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Abstract 13 

Single neuron correlates of reward value have been observed in brain regions along the 14 

cortico-striatal pathway including ventral striatum, orbital, and medial prefrontal cortex. 15 

Brain imaging studies in humans further validate these findings and suggest that value is 16 

represented in a network of brain regions opposed to a particular area. Neural activity 17 

oscillates at periodic frequencies to coordinate long-range communication in widespread, 18 

dynamic networks. To explore how oscillatory dynamics across brain regions may 19 

represent reward value, we measured local field potentials of male Long-Evans rats 20 

during three distinct behavioral tasks, each probing a different aspect of reward 21 

processing. Our goal was to use a data-driven approach to identify a common 22 

electrophysiology property associated with reward value. We found that reward-locked 23 

oscillations at beta frequencies, in both single units and local field potentials, were 24 

markers of positive reward valence. More importantly, Reward-locked beta-oscillations 25 

scaled with expected reward value on specific trial types and in a behaviorally relevant 26 

way across tasks. Oscillatory signatures of  reward processing were observed throughout 27 

the cortico-striatal network including electrodes placed in orbitofrontal cortex, anterior 28 

insula, medial prefrontal cortex, ventral striatum, and amygdala. These data suggests that 29 

beta-oscillations reflect learned reward value in a distributed network, and this may serve 30 

as a stable and robust bio-marker for future studies.31 
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Introduction  32 

Reward processing comprises the set of neural systems associated with appetitive, 33 

motivational, or pleasurable stimuli (1,2). Deficits in reward-processes are linked with 34 

learning and decision-making impairments and likely contribute to anhedonia, 35 

amotivation, and substance abuse problems observed in various psychiatric conditions 36 

(1,3). Thus, identifying preclinical bio-makers of reward processing will help assess 37 

behavioral deficits and expand treatment options that are currently limited (235).  38 

 39 

Past studies highlight the relevance of cortico-striatal circuitry for reward learning. The 40 

ventral striatum, and in particular the nucleus accumbens, is connected to the medial 41 

prefrontal cortex, orbitofrontal cortex, and basolateral amygdala through cortico-striatal-42 

limbic reward-network projections (1,2,6314). This extended <reward= network is 43 

innervated by midbrain dopamine neurons originating from the ventral tegmental area, 44 

which contribute to reward processing behaviors through reward-prediction error signals 45 

(the difference between expected and actual rewards) (10,12,15319). Thus, standard 46 

models of reinforcement/reward learning posit that dopamine neurons carry a <RPE= 47 

signal that then modulates distinct parts of the cortico-striatal reward network in specific 48 

ways. 49 

 50 

Single-unit activity is high-dimensional. Neurons from any brain region can encode a 51 

diverse array of task-related processes (20323). For example, single neurons in ventral 52 

striatum, prefrontal and orbitofrontal cortex can be modulated both during reward 53 

anticipation and delivery (13,23329), and can be modulated by different types (6,30), 54 
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magnitudes (6,24,31,32), and locations of reward (28). Low-dimensional representations 55 

of population activity provide a more robust, stable, and simpler framework to identify  56 

neuro-behavioral relationships and can be compared with human neuroimaging data 57 

(20,21,33). Local field potentials (LFP) offer an opportunity to bridge micro- and 58 

macroscopic levels of brain activity and (in the correct circumstance) can reflect low-59 

dimensional population level features of single-units(22,33337).  60 

 61 

We have previously used multi-site LFP recordings to characterize networks operating 62 

at distinct oscillatory frequencies to support behavioral inhibition and default-mode-like 63 

processing (38,39). Here we utilize our multi-site LFP approach to identify 64 

electrophysiology markers linked with reward expectation and outcome. It is unclear 65 

whether a neural signature may be unique to a specific domain of reward processing or 66 

may represent a common substrate across domains. Therefore, to increase the 67 

behavioral specificity of our electrophysiological markers, we examined data from three 68 

distinct behavioral tasks (with different animals trained up on each task). The behavioral 69 

tasks used each contribute a separate dimension of reward learning (Table 1): 1) A 70 

go/wait behavioral inhibition task was used to identify signals related to the valence of 71 

feedback (reward vs. no reward), with reward essentially scaled to performance; 2) A 72 

temporal discounting task was used to identify how reward-locked signals scale with 73 

subjective value of both reward magnitude (high vs. low reward) and temporal delay 74 

(0.5 to 20s) ; 3) Finally, a probabilistic reversal learning task was used to identify signals 75 

modulated by the learned probability of reward delivery (high vs. low-probability).  76 
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On each task, we first examined activity in the lateral orbitofrontal cortex (lOFC), a 77 

cardinal brain region consistently identified for its role in evaluating reward outcomes 78 

and expectancies to drive adaptive behavior (1,7,26,40342). Next, we analyzed 79 

pertinent oscillatory markers from 12 of our 32 electrodes that were placed in areas 80 

along the cortico-striatal pathway in brain regions previously identified as inter-81 

connected with the ventral striatum. We provide evidence of oscillatory activity at beta 82 

and high-gamma frequencies found consistently across our three tasks that modulates 83 

with expected reward value.  84 

 85 

Results 86 

Beta Frequency Oscillations Linked with Positive Valence Feedback 87 

 
Go/Wait Behavioral 
Inhibition  

Temporal Discounting Probabilistic Reversal 
Learning 

Local Field Potential Recordings   

Subjects 
   with histology  

12 
6 

  
10 
9 

7 
7 

Behavioral Sessions 67 
  

124 79 

   with electrophysiology 67 
  

124 36 

Time Window  500 3 2500ms after response 0-1000ms after reward onset 500- 2500ms after response 

Contrasts go-cue vs. wait-cue trials 
reward vs. no reward  

high vs. low reward magnitude 
temporal delay  
    (0.5, 1, 2, 5, 10, 20s) 

high vs. low probability of reward 
reward vs. no reward  

Single Unit Recordings   

Subjects 
   with histology 

8 
5 

  
  

Behavioral Sessions 62 
  

  

  with electrophysiology 62 
  

  

Time Window  0 3 2000ms after response   

Contrasts Go-Cue vs. Wait-Cue Trials 
Reward vs. No Reward  

  

Table 1: The experimental design including number of subjects, behavioral session, time 

windows of interest and contrasts for analysis are provided for each of the three behavioral tasks.  
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A full description of behavior on the go/wait task in animals with LFP probes can be seen 88 

in our prior publication describing inhibition and stimulus-response oscillatory signatures 89 

(39). Animals were shown two visual stimuli, one which required an immediate response 90 

(go-cued trials) and the other which required the animal to withhold from responding for 91 

2s (wait-cued trials) (Fig. 1A). Across behavioral sessions, animals performed better on 92 

go-cued trials compared to wait-cued trials (Fig. 1B). Animals could generally distinguish 93 

between go and wait-cues indicated by a significant difference in reaction times (t(61) =17, 94 

p<.001) and greater accuracy on go-cued trials (t(61) =18, p<.001). On go-cued trials 95 

animals had a mean reaction time of 610 +/- 160ms and correctly responded within 2s of 96 

the visual cue on 94.0 +/- 9.2% of trials (data averaged across 62 sessions from 12 97 

animals). On wait-cued trials animals took longer to respond (1700 +/- 460ms) and were 98 

able to correctly wait on 41.0 +/- 23.0% of trials (Fig. 1B).  99 

For all tasks, we began by 100 

analyzing electrophysiological 101 

activity, time-locked to the 102 

response, from lateral OFC (lOFC)- 103 

a cardinal reward processing brain 104 

region in the cortico-striatal 105 

network. Then, after identifying 106 

pertinent oscillatory frequency 107 

Abbreviation Brain Area 

M2 Secondary Motor Cortex 

A32D Dorsomedial Prefrontal Cortex 

A32V Ventromedial Prefrontal Cortex 

vOFC Ventral Orbitofrontal Cortex 

ALM Anterolateral Motor Cortex 

LFC Lateral Frontal Cortex 

Ains Anterior Insula 

lOFC Lateral Orbitofrontal Cortex 

VMS Ventromedial Striatum 

NAcS Nucleus Accumbens Shell 

NAcC Nucleus Accumbens Core 

BLA Basolateral Amygdala 

Table 2: Electrode sites of interest are 

listed in order from 1. Anterior to 

posterior 2. Dorsal to ventral. 
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bands of interest during reward-feedback, we performed a second linear mixed model to 108 

analyze 12 electrodes in the cortico-striatal network (Table 2). The primary goal of our 109 

first analysis was to identify electrophysiological markers that differentiated between 110 

positive and negative feedback on the go/wait task. Feedback on correct trials consisted 111 

of water delivery 400ms after the response at the rate of 10µl/sec, for a duration of 2s. 112 

Feedback on incorrect trials consisted of a 5s flashing house-light and an auditory 1000Hz 113 

tone with no water delivery. We analyzed mean time-frequency (TF) power across 114 

sessions (N=62) from correct go-cued trials (animals received a go-cue and responded 115 

within two seconds), correct wait-cued trials (animals received a wait-cue and waited two 116 

seconds before responding) and incorrect wait-cued trials (animals received a wait-cue 117 

but failed to wait two second before responding). Due to the high accuracy on go-cued 118 

trials (Fig. 1B), there were very few incorrect go-cued trials (failing to respond within two 119 

seconds) and thus we did not analyze this trial type in the subsequent analyses.  In the 120 

first linear mixed model, we took the average power across delta (1-4 Hz), theta (4-8 Hz), 121 

alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz) and high gamma (70-150 Hz) 122 

frequencies during a two second reward-feedback window from 500-2500ms after 123 

response (corresponding to the timepoint of reward delivery) on the lOFC electrode 124 

(Table 3).  125 

Model Dimensions       

Model I. LOFC electrode 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Trial Type 3    2  

Frequency 6    5  

Trial x Frequency 18    10  

Random Effects       

Subject 12  identity  1  
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Session 12  identity  1  

Repeated Effects       

Trial x Frequency 18  identity  1  

Model Fit       
AIC 1659.47 

1674.66 
   

BIC    
 126 

Fixed Effects F Sig.   

Intercept 26.58 <.001 

Trial Type 23.93 <.001   

Frequency 29.91 <.001 

Trial x Frequency 6.44 <.001   

   

Covariance Parameters Estimate SE 
Wald Z Sig. 95% CI 

Lower 
95% CI 
Upper 

Repeated Measures Variance 0.22 0.01 23.95 <.001 0.20 0.24 

Subject 0.02 0.01 2.06 0.04 0.01 0.05 

Session 0.004 0.003 
1.52 0.13 0.001 0.02 

 127 

Model II. Reward electrodes 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Trial Type 3    2  

Electrode 12    11  

Trial x Electrode 36    22  

Random Effects       

Subject 12  identity  1  

Session 15  identity  1  

Repeated Effects       
Choice x Electrode 36  identity  1  

Model Fit       
AIC 3928.52 

3945.80 
   

BIC    
 128 

Fixed Effects F Sig.   

