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Abstract 
Gene expression and morphology both play a key role in determining the types and functions of cells, 

but the relationship between molecular and morphological features is largely uncharacterized. We present 
MorphNet, a computational approach that can draw pictures of a cell’s morphology from its gene expression 
profile. Our approach leverages paired morphology and molecular data to train a neural network that can predict 
nuclear or whole-cell morphology from gene expression. We employ state-of-the-art data augmentation 
techniques that allow training using as few as 10� images. We find that MorphNet can generate novel, realistic 
morphological images that retain the complex relationship between gene expression and cell appearance. We 
then train MorphNet to generate nuclear morphology from gene expression using brain-wide MERFISH data. In 
addition, we show that MorphNet can generate neuron morphologies with realistic axonal and dendritic 
structures. MorphNet generalizes to unseen brain regions, allowing prediction of neuron morphologies across 
the entire mouse isocortex and even non-cortical regions. We show that MorphNet performs meaningful latent 
space interpolation, allowing prediction of the effects of gene expression variation on morphology. Finally, we 
provide a web server that allows users to predict neuron morphologies for their own scRNA-seq data. 
MorphNet represents a powerful new approach for linking gene expression and morphology.  
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Introduction 
 The forms and functions of cells are closely related. Historically, morphology was one of the first ways 
of identifying distinct types of cells, a fact reflected in descriptive names such as squamous, stellate, and 
dendritic cells. Cell morphology serves as a crucial marker of cellular identity across a range of biological 
contexts. For example, cell morphology is used in diagnosing cancer by identifying irregular or enlarged 
nuclear morphology1, monitoring metastatic events through detachment from basal membrane2, determining 
differentiation status of stem cells3, and elucidating neural circuits through axonal and dendritic structures. 
More recently, single-cell transcriptome and epigenome profiling have enabled unbiased definition of cell types 
using molecular features, but technological limitations make it difficult to relate molecular and morphological 
properties. Linking single-cell molecular profiles with morphology would provide key insights to further study 
important functions of cells that give rise to neural circuits, stem cell differentiation, cancer metastasis, and 
more.  

The need for linking morphological and molecular data is particularly acute for neurons, whose complex 
morphologies are highly cell-type-specific, essential for their function, and difficult to assay in high-throughput 
fashion. The BRAIN Initiative Cell Census Network (BICCN) is currently working to generate a 
comprehensive brain cell atlas that characterizes the neuronal cell types in the mammalian brain6,7. Measuring 
millions of single-cell gene expression profiles has enabled discovery of new cell types, gene regulatory 
mechanisms, and insights into developmental dynamics and neurodegenerative diseases8,9. However, a neuron’s 
transcriptome is just one of many facets that make up its identity, and other modalities such as morphology and 
electrophysiology are needed to create a taxonomy of cell types and to understand properties of neural circuits.  

Recent advancements in spatial transcriptomics allow measurement of gene expression between 
thousands to millions of single cells while retaining tissue coordinates. Because spatial transcriptomic 
approaches sample molecules from cells in their native tissue context, some protocols allow for paired 
measurement of morphology and gene expression from the same single cell. For example, the spatial 
transcriptomic methods MERFISH10–13, seqFISH14–16, osmFISH17, and Seq-Scope18,19 all include an imaging 
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step that gives morphological images for individual cells. Additionally, Patch-seq allows for simultaneous 
profiling of transcriptomics, electrophysiology, and morphology across thousands of neurons20–23.   

Paired morphological and molecular data from the same cells provides a unique opportunity to explore 
the connection among these modalities, but existing studies have not used these data types to generate new 
morphologies. Tripathy et al. used statistical methods to infer cellular features from single-cell gene expression 
and identified 420 genes whose expression level correlated with electrophysiological features24. Bomkamp et al. 
similarly identified genes whose expression levels relate to electrical and morphological properties for 
excitatory and inhibitory neuron cell types using Patch-seq datasets25. Bao et al. developed multi-modal 
structured embedding (MUSE), which uses deep learning to learn a low dimensional joint representation from 
both gene expression and morphology from spatial transcriptomics datasets26. Monjo et al. developed a deep 
learning model for Spatial gene Clusters and Expression (DeepSpaCE), which predicts spatial-transcriptome 
profiles from H&E-stained images27. However, to our knowledge no existing approaches allow the 
prediction of a cell’s morphology from its gene expression. 

We present MorphNet, a computational approach that can generate possible morphologies from the gene 
expression profile of a cell. Our approach leverages paired morphology and molecular data20,21 to train state-of-
the-art deep generative models28–31 that can predict single-cell nuclear or whole-cell morphology given gene 
expression data. To overcome the challenge of training a deep learning model using limited data such as from 
labor intensive experiments such as Patch-seq21,32, we employed state-of-the-art data augmentation techniques. 
We find that MorphNet can generate realistic, novel morphological images that retain the complex relationship 
between gene expression and cell appearance. In addition, we show that MorphNet can generalize to new 
contexts and augment single-cell RNA-seq data by predicting morphology. We then use MorphNet to predict 
morphologies for neurons from the mouse isocortex and bed nucleus. Finally, we show that MorphNet performs 
meaningful latent space interpolation, allowing prediction of the effects of gene expression variation on 
morphology. 

Results 
Overview of MorphNet model.  

MorphNet is a deep generative model30,31,33,34 that predicts the morphology of a cell from its gene 
expression profile. Because many factors shape morphology, knowing the gene expression of a cell constrains 
but likely does not uniquely determine its morphology. Thus, we formulate this problem as learning to sample 
from a conditional distribution of morphologies given gene expression. MorphNet learns the distribution of cell 
morphology conditioned on gene expression by combining two types of neural networks: a variational 
autoencoder (VAE)28,29,35 that encodes each single-cell gene expression vector into a low-dimensional 
representation and a generative adversarial network (GAN)30,31,34 that generates a distribution of possible 
morphology images from the gene expression representation (Figure 1a). The VAE and GAN are separately 
trained, enabling rapid and stable training. We previously showed that combining VAEs and GANs in this 
fashion inherits the best properties of each type of network, allowing the learning of semantically meaningful 
latent representations through VAEs while also generating realistic high-dimensional samples using GANs36. 
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Figure 1. Schematic of MorphNet for predicting cell morphology from gene expression. a. During training, 
the VAE of MorphNet learns to encode single-cell gene expression into a low-dimensional gene vector. The 
GAN generator then takes pairs of latent gene vectors and images and learns to generate images that the 
discriminator cannot distinguish from the training data. b. MorphNet can then be used to predict new 
morphologies from experiments with no corresponding morphologies (such as scRNA-seq) by encoding the 
scRNA-seq data into the same latent space as the training data.  

