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Abstract

Due to high resolution and throughput of modern image cytometry platforms, morpho-
logically profiling generated datasets poses a significant computational challenge. Here, we
present Scalable Cytometry Image Processing (SCIP), an image processing software aimed
at running on distributed high performance computing infrastructure. SCIP is scalable,
flexible, open-source and enables reproducible image processing. It performs projection,
illumination correction, segmentation, background masking and extensive morphological
profiling on various imaging types.

We showcase SCIP’s capabilities on three large-scale image cytometry datasets. First,
we process an imaging flow cytometry (IFC) dataset of human white blood cells and show
how the obtained features are used to classify cells into 8 cell types based on bright- and
darkfield imagery. Secondly, we process an automated microscopy dataset of human white
blood cells to divide them into cell types in an unsupervised manner. Finally, a high-content
screening dataset of breast cancer cells is processed to predict the mechanism-of-action of a
large set of compound treatments.

The software can be installed from the PyPi repository. Its source code is available at

https://github.com/ScalableCytometryImageProcessing/SCIP under the GNU General
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Public License version 3. It has been tested on Unix operating systems. Issues with the
software can be submitted at https://github.com/ScalableCytometryImageProcessing/

SCIP/issues.

1 Author Summary

Cytometry is a field of biology that studies cells by measuring their characteristics. In image
cytometry, this is done by acquiring images of cells. In order to gain biological insight from a
set of images, an extensive amount of measurements are derived from them describing the cells
they contain. These measurements include, for instance, a cell’s area, diameter, or the average
brightness of the cell image. These measurements can then be analyzed using automated software
tools to understand, for example, how cells respond to drug treatments, or how cells differ between
a healthy and a diseased person. In this work, we present a novel software tool that is able to
efficiently compute image measurements on large datasets of images. We do this by harnessing the
power of high performance computing infrastructure. By enabling image cytometry researchers
to make use of more computational power, they can more efficiently process complex and large

datasets, paving the way to novel, fascinating biological discoveries.

2 Introduction

High-throughput imaging technologies collect detailed information on large volumes of cells en-
abling unprecedented insight into biological systems [20, 30, 16, 33]. Over the last few decades,
advances in machine learning have greatly driven forward the potential of data generated by
various bioimaging modalities. For example, cellular morphological profiles extracted from au-
tomated microscopy data have been combined with deep neural networks to repurpose high-
throughput image assays for more efficient drug discovery[21]. Other machine learning methods
have enabled stain-free classification of leukocytes in human whole blood samples using IFC
data[26, 23], or have improved breast cancer detection using ultrasound imaging[25].

Applying machine learning methods on these datasets requires them to be digested into nu-

merical profiles that describe the cell’s phenotype. These image-derived profiles contain hundreds
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Programming Parallelization | Distribution | Plugins Execution License
language modes
SCIP Python Tmage-based Worker-based 7 CLI GPL-v3
task scheduling
CellProfiler | Python Image-based Batching Yes GUI + CLI | BSD-3
ImageJ(2) Java No No Yes GUI + CLI | BSD-2 Clause
QuPath Java Tiling-based No Yes, through ImageJ | GUI + CLI | GPL-v3
MCMICRO | NextFlow + Docker | Tiling-based Job-based iy g CLI + GUI | MIT
task scheduling
Orbit Java Tiling-based Map-reduce Yes, through ImageJ | GUI + CLI | GPL-v3

Table 1: Overview of existing bioimage analysis tools and comparison to SCIP.

of parameters describing cells in an unbiased way, enabling unexpected novel biological insights
[30]. However, to keep on top of profiling the abundance of generated data, software solutions
have to evolve together with imaging hardware. While in the past imaging data could be analyzed
on a desktop computer, software running on a powerful server or high performance computing
cluster is required to meet current and future demands.

Existing image cytometry analysis tools such as CellProfiler[18, 2], ImageJ[17, 9], QuPath[15],
MCMICRO(34], and Orbit[29] are heavily used by researchers to obtain novel insights into com-
plex imaging data. These tools perform, among other tasks, image segmentation and masking,
and feature profiling. Table 1 gives an overview of how they compare to each other.