Intercept 9.02 0.01 

Trial Type 118.72 <.001 

Electrode 5.75 <.001 

Trial x Electrode 0.31 1.00 

    

Covariance Parameters Estimate SE 
Wald Z Sig. 95% CI 

Lower 
95% CI 
Upper 
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Residual Variance 0.28 0.01 34.01 <.001 0.27 0.30 

Subject 0.05 0.02 2.22 0.03 0.02 0.13 

Session 0.16 0.64 2.53 0.01 0.08 0.35 

We examined fixed effects of trial type (go-correct, wait-correct, wait-incorrect), 129 

frequency, and their interaction. We examined random effects of subject and session. We 130 

found a main effect of trial type (F(2,1147.03)=23.93, p<.001), main effect of frequency 131 

(F(5,1147.03)=29.91, p<.001), and a significant interaction between frequency and trial type 132 

(F(10, 1147.03) =6.44, p<.001). Post-hoc analyses (Bonferonni corrected) revealed that the 133 

main effect of frequency was driven by greater power on the lOFC electrode during 134 

reward-feedback at beta (EMM= 0.50, SEM= 0.06, CI= 0.38, 0.61) and high-gamma 135 

frequencies (EMM= 0.46, SEM= 0.06, CI= 0.34 0.58). (Fig. 1C;D). Importantly, oscillatory 136 

activity at beta and high-gamma frequencies was different based on trial type. Beta power 137 

was greater on rewarded trials (go-cue correct trials: EMM= 0.66, SEM= 0.07, CI= 0.12, 138 

0.41; wait-cue correct trials: EMM= 0.59, SEM= 0.07, CI= 0.44, 0.73), compared to 139 

unrewarded/ incorrect wait-cue trials (EMM= 0.24, SEM= 0.07, CI= 0.1, 0.39) (Fig. 1C;D). 140 

On rewarded trials the peak beta activity in lOFC occurred at 805ms after the response 141 

(~400ms after reward onset) and lasted for around 2 seconds- the approximate time of 142 

reward delivery (Fig. 1E). In this mixed effects model, the two random effects were subject 143 

and session. Subject contributed to 8.2% of variance and was significant according to a 144 

WaldZ metric (Wald Z= 2.06, p=0.04) (Supp Fig. 1). Session accounted for only 1.7% of 145 

variance in the model and was not a significant contributor. 146 

 147 

Table 3: Linear mixed model design, fixed effects, and covariance parameter to explore 

power differences during reward outcome on the go/wait inhibition task.    
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 Dopaminergic signals related to reward are often linked with a <reward-prediction-error=, 148 

i.e. they are typically positively modulated by difference between expectation of reward 149 

and reward delivery. By contrast, single neurons within OFC has been observed to predict 150 

the opposite of an RPE 3 i.e. they are related to reward-prediction (43). To understand 151 

whether lOFC beta-power was linked with reward-prediction vs. an RPE on this task, we 152 

focused on whether the average beta-power during the wait-cue trials was linked with 153 

accuracy on that session using a linear regression analysis between session performance 154 

and mean session beta-power. We hypothesized that, if related to an RPE, beta power 155 

would be negatively correlated with wait-cue accuracy whereas if it was related to reward 156 

prediction it should be positively correlated with performance. We found that lOFC beta 157 

power was significantly positively correlated with wait accuracy (FDR corrected) from 500-158 

1000ms on wait-cue rewarded trials. The difference between the correct and incorrect 159 

trials for the wait-cue also predicted greater accuracy on wait-cued trials. (Fig. 1F).  This 160 

relationship importantly indicated two things: 1) beta-power is unlikely to be a trivial 161 

artifact or related to noise, as noise wouldn’t obviously be correlated with performance; 162 

2) lOFC beta-power was a marker of reward-prediction and not RPE. 163 

 164 

To better understand the spatial distribution of the  reward-prediction beta activity beyond 165 

lOFC, we next analyzed beta power from 12 of our 32 electrodes (M2, A32D, A32V, 166 

vOFC, ALM, LFC, Ains, lOFC, VMS, NAcS, NAcC, BLA) (Table 2), chosen based on 167 

cortico-striatal regions connected with ventral striatum for whom we had electrode 168 

locations and were large enough regions to make LFP a meaningful measure. We 169 

examined LFP activity across divisions of medial prefrontal cortex, orbitofrontal cortex, 170 

ventral striatum, anterior insula, and basolateral amygdala. As seen on the lOFC 171 
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electrode, there was a main effect of trial type (F(2,2313.76)=118.72, p<0.001) on beta 172 

frequency power during reward-feedback (Fig. 1G). There was also a main effect of 173 

electrode (F(11,2313.76)=5.75 p<0.001) but no significant trial x electrode interaction 174 

(F(22,231.76)=0.31, p=1.0). Post-hoc (Bonferroni corrected) tests revealed the main effect of 175 

electrode was driven by increased power on the BLA electrode (EMM= 0.53, SEM= 0.13, 176 

CI= 0.26, 0.79) that was greater for rewarded vs. non-rewarded trial types. LOFC (EMM= 177 

0.45, SEM-0.13, CI= 0.19, 0.72) and VMS (EMM= 0.48, SEM= 0.13, CI= 0.21, 0.75)  also 178 

had increased beta-frequency power on rewarded trials (Fig. 1G). Subjects contributed 179 

to 11% of variance in the model, which was significant according to a Wald Z metric (Wald 180 

z = 2.22, p=0.03). Session contributed to 32.6% of variance in the model which was also 181 

significant (Wald z= 2.526, p=0.01). 182 

 183 

Beta-Oscillations Related to Single-unit Activity in OFC During Reward Feedback 184 

Despite the name, <local= field potentials are challenging to properly localize (35,44,45). 185 

To better understand whether the beta frequency activity observed during positive 186 

reward-feedback was related to local spiking activity within a particular brain region, we 187 

recorded single-units from the OFC of 8 different male Long-Evans rats performing the 188 

go/wait task (Table 1). The version of the task used for single-unit recordings was slightly 189 

modified (due to a slight change in coding up of this version of the task), from a 400ms 190 

delay between response and reward as noted above, to only a 30ms delay. As we were 191 

focused on the period post-feedback and not during the anticipation period, this 192 

modification did not affect task performance. We recorded 376 neurons across 62 193 

sessions (5.81 units +/- 0.03 per session). While performance on the task was worse in 194 

these animals compared to those with LFP implants, rats were still able to discriminate 195 
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between go-cue and wait-cue trials. Reaction time was different between trial types 196 

(t(61)=7.8, p<.001): 800 +/- 180ms on go-cue trials and 1100 +/- 330ms on wait-cue trials. 197 

Accuracy on go-cue trials was 73.0 +/-24.0%, compared to 30.0 +/- 20.0% on wait-cue 198 

trials (t(61)=8.7, p<.001) (Fig. 2A).  199 

 200 

After excluding sessions with a limited trial number (< 30 trials) and units with low firing 201 

rates (< 2 spikes/s), 228 units were included for subsequent analyses. 125 neurons (33%) 202 

were defined as task-modulated based on our criteria of an increase/decrease of two 203 

standard deviations above baseline for >75 consecutive ms. This included single units 204 

with both peak firing rate increases or decreases that occurred both prior to the response 205 

(action-related) or after the response (outcome or feedback-related) (Fig. 2B). The 206 

average peak firing rate activity of action-related neurons was 375ms before the response 207 

(time 0). The average peak firing rate of outcome-related neurons was 225ms after 208 

response (~195ms after reward onset). 103 neurons were not task-modulated based on 209 

our criteria.  210 

 211 

Our main goal for studying single units was to determine whether they were modulated 212 

by reward-related beta-oscillations. We first used spike-field-coherence (SFC) to assess 213 

the relationship between spiking and oscillatory activity during the reward-feedback 214 

period (0 to 2000ms after response) (44,46348). Units with significant task-related 215 

suppression or missing LFP data stream were not included in SFC analysis (173 units 216 

remaining). We observed that neurons with greater firing rate on rewarded, go-cue correct 217 

trials compared to non-rewarded, wait-cue incorrect trials (<correct preferring=) showed 218 

increased beta frequency SFC modulation on correct trials vs. incorrect during reward-219 
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feedback (example neuron, Fig. 2C). By contrast, outcome-related neurons with greater 220 

firing rate on wait-cue incorrect trials (<incorrect preferring=) did not show as great of SFC 221 

modulation at beta frequencies (example neuron, Fig. 2C).  222 

 223 

We grouped neurons into two categories solely based on their beta SFC value during the 224 

reward-feedback period, and measured how this grouping was linked with firing rate for 225 

both correct and incorrect trials. The <high-SFC= neurons were identified as neurons with 226 

one standard deviation higher-than-average beta-SFC; and <low-SFC= neurons were 227 

identified as neurons with one standard deviation lower-than-average beta-SFC. We 228 

found a main effect of SFC category (high vs. low) (F(1,314)= 5.11, p=0.024) on reward-229 

feedback firing rate, and a significant interaction (F (1,314)= 4.45, p=0.036) between SFC 230 

category and trial type (go-cue correct vs. wait-cue incorrect) (Fig. 2D). Neurons in the 231 

<high= SFC group had an average firing rate of 0.66 +/-0.41 spikes/s on go-cue correct 232 

trials compared to the <low= SFC group neurons which had an average firing rate of -233 

0.78+/-0.30 spikes/ s. On wait-cue incorrect trials, firing rate was not modulated based on 234 

SFC value. Neurons in the <high= SFC group had an average firing rate of -0.20 +/- 0.27 235 

spikes/s on wait-cue incorrect trials and <low= SFC neurons had an average of -0.15 +/- 236 

0.17 spikes/s. The firing rate of <high= and <low= SFC neurons was similar on non-237 

rewarded (wait-cue incorrect) trials but was significantly different on rewarded (go-cue 238 

correct) trials (mean difference [high-low]= 1.44, corrected p=0.004) (Fig. 2D).  Thus, we 239 

found that single-units from OFC with higher reward-locked beta SFC are also more likely 240 

to be positively modulated by reward while those with low reward-locked SFC are more 241 

likely to be suppressed by rewards.   242 

 243 
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Beta Power Reflects Dimensions of Reward Prediction and Value 244 

Our data from the go/wait task suggested that beta activity within lOFC and other cortico-245 

striatal regions relates to positive valence (i.e. rewards) and may relate to reward 246 

prediction or expected value. However, as this task was not specifically designed to 247 

modulate aspects of reward value, it was still possible that, on a different task, we would 248 

see a different relationship between beta oscillations and reward. Using a new group of 249 

animals to study reward prediction signals on a different task allows for replication and to 250 

rule out beta as related to some non-specific aspects of reward consumption unrelated to 251 

subjective value or prediction. To further explore these hypotheses, we recorded LFP 252 

activity on a new set of animals (N=10) trained to perform a temporal discounting task 253 

(Fig. 3A). On this task, animals were given the choice of a low-value reward delivered 254 

with a fixed delay of 500ms after response or a higher-value reward delivered at variable 255 

delays of between 500ms to 20 seconds. To allow for greater numbers of trials for 256 

electrophysiological analysis, delays on the high-reward condition were kept constant 257 

throughout each session but varied across sessions. Low-value rewards consisted of 10ul 258 

whereas high-value rewards were 30ul (both delivered at a rate of 10 ul/sec). Previous 259 

work suggests reward value is negatively influenced by temporal costs associated with 260 

earning a reward (19,31,49–51). In the context of this task, the subjective value of the high 261 

reward choice decreases as the length of the delay required to obtain reward (temporal 262 

cost) increases. Results from the temporal discounting task are based on 124 total 263 

sessions (average for each rat was 2 sessions/ variable delay) (Table 1). As expected, 264 

animals’ preference shifted from high-value choice to the low-value choice as the delay 265 

to reward increased (F(5,45) =30.9, p =<0.001, two-way ANOVA) (Fig. 3B). When delays 266 

of each choice were the same (500ms), animals strongly prefer the high-value (30ul) 267 
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reward (90.4 +/- 1.4 % high-value choices per session). When the high-value reward 268 

follows a 20s delay, rats only select the high reward choice 24.2 +/- 6.8% of trials, showing 269 

a clear preference for the immediate, low-value reward. We do see individual differences 270 

emerge in the average rate of discounting across delays (F(9,45)=7.02, p<0.001, two-way 271 