The encoder of the VAE model28 of MorphNet learns a nonlinear mapping from high-dimensional gene 
expression space to low-dimensional latent gene space. We use a VAE with fully-connected (multilayer 
perceptron) layers and a negative binomial likelihood29,35. The VAE is a Bayesian model that infers a 
distributional estimate for the latent representation of each cell’s gene expression, allowing many 
representations to be sampled for each single cell. The generator of the GAN30,37 model then takes the sampled 
latent gene expression vector as conditional information, which is concatenated with a small noise vector to 
produce a range of plausible morphological images for a given gene expression profile. We adapted the 
StyleGAN2-ADA architecture31,33,34, a state-of-the-art model that uses 2D convolutional layers to generate 
realistic, high-resolution images. In addition, we incorporate adaptive discriminator augmentation (ADA), 
which uses invertible image transformations to perform data augmentation. This allows allowing GAN training 
with only ~10� images—many fewer than the 10�-10� normally required for GAN training31. The probabilistic 
nature of both VAE and GAN models the many-to-many relationship between gene expression and morphology. 
Rather than a single gene expression profile uniquely determining a single morphology, MorphNet flexibly 
captures the complex relationship between a single-cell gene expression profile and the many possible 
corresponding morphologies.  

MorphNet is trained on paired single-cell gene expression and morphological images from spatial 
transcriptomics experiments, such as MERFISH11,13,38,39 or Patch-seq20,22,40,41. We first train the VAE to encode 
single-cell gene expression into the latent space and decode the original input from the low-dimensional 
representation28,29. Then we train the GAN using pairs of gene expression representations and their 
corresponding real images. During training, the GAN generator learns to output images that look sufficiently 
similar to the real images to fool the discriminator network while preserving the correspondence relationship 
between each gene expression profile and its real image (Figure 1a). Once trained, MorphNet can output a 
distribution of morphological images conditioned on any latent gene expression vector, allowing it to generalize 
beyond the training data and predict morphologies from unseen gene expression profiles. To predict 
morphological images of scRNA-seq datasets that lack morphological data, we first combine the datasets with 
spatial transcriptomic datasets to obtain a shared latent gene space. After training the GAN on the shared latent 
gene expression with existing spatial transcriptomic training data, MorphNet can infer new morphological 
images for scRNA-seq cells in the shared latent space (Figure 1b).  
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MorphNet generates realistic nuclear morphology images from gene expression.  
We first evaluated MorphNet on data from the MERFISH protocol39, which uses multiplexed 

fluorescent in situ hybridization to measure gene expression with subcellular spatial resolution11,13,38. Most 
MERFISH datasets also include DAPI fluorescent imaging, which highlights nuclear morphology and is used to 
aid cell segmentation. We reasoned that the DAPI channel gives potentially useful morphology data that can be 
paired with the gene expression measurements from the same cell. We focused in particular on the Vizgen 
Mouse Brain Receptor Map dataset, which contains measurements for 483 genes from 734,696 cells across 9 
coronal slices from the adult mouse brain39. We segmented the 100-nm resolution DAPI images using the 
provided single-cell boundaries. Note that we used the cell boundaries, which subsume the nucleus; thus, the 
boundary of the nucleus is determined by the measured DAPI signal rather than a computational segmentation 
algorithm. To ensure uniform image sizes, we centered and padded each nuclear image to 256 �256 pixels. 

 

 

We then trained MorphNet on the paired image and gene expression data from MERFISH39. We held 
out 10% of the cells and trained on the remainder, then assessed MorphNet performance using several 
quantitative metrics. We measured the Fréchet Inception Distance (FID)42, a commonly used metric for 
generative models that computes the distance between the distribution of generated images and the distribution 
of real images. Lower values of FID indicate better generated image quality, with a minimum of zero indicating 
identical distribution to that of real morphological images. We also devised a metric to assess how accurately 

Figure 2. MorphNet generates realistic morphology images from single-cell gene expression. a. Training 
scheme of MorphNet on Vizgen MERFISH dataset. b. Comparison between real single-cell nucleus images and 
generated morphological images from baseline and MorphNet. MorphNet can generate complex, realistic 
nuclear shapes, while the baseline model cannot. c. Relative accuracy and F1 scores from classifying real or 
generated DAPI Nuclei images as from neuron or non-neuronal cell type. d. Comparison between real neuron 
morphologies and those generated from a holdout set using MorphNet across six cell types present in the Patch-
seq dataset. e. Comparison between real Patch-seq images and generated whole neuron morphologies from 
baseline and MorphNet. f. Relative accuracy and F1 scores from classifying the transcriptional cell type of real 
or generated neuron morphologies using a classifier trained on the real images. Note that the accuracy and F1 
score are reported relative to the accuracy of the classifier evaluated on the real data. 
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MorphNet generated images reflect the conditional information from gene expression. To do this, we first 
trained a deep neural network classifier43 to recognize the transcriptional cell type of a cell from its nuclear 
morphology using the real image data. Then, we evaluated the generated images using the trained classifier for 
which the true transcriptional labels are known. If MorphNet respects the relationship between gene expression 
and morphology, the classifier performance will be similar when evaluated on either real or generated images. 

We also implemented a baseline model to compare with MorphNet (Supplementary Figure 1). The 
baseline model uses a convolutional neural network architecture43–47,  and consists of transpose convolutional 
layers and convolutional blocks inspired by U-Net decoders48. We trained the baseline model to predict images 
from a latent gene expression representation using mean squared error (MSE) loss. We then compared the 
images generated by the baseline model with images generated by MorphNet, which was trained using 
adversarial loss (Figure 2a).  

MorphNet generates highly realistic nuclear morphology images from the MERFISH data. The 
generated images are qualitatively very similar to the real images and reflect nuances of complex shape and 
fluorescence intensity patterns (Figure 2b). In contrast, the generated images from the baseline model match the 
real images with respect to overall fluorescence intensity and total nuclear area but fail to capture more complex 
nuclear shapes, often producing approximately circular single-nucleus images. The FID metrics also indicate 
that MorphNet generates much more realistic images than the baseline: MorphNet achieves an FID of 19.4, 
while the FID for the baseline model is 144.4 (Figure 2b). The relatively poor performance of the baseline 
model is likely because the assumption that each gene expression profile uniquely determines a single 
morphology image is invalid. Instead, gene expression and morphology have a complex, many-to-many 
relationship in which gene expression profiles constrain but do not uniquely determine the morphological 
images. 

MorphNet also generates images that retain the relationship between gene expression and morphology. 
Although nuclear morphology is not as cell-type-specific as whole-cell morphology, our trained classifier was 
able to distinguish neuronal nuclei from non-neuronal nuclei with 80.4% accuracy and 83.5% F1 score. Thus, 
the morphology of the real images does reflect the transcriptional cell type to some detectable degree. When 
evaluated on MorphNet images, the classifier achieved an accuracy of 99.7% and F1 score of 100% relative to 
the real data (Figure 2c), indicating that MorphNet respects the constraint of the gene expression information 
when generating morphologies. In comparison, classification of generated images from the baseline models 
performs similarly to that of a random classifier (Supplementary Figure 2), indicating the lack of encoded cell 
type information in the generated images.  

