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Abstract

Gene expression and morphology both play a key role in determining the types and functions of cells,
but the relationship between molecular and morphological featuresis largely uncharacterized. We present
MorphNet, acomputational approach that can draw pictures of a cell’s morphology from its gene expression
profile. Our approach leverages paired morphology and molecular datato train a neural network that can predict
nuclear or whole-cell morphology from gene expression. We employ state-of-the-art data augmentation
techniques that allow training using as few as 103 images. We find that MorphNet can generate novel, realistic
morphological images that retain the complex relationship between gene expression and cell appearance. We
then train MorphNet to generate nuclear morphology from gene expression using brain-wide MERFISH data. In
addition, we show that MorphNet can generate neuron morphologies with realistic axonal and dendritic
structures. MorphNet generalizes to unseen brain regions, allowing prediction of neuron morphologies across
the entire mouse isocortex and even non-cortical regions. We show that MorphNet performs meaningful latent
space interpolation, allowing prediction of the effects of gene expression variation on morphology. Finaly, we
provide aweb server that allows users to predict neuron morphologies for their own scRNA-seq data.
MorphNet represents a powerful new approach for linking gene expression and morphology.
Keywords: Cell Morphology; Spatial Transcriptomics; Single Cell RNA-seq; Deep Generative Model

Introduction

The forms and functions of cells are closely related. Historically, morphology was one of the first ways
of identifying distinct types of cells, afact reflected in descriptive names such as squamous, stellate, and
dendritic cells. Cell morphology serves as a crucial marker of cellular identity across arange of biological
contexts. For example, cell morphology is used in diagnosing cancer by identifying irregular or enlarged
nuclear morphology*, monitoring metastatic events through detachment from basal membrane?, determining
differentiation status of stem cells®, and elucidating neural circuits through axonal and dendritic structures.
More recently, single-cell transcriptome and epigenome profiling have enabled unbiased definition of cell types
using molecular features, but technological limitations make it difficult to relate molecular and morphological
properties. Linking single-cell molecular profiles with morphology would provide key insights to further study
important functions of cellsthat give rise to neural circuits, stem cell differentiation, cancer metastasis, and
more.

The need for linking morphological and molecular data is particularly acute for neurons, whose complex
morphologies are highly cell-type-specific, essential for their function, and difficult to assay in high-throughput
fashion. The BRAIN Initiative Cell Census Network (BICCN) is currently working to generate a
comprehensive brain cell atlas that characterizes the neuronal cell types in the mammalian brain®’. Measuring
millions of single-cell gene expression profiles has enabled discovery of new cell types, gene regulatory
mechanisms, and insightsinto developmental dynamics and neurodegenerative diseases®®. However, aneuron’s
transcriptomeis just one of many facets that make up its identity, and other modalities such as morphology and
electrophysiology are needed to create a taxonomy of cell types and to understand properties of neural circuits.

Recent advancementsin spatial transcriptomics allow measurement of gene expression between
thousands to millions of single cells while retaining tissue coordinates. Because spatial transcriptomic
approaches sample molecules from cellsin their native tissue context, some protocols allow for paired
measurement of morphology and gene expression from the same single cell. For example, the spatial
transcriptomic methods MERFISH* ™3, seqFI SH**™°, osmFISH"’, and Seg-Scope'®*® all include an imaging
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step that gives morphological images for individual cells. Additionally, Patch-seq allows for simultaneous
profiling of transcriptomics, electrophysiology, and morphology across thousands of neurons? 2.

Paired morphological and molecular data from the same cells provides a unigue opportunity to explore
the connection among these modalities, but existing studies have not used these data types to generate new
morphologies. Tripathy et al. used statistical methods to infer cellular features from single-cell gene expression
and identified 420 genes whose expression level correlated with electrophysiological features®. Bomkamp et al.
similarly identified genes whose expression levels relate to electrical and morphological properties for
excitatory and inhibitory neuron cell types using Patch-seq datasets®™. Bao et al. developed multi-modal
structured embedding (MUSE), which uses deep learning to learn alow dimensional joint representation from
both gene expression and morphology from spatial transcriptomics datasets®. Monjo et al. developed a deep
learning model for Spatial gene Clusters and Expression (DeepSpaCE), which predicts spatial -transcriptome
profiles from H& E-stained images?’. However, to our knowledge no existing approaches allow the
prediction of a cell’smor phology from its gene expression.

We present MorphNet, a computational approach that can generate possible morphologies from the gene
expression profile of acell. Our approach leverages paired morphology and molecular data®®?* to train state-of-
the-art deep generative models®®=! that can predict single-cell nuclear or whole-cell morphology given gene
expression data. To overcome the challenge of training a deep learning model using limited data such as from
labor intensive experiments such as Patch-seq™*?, we employed state-of-the-art data augmentation techniques.
We find that MorphNet can generate realistic, novel morphological images that retain the complex relationship
between gene expression and cell appearance. In addition, we show that MorphNet can generalize to new
contexts and augment single-cell RNA-seq data by predicting morphology. We then use MorphNet to predict
morphologies for neurons from the mouse isocortex and bed nucleus. Finally, we show that MorphNet performs
meaningful latent space interpolation, allowing prediction of the effects of gene expression variation on
morphology.