ANOVA) (Fig. 3B).  272 

 273 

The first question we asked was whether lOFC beta power is modulated by expected 274 

reward value. Specifically, we hypothesized that if beta reflects an aspect of expected 275 

reward value, then power should be greater for the high (30ul) compared to the low 276 

(10ul) reward magnitude when delays were the same (500ms for both). We analyzed 277 

only the first second of activity post-reward to ensure that, for both trial types, animals 278 

were receiving the same quantity of reward during the period of analysis (i.e., during the 279 

first second of reward deliver for both reward types there was an equivalent reward 280 

delivery). Using a linear mixed model to account for subject and session variance, we 281 

first investigated data across all frequencies (delta: 1-4 Hz; theta: 4-8 Hz; alpha: 8-12 282 

Hz; beta: 15-30 Hz; low gamma: 50-70 Hz; and high gamma: 70-150 Hz) at the lOFC 283 

electrode. Our model measured base-line normalized power modulation (the ratio of 284 

activity at a particular time point relative to base-line) as the dependent variable across 285 

different frequency bands (delta, theta, alpha, beta, low gamma, high gamma) and trial 286 

type (high or low reward choice) with subject and session variance as random effects 287 

(Table 4).  288 

Model Dimensions       

Model I. LOFC electrode 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 
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Choice 2    1  

Frequency 6    5  

Choice x Frequency 12    5  

Random Effects       

Subject 9  identity  1  

Session 3  identity  1  

Repeated Effects       

Choice x Frequency 12  identity  1  

Model Fit       
AIC 6709.37 

6724.82 
   

BIC    
 289 

Fixed Effects F Sig.   

Intercept 2.17 0.19 

Choice 19.00 <.001   

Frequency 40.60 <.001 

Choice x Frequency 5.09 <.001   

   

Covariance Parameters Estimate SE 
Wald 
Z 

Sig. 95% CI 
Lower 

95% CI 
Upper 

Repeated Measures Variance 10.08 0.40 25.24 <.001 9.32 10.89 

Subject 3.36 1.72 1.96 0.05 1.23 9.14 

Session 0.97 1.01 
0.96 0.34 0.13 7.47 

 290 

Model II. Reward electrodes 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Delay 6    5  

Choice 2    1  

Electrode 12    11  

Delay x Choice 12    5  

Delay x Electrode 72    55  

Choice x Electrode 24    11  

Delay x Choice x Electrode 144    55  

Random Effects       

Subject 12  identity  1  

Session 5  identity  1  

Repeated Effects       
Choice x Electrode 24  identity  1  

Model Fit       
AIC 13265.52 

13283.06 
   

BIC    
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 291 

Fixed Effects F Sig.   

Intercept 12.83 0.01 

Delay 22.52 <.001 

Choice 2.13 0.15 

Electrode 1.72 0.06 

Delay x Choice 27.60 <.001 

Delay x Electrode 0.44 1.00 

Choice x Electrode 0.22 1.00 

Delay x Choice x Electrode 0.24 1.00  

    

Covariance Parameters Estimate SE 
Wald Z Sig. 95% CI 

Lower 
95% CI 
Upper 

Residual Variance 8.56 0.24 35.68 <.001 8.10 9.04 

Subject 2.70 1.26 2.14 0.03 1.08 6.75 

Session 1.01 1.03 0.98 0.33 0.14 7.42 

When delays for each choice were equal (500ms), the linear mixed model revealed a 292 

main effect of choice (high vs. low reward) (F(1,1274.92)=19.00, p <0.001), a main effect of 293 

frequency (F (5,1273.94) = 40.60, p<0.001) and an interaction between choice and frequency 294 

(F(5,1273.94) =5.09; p<.001). Post-hoc tests (Bonferroni corrected) show the significant 295 

interaction was driven by a difference in power between high reward choice (EMM= 3.86, 296 

SE=0.89, CI= 1.83, 5.90) and low reward choice (EMM= 1.72, SE=0.89, CI =-0.87, 3.22) 297 

at beta and high-gamma (high reward choice; (EMM = 2.74, SE=0.89, CI= 0.70, 4.77) low 298 

reward choice (EMM= 2.16, SE=0.89, CI=0.11, 4.20) frequencies (Fig. 3C). Sessions 299 

contributed to only 6.7% of the total variance, but subjects contributed to 23% of the 300 

variance- a significant effect (Waldz 1.96, p<.05). Subjects did show individual differences 301 

in beta power values on high and low reward choices at matching delays (500ms) (Supp 302 

Fig. 2).   303 

Table 4: Linear mixed model design, fixed effects, and covariance parameter to explore 

power differences during reward outcome on the temporal discounting task.    
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 304 

The next question we asked is whether reward-locked beta power was sensitive to the 305 

temporal delays of reward. If beta power reflected reward value, we hypothesized that the 306 

difference between high and low- rewards should be modulated with increasing delays, 307 

reflecting the discounted value of the delayed high-value choice. We used a second linear 308 

mixed model design to statistically measure whether there was an effect of delay length 309 

(0.5,1 ,2,5,10,20s), choice (high vs. low reward) and electrode location (M2, A32D, A32V, 310 

vOFC, ALM, LFC, Ains, LOFC, VMS, NAcS, NAcC, and BLA) on beta power (dependent 311 

variable) during reward feedback. Subject and session were used as random effects to 312 

observe their contribution to the model. We found a main effect of high-reward delay 313 

(F(5,2533.84)= 22.52, p <0.001) and an interaction between delay and choice (F(5,2550.09) 314 

=27.60; p<.001). Post-hoc (Bonferroni corrected) tests performed for the lOFC electrode 315 

at each delay condition showed that at low delays (0.5s, 1s) there was greater beta activity 316 

for high-value choices (0.5s delay, estimated marginal mean (EMM) difference [high-low] 317 

in power = 2.69, SE of difference= 0.03; 1s delay, EMM difference = 1.02, SE of 318 

difference= 0.02).  At a moderate delay (2s) there was no difference in power ([high-low] 319 

EMM =- 0.06, SE of difference= 0.06); and with longer delays (5s, 10s, 20s) there was 320 

greater beta power on low-value choices (5s delay EMM [high-low] =-0.60, SE of 321 

difference= 0.02; 10s delay EMM difference =-1.33, SE of difference= 0.00; 20s delay 322 

EMM difference = -1.26, SE of difference= 0.08) (Fig. 3D). Thus, reward-locked power at 323 

beta frequencies in lOFC significantly decreases as value of high reward is less at larger 324 

temporal delays. Across the 12 putative reward regions (M2, A32D, A32V, vOFC, ALM, 325 

LFC, Ains, lOFC, VMS, NAcS, NAcC, BLA) there was no significant difference in beta 326 

power between electrode locations (p<0.06) (Fig. 3E). Thus, temporal discounting of beta 327 
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power seems to reflect a value signal that is dispersed broadly across areas of the cortico-328 

striatal reward network. Each subject had a slightly different beta power discounting curve 329 

(Supp Fig. 2) shown at the lOFC electrode.   330 

 331 

Finally, to understand whether beta-oscillatory activity within this reward network was 332 

related to behavioral choice (i.e., preference for selecting either the high or low-value 333 

choice), we performed a logistic regression analysis with mean beta frequency power on 334 

a particular session as the dependent variable and the overall likelihood of choosing the 335 

high-value choice in that session as the independent variable. A positive beta value 336 

indicated a significant relationship between relative difference in beta power and the 337 

percent of high-value choices.  We ran this analysis for each of the 12 brain regions, 338 

followed by FDR correction, using power from the difference (high-low reward) between 339 

trials. All 12 brain areas showed significant (FDR-corrected) positive relationships with 340 

high-reward choice and the differential beta power from the high and low-value responses 341 

(Fig. 3F). This suggests that the relative difference in beta power between high and low 342 

reward reflects value-related value that is directly linked, on a session by session basis 343 

with the choice animals make.  344 

 345 

Beta Power Reflects Reward Certainty and Updates after Reversal 346 

On a probabilistic reversal learning (PRL) task, subjects first learned that one response 347 

leads to a high-probability of reward (<target=) and an alternate response would lead to a 348 

low-probability of reward (<non-target=), then subjects flexibly updated this representation 349 

after contingencies were reversed. In our version of this task, each day one response port 350 

would be randomly assigned to start as the target NP (rewards delivered 80% of the time) 351 
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while the other, non-target, port would deliver rewards 20% of the time and reverse when 352 

8 out of the last 10 trials were target choices (regardless of reward outcome) (Fig. 4A). 353 

Thus, on any session, subjects needed to dynamically modulate their behavior to track 354 

reward contingencies. The following analyses are from 79 behavioral sessions, from 7 355 

male rats. The minimum number of behavioral sessions/ rat was 7. 36 PRL sessions 356 

included LFP data (average= 5 LFP sessions/ rat) (Table 1). On the first session rats 357 

performed an average of 1.33 reversals (SEM=0.211) and each animal showed 358 

significant improvement in number of reversals across time (t(6) = 4.39, p=.007, paired t-359 

test) (Fig. 4B). On the last session rats performed an average of 10.7 reversals 360 

(SEM=2.03). Rats tended to make the same choice after receiving a reward (termed a 361 

<win-stay= response). On 64.2 +/- 10.9% of rewarded trials, rats returned to the same 362 

response port on the subsequent trial (Fig. 4B).  363 

 364 

Based on data gathered from the temporal discounting task, we hypothesized that beta 365 

power may reflect subjective value, dynamically adjusting according to the value 366 

representation within a specific context. Thus, we expected to see greater beta power 367 

on rewarded target choices (high reward probability), compared to rewarded non-target 368 

choices (low reward probability). We predicted that beta-oscillations would dynamically 369 

track the choice leading to the higher-expected value and shift power after a reversal. 370 

To statistically model the effects of choice on beta power, we used a linear mixed model 371 

to compare power (dependent variable) on the lOFC electrode during the reward 372 

outcome period with frequencies (delta, theta, alpha, beta, low-gamma, high-gamma), 373 

choice (target vs. non-target) and outcome (reward or no reward) (Table 5).  374 

Model Dimensions       
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Model I. LOFC electrode 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Choice 2    1  

Outcome 2    1  

Frequency 6    5  

Choice x Outcome 4    1  

Choice x Frequency 12    5  

Outcome x Frequency 12    5  

Choice x Outcome x Frequency 24    5  

Random Effects       

Subject 7  identity  1  

Session 6  identity  1  

Repeated Effects       

Choice x Outcome x Frequency 24  identity  1  

Model Fit       
AIC 2826.47 

2840.15 
   

BIC    
 375 

Fixed Effects F Sig.   