We trained MorphNet on an additional spatial transcriptomic data type called cyclic-ouroboros smFISH, 
or osmFISH (Supplementary Figure 3). We found that MorphNet again produced highly realistic images of 
nuclear morphology from DAPI staining (FID = 6.89 for training set; FID = 8.37 for testing set). However, the 
osmFISH morphology data was lower resolution than that of MERFISH data, and a classifier trained to 
recognize transcriptional cell types from the real morphologies did not outperform a random baseline. This 
indicated that the real morphology images lacked information about the transcriptomic cell type, so we did not 
analyze the osmFISH dataset further.  

 
MorphNet generates realistic whole-neuron morphology images from gene expression.  

We next applied MorphNet to generate whole neuron morphological images using Patch-seq data21,32. 
The Patch-seq protocol measures transcriptomic, electrophysiological, and morphological properties from the 
same cells41. Whole-neuron morphology images from Patch-seq are significantly more complex than nuclear 
morphology images, containing intricate dendrite and axon branching structures. In addition, the number of 
cells is limited due to the laborious manual processes required for patch clamping and morphological 
reconstruction. However, neuron morphology is much more cell-type-specific than nuclear morphology, and the 
ability to predict neuron morphology from gene expression would be a powerful tool for understanding the 
functional implications of molecular variation.  

To train MorphNet to generate whole neuron morphologies, we combined two Patch-seq datasets from 
the mouse visual cortex and mouse motor cortex21,32. The combined datasets include 5,764 cells with gene 
expression measurements. We annotated each of the cells according to six broad transcriptional cell types: 
intratelencephalic-projecting excitatory neurons (IT), interneurons expressing vasointestinal peptide (Vip), 
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interneurons expressing Lamp5, interneurons expressing parvalbumin (Pvalb), interneurons expressing 
somatostatin (Sst), and interneurons expressing Sncg. As with the MERFISH data, we first trained a VAE model 
with negative binomial likelihood to encode Patch-seq gene expression measurements into 10-dimensional 
latent gene representations. To obtain whole neuron morphological images, we projected the reconstructed 
neuron morphologies onto the xy-plane and colored the pixels by neuronal component (dendrite = red; axon = 
blue; soma = black; Supplementary Figure 4). We then split the dataset into training set (90%) and testing set 
(10%) stratified by cell type and trained MorphNet on the paired image and gene expression data.  

Despite the relatively small number of morphology images available for training, MorphNet was able to 
generate highly realistic neuron morphologies that reflect the provided gene expression data (Figure 2c). We 
experimented with different GAN architectures31,49 (Supplementary Figure 5), and found that StyleGAN231 is 
able to capture the complex morphologies of whole neurons. We further tested a data augmentation technique 
called adaptive discriminator augmentation (ADA)31 and found it to significantly reduce overfitting in the 
discriminator network, improving MorphNet’s generalizability to unseen data (Supplementary Figure 6). We 
compared the true and generated morphology images for held-out cells; the network had not seen either the 
gene expression profile or the corresponding morphology. Note that we also did not provide any cell type labels 
to MorphNet during training. Nevertheless, when given new Patch-seq gene expression profiles, MorphNet was 
able to generate realistic morphologies that were strikingly similar to the true corresponding morphologies and 
retained the distinctive characteristics of the six transcriptional cell types (FID = 12.90 for training set; FID = 
15.82 for testing set). This indicates that MorphNet successfully generalized to the test set despite the limited 
training data.  

The baseline model achieved an FID score of 315.7 compared to the FID score of 15.82 from MorphNet 
(recall lower FID is better). Visually, the images generated by MorphNet are nearly indistinguishable from real 
neuron morphologies (Figure 2d). As with the MERFISH data, the baseline model generates highly blurred 
images that reflected some characteristics of the neuron color and shape, but do not resemble neurons at all. We 
also tested whether the generated images contain cell-type specific information by training a ResNet-50 
classifier43 to recognize the transcriptional cell type (IT, Lamp5, Vip, Pvalb, Sst, and Sncg) from the generated 
morphology. Because neuron morphology is highly cell-type-specific, we were able to classify the generated 
morphology images according to transcriptional cell type with 73% accuracy and 60% F1 score. The same 
classifier evaluated on the images generated by MorphNet achieved 84.4% accuracy and 91.8% F1 score 
relative to the classifier performance on the real images. A baseline classifier that randomly guesses the cell 
type with probability equal to the class proportions performed significantly worse, with a relative accuracy 
score of only 29.7% and relative F1 score of 36.2%. In addition, the images generated by the baseline model 
scored a relative accuracy score of 45.0% and a relative F1 score of 32.7%, indicating that the baseline model 
does not generate recognizable examples of the morphologies from each transcriptional cell type 
(Supplementary Figure 7). This indicates that, overall, the generated images retain morphological differences 
among transcriptional cell types and accurately reflect the complex relationship between gene expression and 
morphology (Figure 2e).  

Recent papers have shown that trained GAN generators can be used to discover nonlinear directions of 
variation in data space62. In the case of MorphNet, such directions would correspond to the dominant ways in 
which morphologies vary among cells.are among the primary sources of variation in MorphNet generation 
results, while for neuron morphologies, the degree of axon and dendrite branching are the dominant 
morphological axes. 
 
MorphNet predicts morphology from unseen single-cell RNA-seq profiles.  

The ability of MorphNet to predict morphology from gene expression raises the exciting possibility of 
augmenting sc RNA-seq datasets with inferred morphologies. To investigate this further, we tested whether 
MorphNet can generate realistic whole neuron morphology for scRNA-seq datasets that have no experimentally 
measured morphology information. We retrained the MorphNet VAE to embed both Patch-seq and scRNA-seq 
data in the same latent space. Then we retrained the GAN using the joint latent space for both data types and the 
paired images for the Patch-seq dataset. Finally, we predicted morphologies for the scRNA-seq profiles by 
passing them through the VAE encoder and using the latent representation as a condition for the GAN generator 
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(Figure 3a). We used this same training scheme for three different scRNA-seq datasets from different regions of 
the adult mouse brain. 