Results

Overview of MorphNet model.

MorphNet is adeep generative model*>*333* that predicts the morphology of acell from its gene
expression profile. Because many factors shape morphology, knowing the gene expression of a cell constrains
but likely does not uniquely determine its morphology. Thus, we formulate this problem as learning to sample
from a conditional distribution of morphologies given gene expression. MorphNet |earns the distribution of cell
morphology conditioned on gene expression by combining two types of neural networks:. a variational
autoencoder (VAE)?®%** that encodes each single-cell gene expression vector into alow-dimensional
representation and a generative adversarial network (GAN)*2"** that generates a distribution of possible
morphology images from the gene expression representation (Figure 1a). The VAE and GAN are separately
trained, enabling rapid and stable training. We previously showed that combining VAESs and GANsin this
fashion inherits the best properties of each type of network, allowing the learning of semantically meaningful
latent representations through VVAEs while also generating redlistic high-dimensional samples using GANs™.
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Figure 1. Schematic of MorphNet for predicting cell morphology from gene expression. a. During training,
the VAE of MorphNet learns to encode single-cell gene expression into alow-dimensiona gene vector. The
GAN generator then takes pairs of latent gene vectors and images and learns to generate images that the
discriminator cannot distinguish from the training data. b. MorphNet can then be used to predict new
morphologies from experiments with no corresponding morphologies (such as ScCRNA-seq) by encoding the
scRNA-seq datainto the same latent space as the training data.

The encoder of the VAE model® of MorphNet learns a nonlinear mapping from high-dimensional gene
expression space to low-dimensional latent gene space. We use aVAE with fully-connected (multilayer
perceptron) layers and a negative binomial likelihood”*. The VAE is a Bayesian model that infers a
distributional estimate for the latent representation of each cell’s gene expression, allowing many
representations to be sampled for each single cell. The generator of the GAN***" model then takes the sampled
latent gene expression vector as conditional information, which is concatenated with a small noise vector to
produce arange of plausible morphological images for a given gene expression profile. We adapted the
StyleGAN2-ADA architecture®** a state-of-the-art model that uses 2D convolutional layers to generate
realistic, high-resolution images. In addition, we incorporate adaptive discriminator augmentation (ADA),
which uses invertible image transformations to perform data augmentation. This allows alowing GAN training
with only ~103 images—many fewer than the 10°-10° normally required for GAN training®’. The probabilistic
nature of both VAE and GAN models the many-to-many relationship between gene expression and morphology.
Rather than a single gene expression profile uniquely determining a single morphology, MorphNet flexibly
captures the complex relationship between a single-cell gene expression profile and the many possible
corresponding morphologies.

MorphNet istrained on paired single-cell gene expression and morphological images from spatial
transcriptomics experiments, such as MERFISH™ 333 or patch-seq?®#%*, We first train the VAE to encode
single-cell gene expression into the latent space and decode the original input from the low-dimensional
representation”®?°. Then we train the GAN using pairs of gene expression representations and their
corresponding real images. During training, the GAN generator learns to output images that look sufficiently
similar to the real images to fool the discriminator network while preserving the correspondence relationship
between each gene expression profile and its real image (Figure 1a). Once trained, MorphNet can output a
distribution of morphological images conditioned on any latent gene expression vector, alowing it to generalize
beyond the training data and predict morphologies from unseen gene expression profiles. To predict
morphological images of ScRNA-seq datasets that lack morphological data, we first combine the datasets with
gpatial transcriptomic datasets to obtain a shared latent gene space. After training the GAN on the shared |atent
gene expression with existing spatial transcriptomic training data, MorphNet can infer new morphological
images for sScRNA-seq cellsin the shared latent space (Figure 1b).
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MorphNet generatesrealistic nuclear mor phology images from gene expression.

Wefirst evaluated MorphNet on data from the MERFISH protocol®, which uses multiplexed
fluorescent in situ hybridization to measure gene expression with subcellular spatial resolution****®, Most
MERFISH datasets also include DAPI fluorescent imaging, which highlights nuclear morphology and is used to
aid cell segmentation. We reasoned that the DAPI channel gives potentially useful morphology data that can be
paired with the gene expression measurements from the same cell. We focused in particular on the Vizgen
Mouse Brain Receptor Map dataset, which contains measurements for 483 genes from 734,696 cells across 9
coronal slices from the adult mouse brain®. We segmented the 100-nm resolution DAPI images using the
provided single-cell boundaries. Note that we used the cell boundaries, which subsume the nucleus; thus, the
boundary of the nucleusis determined by the measured DAPI signal rather than a computational segmentation