Intercept 1.80 0.22 

Choice 13.12 <.001   

Outcome 67.49 <.001 

Frequency 6.79 <.001 

Choice x Outcome 10.14 0.002   

Choice x Frequency 0.76 0.58   

Outcome x Frequency 10.86 <.001  

Choice x Outcome x Frequency 0.60 0.70  

    

Covariance Parameters Estimate SE 
Wald 
Z 

Sig. 95% CI 
Lower 

95% CI 
Upper 

Repeated Measures 2.744 0.15 18.63 <.001 2.47 3.05 

Subject 0.18 0.12 1.47 0.14 0.05 0.69 

Session 0.06 0.06 1.07 0.29 0.10 0.39 

 376 

Model II. Reward electrodes 
Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Choice 2    1  

Electrode 12    11  

Choice x Electrode 24    11  
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Random Effects       

Subject 7  identity  1  

Session 6  identity  1  

Repeated Effects       
Choice x Electrode 24  identity  1  

Model Fit       
AIC 2538.54 

2552.24 
   

BIC    
 377 

Fixed Effects F Sig.   

Intercept 0.13 0.73 

Choice 20.65 <.001   

Electrode 6.74 <.001 

Choice x Electrode 0.76 0.68   

    

Covariance Parameters Estimate SE Wald Z Sig. 95% CI Lower 95% CI Upper 

Residual Variance 1.76 0.09 18.70 <.001 1.59 1.96 

Subject 0.57 0.36 1.59 0.11 0.17 1.94 

Session 0.08 0.06 1.32 0.186 0.02 0.34 

 378 

Model III. Reward electrodes 
Win stay/ Win Go 

Number of 
Levels 

Covariance 
Structure 

Number of 
Parameters 

Fixed Effects       

Intercept 1  1 

Trial 2    1  

Electrode 12    11  

Trial x Electrode 24    11  

Random Effects       

Subject 7  identity  1  

Session 6  identity  1  

Repeated Effects       
Trial x Electrode 24  identity  1  

Model Fit       
AIC 2921.95 

2941.32 
   

BIC    
 379 

Fixed Effects F Sig.   

Intercept 0.51 0.49 

Trial 8.74 0.003   

Table 5: Linear mixed model design, fixed effects, and covariance parameter to explore 

power differences during reward outcome on the probabilistic reversal learning task.  
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Electrode 0.37 0.97 

Trial x Electrode 0.03 1.0   

    

Covariance Parameters Estimate SE 
Wald Z Sig. 95% CI 

Lower 
95% CI 
Upper 

Repeated Measures Variance 4.79 0.27 17.73 <.001 4.29 5.35 

Subject 0.95 0.59 1.63 0.10 0.29 3.18 

Session 0.43 0.30 1.42 0.16 0.11 1.69 

Subject and session were investigated as random effects. On the lOFC electrode, there 380 

was a main effect of choice (F(1,698.74)= 13.12, p<.001), outcome (F(1,697.98)= 67.49, 381 

p<.001), and frequency (F(5,694.38) =6.79, p<.001) and significant interactions between 382 

choice and outcome (F(1,696.26) = 10.14, p=0.002) and outcome and frequency (F(5,694.33) 383 

=10.86, p<.001) (Fig. 4C). Power was greater for rewarded (EMM=0.78, SEM= 0.21, CI= 384 

0.30, 1.26) compared to non-rewarded outcomes (EMM= -0.24, SEM=0.21, CI= -0.72, 385 

0.24) across all frequencies (main effect of outcome). There was also greater power for 386 

target choice (EMM=0.50, SEM=0.21, CI=0.02, 0.98) compared to non-target choice 387 

(EMM= 0.05, SEM= 0.21, CI= -0.43, 0.53) across all frequencies (main effect of choice). 388 

The interaction between outcome and choice showed beta and high gamma frequencies 389 

had the greatest power for target choice rewarded outcomes. Beta activity on the lOFC 390 

electrode during reward outcome was greater for target choice rewards (EMM= 2.39, 391 

SEM= 0.35, CI= 1.69, 3.09) compared to non-target choice rewards (EMM=0.90, 392 

SEM=.36, CI=0.19, 1.60). High-gamma power was also greater for target choice rewards 393 

(EMM= 2.69, SEM=0.35, CI= 1.99, 3.38) compared to non-target choice rewards 394 

(EMM=1.35, SEM=0.36, CI= 0.64, 2.06) . Neither frequency showed significant 395 

differences in beta activity for non-rewarded target vs. non-target choices. (Fig. 4C). The 396 

shaded error plot illustrates the increased beta power during rewarded trials that is greater 397 

for high-probability (target) compared to low-probability (non-target) rewards at the lOFC 398 
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electrode (Fig. 4D). Subject accounted for 6.0% of variance in our model and session 399 

accounted for 2.0%, neither which were not significant contributors to overall variance. 400 

 401 

We followed this up with a linear mixed model to measure beta power (dependent 402 

variable) during rewarded outcomes across the other 12 reward-related electrodes for 403 

target and non-target choice (Table 5). There was a significant main effect of choice 404 

(F(1,701.04) =20.65, p<.001) and a main effect of electrode (F(11, 699.25) =6.74, p<.001), but 405 

no significant interaction between choice and electrode (F(11, 699.21) =0.76, p=.68) (Fig. 406 

4E). Post-hoc (Bonferroni corrected) tests revealed the main effect of electrode was 407 

influenced by increased power within anterior insula (EMM= 1.25, SEM=0.83, CI= -0.81, 408 

3.30) and lOFC (EMM= 0.92, SEM= 0.83, CI= -1.14, 2.97) brain regions showing overall 409 

greater reward-related activity compared to others. Subjects contributed to 23.7% of the 410 

variance and session to 3.3%. Neither were significant contributors based on the Waldz 411 

test.  412 

 413 

We next performed an analysis to see if beta-power on a trial was linked with activity on 414 

the subsequent (next) trial. Using a linear mixed model, we compared beta power for <win-415 

stay= trials (rewarded trials in which animals chose the same response on a subsequent 416 

trial) and <win-go= trials (rewarded trials in which animals chose the different response on 417 

the subsequent trial) in all 12 electrodes. We observed a main effect of trial type (F(1, 630.66) 418 

= 8.74; p=<0.001), and no significant interaction between trial type and electrode (F(11, 419 

628.38) =0.03, p=0.97) (Fig. 4F). Across electrodes, beta power was greater on win-stay 420 

trials (EMM=0.59, SEM=0.47, CI=-0.46, 1.63) than win-go trials (EMM= 0.08, SEM=0.48, 421 
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CI -0.97, 1.13). Subject accounted for 15.4% of variance and session for 7.0%. Neither 422 

were significant contributors according to a Waldz test.  423 

 424 

Finally, pooling data across all 12 brain regions, we examined how beta power reflected 425 

a change in reward contingencies. We used a two-way ANOVA to compare beta power 426 

on rewarded and non-rewarded target choices before and after a reversal. Specifically, 427 

we analyzed the last four <target= and <non-target= rewarded trials pre-reversal and the 428 

first four <target= and <non-target= rewarded trials post-reversal from the <new= target; and 429 

the same for non-rewarded trials. Analyzing the data this way we found a main effect of 430 

reward outcome (F(1,332)=12.0, p<0.001) on beta power in reward regions, no main effect 431 

of reversal (pre vs. post) (p=0.133), but a significant interaction between reward outcome 432 

and reversal (F(1,332)=13.4, p<0.001) (Fig. 4G). Post-hoc (Bonferroni corrected) 433 

comparisons show a selective decrease in beta power after a reversal that only occurs 434 

on rewarded target trials. The mean difference of beta power pre vs. post reversal was 435 

0.521, SE of difference= 0.062, corrected p <0.001 on rewarded trials. The mean 436 

difference of beta power pre-post reversal was -0.108, SE of difference= 0.062, corrected 437 

p=0.166, on non-rewarded trials (Fig. 4G). This is largely consistent with the idea that 438 

beta power reflects the expected outcome value which, immediately after a reversal, is 439 

still low for the <new= target. Beta-oscillations thus seem to reflect accumulating evidence 440 

about rewarded outcomes and modulating expectancy by tracking repeated positive 441 

outcomes and does not meaningfully reflect a signal related to the lack of reward 442 

(expected or unexpected).  443 

 444 

Verification of LFP Probe Locations at Target Brain Areas  445 
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Coronal sections stained with thionine to capture cell bodies were used to verify the 446 

electrode placement in target brain regions. For each cannula (1-8), a graphical 447 

representation of a rat brain atlas ((52) shows the identified center of recording sites at 448 

each DV location (four per cannula) (Supp Fig. 3). Colored dots represent the task the 449 

animals belong to (green: go/wait N= 6/11; pink: temporal discounting N= 9/10; blue: PRL 450 

N=7/7). An example coronal slice at the corresponding AP location is also shown for each 451 

cannula placement with magnification of each track in the brain. The table includes the 452 

AP, ML, and DV coordinates for all 32 electrodes and their corresponding nomenclature. 453 

The location of single-unit OFC recording electrodes is also shown (B) from a range of 454 

+4.2 AP through +3.25 AP relative to bregma. The LO/VO subdivisions are outlined on 455 

the example coronal sections taken from the rat brain atlas. Electrodes span both 456 

divisions. The graphical representation includes all electrode tracks (N=5/8 rats) (Supp 457 

Fig. 3). 458 

 459 

Discussion 460 

Our results show changes in beta (15-30 Hz) and high-gamma (>70 Hz) frequencies that, 461 

across multiple distinct tasks scaled dynamically according to markers of learned and 462 

expected reward value. Each task contributed something unique to our findings and using 463 

different cohorts of animals offered replication for greater certainty of our findings. For 464 

example, measuring LFP on a behavioral inhibition task (go/wait), we identified beta 465 

power-related changes that signaled positive valence (rewarded) trials during reward-466 

feedback. Firing rates of single-units in OFC were also modulated at beta frequencies 467 

during positive reward outcome; and the magnitude of the beta power was correlated with 468 

overall performance on that session, suggesting a relationship between beta power and 469 
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reward expectation. On a temporal discounting task, beta power corresponded to 470 

subjective reward value and was significantly linked with choice for the immediate vs. the 471 

delayed condition. On a PRL task, beta was elevated for high-probability target choices; 472 

and higher beta power was associated with selecting the same trial following a rewarded 473 

outcome. We generally see evidence of a beta reward processing signal broadly 474 

throughout the cortico-striatal network, but there are instances where distinct brain 475 

regions are more/less engaged based on task-dependent features. A32D, lOFC, and 476 

anterior insula electrodes showed the most consistently elevated beta power across tasks 477 

during positive reward feedback, suggesting this effect was strongest in those cortical 478 

regions. Subtle variations in activity between tasks may represent examples of functional 479 

segregation between cortical subdivisions seen previously on other reward-guided tasks 480 

(9,29,41,53355). For instance, ventral regions of striatum and orbitofrontal cortex show 481 

large increases in beta frequency power during rewarded outcomes only in the go/wait 482 

task where reward valance certain and  less subjective. Moreover, elevated beta power 483 

may not always promote optimal behavior based on brain region and task-specific 484 

parameters. For instance, researchers using 20Hz (beta frequency) optogenetic 485 

stimulation of glutamatergic ventral medial OFC neurons found that activation impaired 486 

PRL performance whereas inhibition increased the number of reversals (56). We find a 487 

positive relationship between lOFC reward-locked beta power and behavior, but that 488 

relationship is likely different amongst cortical subregions. Thus, in the cortico-striatal 489 

network we find reward-locked oscillations at beta frequencies, in both single units and 490 

local field potentials, that mark positive reward valence and scale with reward expectation. 491 