We first tested MorphNet on a dataset containing 215,823 single-nucleus RNA-seq (snRNA-seq) 
profiles from the primary motor cortex (MOp) of the adult mouse brain50. The motor cortex is near the visual 
cortex and contains transcriptionally similar cell types, and the Patch-seq training data already contains cells 
from the motor cortex51. Thus, we expect that MorphNet should be able to generate reasonable morphological 
predictions for snRNA-seq data from MOp. Prior to obtaining gene expression encodings, we filtered the MOp 
dataset to only cell types that exist in the Patch-seq dataset. Figure 3b shows the UMAP plot of the latent gene 
expression space for the combined Patch-seq and MOp datasets. As shown in Table 1, using combined latent 
gene expression space from Patch-seq and MOp achieved an FID score of 14.68 on the Patch-seq dataset alone 
and FID score of 14.83 on the MOp dataset alone. Figure 3b shows predicted neuron morphologies from Sncg, 
IT, and Pvalb cell types from the MOp dataset as well as sample images from corresponding cell types from 
Patch-seq. Supplementary Figure 8 shows uncurated generated images of all cell types in the MOp dataset. 
The images generated from snRNA-seq profiles are highly realistic and qualitatively retain the cell-type-
specific morphologies seen in the Patch-seq cells, with a relative accuracy score of 57.52% and relative F1 
score of 64.25%. Thus, MorphNet successfully predicts morphologies even for snRNA-seq datasets with no 
morphological information. 

 
Table 1. Metrics on generated neuron morphologies from MorphNet trained on combined datasets. 

 
Datasets 

FID score  Classification 
Patch-seq scRNA-seq Rel. Acc.  Rel. F1 

Patch-seq + MOp 14.68 14.83 57.52 64.25 
Patch-seq + Isocortex 14.64 32.30 64.01 71.27 
Patch-seq + BNST 14.54 38.45 90.92 100 
 

Next, we tested MorphNet on a large scRNAseq dataset from the entire Isocortex region of the adult 
mouse brain. We subset the Isocortex dataset to only GABAergic cells and combined with Patch-seq for a total 
of 176,272 cells and 7,595 genes. Even though Patch-seq data is from only visual and motor cortex, sub-regions 
of the Isocortex, we hypothesized that we could predict accurate morphologies for other cortical regions 
because cortical GABAergic neuron gene expression does not show significant regional variation51. Figure 3c 
shows the UMAP plot of the learned gene expression space for the combined datasets, as well as predicted 
neuron morphologies for cells in the Isocortex dataset. Supplementary Figure 9 shows uncurated generated 
images for GABAergic cell types in the Isocortex dataset. As with the MOp, the morphologies generated from 
scRNA-seq profiles look realistic and retain the characteristic morphologies of different transcriptional types 
with FID score of 32.30 and relative accuracy of 64.01% and relative F1 score of 71.27%. This demonstrates 
MorphNet’s ability to generate and predict neuron morphologies for scRNAseq data across a large region of the 
mouse brain.  
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Figure 3. MorphNet predicts morphologies for scRNA-seq datasets. a. Schematic of predicting new neuron 
morphologies for scRNA-seq datasets with no ground truth morphologies. b. UMAP plot of latent gene 
expression space from Patch-seq + MOp colored by cell type. Predicted whole neuron morphologies for Sncg, 
IT, and Pvalb cell types from MOP dataset on left and samples of ground truth images from Patch-seq on right. 
c. UMAP plot of latent gene expression space from Patch-seq + Isocortex colored by cell type. Predicted whole 
neuron morphologies for Sst and Lamp5 cell types on left and samples of ground truth images from Patch-seq 
on right. d. UMAP plot of latent gene expression space from Patch-seq + BNST colored by cell type. Predicted 
whole neuron morphologies for cells from BNST dataset on left and real morphologies from visual cortex (VIS) 
Patch-seq data on right.   

Having established that MorphNet can predict morphologies for scRNA-seq profiles from new areas of 
the cortex, we applied the method to a brain region outside the cortex. We previously reported diverse 
transcriptional subtypes of GABAergic neurons in the bed nucleus of stria terminalis (BNST), including several 
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clusters that express some of the same key marker genes as cortical interneurons52. To determine which BNST 
cells are most similar to cortical interneurons, we integrated the MOp snRNA-seq dataset with our previous 
BNST snRNA-seq dataset using the LIGER52 algorithm. This analysis showed that the cell types in MOp and 
BNST are quite different overall, with very few overlapping populations (Supplementary Figure 10a). However, 
we did identify three minor populations within the BNST, constituting 1,053 cells (2.7% of all BNST cells), 
which aligned with cortical interneuron types (Supplementary Figure 10b). We used LIGER to identify 
� �  80 joint clusters and calculated the percentage of each cell type from both MOp and BNST within each 
cluster. While most clusters contain cells from only one region, we found that the BNST_Cplx3 cell type aligns 
with the Lamp5 cluster, the BNST_Sst cell types aligns with the Sst cortical type, and the BNST_Vip matches 
with the Vip cluster from MOp. We thus extracted only the cells from these three BNST clusters and trained a 
VAE model to jointly encode these cells with the Patch-seq data (Figure 3d). A UMAP visualization of the 
VAE latent space also supports the similarity of these cell types, with BNST_Sst positioned near Sst, BNST_Vip 
positioned near Vip, and BNST_Cplx3 positioned near Lamp5. We next used MorphNet to predict morphologies 
for the BNST cells (Figure 3d). Supplementary Figure 11 shows uncurated generated images of the BNST 
dataset. Remarkably, despite the significant transcriptional differences between the Patch-seq cells used in 
training and the BNST cells, MorphNet predicted realistic morphologies BNST snRNA-seq profiles. To our 
knowledge, the morphologies of these cells have not been experimentally characterized. However, some studies 
have predicted that BNST_Cplx3 morphology could be similar to that of the cortical neurogliaform neurons53. 
The MorphNet predictions further support this hypothesis.  
 
Latent space interpolation predicts morphological effects of varying gene expression.  