While these tools have extensive functionality, they have, except for Orbit, a limited focus on
scalability and focus more on usage with a graphical user interface on local workstations. This
makes them easily adoptable by a diverse audience, but introduces challenges when we need to
scale to large datasets with millions of cells.

In order to be properly scalable, work needs to be distributed over multiple, interconnected
machines. For example, in CellProfiler and MCMICRQO, scaling is achieved by statically partition-
ing the dataset and processing the partitions in parallel on one or more machines[24]. However,
this split-apply-combine approach is less flexible, since no communication is possible between
processes executing the pipeline. For instance in CellProfiler, it is not possible to run different
parts of a pipeline on dedicated hardware, such as running segmentation on a GPU-accelerated
machine.

Orbit does provide distributed processing by implementing a tile-based MapReduce frame-
work based on Apache Spark. However, Orbit is implemented in Java, which makes it less suited

for fast adaptation of state-of-the-art techniques that are often developed in Python. Addition-
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ally, just like QuPath, which is also implemented in Java, it can not benefit from the rich data
science ecosystem in Python.

In this work, we present Scalable Cytometry Image Processing (SCIP), a software package
implemented in Python for morphologically profiling large-scale image cytometry datasets. SCIP
is scalable, flexible, open-source and enables reproducible image processing.

By building SCIP on top of Dask [11], a framework for distributed computing in Python,
it scales from laptops to high performance computing clusters, enabling profiling of small to
large-scale datasets with millions of cells.

Because of SCIP’s design and implementation, it is more flexible than existing tools. First,
by combining Dask’s smart task scheduling and SCIP’s modularity it is possible to execute parts
of the pipeline on specialized hardware such as a GPU. Secondly, SCIP comes with all of Dask’s
benefits such as fault tolerance, load balancing across workers and access to distributed file
systems. Finally, Dask clusters can be set up in a large variety of compute environments, and
can be dynamically scaled up or down with availability of resources.

SCIP also enables reproducible image processing. First, configuration of the software hap-
pens through easily shareable YAML configuration files, making it easy to rerun SCIP with the
same settings. Secondly, its source is available under the GPL-v3 license. All code is available
on Github at https://github.com/ScalableCytometryImageProcessing/SCIP. Finally, the
software is easily installable from the PyPi (https://pypi.org/project/scip/)) repository.

To showcase SCIP’s flexibility, we apply it on large-scale image cytometry datasets in three
use cases. The first and second datasets characterize human whole blood cells using an IFC and
an automated microscopy platform, respectively. The third is BBBC021, a publicly available
high-content screening dataset characterizing the response of breast cancer cells to various small

molecule treatments.

3 Design and implementation

In this section, we give an overview of the image profiling pipeline implemented in SCIP, discuss
how it can be efficiently parallelized with graph-based task scheduling, and show how SCIP is

implemented using the Dask framework.
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3.1 SCIP implements an extensive image profiling pipeline

To profile a dataset, SCIP implements a pipeline consisting of a projection, illumination correc-
tion, segmentation, masking and profiling step. In the following, we discuss for each step what
is computed and how it is concretely implemented.

The input is a matrix of pixels D which encode the measured signal intensity. All datasets
have dimensions X, Y, channel (C) and index (7). In multi-focal datasets, a fifth Z dimension
indexes the different focal planes. We refer to each position ¢ on the index as image (d;) €
Rex#x*xy  Each image d; also has meta data associated with it, which are a number of categorical

or ordinal values.

Projection

For a multi-focal dataset, the images are projected onto one plane as shown in Equation 1.

Project: RE*#X¥XY _ ReX*xY
(1)
where p is a projection function over dimension z, such as the max operator that outputs the max-

imum value over the focal planes on each (¢, z,y) location in d;. SCIP provides implementations

for min, mean, max and median projection.