Our findings are consistent across three different reward processing tasks suggesting that 492 

beta-oscillations may serve as a stable and robust bio-marker for future studies. 493 
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 494 

Data from each of these tasks, when considered alone, could have multiple explanations 495 

and confounds 3 however, the similar relationships between beta power and expected 496 

value observed across animals/tasks help define the role of beta-oscillations in reward 497 

processing. The most trivial explanation of our findings is that beta activity reflects a non-498 

neural artifact time-locked with reward delivery such as movement (i.e. muscle/EMG-499 

related contamination during reward consumption) or electrical noise associated with 500 

reward- delivery. However, it is not obvious how this explanation would show why on 501 

matched delays (500ms) on the temporal discounting task there was greater beta power 502 

for high-value compared to low-value trials during the first second following reward 503 

delivery when movements and electrical noise would at least in theory be matched. 504 

Similarly, data from the PRL task indicates beta power was greater for high-probability 505 

responses which also has identical reward delivery to low-probability responses.  506 

 507 

A different possibility is that the beta activity is neuro-physiological in nature but reflects 508 

a motor, opposed to reward, process. Beta-oscillations have been well-characterized 509 

within motor cortex (57361) and dorsolateral striatum (58,60,62,63) and tend to be largest 510 

pre/post-movement, but are classically reduced during movement (59,61,64,65). This 511 

functional description fits with observations of beta activity in Parkinson’s disease patients 512 

who have trouble initiating movements and show increased beta-oscillations related to 513 

symptom severity (59,62364,66). Thus, one explanation is that increased beta power 514 

reflects motor inhibition that might occur and be linked with reward consumption. 515 

However, we believe our data is not compatible with this hypothesis in a few ways. First, 516 

sensorimotor beta-oscillations, as previously described, are more localized within motor 517 
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and dorsal striatum, whereas we observe oscillations (and single-units related to beta-518 

oscillations) more strongly within ventral brain regions (orbitofrontal cortex and insula, for 519 

example). Second, as before, we believe our data comparing high vs. low value reward 520 

(temporal discounting) and high-probability vs. low-probability reward (PRL) argues 521 

against this interpretation, as it is unclear why animals would be more stationary when 522 

consuming rewards on these trials where motor requirements should in theory be 523 

matched. It may be possible that animals more vigorously consume reward when there 524 

is a greater expectation of reward 3 in other words, that the neurophysiological processes 525 

we observe are, indeed, matched by a physical aspect. If this is the case, our results 526 

would still be valid, though the interpretation would be different. We do not currently have 527 

the data we need (high-frequency video of the licks) to distinguish this, and this will need 528 

to be clarified with further research. 529 

 530 

If beta-oscillations reflect reward processing, then what specific aspect of reward might 531 

they represent? We hypothesize that beta-oscillations reflect activity within a cortico-532 

striatal network that drives optimal decision-making based on expected reward-value. We 533 

provide evidence that beta-oscillations during reward feedback modulate activity based 534 

on task variables such as reward magnitude, temporal delay, and probability of reward.  535 

Growing research has identified beta-oscillations outside of sensorimotor networks 536 

related to attention (67,68), top-down processing ((65,69), working memory (67,703537 

72)and outcome evaluation (45,73). Beta frequency impairments have been observed in 538 

cases of depression, bipolar disorder, schizophrenia, attention disorders, and addiction 539 

(opioid and alcohol) (74). Consistent with our findings, beta-oscillations during reward-540 

feedback have previously been observed in humans and animals. EEG and MEG 541 
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measures in humans find beta oscillations during positive-valence reward within frontal-542 

striatal circuits that is sensitive to reward valence, magnitude, and predicts subsequent 543 

choice ((71,75379). Similarly, increased beta power in cortico-striatal regions has been 544 

observed in rodents approaching reward locations (47,80)that was modulated by reward 545 

magnitude ((80)and stabilized with task experience (28,47). Recently, it was observed 546 

that during a reward discrimination task, increased beta power 100-200ms after reward 547 

feedback in the anterior cingulate cortex and nucleus accumbens of rodents that was 548 

correlated with response bias (81)Our work extends this prior data by conclusively 549 

demonstrating a relationship between beta power and reward expectation across multiple 550 

task contexts. It further suggests that beta-oscillations can be utilized as a cross-species 551 

translational marker of value estimation that is linked to reward-guided behavior and could 552 

be used to predict reward sensitivity, risk-taking behavior, and impulsivity.  553 

 554 

The feedback-related negativity ERP signal classically observed in humans is thought to 555 

reflect dopamine transmission (81383), but the signal gets more negative following 556 

positive reward valence (81); the opposite of our beta oscillatory signal. Dopamine activity 557 

is linked with both reward-prediction and reward-prediction errors (RPE) (10,16,78,84) . 558 

Previous research in humans explored the possibility of frontal beta-oscillations as an 559 

RPE signal but found that stimuli signaling expected rewards elicited more beta power 560 

than unexpected rewards; the inverse of an RPE (78). Our results are consistent with an 561 

inverse correlation between beta activity and the dopaminergic RPE signal. First, on the 562 

go/wait task we find beta power signals positive reward outcomes and correlates with 563 

more accurate task performance, whereas dopamine transmission would be higher when 564 

rats are performing poorly (more unpredictable). In the temporal discounting paradigm 565 
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dopaminergic activity is greater for longer delay periods (19) corresponding with the 566 

reduction in beta power we observed during longer delays. Finally, more dopamine is 567 

observed for unexpected rewards, but on the PRL task we see higher beta power on 568 

expected reward outcomes that rapidly decays after a reversal when expectancy signals 569 

are not defined. Moreover, we find single-units in OFC that are correlated with beta 570 

oscillations during reward delivery that may be consistent with reward prediction rather 571 

than an error in prediction (43).  Increased beta oscillations in frontal cortex could 572 

therefore be a marker of a suppression in dopamine release.  Strikingly, an inverse 573 

relationship between dopamine and beta-oscillations has been observed in motor cortex 574 

and dorsolateral striatum as well (10,63). Therefore, a similar relationship between beta-575 

oscillations and dopamine may exist within ventral striatum and prefrontal cortex. In this 576 

way, beta signals may represent a common modality of communication across distributed 577 

cortico-striatal networks: cortico-thalamic-basal ganglia pathways for motor controls 578 

(60,66)and cortico-striatal-limbic pathways for reward processing (2,6,8,11,12,18,85) 579 

(Schultz et al., 2000; Dalley et al., 2004; Abler et al., 2006; Berridge and Kringelbach, 580 

2008; Haber and Knutson, 2010; Chau et al., 2015). A common striatal-beta generating 581 

mechanism could explain how increases in attention, motor inhibition, and reward 582 

processing information are linked to beta-oscillations in distributed brain networks (59,67), 583 

and suggests that, perhaps, dopamine influences this transmission similarly across these 584 

cortico-striatal networks. 585 

 586 

We acknowledge there are many subsequent analyses to be completed for each task.  587 

Here, we present a comprehensive overview of reward processing activity in all tasks 588 

opposed to the fine intricacies of each which may be best explored by fitting reinforcement 589 
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models to examine trial x trial decision making behavior and oscillatory activity Future 590 

analyses will investigate network-level connectivity to determine whether beta-oscillations 591 

originate in brain areas, like the striatum, or if they are an emergent property of cortico-592 

striatal networks. Moreover, investigations will need to extend beyond power measures 593 

to include phase dynamics which can determine temporal relationships between brain 594 

areas. Across our tasks, we also see evidence of increased high-gamma power during 595 

reward-feedback. Much like theta-gamma coupling is linked to learning and memory in 596 

rodents (87389), beta-high-gamma coupling may be linked to reward processing or reflect 597 

spike coherence. Researchers have described beta/gamma event-related 598 

synchronization that occurs after reward feedback in lateral prefrontal cortex of humans 599 

(71,78).  Additionally, our results are limited to only male rats. We are now repeating this 600 

set of studies in a balanced cohort of male/females to understand whether these findings 601 

generalize across sexes. Finally, further analysis of movements/video-tracking would 602 

lend greater certainty to our findings and rule out movement-related artifacts. Based on 603 

the preponderance of evidence across animals and tasks, we propose that beta-604 

oscillations during reward-feedback may present a phenotype that can be used to identify 605 

disturbed reward-related processing deficits in psychiatric disorders or brain injury.  606 
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Material and Methods 607 

Ethics Statement 608 

This research was conducted in strict accordance with the Guide for the Care and Use of 609 

Laboratory Animals of the National Institutes of Health. The protocol was approved by the 610 

San Diego VA Medical Center Institutional Animal Care and Use Committee (IACUC, 611 

Protocol Number A17-014).   612 

 613 

Experimental Design 614 

Subjects: 37 male Long-Evans rats obtained from Charles River Laboratories were used 615 

for these experiments. When received, rats were ~ one month old weighing 150g. 616 

Habituation and pre-training was initiated two weeks after arrival. Depending on the task, 617 

rats trained for 5-14 weeks before receiving surgery. Rats were housed in pairs during 618 

prior to electrode implantation, and individually housed thereafter, in a standard rat cage 619 

(10 x 10.75 x 19.5 in, Allentown, NJ, USA) with free access to food and on a standard 620 

light cycle (lights on at 6 am / off at 6 pm). During behavioral training, animals underwent 621 

water scheduling (free access to water for two hours/day) to maintain motivation for water 622 

reward in the tasks. Water was unrestricted on non-training days and rats were weighed 623 

weekly to ensure that water scheduling did not lead to reduced food intake. Different 624 

cohorts of rats were trained to perform one of three tasks designed to measure distinct 625 

aspects of reward processing12 rats with multi-site LFP probes were trained on a go/wait 626 

response inhibition task, 10 on a temporal discounting task, and 7 on a probabilistic 627 

reversal learning (PRL) task (Table 1). Additionally, 8 rats trained on the go/wait task 628 

were used for single-unit recordings to supplement LFP findings (Table 1). Subjects with 629 

chronic implants were monitored daily for signs of infections, injuries, and bleeding.  630 
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 631 

Operant Chamber and Training: The same custom-designed operant chamber was 632 

used for all three tasks. The chamber had five nose-ports (NP), each with an LED, IR 633 

sensor and metal cannula for water delivery. The chamber also contained two auditory 634 

tone generators, a house-light, a screen to display visual stimuli, and five peristaltic 635 

stepper motors/water pumps that delivered the water rewards into NPs. The chamber 636 

was 6.2 x4.7x 6.23 inches with a ceiling opening that allowed electrophysiology tethers 637 

to move freely. Simulink (Mathworks) installed directly onto a Raspberry Pi system 638 

controlled the behavioral programs. Behavioral outputs from the operant chambers were 639 

synchronized with electrophysiological signals using lab-streaming-layer, a protocol 640 

designed to integrate multiple behavioral and physiological streams into a common timing 641 

stream (90,91). The design, operation and software control of this chamber has been 642 

described previously (90). Animals first went through a pre-training period (5-10 643 

sessions), to learn that a NP with an LED <on= signaled an available response port; that 644 

responding in an available NP would trigger a water reward; and finally that there was a 645 

sequential nature to the task (animals start a <trial= by first entering the middle NP (3), 646 

after which they could use either of the neighboring ports (2 or 4) to respond and collect 647 

an immediate reward). This standard pre-training paradigm was used for all three final 648 

behavioral paradigms. Animals advanced to the next stage of training when they 649 

consistently performed ≥100 trials in a 60 min session. 650 

 651 

Behavioral Tasks:  I. Go/Wait Response Inhibition Task. The visual-cue go/wait task 652 

was used to observe brain activity associated with positive valence on successful go-cue 653 

trials (rewarded) compared to unsuccessful wait-cue trials (not rewarded). Animals began 654 
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a trial by entering the middle NP (3), ensuring animals were in an identical position on 655 

every trial when the visual stimulus appeared. After a fixed delay of 30ms, a visual 656 

stimulus appeared on the screen denoting the trial as either a <go-cue= trial (animal 657 

required to respond within 2s to attain a reward) or a <wait-cue= trial (animal required to 658 

withhold response for 2s to attain a reward). The stimulus remained on the screen until 659 

the animal responded. If animals responded correctly, a water reward was delivered into 660 

the middle NP (3) after a delay of 400ms. If animals responded incorrectly, the house light 661 

flashed for a 5 second <time-out= period and no reward was given. Rewards consisted of 662 