A key benefit of deep generative models is their ability to perform latent space interpolation—to predict 
realistic high-dimensional examples from unseen combinations of latent variables. In the context of cell 
morphologies, interpolation in the latent gene expression space would allow MorphNet to predict the 
morphological effects of new combinations of expressed genes. Such an ability could not only yield interesting 
predictions, but could reveal new insights into the specific ways in which gene expression influences 
morphology. 
 We first investigated the effects of linear interpolation between the latent embeddings of Patch-seq cells. 
To do this, we chose a starting cell (such as a Lamp5 neuron) and an ending cell (such as a Vip neuron). Then 
we calculated new latent space positions by taking a weighted average of the start and end cell embeddings, 
with varying weights—a process called linear interpolation. Note that these interpolated latent space positions 
do not result from encoding the gene expression profile for a real cell, but instead correspond to hypothetical 
unobserved gene expression profiles intermediate between the start and end neurons. We then generated 
morphologies for the interpolated latent space positions (Figure 4a). Remarkably, the predicted morphologies 
show meaningful interpolation, with the intermediate latent space positions still producing realistic neuron 
morphologies that gradually transition from the morphology of the starting cell to the morphology of the end 
cell. We repeated this procedure 100 times and confirmed that the images generated from interpolated gene 
expression profiles consistently interpolated among the start and end cell morphologies, including when varying 
the transcriptional types of the start and end cells.  A classifier trained on the real images confirms this 
qualitative result, with gradually decreasing classification probabilities for the starting cell type Lamp5 (70.46% 
± 6.98%, 45.71% ± 7.44%, 5.92% ± 2.65%, 2.74% ± 1.67%, and 1.49% ± 1.75%) and gradually increasing 
probabilities of the ending cell type Vip (5.50% ± 3.75%, 7.11% ± 3.74%, 37.43% ± 7.68%, 60.22% ± 7.50%, 
and 84.75% ± 4.73%). These numbers quantitatively confirm the morphological changes reflected in the 
predicted images. We also show a sampling of uncurated examples in Supplementary Figure 12 (linear 
interpolation between Lamp5 and Vip) and Supplementary Figure 13 (linear interpolation between Pvalb to Sst). 
 Next, we investigated how changing the expression of specific genes affects the predicted morphology. 
This time, rather than manipulating the latent space, we changed the high-dimensional expression profile of a 
cell before encoding it into the latent space. To choose genes most likely to have a large effect, we used the 
Wilcoxon rank-sum test to identify differentially expressed genes (DEGs) for each transcriptional cell type 
(Figure 4b). Then, we created new gene expression profiles by zeroing out the expression of DEGs in the 
starting cell type (e.g., Lamp 5). We then set the expression of DEGs for a different target cell type (e.g., Vip) to 
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an arbitrary high value, encoded these synthetic gene expression profiles into the latent space using the VAE 
and generated morphologies for them. The resulting morphologies are still highly realistic and qualitatively 
reflect the changes in gene expression: subtracting the DEG expression from the starting cell type removes 
much of the characteristic morphology of this cell type, while adding the DEG expression from the target cell 
type results in a morphology resembling this type.  
 
Table 2. Number of Differentially Expressed Genes Identified per Cell Type 

 IT Lamp5 Pvalb Sncg Sst Vip 
# of DEGs 753 261 460 306 293 275 

 

 
Figure 4. a. Results from linear interpolation in 10-dimensional latent gene space. Predicted morphologies 
between real Lamp5 and real Vip cell by MorphNet, and corresponding cell type probabilities. b. Dot plot of 
top five differentially expressed genes (DEGs) for each cell type in Patch-seq dataset. Predicted morphologies 
for a Lamp5 cell type without Lamp5 DEGs and added Vip DEGs.  

Discussion 
MorphNet is a probabilistic deep generative model that can predict new morphological images (single-cell 
nuclear or whole-cell) given gene expression. We showed that MorphNet is a powerful yet flexible model that 
accurately captures the many-to-many relationship between gene expression and morphology using MERFISH 
and Patch-seq datasets. In addition, we tested MorphNet on three external unimodal single-cell RNA-seq 
datasets (MOp, Isocortex, and BNST) which have no corresponding morphological information. This 
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demonstrates the usefulness of MorphNet to augment existing single-cell RNA-seq databases with rich 
morphological information, which is crucial especially in characterizing neurons and creating a comprehensive 
parts list of the brain. We release a simple web tool for users to upload scRNA-seq data and obtain predicted 
morphologies from MorphNet (Supplementary Figure 14). 

A limitation of MorphNet is that quality of images is somewhat dependent on whether the external 
dataset overlaps well with existing spatial transcriptomics data. While this is less of an issue for techniques like 
MERFISH, which has been scaled to measure nearly millions of cells across the entire brain, it is much more 
challenging for Patch-seq, which has been difficult to scale due to its labor-intensive nature. As new methods 
develop to automate profiling of single-cells, MorphNet will learn to generate higher quality morphological 
images. In addition, future studies may improve quality of out-of-distribution generation, which is an active area 
of study in deep learning. Given its scope, flexibility, and extensibility, we anticipate that MorphNet will be a 
valuable tool for characterizing the link between molecular and morphological features of cells.  

Methods 
Spatial Transcriptomics Datasets. Training MorphNet requires paired single-cell gene expression 
morphological data. For predicting single-cell nucleus images, we used data from the Vizgen MERFISH Mouse 
Receptor Map (a dataset we refer to as MERFISH for short)39 and osmFISH17. For predicting single-cell neuron 
morphology images, we used data generated using Patch-seq20,22,40,41.  
 
MERFISH. Vizgen’s MERFISH Mouse Brain Receptor Map is one of the largest, publicly-available single-cell 
spatial transcriptomics datasets consisting of 483 gene expression measurements from 734,696 cells across nine 
coronal slices (three full coronal slices and three biological replicates per slice) from the adult mouse brain39. In 
addition, the raw MERFISH dataset provides single-cell segmentation coordinates and 100-nm resolution DAPI 
images for each coronal slice39. To prepare the single-cell nucleus images, we applied the single-cell 
segmentation coordinates to from the center z-plane image (i.e. fourth z-plane out of seven z-stacked images) 
from each coronal slice image. Then, we centered and padded each single-cell nucleus image to a final 
grayscale image of size 256 pixels-by-256 pixels. For the MERFISH transcriptomics dataset, we followed a 
simple preprocessing procedure using the scanpy package54. Briefly, we first filtered out genes that are 
expressed in less than three cells, normalized the library size to 104, and took the log transform of each gene 
expression value.   
 
osmFISH. osmFISH is a spatial transcriptomics method which stands for nonbarcoded and unamplified cyclic-
ouroboros smFISH method17. The osmFISH transcriptomics dataset consists of measurements of 33 genes from 
6,471 cells, as well as a stitched DAPI image from the mouse somatosensory cortex17. The dataset provides 
single-cell segmentation masks derived using the watershed algorithm applied to PolyT-stained images 
(Supplementary Figure 3a).  After cropping from DAPI images using the PolyT-derived segmentation masks, 
we centered and padded each single-cell nucleus image to a final grayscale image of size 400 pixels-by-400 
pixels. We similarly processed the osmFISH transcriptomics data as we did on the MERFISH dataset but did 
not see a clear clusters by cell type (Supplementary Figure 3), likely due to limited number of genes measured 
across the mouse somatosensory cortex.  
 
