (PRL) task. Rats choose between
two response ports: the target choice delivered reward 80% of the time and the non-
target choice delivered reward 20% of the time. Reward contingencies reversed after 8
out of the last 10 trials were target choices (regardless of reward outcome). (B)
Behavior on the PRL task measured by number of reversals per session and proportion
of win-stay trials. The number of reversals is compared in the first and last session of

individual rats to show improvement over time. The average and SEM proportion of win-

67


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1358  stay trials/ session is plotted with black dots visualizing the average for each individual
1359 rat. (C) Average target (solid) and non-target (striped) choice power across delta (1-4
1360 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz) and high
1361 gamma (70-150Hz) frequencies on the IOFC electrode during reward-feedback (500-
1362  2500ms) plotted separately for rewarded or non-rewarded outcomes. (D) The shaded
1363  error bar plot shows mean and SEM traces of IOFC normalized beta power for high-
1364  probability rewards (blue) and low-probability rewards (red). Traces are time-locked to
1365 response. (E) Beta power during reward-feedback (averaged activity from 5000ms-
1366  2500ms after response) across the 12 brain regions. The average and SEM are shown
1367  separately for target (solid) and non-target (striped) rewarded choices in each brain
1368  region. Brain regions are organized from 1. anterior to posterior and 2. dorsal to ventral.
1369  (F) Similarly, we also show the average and SEM beta power activity on win-stay (solid)
1370 compared to win-go (striped) trials in the 12 brain regions. (H) Beta power (from all 12
1371  brain regions) is compared before and after a reversal on target choices. The average
1372  and SEM are shown separately for rewarded trials pre-reversal (light blue), rewarded
1373  trials post-reversal (dark blue), non-rewarded trials pre-reversal (light orange) and non-
1374  rewarded trials post-reversal (dark orange).

1375

1376  Supplementary Figures
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Differences in IOFC Beta Power by Subject
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Supplemental Figure 1: Individual Differences in LOFC Beta Power During
Go/Wait Inhibition Task.

The average beta power on the LOFC electrode during reward outcome (500-2500ms
after response) on go-cue correct (solid green), wait-cue correct (solid blue), and wait-

cue incorrect (striped blue) trials for each subject (N=12). Error bars represent SEM.

Inidvidual Differences in Beta-Frequency Power Across Temporal Delays

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

1s 2s 5s 10s20s 05s 1s 2s 5s 10s20s 05s 1s 2s bs 10s20s 0bs 1s 2s 5s 10s20s 05s 1s 2s bBs 10s 20s

High-Value Reward Delay Length

69


https://doi.org/10.1101/2022.10.24.513264
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.24.513264; this version posted March 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1383

1384  Supplemental Figure 2: Individual Differences in LOFC Beta Power During

1385 Temporal Discounting.

1386  The average beta power on the LOFC electrode during reward outcome (0-1000ms
1387  after reward) at each temporal delay for each subject (N=10). The two lines represent
1388  power on high value choice (solid line) and low value choice (dashed line). Error bars
1389  represent SEM.

1390
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1392  Supplemental Figure 3: Histological Verification of Recording Sites.

1393  (A) LFP implants histology identifying locations of the 32 electrodes (8 cannula). A

1394  graphical representation of the placement of each cannula is plotted on a coronal

1395 section of a modified rat brain atlas (Paxinos & Watson, 2013) Each cannula contains
1396  four wires each targeting a unique DV location. Multiple cannulas may be implanted on
1397 the same coronal plane (same AP coordinates). The identified centers of each electrode
1398 are shown as dots color coded based on task to (green: go/wait N= 6/11; pink: temporal
1399 discounting N= 9/10; blue: PRL N=7/7). An example thionine-stained coronal slice at the
1400 corresponding AP location is also shown for each cannula placement with magnification
1401  of each track in the brain (white bar provides scale). The table includes the AP, ML, and
1402 DV coordinates for all 32 electrodes and their corresponding nomenclature. (B) Single
1403  unit implants histology for electrode tracks in OFC. Example coronal sections are shown
1404  from +4.2 AP through +3.25 AP relative to bregma. The LO/VO subdivisions are

1405 outlined on example thionine-stained slices and the center of the electrode tracks are

1406  marked on sections of a modified rat brain atlas (Paxinos & Watson, 2013) (N=5/8 rats).
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