20 µL of water delivered over a two second period using a stepper-motor (the motor sound 663 

provides an instantaneous cue regarding reward delivery). After water delivery, there was 664 

a 5s inter-trial-interval before the next trial began. The trials were distributed randomly as 665 

25% <go-cue= and 75% <wait-cue= trials. Animals were trained for ~14 weeks until 666 

behavior typically stabilized (>80% accuracy on go-cue trials), after which they were 667 

implanted with electrodes (described below). We waited two weeks for animals to recover 668 

from surgery prior to resuming water-scheduling. LFP analyses are based on data from 669 

67 recording sessions from 12 rats (Table 1). Single-unit analyses are based on data 670 

from 62 recording sessions from 8 rats (Table 1).  671 

 672 

II. Temporal Discounting Task. A different cohort of animals were trained on a temporal 673 

discounting task to contrast electrophysiology activity at different reward magnitude 674 

choices (high vs. low reward) delivered at increasing temporal delays (0.5 to 20s). 675 

Generally, temporal discounting tasks center around choosing between a low-value 676 

reward delivered immediately, or a high-value reward delivered after a delay. In our 677 

version of the task, subjects chose between a low-value (1x) reward delivered 678 
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immediately (500ms after response) or a high-value (3x) reward delivered at a variable 679 

delay. In separate behavioral sessions the high-value delay ranged from 500ms to 20s 680 

after the response. Each session began with 6 forced-choice trials, orienting the rat to 681 

both the low-value (NP 2) and high-value (NP 4) options. The houselights were on, and 682 

LED lights signaled the available response port, alternating between low-value (NP 2) 683 

response and high-value (NP 4) response. Reward following either response was 684 

delivered immediately (500ms) after response during forced-choice trials. After the 6 685 

trials were complete, the houselights dimmed and rats began the full, self-paced, trial 686 

sequence. Response port (2 and 4) LEDs were on, signaling the rat to choose. 687 

Selecting the low-value response port (2) turned on the houselights, the middle NP LED 688 

(3), and a tone (500ms duration) to indicate a choice was made. A small reward (10µL 689 

delivered over a 1s duration) was delivered immediately (500ms after response) from 690 

NP 3. Selecting the high-value response port turned on the houselights, the middle NP 691 

LED (3), and a tone (500ms duration) signaled the choice. Between sessions there was 692 

a variable delay (0.5s, 1s, 2s, 5s, 10s, 20s) until the high-value reward (30µL over a 3s 693 

duration) was delivered out of NP 3. The motor delivering water made an audible sound, 694 

to cue reinforcement delivery onset and amount of reward.  The high-value delay 695 

alternated between behavioral sessions but remained the same throughout the entire 696 

(60 min) session. The houselights turned off when water was delivered out of NP3 and 697 

a 5s inter-trial interval began after water delivery. To learn to discriminate magnitude 698 

differences, rats were trained on the immediate delay condition (500ms) for both high-699 

value and low-value choices. Once they showed a clear preference for the high-value 700 

choice (≥70% high-value responses/session) and consistently performed ≥100 trials, 701 

they were advanced to the other delay conditions. Training (including pre-training 702 
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sessions) on average lasted 18 sessions across 5 weeks. After implantation we waited 703 

two weeks to allow animals to recover from surgery before electrophysiology recording 704 

began. Recording sessions lasted 60 minutes and occurred 3-4 days a week. LFP 705 

analyses are based on data from 124 recording session from 10 rats (Table 1). There 706 

was an average of 20 recording sessions per delay condition (two sessions at each 707 

delay condition per rat; N=19 sessions at 0.5s; N=23 sessions at 1s; N=15 sessions at 708 

2s; N=28 sessions at 5s; N=18 sessions at 10s; N=21 sessions at 20s).  709 

 710 

III. Probabilistic Reversal Learning Task. The probabilistic reversal learning task (PRL) 711 

was used to examine brain activity associated with learned reward likelihood (high vs. 712 

low-probability choice) and tests the subjects’ ability to update information after reward 713 

contingencies are reversed. In our version of the PRL task, rats must choose between 714 

two nose ports: the high-probability choice (<target<) delivers water 80% of the time, and 715 

the low-probability choice (<non-target=) only 20% of the time. The PRL task is self-paced. 716 

Each trial began with houselights off and the middle NP LED (3) on. Once a rat 717 

responded, LEDs in NP 2 and 4 turned on, indicating an available choice between the 718 

response ports. Each NP is randomly assigned as the target or non-target NP in each 719 

session.  Selecting the target choice led to 2s (20µL) of water on 80% of trials and no 720 

water only 20% of the time. Selecting the non-target choice led to 2s (20µL) of water only 721 

20% and no water 80% of the time. A response in NP 2 or 4 caused the other LED to turn 722 

off. On rewarded trials, the houselights remained off and water was delivered out of the 723 

selected NP (2 or 4) 500ms after the response. There was a 5s inter-trial interval that 724 

started with water delivery. On unrewarded trials, a tone (500ms in duration) signaled no 725 

water delivery, the houselights turned on, and a 5s inter-trial interval began. Throughout 726 
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a session, the NP contingencies reversed based on the rats’ behavior. Reversals 727 

occurred when a rat made 80% target responses (rewarded or non-rewarded) over a 10-728 

trial moving window (8 of the last 10 responses are <targets=). To perform PRL effectively, 729 

rats must respond appropriately to correct feedback (<target= rewards; <non-target= no 730 

reward) while also ignoring misleading feedback due to the probabilistic nature of our task 731 

(<target= no reward; <non-target= reward). Rats received at least two weeks of pre-training 732 

(described above) prior to surgical implantation of LFP probes but were naïve to the PRL 733 

task. Two weeks after surgery rats began training on the PRL task. Performance was 734 

measured by counting the number of reversals/ sessions, the target choice percentage, 735 

and win-stay behavior (propensity to choose the same NP after receiving a reward on the 736 

previous trial). On average, rats took 15 sessions to train on the PRL task (~3.5 weeks). 737 

Once rats were consistently performing at least one reversal and performing ≥100 trials 738 

we started to record LFP. Rats ran 60 min sessions 3-4 days a week.  Behavioral data 739 

was collected from 7 rats across 79 PRL sessions, 36 of which included LFP recording 740 

(average of 5 sessions per rat) (Table 1). 741 

 742 

Surgery 743 

Aseptic surgeries were performed under isoflurane anesthesia (SomnoSuite, Kent 744 

Scientific, CT, USA with all instruments autoclaved prior to start. Animals received a 745 

single dose of Atropine (0.05 mg/kg) to diminish respiratory secretions during surgery, a 746 

single dose of Dexamethasone (0.5 mg/kg) to decrease inflammation, and 1mL of 0.9% 747 

sodium chloride solution prior to surgery. The area of incision was cleaned with 70% 748 

ethanol and iodine solution. A local anesthetic, Lidocaine (max .2cc), was injected under 749 

the skin at the incision site while the animal was anesthetized but before surgery initiation. 750 
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The fabrication and implantation procedures of our custom fixed field potential and single-751 

unit probes are described in detail (37).  752 

 753 

LFP Probe Implantation: Briefly, our LFP probe targets 32 different brain areas 754 

simultaneously. 50µm tungsten wire (California Fine Wire, CA, USA) used for our 755 

electrodes was housed in 30-gauge stainless steel metal cannula (Mcmaster-Carr, 756 

Elmhurst, IL, USA) cut 8-9mm long. Each cannula (N=8) contained four electrode wires 757 

cut to their unique D/V length. The average impedance of our blunt-cut tungsten 758 

microwires is 50 kOhms at 1 kHz. During surgery, 8 holes were drilled in the skull (one 759 

for each cannula) at predetermined stereotactic locations (see Supp Fig. 3). Additional 760 

holes were drilled for a ground wire and anchor screws (3-8). The ground wire was 761 

soldered to an anchor screw and inserted above cerebellum. Electrodes were slowly 762 

lowered to desired depth, pinned to the EIB board, and secured with superglue followed 763 

by Metabond (Parkell, NY, USA). The entire head stage apparatus was held to the skull 764 

and encased with dental cement (Stoelting, IL, USA).  765 

 766 

Single-unit Probe Implantation:  To record single-units we used a 32-channel stationary 767 

array with microwires arranged in a brush-like formation (see (37). Initial preparation of 768 

the animal and location of ground screws was identical to the LFP probe surgical 769 

procedures described above. A cranial window with diameter of 2mm was drilled with a 770 

0.7mm micro drill (Stoelting, IL, USA) centered at the OFC target location. Three probes 771 

targeted ventral OFC (AP:+3.5mm, ML: +/-1.5mm, DV: 5.0mm), four targeted lateral OFC 772 

(AP: +3.5mm, ML:+/-2.5mm, DV: 5.0mm), and one implant had 16 electrodes in each 773 

region (Supp Fig. 3). The implant was lowered to desired depth slowly under stereotactic 774 
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control. A thin layer of superglue was applied to the skull followed by a layer of Metabond 775 

(Parkell Inc., NY, USA) to seal the craniotomy. The implant was secured to anchor screws 776 

and attached to the dry skull with dental cement (Stoelting, IL, USA). The ground wire 777 

was pinned to the channel on the EIB board, and the remaining exposed wires covered 778 

in dental cement.  779 

 780 

At the conclusion of surgery, the skin was sutured closed, and rats were given a single 781 

dose (1mg/kg) of buprenorphine SR for pain management. Rats recovered from surgery 782 

on a heating pad to control body temperature and received sulfamethoxazole and 783 

trimethoprim in their drinking water (60mg/kg per day for 8 days) to prevent infections.  784 

 785 

Electrophysiology  786 

LFP data was recorded using a 32-channel RHD headstage (Intan Technologies, CA, 787 

USA; Part C3324) coupled to a RHD USB interface board (Intantech, Part C3100) and 788 

SPI interface cable. We used plug-in GUI (Open Ephys) software for acquisition. Data 789 

was recorded at 1Khz, with a band-pass filter set at 0.3 to 999 Hz during acquisition. 790 

Physiology data was integrated with behavioral data using a lab-streaming-layer (LSL) 791 

protocol (Ojeda et al., 2014), as described previously (90).  792 

 793 

Single-unit data was recorded using a 32-channel RHD headstage with signal amplified 794 

using a PZ5 Neurodigitizer and RZ2 bioamp processor (TDT, FL, USA). Recorded signals 795 

were processed using Synapse software (TDT) at a sampling rate of 25KHz, high-pass 796 

filter of 300Hz and low-pass filter of 3000Hz. Behavioral markers were also integrated 797 

using LSL protocol.  798 
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 799 