algorithm. To ensure uniform image sizes, we centered and padded each nuclear image to 256 x256 pixels.
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Figure 2. MorphNet generatesrealistic mor phology images from single-cell gene expression. a. Training
scheme of MorphNet on Vizgen MERFISH dataset. b. Comparison between real single-cell nucleus images and
generated morphological images from baseline and MorphNet. MorphNet can generate complex, realistic
nuclear shapes, while the baseline mode cannot. c. Relative accuracy and F1 scores from classifying real or
generated DAPI Nuclel images as from neuron or non-neuronal cell type. d. Comparison between real neuron
morphologies and those generated from a holdout set using MorphNet across six cell types present in the Patch-
seq dataset. e. Comparison between real Patch-seq images and generated whole neuron morphol ogies from
baseline and MorphNet. f. Relative accuracy and F1 scores from classifying the transcriptional cell type of real
or generated neuron morphologies using a classifier trained on the real images. Note that the accuracy and F1
score are reported relative to the accuracy of the classifier evaluated on the real data.
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MorphNet generated images reflect the conditional information from gene expression. To do this, we first
trained a deep neural network classifier® to recognize the transcriptional cell type of acell from its nuclear
morphology using the real image data. Then, we evaluated the generated images using the trained classifier for
which the true transcriptional labels are known. If MorphNet respects the relationship between gene expression
and morphology, the classifier performance will be similar when evaluated on either real or generated images.

We also implemented a baseline model to compare with MorphNet (Supplementary Figure 1). The
baseline model uses a convolutional neural network architecture™ ™", and consists of transpose convolutional
layers and convolutional blocks inspired by U-Net decoders®. We trained the baseline model to predict images
from a latent gene expression representation using mean squared error (M SE) loss. We then compared the
images generated by the baseline model with images generated by MorphNet, which was trained using
adversarial loss (Figure 2a).

MorphNet generates highly realistic nuclear morphology images from the MERFISH data. The
generated images are qualitatively very similar to the real images and reflect nuances of complex shape and
fluorescence intensity patterns (Figure 2b). In contrast, the generated images from the baseline model match the
real images with respect to overall fluorescence intensity and total nuclear area but fail to capture more complex
nuclear shapes, often producing approximately circular single-nucleusimages. The FID metrics also indicate
that MorphNet generates much more realistic images than the baseline: MorphNet achieves an FID of 19.4,
while the FID for the baseline model is 144.4 (Figure 2b). The relatively poor performance of the baseline
model is likely because the assumption that each gene expression profile uniquely determines asingle
morphology image isinvalid. Instead, gene expression and morphology have a complex, many-to-many
relationship in which gene expression profiles constrain but do not uniquely determine the morphol ogical
images.

MorphNet also generates images that retain the relationship between gene expression and morphology.
Although nuclear morphology is not as cell-type-specific as whole-cell morphology, our trained classifier was
able to distinguish neuronal nuclei from non-neuronal nuclel with 80.4% accuracy and 83.5% F1 score. Thus,
the morphology of the real images does reflect the transcriptional cell type to some detectable degree. When
evaluated on MorphNet images, the classifier achieved an accuracy of 99.7% and F1 score of 100% relative to
the real data (Figure 2c), indicating that MorphNet respects the constraint of the gene expression information
when generating morphologies. In comparison, classification of generated images from the baseline models
performs similarly to that of arandom classifier (Supplementary Figure 2), indicating the lack of encoded cell
type information in the generated images.

We trained MorphNet on an additiona spatial transcriptomic data type called cyclic-ouroboros smFISH,
or osmFISH (Supplementary Figure 3). We found that MorphNet again produced highly realistic images of
nuclear morphology from DAPI staining (FID = 6.89 for training set; FID = 8.37 for testing set). However, the
osmFISH morphology data was lower resolution than that of MERFISH data, and a classifier trained to
recognize transcriptional cell types from the real morphologies did not outperform arandom baseline. This
indicated that the real morphology images lacked information about the transcriptomic cell type, so we did not
analyze the osmFISH dataset further.

Mor phNet generatesr ealistic whole-neuron mor phology images from gene expression.

We next applied MorphNet to generate whole neuron morphological images using Patch-seq dat
The Patch-seq protocol measures transcriptomic, electrophysiological, and morphological properties from the
same cells*. Whole-neuron morphology images from Patch-seq are significantly more complex than nuclear
morphology images, containing intricate dendrite and axon branching structures. In addition, the number of
celsislimited due to the laborious manual processes required for patch clamping and morphological
reconstruction. However, neuron morphology is much more cell-type-specific than nuclear morphology, and the
ability to predict neuron morphology from gene expression would be a powerful tool for understanding the
functional implications of molecular variation.