Patch-seq. Patch-seq is an experimental method that can simultaneously profile single neuron gene expression, 
electrophysiology, and morphology40,41. As the name suggests, Patch-seq uses patch clamp recordings to 
measure electrophysiological properties of single neurons40. During recording, neurons can be filled with 
biocytin to reconstruct detailed dendritic and axonal morphologies41. After recordings, the cytosol and nucleus 
are aspirated and collected for RNA sequencing20,22,40,41. In our work, we analyzed two of the largest publicly 
available Patch-seq datasets, one from the mouse motor cortex20 and other from the mouse visual cortex22.  
 We identified a total of 5,764 cells (1,329 cells from motor cortex, 4,435 cells from visual cortex) with 
gene expression data, of which 1,220 cells (646 cells from motor cortex, 574 cells from visual cortex) had 
whole neuron morphology reconstructions. Morphological data for both datasets were given in SWC files, 
which contain 3D coordinates of neuronal compartments and their type (soma, axon, basal dendrite, or apical 
dendrite)55,56. We used the neurom package57 to load, process, and project the 3D morphological data into the 
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xy-plane, as well as color each pixel according to its neuronal compartment type (see Supplementary Figure 4). 
The xy-plane projection was chosen over xz- and yz-planes as they visually contained more identifiable 
morphological features such as long axons in IT cells and bipolarity in Vip cells.  
 To combine the two gene expression datasets, we first preprocessed each dataset to normalize the library 
size to 104 and selected 10,000 highly variable genes using the package scanpy54. The datasets were then 
concatenated using the intersection of highly variable genes, which yielded a final Patch-seq gene expression 
matrix of 5,764 cells and 3,552 genes. Note that only a subset of the 5,764 cells whose gene expression were 
profiled also had morphological reconstructions (1,220 cells). Finally, each of the 5,764 cells were annotated 
with one of six cell types (IT, Lamp5, Pvalb, Vip, Sncg, and Sst), which we used as ground truth labels when 
classifying morphology images for cell type.  
 
scRNA-seq Datasets. Below we describe all sc/snRNA-seq brain datasets without morphology data. To predict 
neuron morphological images for these datasets, we combined the transcriptomics with that of Patch-seq using 
common sets of genes. We then trained the VAE to obtain the latent gene expression for each cell using the 
dataset name as batch key to correct for batch effects. We trained MorphNet on the new latent space with 
existing morphological images from Patch-seq. Finally, we fed the latent gene expression from unimodal 
sc/snRNA-seq datasets into the generator of MorphNet to predict new morphological images. 
 
MOp. The raw MOp dataset consists of measurements of 31,053 genes from 215,823 cells from the mouse 
cerebellum obtained using single-nucleus RNA-seq50. We took 104,802 cells with a class label of either 
glutamatergic or GABAergic and preprocessed the dataset using scanpy package54. Same as the MERFISH 
dataset, we first filtered out genes that are expressed in less than three cells, normalized the library size to 104, 
and took the log transform of each gene expression value. Finally, we subset the dataset to select for 10,000 
highly variable genes. To obtain a shared latent space with Patch-seq dataset, we concatenated the MOp and 
Patch-seq dataset based on overlapping genes between the two datasets and filtered for neurons with the same 
cell types as in Patch-seq (i.e. Layer 2/3 IT, Lamp5, Pvalb, Sncg, Sst, and Vip). The final resulting dataset 
consists of 59,995 cells (54,231 cells from MOp and 5,764 cells from Patch-seq) and 2,133 genes, which we 
used to train the VAE of MorphNet.  
 
Isocortex. The Isocortex dataset is the combination of scRNA-seq measurements across the following brain 
regions: visual cortex (VIS, VISp, VISl, VISm), primary motor cortex (MOp), primary somatosensory cortex 
(SSp), auditory cortex (AUD), prelimbic – infralimbic – orbital area (PL-ILA-ORB), retrosplenial area (RSP), 
entorhinal cortex (ENT), temporal association area – perihinal area – ectohinal area (Tea-PERI-ECT), anterior 
cingulate area (ACA), agranular insular area (AI), PAR-POST-PRE-SUB-ProS, SSs-GU-VISC-AIp, secondary 
somatomotor area (MOs_FRP), and posterior parietal association area (PTLp)58. The combined raw dataset 
contains 1,169,320 cells by 31,053 genes.  For each of the brain regions, we removed duplicate genes and 
preprocessed the dataset as in MERFISH (filtering, normalizing, and log transform). We also excluded the cells 
from hippocampus (HIP) and filtered for 170,508 GABAergic cells. After selecting for 10,000 highly variable 
genes and concatenating with the Patch-seq dataset, we obtained a final cell-by-gene matrix of 176,272 cells 
(170,508 cells from Isocortex and 5,764 cells from Patch-seq) by 7,595 genes.  
 
BNST. The bed nucleus of stria terminalis (BNST) is in the subcortical region of the brain and associated with 
social, stress-related, and reward behaviors52. The raw dataset contains 38,806 cells and 24,301 genes belonging 
to one of 41 clusters. Exploratory data analysis of the BNST dataset with MOp showed poor alignment using 
the VAE29 (Supplementary Figure 10a). To select clusters of BNST cells most similar to cortical interneurons, 
we used the LIGER52 algorithm to identify 80 joint clusters between the BNST dataset and MOp dataset. We 
examined each of the 80 clusters for percentage of each cell type present in the datasets. From this analysis, we 
identified three BNST clusters that align with the cortical cell types, i.e. BNST_Cplx3 with the Lamp5 cluster, 
BNST_Sst with the MOp Sst cluster, and BNST_Vip with the MOp Vip cluster. After subsetting for these three 
cell types, we preprocessed the dataset as we did for the MOp dataset (filtering, normalizing, log transform). 
We then selected for 10,000 highly variable genes and concatenated with the Patch-seq dataset. The final 
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dataset contains 6,817 cells (1,053 cells from from BNST and 5,764 cells from Patch-seq) and 3,051 genes, 
which was used to train the VAE of MorphNet.  
 
Models.  
 
Baseline. The CNN-based benchmark model is analogous to the decoder network from U-Net48 and 
schematically depicted in Supplementary Figure 1. Our benchmark model is a fully convolutional neural 
network consisting of transpose convolution layers59 to increase spatial dimension and two blocks of 
convolution, batch normalization60, and ReLU61 activations to increase the model’s capability to learn non-
linear functions. We trained the network for 200 epochs using the Adam optimizer62 (learning rate = 10-3) and 
batch size of 64 to minimize mean-squared error (MSE) loss. We decayed the learning rate to 10-4 at epoch 50 
to further improve convergence. The network was trained on a single NVIDIA V100 GPU. 
 
MorphNet architecture. MorphNet consists of two classes of deep neural networks called variational 
autoencoder (VAE)28,29 and generative adversarial network (GAN)30,31,37. The VAE model consists of an 
encoder and decoder28, where the encoder takes raw gene expression count data and learns a low-dimensional 
latent vector with a Gaussian prior, and the decoder maps the latent representation to parameters of a generative 
distribution63 for each gene in each cell29. All VAE architectures used a latent dimensionality of 10 for each 
dataset. A key advantage of learning cell representations with VAEs is that the latent embeddings are 
probabilistic, allowing many slightly different embeddings to be sampled for the same cell. This creates an 
essentially unlimited supply of gene expression and morphology pairs, which helps prevent overfitting.  
  The generative module of MorphNet is modeled after StyleGAN233, which consists of two deep neural 
networks called a generator and a discriminator30. The generator is responsible for creating morphological 
images conditioned37,49 on latent gene expression, while the discriminator64 is responsible for classifying a 
given image as real or fake. The generator and discriminator are jointly trained30,65,66 so that classification 
scores from the discriminator act as feedback for the generator to improve generated image quality as training 
progresses. A key feature of StyleGAN233 is its style-based generator33,34, which splits the generator into a 
mapping network and synthesis network (Supplementary Figure 15a). The mapping network is a simple 2-
layer multilayer perceptron that non-linearly transforms the latent gene expression and random noise into an 
intermediate latent code34, which is incorporated as a “style” into the synthesis network to generate 512 pixels-
by-512 pixels RGB morphological images. 
 