Illumination correction

Next, illumination correction transforms images to mitigate the influence of non-homogeneous
illumination. Here, we focus on retrospective correction, which combines data from all images
acquired in a batch to produce an illumination correction function (ICF). The function is applied

to each image to produce a corrected version (Equation 2)[8].

Correct: RO**XY  ROX*XY
(2)
di — ICF(di)
SCIP provides the ICF proposed by Jones et al. This approach has also been used to process

the dataset in the use case of Section 4.1.2. In this implementation, the ICF is computed by
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producing a smoothed average of all images per channel per experimental batch. For a dataset

D with m experimental batches D; the ICF is computed for each batch as follows

_ ep, di

d; = median_smooth Zd’EiD] ) (3)
D

where median_smooth is a median filter. The ICF is applied by dividing each image by the

corresponding Ej .

Segmentation

In datasets where each field of view contains many cells, instance segmentation is required to

identify regions containing single cells. The segmentation operation is defined in Equation 4.

Segment : REXTXY _y Rnxcxz’xy’
(4)
d; — {dj|dj C dz}

In SCIP, Cellpose is used for segmentation. It is a deep learning-based generalist algorithm
for cellular segmentation of microscopy data[32], which can be applied on a wide variety of input
images. It achieves state-of-the-art segmentation results by implementing a novel model design
for cell segmentation based on the principles of watershed segmentation, as well as a new training

dataset containing a wide variety of images with manually segmented objects.

Masking

In IFC-like data, each d; is expected to contain one cell. The masking operation (Equation 5)

identifies the region containing the cell’s signal in each channel of the image.

Mask: R XY 5 {0, 1}%<¥
()

dz' = my,

where f is a masking function that sets each (x,y) location to either 0 (background) or 1 (fore-
ground) based on some decision function. SCIP has implementations for threshold and spot

masks, which mask the entire cell area or the brightest spots in it, respectively.
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Profiling

Finally, the images are profiled. This operation (Equation 6 and 7) maps the pixel and mask
data of d; onto a feature vector that describes characteristics such as shape, texture or signal

intensity of the object captured in d;.

Profile: REX®XY s ReXk

di = f(d;)

Profile: REX™XY x {0,1}9X%X¥ — RO*F
(7
(di7mi) — f(dl AN mz)

Three types of features are derived from the pixel and mask data: intensity, shape and
texture. Table 2 gives an example of some of the computed features. Supplementary Section S1
describes the features in detail. All features are computed for every channel in the image using
the channel-specific mask, as well as a union of all masks. The intensity and texture features are

also computed on the pixels on the edge of the mask.

Type Examples Computed on edge
minimum, maximum,
Intensity standard deviation, Yes

skew, kurtosis

eccentricity, area,
Shape diameter, solidity, No
major axis length
Grey-level co-occurrence matrix
(contrast, correlation)
Sobel map
(max, standard deviation)

Texture Yes

Table 2: Examples of features computed by SCIP. The last column indicates whether features
are also computed on edge pixels of an object’s mask.
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3.2 Graph-based task scheduling enables fine-grained control over dis-

tributed pipeline execution

A naive parallel implementation of an image profiling pipeline processes all images d; in dataset

D using a number of isolated processes that execute the full function f, defined as follows
f(d;) = Profile(Mask(Segment(Correct(Project(d;))))). (8)

However, this approach is not flexible due to the lack of communication and cooperation
between the processes.

A way to overcome these limitations, is by using graph-based task scheduling. In this ap-
proach, a directed acyclic graph (DAG), called the task graph, is constructed that encodes all
tasks to be executed on the dataset as nodes, and dependencies between tasks as edges. A task
graph executing the same functions as Equation 8 is shown in Figure 1.

The task graph is analyzed by a scheduler which instructs the worker processes to execute
individual tasks, leveraging parallelization and reusing results where possible. The dynamic
scheduler can also keep track of what each worker is executing so that it can resubmit tasks in

the event of a worker fault, and so that it can rebalance the workload if necessary.