To train MorphNet to generate whole neuron morphologies, we combined two Patch-seq datasets from
the mouse visual cortex and mouse motor cortex”>*?. The combined datasets include 5,764 cells with gene
expression measurements. We annotated each of the cells according to six broad transcriptional cell types:
intratelencephalic-projecting excitatory neurons (IT), interneurons expressing vasointestinal peptide (Vip),

21,32
a2,
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interneurons expressing Lampb, interneurons expressing parvalbumin (Pvalb), interneurons expressing
somatostatin (Sst), and interneurons expressing Shcg. As with the MERFISH data, we first trained a VAE mode
with negative binomial likelihood to encode Patch-seq gene expression measurements into 10-dimensional
latent gene representations. To obtain whole neuron morphological images, we projected the reconstructed
neuron morphologies onto the xy-plane and colored the pixels by neuronal component (dendrite = red; axon =
blue; soma = black; Supplementary Figure 4). We then split the dataset into training set (90%) and testing set
(10%) stretified by cell type and trained MorphNet on the paired image and gene expression data.

Despite the relatively small number of morphology images available for training, MorphNet was able to
generate highly realistic neuron morphologies that reflect the provided gene expression data (Figure 2¢). We
experimented with different GAN architectures®* (Supplementary Figure 5), and found that StyleGAN2* is
able to capture the complex morphologies of whole neurons. We further tested a data augmentation technique
called adaptive discriminator augmentation (ADA)* and found it to significantly reduce overfitting in the
discriminator network, improving MorphNet’ s generalizability to unseen data (Supplementary Figure 6). We
compared the true and generated morphology images for held-out cells; the network had not seen either the
gene expression profile or the corresponding morphology. Note that we also did not provide any cell type labels
to MorphNet during training. Neverthel ess, when given new Patch-seq gene expression profiles, MorphNet was
able to generate realistic morphologies that were strikingly similar to the true corresponding morphologies and
retained the distinctive characteristics of the six transcriptional cell types (FID = 12.90 for training set; FID =
15.82 for testing set). Thisindicates that MorphNet successfully generalized to the test set despite the limited
training data.

The baseline model achieved an FID score of 315.7 compared to the FID score of 15.82 from MorphNet
(recall lower FID is better). Visually, the images generated by MorphNet are nearly indistinguishable from real
neuron morphologies (Figure 2d). As with the MERFISH data, the baseline model generates highly blurred
images that reflected some characteristics of the neuron color and shape, but do not resemble neurons at all. We
also tested whether the generated images contain cell-type specific information by training a ResNet-50
classifier® to recognize the transcriptional cell type (IT, Lamp5, Vip, Pvalb, Sst, and Shcg) from the generated
morphology. Because neuron morphology is highly cell-type-specific, we were able to classify the generated
morphology images according to transcriptional cell type with 73% accuracy and 60% F1 score. The same
classifier evaluated on the images generated by MorphNet achieved 84.4% accuracy and 91.8% F1 score
relative to the classifier performance on the real images. A baseline classifier that randomly guesses the cell
type with probability equal to the class proportions performed significantly worse, with a relative accuracy
score of only 29.7% and relative F1 score of 36.2%. In addition, the images generated by the baseline model
scored arelative accuracy score of 45.0% and arelative F1 score of 32.7%, indicating that the baseline model
does not generate recognizable examples of the morphologies from each transcriptional cell type
(Supplementary Figure 7). Thisindicates that, overall, the generated images retain morphological differences
among transcriptional cell types and accurately reflect the complex relationship between gene expression and
morphology (Figure 2e).

Recent papers have shown that trained GAN generators can be used to discover nonlinear directions of
variation in data space62. In the case of MorphNet, such directions would correspond to the dominant ways in
which morphologies vary among cells.are among the primary sources of variation in MorphNet generation
results, while for neuron morphologies, the degree of axon and dendrite branching are the dominant
morphological axes.

MorphNet predicts mor phology from unseen single-cell RNA-seq profiles.

The ability of MorphNet to predict morphology from gene expression raises the exciting possibility of
augmenting sc RNA-seq datasets with inferred morphologies. To investigate this further, we tested whether
MorphNet can generate realistic whole neuron morphology for sScRNA-seq datasets that have no experimentally
measured morphology information. We retrained the MorphNet VAE to embed both Patch-seq and sScRNA-seq
datain the same latent space. Then we retrained the GAN using the joint latent space for both data types and the
paired images for the Patch-seq dataset. Finally, we predicted morphologies for the sScCRNA-seq profiles by
passing them through the VAE encoder and using the latent representation as a condition for the GAN generator
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(Figure 3a). We used this same training scheme for three different SCRNA-seq datasets from different regions of
the adult mouse brain.