MorphNet Training. We trained the VAE28,29 and GAN30,31 separately with different loss functions. For VAE29, 
the models were optimized to maximize the evidence lower bound (ELBO)67, which encourages the encoder 
(parameterized by �) to learn an approximate posterior distribution 	�
�|
� given a prior distribution ��
�� 
while also encouraging the decoder (parameterized by �) to maximize the likelihood ��

|�� of the original 
input being reconstructed28,67. Maximizing the ELBO is equivalent to minimizing the following loss: 
 ����
�, �� � ��	~���	|�� �log ��

|��� � ���
	�
�|
� � ��
��� Eq. 1 

In the above equation, the first term represents the reconstruction loss28 for the decoder and the second term 
represents the distance between the learned posterior distribution from encoder and prior distribution as 
measured using Kullback-Leibler (KL) divergence28,67. All VAE models28,29 were trained on a single NVIDIA 
V100 GPU with batch size of 128 for 100 to 400 epochs depending on dataset using Adam optimizer62 with an 
initial learning rate of 10-3 using the Python library scvi-tools68. 
 For GAN, the generator and discriminator were trained to minimize the standard adversarial loss30 with 
various regularizations66,69 as described in Karras et al33. We used the default hyperparameters recommended in 
the StyleGAN231,33 paper, except that we changed the regularization strength of R1 regularization66 to γ = 10. 
Briefly, R1 regularization66 penalizes the discriminator network gradient on the real data like the gradient 
penalty used in WGAN-GP70 and has been shown to stabilize GAN training66,71. The equation for R1 
regularization is shown below: 

��
�� � �
2 ������ !"#��

�"�$  
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All GAN models33 were trained on either NVIDIA V100 GPU or NVIDIA A40 GPU with a batch size of 8 for 
a maximum of 25 million kimg (number of images seen by the discriminator) using Adam optimizers62 
(learning rate = 2.5×10-3 , %� � 0, and %� � 0.99). We saved the weights of the GAN networks and computed 
metrics every 200 kimg.   
 
Augmentation. To train the GAN of MorphNet with limited training data such as Patch-seq, we employed a 
state-of-the-art augmentation technique for generative models called adaptive discriminator augmentation 
(ADA)31. Previous research has shown that ADA can reduce the number of images required to train a GAN 
from 105 – 106 to ~103 images31. ADA applies a set of image augmentations (pixel blitting, geometric, and color 
transformations) with probability p to both real and generated images before passing them into the discriminator. 
This is analogous to data augmentation strategiesused to prevent overfitting in image classification tasks. Two 
key differences are that data augmentation is performed after the generator has produced the images so that the 
generator doesn’t learn to produce noisy images, and the augmentation probability p is adjusted to minimize 
leakage of augmentation into the generated images (hence the name “adaptive” discriminator augmentation). 
The value of p adapts during training so that p is increased/decreased when the discriminator starts to 
overfit/underfit. Karras et al31. proposed a simple heuristic (� � ���������, which uses the portion of training set 
that gets positive discriminator output as a heuristic for discriminator overfitting/underfitting. 
 
Evaluations. 
Fréchet Inception Distance. During training, we periodically evaluated the quality of images using the Fréchet 
Inception Distance42 (FID) metric, which computes the statistical distance between the distribution of generated 
images to real images. FID is computed by first extracting 2048-dimensional feature vectors for each real and 
generated image using an ImageNet-pretrained Inception-V346,47 architecture, then computing the Wasserstein-2 
distance between the mean and covariance matrices of the feature vectors as shown below: 

 
Values of FID can range from zero to infinity, with lower FID score indicating closer distributions between real 
and generated images and hence better generated image quality42. For each dataset, we computed the FID score 
from 5,000 generated images for each available cell type (i.e. 15K images for BNST, 25K for Isocortex, and 
30K for MOp and Patch-seq). We constructed a set of the same number of real images, also balanced by class, 
by sampling with replacement from the real data, and compared this set of images with the generated images 
when calculating FID. 
 
Evaluation by Cell Type Classification. To evaluate whether the generated morphological images reflected 
the gene expression constraints, we trained a neural network to classify the transcriptional cell type of a 
morphological image. We finetuned an ImageNet-pretrained ResNet5043 model for each dataset, and picked the 
best classification model based on accuracy and F1 score. After training the ResNet50 classifier on the real 
images, we used the model to predict transcriptional cell types for the same generated images used in FID 
calculation (as described in the previous section). An accuracy or F1 score closer to that of the real dataset 
indicates the generated morphological images reflect gene expression constraints.  

To train the classifier, we used an ImageNet-pretrained ResNet5043 model with a modified classification 
module at the end to output the appropriate number of classes. We finetuned the model by freezing the first 7 
layers of ResNet50 (Conv, BatchNorm2D, ReLU, MaxPool2D, and three Residual Blocks) and training only the 
last residual block and the modified classification module. We noticed a significant increase in performance 
when finetuning the weights associated with the last residual block, which may have enabled the classifier to 
learn global features uniquely present in morphological images (not found in ImageNet data). Overall, there 
were a total of 23.8 million parameters, with 15.2 million trainable parameters and 8.5 million non-
trainable/frozen parameters. We trained the classifier using standard cross entropy loss using Adam optimizer62 
with an initial learning rate of 10-3, weight decay of 0.0003, and batch size of 64. The classifier was trained on 
NVIDIA V100 GPU for a total of 200 epochs, with a learning rate scheduler that reduced the learning rate by 
factor of 10 after every 50 epochs.   
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Interpretation of MorphNet. Here we describe methods to interpret the internal representations learned by 
MorphNet and how groups of specific genes may affect neuronal and nuclear morphology.  
 
Latent Space Interpolation. To predict potential morphologies of cells transitioning between two cell types 
(e.g. Lamp5 to Vip), we randomly chose two real cells as the start and end point for the transition. We then 
obtained the 10-dimensional latent gene expression for each cell using the VAE of MorphNet. Then, we 
precomputed five evenly spaced (linearly interpolated) intermediate latent positions to use as conditions for the 
trained MorphNet generator. We repeated this procedure 100 times for Lamp5 to Vip transitions and 100 times 
for Pvalb to Sst transitions and used the trained ResNet-50 classifier to predict cell type probabilities for each 
interpolated step. Note that MorphNet can similarly predict morphology transitions among any two arbitrarily 
chosen cell types.  
 