// \\
@—» | Segment !
\ gm !
\ /
. )

Figure 1: Basic task graph encoding the operations of Equation 8 to process dataset D. Nodes
represent operations, edges represent dependencies between operations. Nodes with dashed bor-
ders have specific resource requirements.

A number of frameworks implement graph-based task scheduling, including Apache Spark|[13],

Ray[19] and Dask. We chose to implement SCIP using the latter, because it is written in Python
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and it implements functionality that is a natural fit to the pipeline introduced above.

3.3 Dask-based implementation of SCIP enables scalability to large

datasets

Algorithm 1: Extract image profiles from image dataset D with SCIP.
SCIP(D, segment, masks)
Require: Distributed scheduler S
inputs

e Directory containing image files d

e Segmentation flag segment € {TRUE, FALSE},

e Illumination correction flag correct € {TRUE, FALSE},
e Metadata key indicating group membership group,

e list of masking methods masks

outputs: Image profiles P = {f; € R*} stored on disk
# Create directed acyclic graph (DAG) of tasks
M < bag _from directory(d);
D < M .map_partitions(Load);
if z > 1 then

L D < D.map_partitions(Project);

if correct then

dgroup < D.foldby(group, ICF);
D < D.map_partitions(Correct, Egmup);

if segment then
with dask.annotate (GPU)
L D < D.map_partitions(Segment);

C + 0
foreach mask € masks do
D,, < D.map_partitions(Mask);
D,, < D,, .map_partitions(Profile);
D,, + D,,.to_dataframe();
C + CADy;

D < dask.dataframe.concat(C);

D + Export(D);

# Execute delayed operations on D on S
dask.compute(D);

Algorithm 1 shows how the pipeline is implemented using operations on distributed Dask
collections. The collections are used to construct a task graph that applies the functions defined

in Section 3.1 on the input images. The task graph is sent to the Dask distributed scheduler
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which executes it as efficiently as possible on the available computational resources.

First, paths pointing to input files are stored in a Dask Bag B of dictionaries holding the meta
data about each image d;. In the loading operation, pixel data is added to each dictionary in
the Bag. By using a Bag of dictionaries, we can handle images with varying z and y dimensions
and we can keep the meta data linked to the pixel data.

INumination correction is available in SCIP through a distributed implementation of the
method introduced in 3.1. It is implemented in three steps: First, a foldby operation is used to
compute an average image per group. This is done by computing a distributed sum of all images
and dividing the sum by the number of images in each group. Secondly, each averaged image is
smoothed using a median filter. To reduce the memory footprint of the median filter, the image
can be downscaled prior to filtering. Note that within each group, images need to have the same
dimensions to apply correction.

Next, instance segmentation is performed using watershed or CellPose segmentation. All
channels of the image are segmented separately; objects detected in different channels are as-
signed to the overlapping parent object detected in the user-defined parent channel. Finally, the
segmentation step requires restructuring B from a per-file to a per-object Bag, that is, where B
contains one element per file, bag B’ contains one element per cell.

Dask allows for tasks to be annotated with required resources, such as a GPU, which is
specifically interesting for GPU-accelerated segmentation methods. The scheduler will only as-
sign these task to a worker that has the requested resource. Figure 2 shows the stream of tasks
executed by the workers, three of which have a GPU resource. It illustrates how heterogeneous
computational resources can be used efficiently in SCIP.

Multiple masks can be computed to produce specific views on the images, such as a threshold
and a spot mask. Figure 3 shows how this multi-mask approach translates to the task graph.
Dask’s dynamic task scheduler will cache as much of the loaded images in distributed memory
as possible to avoid re-loading images from disk for each mask.