We first tested MorphNet on a dataset containing 215,823 single-nucleus RNA-seq (SnRNA-seq)
profiles from the primary motor cortex (MOp) of the adult mouse brain®. The motor cortex is near the visual
cortex and contains transcriptionally similar cell types, and the Patch-seq training data already contains cells
from the motor cortex™. Thus, we expect that MorphNet should be able to generate reasonable morphol ogical
predictions for sSnRNA-seq data from M Op. Prior to obtaining gene expression encodings, we filtered the MOp
dataset to only cdll types that exist in the Patch-seq dataset. Figure 3b shows the UM AP plot of the latent gene
expression space for the combined Patch-seq and M Op datasets. As shown in Table 1, using combined latent
gene expression space from Patch-seq and MOp achieved an FID score of 14.68 on the Patch-seq dataset alone
and FID score of 14.83 on the MOp dataset alone. Figure 3b shows predicted neuron morphologies from Sncg,
IT, and Pvalb cell types from the MOp dataset as well as sample images from corresponding cell types from
Patch-seq. Supplementary Figure 8 shows uncurated generated images of all cell typesin the MOp dataset.
The images generated from snRNA-seq profiles are highly realistic and qualitatively retain the cell-type-
specific morphologies seen in the Patch-seq cells, with a relative accuracy score of 57.52% and relative F1
score of 64.25%. Thus, MorphNet successfully predicts morphologies even for snRNA-seq datasets with no
morphological information.

Table 1. Metrics on generated neuron morphol ogies from MorphNet trained on combined datasets.

FID score Classfication
Datasets Patch-seq SCRNA-seq Rel. Acc. Rel. F1
Patch-seq + MOp 14.68 14.83 57.52 64.25
Patch-seq + Isocortex 14.64 32.30 64.01 71.27
Patch-seq + BNST 14.54 38.45 90.92 100

Next, we tested MorphNet on alarge sScRNAseq dataset from the entire Isocortex region of the adult
mouse brain. We subset the Isocortex dataset to only GABAergic cells and combined with Patch-seq for atotal
of 176,272 cells and 7,595 genes. Even though Patch-seq datais from only visual and motor cortex, sub-regions
of the Isocortex, we hypothesized that we could predict accurate morphologies for other cortical regions
because cortical GABAergic neuron gene expression does not show significant regional variation™. Figure 3c
shows the UMAP plot of the learned gene expression space for the combined datasets, as well as predicted
neuron morphologies for cellsin the Isocortex dataset. Supplementary Figure 9 shows uncurated generated
images for GABAergic cell typesin the Isocortex dataset. As with the M Op, the morphol ogies generated from
scRNA-seq profileslook realistic and retain the characteristic morphologies of different transcriptional types
with FID score of 32.30 and relative accuracy of 64.01% and relative F1 score of 71.27%. This demonstrates
MorphNet’s ability to generate and predict neuron morphologies for ScRNAseq data across a large region of the
mouse brain.
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Figure 3. MorphNet predicts morphologiesfor sScRNA-seq datasets. a. Schematic of predicting new neuron
morphologies for sScRNA-seq datasets with no ground truth morphologies. b. UMAP plot of latent gene
expression space from Patch-seq + MOp colored by cell type. Predicted whole neuron morphologies for Shcg,
IT, and Pvalb cell types from MOP dataset on left and samples of ground truth images from Patch-seq on right.
c. UMAP plot of latent gene expression space from Patch-seq + Isocortex colored by cell type. Predicted whole
neuron morphologies for Sst and Lamp5 cell types on left and samples of ground truth images from Patch-seq
on right. d. UMAP plot of latent gene expression space from Patch-seq + BNST colored by cell type. Predicted
whole neuron morphologies for cells from BNST dataset on left and real morphologies from visual cortex (V1S)
Patch-seq data on right.

Having established that MorphNet can predict morphologies for ScRNA-seq profiles from new areas of
the cortex, we applied the method to a brain region outside the cortex. We previously reported diverse
transcriptional subtypes of GABAergic neurons in the bed nucleus of striaterminalis (BNST), including several
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clusters that express some of the same key marker genes as cortical interneurons™. To determine which BNST
cells are most similar to cortical interneurons, we integrated the MOp snRNA-seq dataset with our previous
BNST snRNA-seq dataset using the LIGER® algorithm. This analysis showed that the cell typesin MOp and
BNST are quite different overall, with very few overlapping populations (Supplementary Figure 10a). However,
we did identify three minor populations within the BNST, constituting 1,053 cells (2.7% of all BNST cells),
which aligned with cortical interneuron types (Supplementary Figure 10b). We used LIGER to identify

k = 80 joint clusters and calculated the percentage of each cell type from both MOp and BNST within each
cluster. While most clusters contain cells from only one region, we found that the BNST_Cplx3 cell type aligns
with the Lamp5 cluster, the BNST_Sst cell types aligns with the Sst cortical type, and the BNST_Vip matches
with the Vip cluster from MOp. We thus extracted only the cells from these three BNST clusters and trained a
VAE mode to jointly encode these cells with the Patch-seq data (Figure 3d). A UMAP visualization of the
VAE latent space also supports the similarity of these cell types, with BNST _Sst positioned near Sst, BNST_Vip
positioned near Vip, and BNST_Cplx3 positioned near Lamp5. We next used MorphNet to predict morphologies
for the BNST cells (Figure 3d). Supplementary Figure 11 shows uncurated generated images of the BNST
dataset. Remarkably, despite the significant transcriptional differences between the Patch-seq cellsused in
training and the BNST cells, MorphNet predicted realistic morphologies BNST snRNA-seq profiles. To our
knowledge, the morphologies of these cells have not been experimentally characterized. However, some studies
have predicted that BNST_Cplx3 morphology could be similar to that of the cortical neurogliaform neurons™,
The MorphNet predictions further support this hypothesis.