Vector Arithmetic using Differentially Expressed Genes. We used the scanpy54 Wilcoxon rank-sum test to 
identify differentially expressed genes for each cell type in Patch-seq. We considered genes with minimum 
logfc value of 0.25 and adjusted p-value cutoff below 0.01 to be differentially expressed for each of the six cell 
types. We then chose two start and end cell types (e.g. Lamp5 and Vip), and subtracted or set equal to zero all 
differentially expressed genes for the starting cell type. Then, we added values to the differentially expressed 
genes for the ending cell type, based on the cell’s maximum gene expression value across all genes. This 
strategy was used to preserve the minimum and maximum raw gene expression value and approximately keep 
the same library size before and after subtracting and adding values to differentially expressed genes. Finally, 
from the new raw gene expression vector, we obtained a previously unseen latent gene expression using trained 
VAE model and fed the latent gene expression to the GAN generator to predict new morphologies.  
 
Morphological Axes of Variation. We used an unsupervised approach to identify dominant morphological 
axes learned by MorphNet72. Briefly, we performed singular value decomposition (SVD) on the weight matrices 
learned by the Synthesis network34 of the trained MorphNet GAN generator (Supplementary Figure 15a). The 
right singular vectors represent the principal components of the GAN generator weights, which we used to 
incrementally vary the latent code learned by MorphNet. This helps answer the simple but important question: 
what specific morphological features can vary (and what are fixed) given a particular gene expression profile? 
We found that each of the singular vectors represents a distinct morphological feature that can vary for a given 
gene expression profile. We visualized these morphological features by generating images along two 
morphological axes for MorphNet trained on MERFISH and MorphNet trained on Patch-seq in Supplementary 
Figure 15b.  
 

Data Availability 
MERFISH data were downloaded from the Brain Image Library. Patch-seq data were downloaded from 
https://github.com/berenslab/mini-atlas and Brain Image Library.  

Code Availability 
Python implementation of MorphNet is available at https://github.com/single-cell-morphology. The online web 
tool for predicting neuron morphology is available at https://morphnet.streamlitapp.com/. 
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Supplementary Figures 

Supplementary Figure 1. Schematic of CNN Baseline model for predicting single-cell nuclear morphol
neuronal from a latent gene expression vector.  

Supplementary Figure 2. a. UMAP of Vizgen MERFISH gene expression data colored by 14 Leiden cl
b. Relative proportions of neuronal and non-neuronal cell types in MERFISH train and test sets. c. Confu
matrix from classifying real MERFISH nuclear morphology images. d. (Left) Confusion matrix from 
classifying real MERFISH nuclear morphology images using Scikit Learn’s Dummy Classifier with “stra
strategy. (Middle) Confusion matrix from classifying generated images from baseline model. (Right) Con
matrix from classifying generated images from MorphNet.  
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Supplementary Figure 3. MorphNet results on osmFISH dataset. a. To obtain nuclear images from 
osmFISH, we used the provided segmentation mask image generated based on PolyT staining. Each 
morphology image spans the size of a single cell, with the nucleus highlighted via DAPI staining. b. Cell type 
distribution of osmFISH. c. UMAP of osmFISH cells clustered using transcriptional (33 genes) signatures of 
each cell. d. Comparison of real and generated images from training set. e. Comparison of real and generated 
images from validation set.  
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Supplementary Figure 4. Schematic illustrating the workflow to preprocess raw neuron morphology data into 
2-dimensional morphology images to train MorphNet. For each neuron, we projected its 3-dimensional 
coordinates into the xy-plane to create a RGB image of its morphology. Parts of the neurons were colored 
according to their compartment type.  
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Supplementary Figure 5. Generated Patch-seq images using cSNGAN. a. (Left) Generated morphologies of 
cells in the Patch-seq training set. (Right) Generated morphologies of cells in the Patch-seq testing set. 
cSNGAN does not generalize well to test set with just adversarial loss. b. (Left) Generated morphologies of 
cells in the Patch-seq training set using cSNGAN trained with interpolation loss. (Right) Generated 
morphologies of cells in the Patch-seq testing set using cSNGAN trained with interpolation loss.  
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Supplementary Figure 6. a. Schematic of adaptive discriminator augmentation (ADA) technique. ADA 
applies pixel blitting, geometric, and color transformations to both real and generated images with probability p 
to prevent overfitting the discriminator. b. Effect of applying data augmentation to real images with p = 0.6 on 
eight Patch-seq morphology images.  
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Supplementary Figure 7. a. Schematic of classifying 2D neuron morphologies into one of six cell types (IT, 
Lamp5, Pvalb, Vip, Sncg, or Sst). b. Cell type distribution between train and test set. Train and test set were split 
using stratified splitting to match the distribution of cell types as closely as possible. c. Confusion matrix of 
ResNet50-based classifier on test set. d. From left to right: Train and validation loss curves, accuracy, and F1 
scores over 200 epochs of training. e. From left to right: Confusion matrices from dummy classifier, from 
generated images of CNN-baseline, and from generated images of MorphNet.  
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Supplementary Figure 8. Uncurated 512×512 results generated for MOp dataset for each of the six Patch-seq 
cell types.  

 
Supplementary Figure 9. Uncurated 512×512 results generated for Isocortex dataset for each of the five cell 
types present in the dataset.  

 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513201doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513201
http://creativecommons.org/licenses/by/4.0/


 
 

 

Supplementary Figure 10. a. UMAP plot of BNST and MOP datasets obtained using trained VAE. b. UMAP 
plot of BNST and MOP datasets obtained using LIGER (k=80). c. Percentage of cells in Cluster 8, which shows 
a mixture of Lamp5 from MOP and BNST_Cplx3. d. Percentage of cells in Cluster 76, which shows a mixture 
of Sst from MOP and BNST_Sst. e. Percentage of cells in Cluster 74, which shows a mixture of Vip from MOP 
and BNST_Vip.  

 

 
Supplementary Figure 11. Uncurated 512×512 results generated for BNST dataset for BNST_Cplx3, 
BNSTp_Sst, and BNST_Vip clusters.  
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Supplementary Figure 12. Uncurated 512×512  results for Lamp5 to Vip Transitions.  
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Supplementary Figure 13. Uncurated 512×512 results for Pvalb to Sst transitions with cell type probabilities 
for each step along the transition.  
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Supplementary Figure 14. Screenshot of MorphNet webtool created using Streamlit. Users may upload their 
single-cell RNA-seq dataset in AnnData format (limited to 200 MB per file) or use sample data. Upon 
uploading the data, the webtool will generate UMAP of the learned latent gene expression and predicted 
morphologies. Users have the option to download morphology images upon completion.  
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Supplementary Figure 15. a. Schematic for interpretation of learned weights of trained MorphNet using 
semantic factorization. b. Two examples from varying morphological axes for MorphNet trained on MERFISH, 
which qualitatively affects cell size and vertical/horizontal orientation. c. Two examples from varying 
morphological axes for MorphNet trained on Patch-seq, which qualitatively affects degree of axonal and 
dendritic branchings.  
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