After segmentation and masking, the profiling operation is applied to B. This operation
converts the Bag into a DataFrame containing a profile for each detected cell. The profiles
are then exported to AnnData h5ad or to Parquet-files, to provide interoperability with the

ScanPy[22] library and other programming languages, respectively. It is also possible to export

10
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Figure 2: The Dask task stream of a microscopy dataset being processed with SCIP showing
how heterogeneous computational resources can be used efficiently by distributing steps of the
pipeline across the cluster. In this pipeline, segmentation is done with CellPose on three GPU-
accelerated nodes.
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Figure 3: Dask task graph visualizing the operations to be executed on the input images. This
particular graph loads in images from two files, computes two different masks for them (a thresh-
old mask and a spot mask), and derives profiles from the images combined with the masks.
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segmentation results for inspection.

4 Results

In the following sections we show SCIP’s flexibility and scalability by applying it on three use
cases, and on three performance experiments measuring runtime and memory usage in multiple
configurations.

Experiments requiring GPU-acceleration were run on a machine with 4 8-core Intel Xeon
Silver 4110 CPU’s and an NVIDIA GeForce RTX 3090 GPU. All other experiments were run
on the Ghent University high performance computing Tier-2 doduo cluster. Each node in this
cluster has 2 48-core AMD EPYC 7552 CPU’s and 250GiB of memory. Experiments were run

on one to five nodes.

4.1 Use cases

We demonstrate the use of SCIP on three datasets. All necessary Jupyter Notebooks to reproduce
our results are provided together with a Snakemake[31] workflow on Github at https://github.
com/ScalableCytometryImageProcessing/SCIP-use-case-workflows. Datasets for use cases
1 and 3 were generated at Newcastle University. All datasets are publicly available for download;

details are provided in their respective sections.

4.1.1 Stain-free classification of human white blood cells with imaging flow cytom-

etry

In [26] we introduced a human white blood cell dataset acquired on a Luminex ImageStream -
MKII IFC platform, and compared stain-free classification performance of 8 white blood cell sub-
types using various machine learning models. Models were trained on feature profiles extracted
from stain-free images (two bright-field images, and one dark-field) using the proprietary IDEAS
software supplied by Luminex. We concluded that a gradient boosting ensemble[10] performed
best. Here, we redo the analysis with SCIP using the original dataset and on an extended version

that has one extra sample.

12
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We show with this use case that SCIP quickly and efficiently profiles IFC data without
the proprietary IDEAS software or the suboptimal IFC solution proposed by CellProfiler. In
particular, the latter requires a tiling step, which introduces limitations in the way the data
must be handled. By removing the necessity for tiling, SCIP is less error-prone and has fewer
parameters.

The dataset consists of 3 human whole blood samples, each stained with 9 fluorescent markers.
Each acquired image has 12-channels; 9 fluorescent, 2 brightfield and 1 darkfield channel. A
ground truth label was assigned to all cells with manual gating on the fluorescent stains. We
refer to [26] for details on the data acquisition and gating procedure. All data is accessible under
study S-BIAD452 on the Bioimage Archive at https://www.ebi.ac.uk/biostudies/studies/
S—-BIAD452.

To profile the dataset with SCIP, we exported 16-bit tiff images from the IDEAS software
and stored them in the Zarr format [27]. Feature profiles were extracted for 247993 12-channel
images masked with both a spot and threshold mask (see Figure 4). Profiling took 2 hours and
29 minutes using 16 workers, 4338 features were computed in total per image. After filtering out

doublets and debris based on the derived profiles, 233 262 cells remained for classification.

slelefo]s]=]e]e[e]e]e
o <[-fefeleofol Jefefofe ] [o
Threshold mask SSC

Spot mask SSC

Figure 4: Example images of threshold and spot masks computed by SCIP for brightfield 1
(BF1), brightfield 2 (BF2) and darkfield (SSC) channels.

Threshold mask BF1

o]

Threshold mask BF2

Using SCIP features we achieved a cross-validated balanced accuracy of 0.827 with standard

error 0.002, compared to 0.853 (standard error 0.002) with IDEAS features (see Table 3) on

13
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the original dataset. The confusion matrices in Figures 5a and 5b show a similar pattern as in
[26] with major white blood cell type groups (lymphocytes, monocytes, neutrophils, eosinophils)
being correctly distinguished, but subtypes, such as CD4+ versus CD8+ T-cells, confusing the
model. We also present classification results on the extended dataset in Supplementary Section
S2.1.2. Methodological details on the classification can also be found in Supplementary Section
S2.1.2.