L atent space inter polation predicts mor phological effects of varying gene expression.

A key benefit of deep generative modelsistheir ability to perform latent space interpolation—to predict
realistic high-dimensional examples from unseen combinations of latent variables. In the context of cell
morphologies, interpolation in the latent gene expression space would allow MorphNet to predict the
morphological effects of new combinations of expressed genes. Such an ability could not only yield interesting
predictions, but could reveal new insights into the specific ways in which gene expression influences
morphology.

Wefirst investigated the effects of linear interpolation between the latent embeddings of Patch-seq cells.
To do this, we chose a starting cell (such as a Lamp5 neuron) and an ending cell (such as a Vip neuron). Then
we calculated new latent space positions by taking a weighted average of the start and end cell embeddings,
with varying weights—a process called linear interpolation. Note that these interpolated latent space positions
do not result from encoding the gene expression profile for areal cell, but instead correspond to hypothetical
unobserved gene expression profiles intermediate between the start and end neurons. We then generated
morphologies for the interpolated latent space positions (Figure 4a). Remarkably, the predicted morphologies
show meaningful interpolation, with the intermediate latent space positions still producing realistic neuron
morphologies that gradually transition from the morphology of the starting cell to the morphology of the end
cell. We repeated this procedure 100 times and confirmed that the images generated from interpolated gene
expression profiles consistently interpolated among the start and end cell morphologies, including when varying
the transcriptional types of the start and end cells. A classifier trained on the real images confirmsthis
qualitative result, with gradually decreasing classification probabilities for the starting cell type Lamp5 (70.46%
+ 6.98%, 45.71% + 7.44%, 5.92% + 2.65%, 2.74% + 1.67%, and 1.49% + 1.75%) and gradually increasing
probabilities of the ending cell type Vip (5.50% + 3.75%, 7.11% =+ 3.74%, 37.43% + 7.68%, 60.22% + 7.50%,
and 84.75% + 4.73%). These numbers quantitatively confirm the morphological changes reflected in the
predicted images. We also show a sampling of uncurated examples in Supplementary Figure 12 (linear
interpolation between Lamp5 and Vip) and Supplementary Figure 13 (linear interpolation between Pvalb to Sst).

Next, we investigated how changing the expression of specific genes affects the predicted morphology.
Thistime, rather than manipulating the latent space, we changed the high-dimensional expression profile of a
cell before encoding it into the latent space. To choose genes most likely to have alarge effect, we used the
Wilcoxon rank-sum test to identify differentially expressed genes (DEGS) for each transcriptional cell type
(Figure 4b). Then, we created new gene expression profiles by zeroing out the expression of DEGsin the
starting cell type (e.g., Lamp 5). We then set the expression of DEGs for a different target cell type (e.g., Vip) to
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an arbitrary high value, encoded these synthetic gene expression profilesinto the latent space using the VAE
and generated morphologies for them. The resulting morphologies are till highly realistic and qualitatively
reflect the changes in gene expression: subtracting the DEG expression from the starting cell type removes
much of the characteristic morphology of this cell type, while adding the DEG expression from the target cell
type results in a morphology resembling this type.

Table 2. Number of Differentially Expressed Genes Identified per Cell Type
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Figure 4. a. Results from linear interpolation in 10-dimensional latent gene space. Predicted morphologies
between real Lamp5 and real Vip cell by MorphNet, and corresponding cell type probabilities. b. Dot plot of
top five differentially expressed genes (DEGs) for each cell type in Patch-seq dataset. Predicted morphologies
for aLamp5 cell type without Lamp5 DEGs and added Vip DEGs.

Discussion

MorphNet is a probabilistic deep generative model that can predict new morphological images (single-cell
nuclear or whole-cell) given gene expression. We showed that MorphNet is a powerful yet flexible model that
accurately captures the many-to-many relationship between gene expression and morphology using MERFISH
and Patch-seq datasets. In addition, we tested MorphNet on three external unimodal single-cell RNA-seq
datasets (M Op, Isocortex, and BNST) which have no corresponding morphological information. This
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demonstrates the usefulness of MorphNet to augment existing single-cell RNA-seq databases with rich
morphological information, which is crucial especially in characterizing neurons and creating a comprehensive
partslist of the brain. We release a simple web tool for users to upload sScRNA-seq data and obtain predicted
morphologies from MorphNet (Supplementary Figure 14).

A limitation of MorphNet isthat quality of images is somewhat dependent on whether the external
dataset overlaps well with existing spatial transcriptomics data. While thisisless of an issue for techniques like
MERFISH, which has been scaled to measure nearly millions of cells across the entire brain, it is much more
challenging for Patch-seq, which has been difficult to scale due to its labor-intensive nature. As new methods
devel op to automate profiling of single-cells, MorphNet will learn to generate higher quality morphological
images. In addition, future studies may improve quality of out-of-distribution generation, which is an active area
of study in deep learning. Given its scope, flexibility, and extensbility, we anticipate that MorphNet will be a
valuable tool for characterizing the link between molecular and morphological features of cells.