Statistical Analysis 800 

LFP Time Frequency Analysis: We carried out standard pre-processing and time 801 

frequency (TF) analyses using custom MATLAB scripts and functions from EEGLAB (373802 

39). 1) Data epoching: We first extracted time-points for events of interest during each 803 

task. This paper focuses on neural activity time-locked to response/reward (opposed to 804 

trial onset) to examine neural activity during the reward-feedback period. Time-series data 805 

was extracted for each electrode (32), for each trial and organized into a 3D matrix 806 

(electrodes, times, trials). 2) Artifact removal: Activity was averaged across the 807 

time/electrodes to get a single value for each trial. Trials with activity greater than 4X 808 

standard deviation were treated as artifact and discarded. 3) Median reference: At each 809 

time-point, the <median= activity was calculated across all electrodes (32) and subtracted 810 

from each electrode as a reference. 4) Time-Frequency Decomposition: A trial by trial 811 

time-frequency decomposition (TF decomposition) was calculated using a complex 812 

wavelet function implemented within EEGLAB (newtimef function, using Morlet wavelets, 813 

with cycles parameter set to capture frequency windows of between 2 to 150 Hz (2 to 70 814 

Hz in the go/wait task) and otherwise default settings used. We calculated the analytic 815 

amplitude of the signal (using the abs function in MATLAB).  5) Baseline normalization: 816 

To measure evoked activity (i.e. change from baseline) we subtracted, for each electrode 817 

at each frequency, the mean activity within a baseline window (1000-750ms prior to the 818 

start of the trial). 6) Trial averaging: We next calculated the average activity across trials 819 

for specific trial types at each time-point and frequency for each electrode, thus creating 820 

a 3D matrix (time, frequency, and electrode) for each behavioral session. Trials of interest 821 

were different for each task: In the go/wait task we analyzed go-cue rewarded trials, wait-822 
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cue rewarded trials and wait-cue unrewarded trials (go-cue unrewarded trials were too 823 

few to include); temporal discounting task we separated high and low-reward choice at 824 

each delay condition; and PRL task we separately analyzed high-probability (target) vs. 825 

low-probability  (non-target) choices and their reward outcomes. 8) Comparison across 826 

animals: Prior to averaging across sessions/animals, we <z-scored= the data recorded 827 

from each behavioral session by subtracting the mean and dividing by the standard 828 

deviation of activity in each electrode (at each frequency) over time. Z-scoring was helpful 829 

for normalizing activity measured from different animals prior to statistical analysis. 830 

Because we had already performed a <baseline= subtraction (as described above), this 831 

analysis captured whether there was a significant increase or decrease in activity 832 

compared to baseline. FDR-correction was performed across all time-frequency-833 

electrodes (FDR-corrected p-value threshold set to 0.05). These pre-processing steps 834 

resulted, for each session, in a 3D time-frequency-electrode matrix of dimensions 835 

200x139x32 which was used for further statistical analyses as described below.  836 

 837 

LFP Linear Mixed Models: We analyzed the time-frequency-electrode (TFE) data at the 838 

level of each session using linear mixed models in IBM SPSS Statistics v.28 (New York, 839 

United States) to account for subject and session variance. Across all three tasks we first 840 

used a LMM to compare normalized power (dependent variable) at each oscillatory 841 

frequency band in the LOFC electrode at trial types of interest. We used the following 842 

frequency bands: delta power (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15 -30 Hz), 843 

gamma (40-70Hz) and high gamma (70-150 Hz). Next, we used different LMMs to explore 844 

power (dependent variable) across 12 electrodes (M2, A32D, A32V, vOFC, ALM, LFC, 845 

Ains, lOFC, VMS, NAcS, NAcC, BLA) at time points of interest. Each model’s parameters 846 
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including fixed, random, and repeated effects are specified for each analysis (Table 3-5). 847 

Data from the go/wait and PRL tasks was time-locked to response. We analyzed the full 848 

two second window of reward-feedback (500-2500ms after response). To account for the 849 

variable delay-to-reward conditions in the temporal discounting task, data was time-850 

locked to reward delivery. We analyzed the first second of activity post-reward (0ms to 851 

1000ms after reward onset) to control for the difference in water delivery between the 852 

high (3s) and low (1s) reward magnitudes. 853 

 854 

We compared the Akaike information criteria (AIC) and Bayesian information criterion 855 

(BIC) of four commonly used covariance models (compound symmetry, scaled identity, 856 

AR(1), and unstructured) to determine the best fit (92,93)The scaled identity model, 857 

assuming repeated measures may be independent but with equal variance  (92,93), 858 

provided the lowest AIC and BIC scores. We used a Restricted Maximum Likelihood 859 

(REML) model with the Satterthwaite approximation in SPSS. The fixed effects and 860 

estimates of each covariance parameter are reported for each test. Significant 861 

interactions with followed up with pairwise comparisons (Bonferroni corrected) in SPSS.  862 

Main effects of the Estimated Marginal Means of factors and their interactions were 863 

Bonferroni corrected.  Linear Mixed Models account for missing data which was present 864 

in the subsequent analyses. For instance, the total number reported may be less than 12 865 

brain areas x 128 sessions because in some sessions a particular electrode may not have 866 

provided usable data (noise/ broken channels, etc.).  867 

 868 

LFP Related to Behavioral Performance: 869 
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In the go/wait task, the significant oscillatory frequencies (identified with the linear mixed 870 

model and post-hoc tests) were correlated with choice accuracy (in MATLAB). We 871 

correlated power on the lOFC electrode during wait-cue correct (rewarded) wait-cue 872 

incorrect (non-rewarded) and the difference in power between trial types with accuracy 873 

on wait-cue trials during the reward-outcome period (from 500 to 2500ms after response). 874 

We calculated correlations across all sessions/animals, followed by FDR correction. 875 

 876 

In the temporal discounting task, we used regression models with the general linear 877 

model framework (in MATLAB) to compare the mean oscillatory frequency power (from 0 878 

to 1000ms after reward) on a particular session was the dependent variable and the 879 

overall likelihood of choosing the high-reward choice on that session was the independent 880 

variable. We did not control for delay condition as we already determined in subsequent 881 

analyses that it was indeed a significant factor in modulating reward-related activity. We 882 

calculated correlations across all sessions/ animals for each of the 12 reward-related 883 

brain regions, followed by FDR correction.  884 

 885 

In the PRL task, we used a two-way ANOVA to determine how significant oscillatory 886 

activity (defined in the linear mixed model) updated with reward contingency reversals. In 887 

a single session, we calculated the average power for the first four trials before a reversal 888 

and four trials following a reversal across all 12 electrodes during the reward outcome 889 

period (500-2500ms after response). Average activity before and after reversal was 890 

calculated separately at each electrode for each reversal pooled across 891 

animals/sessions. 892 

 893 
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Single-unit Analyses: Single-unit activity was recorded in 8 animals performing the 894 

go/wait task.  We extracted behavioral markers of interest, LFP streams, and spiking data. 895 

Neural data was cleaned and referenced off-line using Wave_Clus v.2.5., a Matlab-based 896 

spike-sorting program (94). Signals were processed as two polytrode (16- electrode) 897 

groups with median referencing applied to each channel (see (37)). A threshold of spike 898 

detection was set at 5 times standard deviation of voltage potential for each channel. 899 

Broken channels, with large impedances beyond 10 MOhm were excluded from 900 

referencing/ clustering. Spikes in each polytrode group, as identified by Wave_Clus, were 901 

examined manually for characteristics of single-units (average spiking rate within the 902 

whole session was more than 0.5Hz, fewer than 1.5% inter-spike interval violations 903 

(<3ms), waveform resembling action potentials as opposed to sinusoidal noise artifacts, 904 

and clusters distinct from others in the principal component space) (95397). Spikes 905 

meeting criteria were time-locked with behavioral events in MATLAB.  906 

 907 

MATLAB functions were used to create peri-stimulus time histograms and raster plots at 908 

trial types of interest (go-cue rewarded / wait-cue unrewarded trials) to compare reward 909 

valence. Activity was time-locked to response (time point 0). PSTH (spikes/second) 910 

were made in 25ms bins from -2s to +2s after response and gaussian filtered for 911 

smoothing. Activity was baseline normalized by subtracting the average firing rate 912 

during the pre-response baseline (first 750ms from trial onset) on go-cue correct trials 913 

from firing rate in subsequent time bins. Units from recording days with at least 30 trials 914 

and a minimum baseline firing rate of 2 spikes/s were further analyzed for their task-915 

related activity. A unit was considered <task- modulated= if the average firing rate was 2 916 

standard deviations above or below the baseline activity for > 75 consecutive ms in 917 
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either go-cued correct or wait-cued incorrect trials. Task-modulated units were 918 

categorized further based on the timing of their activation/ suppression relative to 919 

response. Anything with significant (+/- 2 standard deviations) activation or suppression 920 

from -500 to 0ms from response was considered pre-response activity (action). 921 

Anything with later activation or suppression (0 to 2000ms) was considered post-922 

response (outcome) activity.  923 

 924 

Finally, we calculated spike-field coherence (SFC) to relate spiking activity to field-925 

potential oscillations. SFC ranges from 0 (spikes operate independently from LFP) to 1 926 

(spikes are completely aligned to LFP) (44,46,48). To calculate SFC, we matched spike 927 

times to the continuous LFP signal from an electrode with minimal artifacts by multiplying 928 

the sampling rate of the LFP (1.0173).  Next, we down sampled to normalize non-standard 929 

sampling frequencies and epoched the LFP data to align with task events (described 930 

above). SFC was analyzed separately at each oscillatory frequency (delta, theta, alpha, 931 

beta, gamma) for each trial type (go-cue correct and wait-cue incorrect), time-locked to 932 

response. Units were categorized as <high= or <low= SFC by using a median split based 933 

on beta frequency SFC values from 500-2500ms after response (reward feedback) on 934 

go-cued correct trials. Units one standard deviation above the median SFC value were 935 

categorized as <high= and units one standard deviation below were categorized as <low=. 936 

A two-way ANOVA was used to compare firing rate on go-cue correct vs. wait-cue 937 

incorrect trials x SFC value at beta frequencies (classified as <high= or <low=).  938 

 939 

Histology 940 
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Histological analyses were completed for 22/ 28 rats with LFP implants (go/wait task 941 

N=6/11; temporal discounting N=9/10; probabilistic reversal learning N=7/7) and for 5/8 942 

rats with single-unit implants. At completion of recording sessions wire tips were marked 943 

by passing 12μA current for 10s through each electrode (Nano-Z, Neuralynx, MO, USA). 944 

Rats were sacrificed under deep anesthesia (100 mg/kg ketamine, 10 mg/kg xylazine IP) 945 

by transcardiac perfusion of physiological saline followed by 4% formalin. Brains were 946 

extracted and immersed in 4% formalin for 24 hours and then stored in 30% sucrose until 947 

ready to be sectioned. Tissue was blocked in the flat skull position using a brain matrix 948 

(RWD Life Science Inc., CA, USA).  Brains with field potential probes were sectioned 949 

frozen in the coronal plane at 50μm thick. Brains with single-unit electrodes were paraffin 950 

embedded and sectioned 20 μm thick due to diameter difference in wires (processed by 951 