We acknowledge that with IDEAS features we obtain slightly better classification results,
however, it is not our goal to outperform IDEAS. We rather want to show that we can obtain

similar performance using our scalable and open-source software.
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(a) Obtained with SCIP features. (b) Obtained with IDEAS features.

Figure 5: Classification results for cross-validated stain-free leukocyte classification with an eX-
treme Gradient Boosting classifier.

Metric balanced accuracy f1 macro precision macro
Software IDEAS SCIP IDEAS SCIP IDEAS SCIP
Test 0.853 (0.002) 0.824 (0.002) 0.800 (0.002) 0.767 (0.007) 0.770 (0.003) 0.733 (0.008)

Train 0.917 (0.004) 0.921 (0.013) 0.852 (0.004) 0.849 (0.019) 0.816 (0.004) 0.807 (0.019)

Table 3: Classification metrics for cross-validated stain-free leukocyte classification with an eX-
treme Gradient Boosting classifier using features derived from SCIP and IDEAS.
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4.1.2 Predicting mechanism of action for various small-molecule treatments of

MCF-7 breast cancer cells

We use SCIP to process data from a high-content screening experiment in which cells from a
breast-cancer model system (MCF-7) were treated with a mechanically distinct set of targeted
and cancer-relevant cytotoxic compounds. The dataset provides a basis for testing image-based
profiling methods with respect to their ability to predict the mechanisms of action (MOA) of a
treatment. The image dataset BBBC021v1[4] is available from the Broad Bioimage Benchmark
Collection([5].

We show in this use case that it is possible to perform MOA prediction to a high degree of
accuracy using morphological features derived by SCIP. Thanks to SCIP’s scalable design this
can be done efficiently even for the large-scale dataset at hand, and when using GPU-accelerated
segmentation algorithms, or algorithms which require aggregations over the dataset, such as
illumination correction.

The dataset contains cells treated for 24 hours with 113 compounds at 8 concentrations. The
cells were fixed, stained for DNA, F-actin, and S-tubulin, and imaged by fluorescent microscopy.
In total, there are 39,600 image files (13,200 fields of view imaged in three channels). After
acquisition a subset of the compound-concentrations were categorised into 12 primary MOAs. 6
of the 12 were identified visually, the remaining were defined based on the literature.

Several classification results on the MOA prediction task have been published, which all follow
similar steps: (i) profile the cells using CellProfiler, (ii) summarize the profiles per treatment,
and (iii) use a nearest-neighbor classifier to predict the MOA for a treatment. Singh et al. (2014)
also proposed to perform illumination correction prior to profiling.

To obtain classification results we profiled the dataset using SCIP with illumination correc-
tion, and Cellpose segmentation. It took 17.6 hours to extract profiles for 2.18 million cells using
11 workers of which 4 were GPU-accelerated for segmentation. 470127 cells remained when
keeping only cells from the subset of images annotated with a MOA. The CellProfiler pipeline
identified 454 793 cells. Table 4 shows results of existing approaches to MOA prediction.

We achieved a classification accuracy of 85% with features derived using SCIP following

the modelling pipeline described in [6]. To validate the performance, we used the not-same-
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compound-or-batch cross-validation strategy proposed by Ando, McLean, and Berndl (2017).
Figure 6 shows the confusion matrix. Methodological details on the classification can be found

in Supplementary Section S2.1.1.

Approach Accuracy

L . 76%

This work Illumination correction +Means + SCIP (70/92)
L . . 85%

Tllumination correction +Factor analysis + SCIP (78/92)

. oL . 85%
Singh et al. (2014) Iumination correction +Means + CellProfiler (79/92)
58%

Ljosa et al. (2013) Means + CellProfiler (53/92)
. 7%

Factor analysis + CellProfiler (71/92)

Typical variation normalization 95%

Ando, McLean, and Berndl (2017) (deep learning) (87/92)

Table 4: Classification accuracies obtained on the mechanism-of-action prediction task on the
BBBC021 benchmark dataset using several approaches. We achieve comparable accuracies to
CellProfiler-based approaches using SCIP.