M ethods

Spatial Transcriptomics Datasets. Training MorphNet requires paired single-cell gene expression
morphological data. For predicting single-cell nucleus images, we used data from the Vizgen MERFISH Mouse
Receptor Map (a dataset we refer to as MERFISH for short)® and osmFISHY. For predicting single-cell neuron
morphology images, we used data generated using Patch-seq?> #2404,

MERFISH. Vizgen's MERFISH Mouse Brain Receptor Map is one of the largest, publicly-available single-cell
gpatial transcriptomics datasets consisting of 483 gene expression measurements from 734,696 cells across nine
coronal slices (three full coronal slices and three biological replicates per slice) from the adult mouse brain®. In
addition, the raw MERFISH dataset provides single-cell segmentation coordinates and 100-nm resolution DAPI
images for each coronal slice®. To prepare the single-cell nucleusimages, we applied the single-cell
segmentation coordinates to from the center z-plane image (i.e. fourth z-plane out of seven z-stacked images)
from each coronal dlice image. Then, we centered and padded each single-cell nucleus image to afinal
grayscale image of size 256 pixels-by-256 pixels. For the MERFISH transcriptomics dataset, we followed a
simple preprocessing procedure using the scanpy package™. Briefly, we first filtered out genes that are
expressed in |ess than three cells, normalized the library size to 10%, and took the log transform of each gene
expression value.

0osMFISH. osmFISH is a spatial transcriptomics method which stands for nonbarcoded and unamplified cyclic-
ouroboros smFISH method"’. The osmFISH transcriptomics dataset consists of measurements of 33 genes from
6,471 cells, as well as a stitched DAPI image from the mouse somatosensory cortex'’. The dataset provides
single-cell segmentation masks derived using the watershed algorithm applied to PolyT-stained images
(Supplementary Figure 3a). After cropping from DAPI images using the PolyT-derived segmentation masks,
we centered and padded each single-cell nucleus image to afinal grayscale image of size 400 pixels-by-400
pixels. We similarly processed the osmFISH transcriptomics data as we did on the MERFISH dataset but did
not see a clear clusters by cell type (Supplementary Figure 3), likely due to limited number of genes measured
across the mouse somatosensory cortex.

Patch-seq. Patch-seq is an experimental method that can simultaneously profile single neuron gene expression,
electrophysiology, and morphology“*®**. As the name suggests, Patch-seq uses patch clamp recordings to
measure electrophysiological properties of single neurons™. During recording, neurons can be filled with
biocytin to reconstruct detailed dendritic and axonal morphologies™. After recordings, the cytosol and nucleus
are aspirated and collected for RNA sequencing®#“%* In our work, we analyzed two of the largest publicly
available Patch-seq datasets, one from the mouse motor cortex®® and other from the mouse visual cortex®.

We identified atotal of 5,764 cells (1,329 cells from motor cortex, 4,435 cells from visual cortex) with
gene expression data, of which 1,220 cells (646 cells from motor cortex, 574 cells from visual cortex) had
whole neuron morphology reconstructions. Morphological data for both datasets were given in SWC files,
which contain 3D coordinates of neuronal compartments and their type (soma, axon, basal dendrite, or apical
dendrite)>>>°. We used the neurom package’” to load, process, and project the 3D morphological datainto the
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xy-plane, aswell as color each pixel according to its neuronal compartment type (see Supplementary Figure 4).
The xy-plane projection was chosen over xz- and yz-planes as they visually contained more identifiable
morphological features such aslong axonsin IT cells and bipolarity in Vip cells.

To combine the two gene expression datasets, we first preprocessed each dataset to normalize the library
size to 10* and selected 10,000 highly variable genes using the package scanpy™. The datasets were then
concatenated using the intersection of highly variable genes, which yielded afinal Patch-seq gene expression
matrix of 5,764 cells and 3,552 genes. Note that only a subset of the 5,764 cells whose gene expression were
profiled also had morphological reconstructions (1,220 cells). Finally, each of the 5,764 cells were annotated
with one of six cdl types (1T, Lamp5, Pvalb, Vip, Shcg, and Sst), which we used as ground truth labels when
classifying morphology images for cell type.

scRNA-seq Datasets. Below we describe all sc/snRNA-seq brain datasets without morphology data. To predict
neuron morphological images for these datasets, we combined the transcri ptomics with that of Patch-seq using
common sets of genes. We then trained the VAE to obtain the latent gene expression for each cell using the
dataset name as batch key to correct for batch effects. We trained MorphNet on the new latent space with
existing morphological images from Patch-seg. Finally, we fed the latent gene expression from unimodal
sc/snRNA-seq datasets into the generator of MorphNet to predict new morphological images.