Tissue Technology Shared Resource; CCSG Grant P30CA23100). Brain slices were 952 

Nissl stained using thionin to identify the course of the electrode tracks. Sections were 953 

processed with a slide scanner at 40x magnification (Zeiss, Oberkochenn, Germany; 954 

Leica Biosystems, IL, USA). Positions of electrodes were inferred by matching landmarks 955 

in sections to the rat atlas (52) when electrode tips could not be identified (Supp. Fig 3).  956 
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Figures 1265 

 1266 

Figure 1: Positive Valence Representation on the Response Inhibition Task.  1267 

(A) Trial structure of the go/wait task. Animals were shown two visual stimuli: a striped 1268 

vertical rocket indicated a go-cue trial (respond within 2s) and a solid horizontal rocket 1269 

denoted a wait-cue (withhold from responding for 2s). On correct trials rats were given 1270 

2s (10µL/s) of water. (B) Behavior on the go/wait task of animals with LFP implants (N= 1271 

67 sessions). Violin plot shows the median (thick dotted line), interquartile range (thin 1272 

dotted line), and distribution shape of reaction times (s) on go-cue and wait-cue trials. 1273 

Red horizontal line represents the 2s time to response on go-cue trials and time needed 1274 

to withhold on wait-cue trials. Bar plots shows the mean and SEM of proportion correct 1275 

trials on go-cue (respond within 2s) and wait-cue (withhold for 2s) trials. Dots show 1276 

individual values per session. (C) Time-frequency plots of z-scored lOFC power time-1277 

locked to response for frequencies ranging from 0-150 Hz on correct go-cue correct 1278 
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(reward), wait-cue correct (reward) and wait-cue incorrect (no reward) trials. Vertical 1279 

lines represent the response time and reward onset time. (D) Average lOFC power 1280 

across delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), and low gamma 1281 

(50-70 Hz) and high gamma (70-150 Hz) frequencies during the reward-feedback period 1282 

(500-2500ms after response). We used a linear mixed model to quantify differences in 1283 

power across frequency bands on the LOFC electrode for go-cue correct (dark), wait-1284 

cue correct (light) and wait-cue incorrect trials (striped). Mean and SEM are plotted. (E) 1285 

Line plots show mean (middle line) and SEM (outer boundaries and shaded region) 1286 

beta power on lOFC electrode time-locked to response onset for go-cue correct (dark), 1287 

wait-cue correct (light), and wait-cue incorrect trials (dashed).  (F) Line plots show 1288 

correlation between lOFC beta power and wait trial accuracy. Separate lines are plotted 1289 

for wait-cue correct (dark), wait-cue incorrect (dashed), and the difference between 1290 

correct and incorrect trials (light). (G) Beta power from 12 putative reward-related brain 1291 

regions on go-cue correct (dark), wait-cue correct (light) and wait-cue incorrect trials 1292 

(striped) during the reward-feedback period (1550ms-2550ms). The mean and SEM for 1293 

each trial type and brain region of interest are shown. Brain areas are shown in order 1294 

from 1. anterior to posterior and 2.dorsal to ventral. 1295 

 1296 
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 1297 

Figure 2: Single-Units Related to Positive Valence Reward Outcome.  1298 

(A) Behavior on the go/wait task of animals with single unit implants (N= 62 sessions). 1299 

Violin plot shows the median (dark dotted line), interquartile range (light dotted line), and 1300 

distribution shape of reaction times (s) on go-cue trials and wait-cue trials. Red line 1301 

drawn at 2s represents the time to respond on go-cue trials and the time needed to 1302 

withhold on wait-cue trials. Bar plots show proportion of correct trials on go-cue and 1303 

wait-cue trials. Dots show individual values per session. (B) Individual examples of an 1304 

action-related neuron (peak firing rate increases or decreases prior to the response) 1305 
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and an outcome-related neuron (peak firing rate increases or decreases after the 1306 

response). Activity of each neuron is plotted for go-cue correct (reward) and wait-cue 1307 

incorrect (no reward) trials time-locked to the response (time 0). Raster plots (top-panel) 1308 

show spiking activity across trials (each horizontal line). Red dots indicate trial onset. 1309 

Peri-event stimulus histograms (bottom panel) show firing rate (counts per bin) time-1310 

locked to response. Red lines indicate the mean activity of the unit across trials. (C) 1311 

Individual examples of a correct preferring (more activity on rewarded trials) and an 1312 

incorrect preferring (more activity on non-rewarded trials) unit. Firing rate (counts/bin) 1313 

from go-cue correct (blue) and wait-cue incorrect (red) trials are plotted on top of each 1314 

other time-locked to response for comparison (top-panel). Examples of beta-frequency 1315 

SFC are shown for the same correct and incorrect preferring neurons on go-cue correct 1316 

(blue) and wait-cue incorrect (red) trials (bottom-panel). Coherence values are time-1317 

locked to response. (D) Normalized firing rate (spikes/s) of neurons split into <high= or 1318 

<low= groups based on their beta-SFC values during reward-feedback. Firing rates are 1319 

plotted separately for go-cue correct (blue) and wait-cue incorrect (red) trials. Error bars 1320 

indicate SEM. 1321 
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 1322 

Figure 3: Subjective Value Representation on the Temporal Discounting Task. 1323 

 A) Trial structure of the temporal discounting task. Animals were given the choice of a 1324 

low magnitude reward (10µL) delivered immediately (delay of 500ms after response), or 1325 

a high magnitude reward (30µL) delivered at variable delays of 0.5s up to 20s. Delays 1326 

on the high-value choice were kept constant throughout each session but varied across 1327 
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sessions. (B) Behavior on the temporal discounting task shown as proportion of high-1328 

value choices per session (N=124 sessions). The group mean and SEM are shown at 1329 

each delay condition (0.5, 1, 2, 5, 10, and 20s). A horizontal line is drawn at 0.5 to 1330 

indicate when proportion of high-value choices fall below the 50/50 mark. The average 1331 

proportion of high-value choices at each delay condition is also plotted separately for 1332 

each rat to show individual differences in discounting rates. (C) Average power across 1333 

delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz) 1334 

and high gamma (70-150Hz) frequencies on the lOFC electrode one second after 1335 

reward onset on equal low value and high value delay sessions (0.5s).  Error bars 1336 

represent SEM. (D) The normalized beta power on the lOFC electrode at each high-1337 

value delay condition (0.5, 1, 2, 5, 10, 20s). Power is averaged across the first second 1338 

following reward delivery and the mean/SEM are plotted separately for high-reward 1339 

choices (solid line) and low-reward choices (dashed line). (E) The difference in power 1340 

on high reward and low reward choices (high-value choice 3 low-value choice) across 1341 

12 brain regions. Beta power during reward-feedback (averaged activity one second 1342 

after response) is plotted at each delay condition (0.5, 1, 2, 5, 10, 20s) for each brain 1343 

region. Brain regions are organized from 1. anterior to posterior and 2. dorsal to ventral. 1344 

(G) Beta values from the logistic regression analysis for 12 brain regions using power 1345 

for the difference of trial types (high-value 3 low-value). Asterisks indicate brain regions 1346 

with significant p-values after FDR-correction. 1347 

 1348 
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 1349 

Figure 4: Likelihood of Reward Outcome Represented on the PRL Task. 1350 

(A) Trial structure of the probabilistic reversal learning (PRL) task. Rats choose between 1351 

two response ports: the target choice delivered reward 80% of the time and the non-1352 

target choice delivered reward 20% of the time. Reward contingencies reversed after 8 1353 

out of the last 10 trials were target choices (regardless of reward outcome). (B) 1354 

Behavior on the PRL task measured by number of reversals per session and proportion 1355 

of win-stay trials. The number of reversals is compared in the first and last session of 1356 

individual rats to show improvement over time. The average and SEM proportion of win-1357 
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stay trials/ session is plotted with black dots visualizing the average for each individual 1358 

rat. (C) Average target (solid) and non-target (striped) choice power across delta (1-4 1359 

Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), low gamma (50-70 Hz) and high 1360 

gamma (70-150Hz) frequencies on the lOFC electrode during reward-feedback (500-1361 

2500ms) plotted separately for rewarded or non-rewarded outcomes. (D) The shaded 1362 

error bar plot shows mean and SEM traces of lOFC normalized beta power for high-1363 

probability rewards (blue) and low-probability rewards (red). Traces are time-locked to 1364 

response. (E)  Beta power during reward-feedback (averaged activity from 5000ms-1365 

2500ms after response) across the 12 brain regions. The average and SEM are shown 1366 

separately for target (solid) and non-target (striped) rewarded choices in each brain 1367 

region. Brain regions are organized from 1. anterior to posterior and 2. dorsal to ventral. 1368 

(F) Similarly, we also show the average and SEM beta power activity on win-stay (solid) 1369 

compared to win-go (striped) trials in the 12 brain regions. (H) Beta power (from all 12 1370 

brain regions) is compared before and after a reversal on target choices. The average 1371 

and SEM are shown separately for rewarded trials pre-reversal (light blue), rewarded 1372 

trials post-reversal (dark blue), non-rewarded trials pre-reversal (light orange) and non-1373 

rewarded trials post-reversal (dark orange). 1374 

 1375 

Supplementary Figures 1376 
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 1377 

Supplemental Figure 1: Individual Differences in LOFC Beta Power During 1378 

Go/Wait Inhibition Task.    1379 

The average beta power on the LOFC electrode during reward outcome (500-2500ms 1380 

after response) on go-cue correct (solid green), wait-cue correct (solid blue), and wait-1381 

cue incorrect (striped blue) trials for each subject (N=12). Error bars represent SEM. 1382 
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 1383 

Supplemental Figure 2: Individual Differences in LOFC Beta Power During 1384 

Temporal Discounting.    1385 

The average beta power on the LOFC electrode during reward outcome (0-1000ms 1386 

after reward) at each temporal delay for each subject (N=10). The two lines represent 1387 

power on high value choice (solid line) and low value choice (dashed line). Error bars 1388 

represent SEM. 1389 

 1390 
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Supplemental Figure 3: Histological Verification of Recording Sites.   1392 

(A) LFP implants histology identifying locations of the 32 electrodes (8 cannula). A 1393 

graphical representation of the placement of each cannula is plotted on a coronal 1394 

section of a modified rat brain atlas (Paxinos & Watson, 2013) Each cannula contains 1395 

four wires each targeting a unique DV location. Multiple cannulas may be implanted on 1396 

the same coronal plane (same AP coordinates). The identified centers of each electrode 1397 

are shown as dots color coded based on task to (green: go/wait N= 6/11; pink: temporal 1398 

discounting N= 9/10; blue: PRL N=7/7). An example thionine-stained coronal slice at the 1399 

corresponding AP location is also shown for each cannula placement with magnification 1400 

of each track in the brain (white bar provides scale). The table includes the AP, ML, and 1401 

DV coordinates for all 32 electrodes and their corresponding nomenclature. (B) Single 1402 

unit implants histology for electrode tracks in OFC. Example coronal sections are shown 1403 

from +4.2 AP through +3.25 AP relative to bregma. The LO/VO subdivisions are 1404 

outlined on example thionine-stained slices and the center of the electrode tracks are 1405 

marked on sections of a modified rat brain atlas (Paxinos & Watson, 2013) (N=5/8 rats).  1406 
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