Acc.

Actin disruptors - 11 1 2 0%

Aurora kinase inhibitors q 100%
DNA damage A 2 78%

DNA replication o 2 N9 75%

-;% Eg5 inhibitors 11 1 92%
S Epithelial 8 100%
" Microtubule destabilizers A 1 12 1 86%
Microtubule stabilizers - 9 100%
Protein degradation 4 2 |5 71%

Protein synthesis 1 n 100%

Overall Acc.:85%
Predicted label

Figure 6: Confusion matrix for the mechanism-of-action prediction task on the BBBC021 bench-
mark dataset obtained with SCIP using illumination correction and factor analysis.

4.1.3 Unsupervised profiling of leukocytes in human blood with automated confocal

microscopy

We use SCIP to profile single cells in automated microscopy images of human whole blood cells

and cluster them into 4 major cell types. We show with this use case that SCIP enables efficient
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profiling of cells in automated microscopy images in a distributed environment using state-of-
the-art GPU-accelerated techniques.

Blood from a healthy donor was stained and imaged on a Zeiss Celldiscoverer 7 platform.
The planes contain 7 channels: 4 fluorescence channels, a brightfield channel, an oblique channel
and a phase-gradient contrast channel. We refer to the Supplementary Material for acquisition
details. All data is accessible under study S-BIAD452 on the Bioimage Archive at https:
//www.ebi.ac.uk/biostudies/studies/S-BIAD505.

The images were processed with SCIP to obtain single-cell feature profiles. SCIP profiled
45,942 objects in 57 minutes and 36 seconds using 6 workers in total, of which 2 GPU-accelerated
workers for CellPose-based segmentation.

We clustered cells into 4 distinct phenotypes using Leiden clustering: granulocytes, eosinophils,
lymphocytes and monocytes. We also identified one unclassified cluster, which had low response
for all markers in the panel. We hypothesize this cluster is made up of cell debris and platelets.
Supplementary Figure S7 shows some example images of objects from the unclassified cluster.
Finally, we embedded the features with UMAP to visualize the cell populations. Figure 7 shows
an overview of the annotation. Supplementary section S2.1.3 describes the clustering procedure

in detail.

Cell type counts Marker intensity UMAP

monocytes

lymphocytes

monocytes
lymphocytes
granulocytes
eosinophils
unclassified

monocytes

granulocytes

UMAP2

lymphocytes

cell type
eeocoe

eosinophils granulocytes

eosinophils

on
"

-2 -1 0 1 2 UMAP1

unclassified

0 1000 2000 3000 4000 5000
count

Siglec 8
15
DAPI
cD4s

Figure 7: Left Cell type counts per replicate show an equal distribution over the replicates,
as expected. Middle Mean expression of marker per cell type. Right UMAP embedding
showing all populations separated in two dimensions. Note the unclassified cluster, which has
low expression for all markers and is likely made up of debris and platelets.
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Figure 8: Results of scaling experiments.

4.2 SCIP scales well for increasing dataset size and number of workers

In this section, we probe the performance and scalability of SCIP in three experiments, cor-
responding to three parameters that determine the runtime and maximum memory usage of
our approach: the dataset size d, the number of workers n and the partition size p. We
probe the scalability of SCIP by alternatively fixing n or d and varying the other two, us-
ing the values shown in Table 5 and p € {100 -2 | i € {0,1,2,3,4}}. To limit the com-
putational requirements we only used a part of the dataset from the second use case to col-

lect the measurements. Scripts to reproduce these results can be found on Github at https:
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//github.com/ScalableCytometryImageProcessing/benchmark.

Experiment ‘ Number of workers Dataset size ‘ Measurement
(a) {2 ]i€e{1,2,3,4,5}} 80,000 Runtime
(b) 16 (1-10° | i € {2,3,4,5,6)} | Runtime

()

Table 5: Experimental settings for number of workers and dataset size to probe the scalability
of SCIP.

Max. memory usage

First, we find that SCIP scales well with the number of workers. Figure 8a shows that
doubling the number of workers, doubles the number of images processed per second. When
the number of workers exceeds 8 the measured runtimes diverge from the ideal speedup to the
incurred communication overhead between the workers. The partition size does not have a strong
influence in this experiment.

Secondly, we find that SCIP scales well with respect to dataset size for a fixed number of
workers. As expected, Figure 8b shows that for lower dataset sizes the distribution overhead is
large, leading to a low number of images processed per second. For dataset sizes over 10000,
the overhead becomes small and the processing speed reaches a plateau of 300-350 images per
second. This experiment shows an influence of partition size: for smaller datasets a smaller
partition size allows for more parallelization and shorter runtimes. For larger datasets, a larger
partition size is preferable to reduces communication overhead. As a rule of thumb, for datasets
with less than 100 000 objects the partition size should be between 200 and 400. When going up
to 1000000 objects, the partition size should be at least 1000.

Finally, we find that SCIP has good scaling behaviour in terms of maximum memory usage.
Figure 8c shows that memory usage scales linearly for small datasets, and sublinearly when
dataset size exceeds 10000. This is likely due to Dask’s smart task scheduling, which takes into
account memory availability before scheduling new tasks, and traverses the task graph depth-first
allowing for quicker reduction of the images in memory to profiles, which take up less memory.
From these experiments we can conclude there is a trade-off between memory usage and speed
when choosing partition size: maximum memory usage tends to be lower for smaller partition

sizes, but processing speed is higher for larger partition sizes.
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5 Availability and Future directions

SCIP is available to install from Github at https://github.com/ScalableCytometryImageProcassing/
SCIPor PyPiathttps://pypi.org/project/scip/. The documentation (https://scalable-cytometry-image-pz
readthedocs.io) contains usage information.

SCIP can easily be extended to be applied on other imaging data. In terms of input
formats, a next step is to provide support for the standardized OME-TIFF (https://docs.
openmicroscopy.org/ome-model/5.6.3/ome-tiff/specification.html) and OME-NGFF[28]
file formats. This would allow users to more easily convert their data into a compatible input
format to be profiled by SCIP.

An interesting use case to explore for SCIP is spatial omics data. These tissue imaging
datasets are typically very large and require complex pipelines and extensive computational
power to be processed. In the future, we would like to use SCIP to speed up processing of these
datasets.

We would also like to extend SCIP’s profiling functionality on two fronts: First, we want to
integrate CellProfiler into SCIP to make use of its extensive functionality. However, this integra-
tion is not trivial, and attempts at integration have significantly decreased SCIP’s performance.
Secondly, we would like to integrate deep learning-enabled feature extraction using pretrained
neural networks. These features could augment existing features for improved performance in

downstream analysis tasks.

6 Conclusion

In this work we introduced Scalable Cytometry Image Processing (SCIP) an open-source software
tool for processing large-scale image cytometry datasets implemented using the Dask framework.
We discussed SCIP’s implementation and design details, highlighting the fine-grained control
over task execution, scalability, and reproducibility of our software.

We demonstrated in three use cases how SCIP is used to analyze microscopy and imaging
flow cytometry datasets. We reproduced earlier results obtained on stain-free classification of 8

white blood cell types, performed unsupervised clustering to profile a healthy blood sample, and
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reproduced results of mechanism of action-prediction using morphological features.

Finally, we show SCIP has good scaling behaviour based on timing experiments where we
increased the number of workers and dataset size, as well as memory usage experiments where
we measured the impact of dataset size on peak memory usage.

In conclusion, SCIP is a Python software package that enables computational biologists to
extract rich feature profiles from various image cytometry datasets in a fast, reproducible and

scalable manner using state-of-the-art methods.
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