MOp. The raw MOp dataset consists of measurements of 31,053 genes from 215,823 cells from the mouse
cerebellum obtained using single-nucleus RNA-seq™. We took 104,802 cells with a class label of either
glutamatergic or GABAergic and preprocessed the dataset using scanpy package™. Same as the M ERFISH
dataset, we first filtered out genes that are expressed in less than three cells, normalized the library size to 10%,
and took the log transform of each gene expression value. Finally, we subset the dataset to select for 10,000
highly variable genes. To obtain a shared latent space with Patch-seq dataset, we concatenated the M Op and
Patch-seq dataset based on overlapping genes between the two datasets and filtered for neurons with the same
cell types asin Patch-seq (i.e. Layer 2/3 1T, Lamp5, Pvalb, Shcg, Sst, and Vip). The final resulting dataset
consists of 59,995 cells (54,231 cells from MOp and 5,764 cells from Patch-seq) and 2,133 genes, which we
used to train the VAE of MorphNet.

Isocortex. The Isocortex dataset is the combination of SCRNA-seq measurements across the following brain
regions: visual cortex (VIS, VISp, VIS, VISm), primary motor cortex (MOp), primary somatosensory cortex
(SSp), auditory cortex (AUD), prelimbic — infralimbic — orbital area (PL-ILA-ORB), retrosplenial area (RSP),
entorhinal cortex (ENT), temporal association area— perihinal area— ectohinal area (Tea-PERI-ECT), anterior
cingulate area (ACA), agranular insular area (Al), PAR-POST-PRE-SUB-ProS, SSs-GU-VISC-Alp, secondary
somatomotor area (MOs_FRP), and posterior parietal association area (PTLp)®. The combined raw dataset
contains 1,169,320 cells by 31,053 genes. For each of the brain regions, we removed duplicate genes and
preprocessed the dataset asin MERFISH (filtering, normalizing, and log transform). We also excluded the cells
from hippocampus (HIP) and filtered for 170,508 GABAergic cells. After selecting for 10,000 highly variable
genes and concatenating with the Patch-seq dataset, we obtained a final cell-by-gene matrix of 176,272 cells
(170,508 cells from Isocortex and 5,764 cells from Patch-seq) by 7,595 genes.

BNST. The bed nucleus of striaterminalis (BNST) isin the subcortical region of the brain and associated with
social, stress-related, and reward behaviors®. The raw dataset contains 38,806 cells and 24,301 genes belonging
to one of 41 clusters. Exploratory data analysis of the BNST dataset with MOp showed poor alignment using
the VAE? (Supplementary Figure 10a). To select clusters of BNST cells most similar to cortical interneurons,
we used the LIGER® algorithm to identify 80 joint clusters between the BNST dataset and M Op dataset. We
examined each of the 80 clusters for percentage of each cell type present in the datasets. From this analysis, we
identified three BNST clusters that align with the cortical cell types, i.e. BNST_Cplx3 with the Lamp5 cluster,
BNST_Sst with the MOp Sst cluster, and BNST_Vip with the MOp Vip cluster. After subsetting for these three
cell types, we preprocessed the dataset as we did for the M Op dataset (filtering, normalizing, log transform).
We then selected for 10,000 highly variable genes and concatenated with the Patch-seq dataset. The final
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dataset contains 6,817 cells (1,053 cells from from BNST and 5,764 cells from Patch-seq) and 3,051 genes,
which was used to train the VAE of MorphNet.

M odels.

Baseline. The CNN-based benchmark model is analogous to the decoder network from U-Net* and
schematically depicted in Supplementary Figure 1. Our benchmark model is afully convolutional neural
network consisting of transpose convolution Iaéyerssg to increase spatial dimension and two blocks of
convolution, batch normalization®, and RelLU®* activations to increase the model’ s capability to learn non-
linear functions. We trained the network for 200 epochs using the Adam optimizer® (learning rate = 10°%) and
batch size of 64 to minimize mean-squared error (M SE) loss. We decayed the learning rate to 10 at epoch 50
to further improve convergence. The network was trained on asingle NVIDIA V100 GPU.

Mor phNet ar chitecture. MorphNet consists of two classes of deep neural networks called variational
autoencoder (VAE)?®? and generative adversarial network (GAN)***"*". The VAE model consists of an
encoder and decoder®, where the encoder takes raw gene expression count data and learns a low-dimensional
latent vector with a Gaussian prior, and the decoder maps the latent representation to parameters of a generative
distribution® for each genein each cell®. All VAE architectures used a latent dimensionality of 10 for each
dataset. A key advantage of learning cell representations with VAES isthat the latent embeddings are
probabiligtic, allowing many dlightly different embeddings to be sampled for the same cell. This creates an
essentially unlimited supply of gene expression and morphology pairs, which helps prevent overfitting.

The generative module of MorphNet is modeled after StyleGAN2*, which consists of two deep neural
networks called a generator and a discriminator®. The generator is responsible for creating morphological
images conditioned®”*° on latent gene expression, while the discriminator® is responsible for classifying a
given image asreal or fake. The generator and discriminator are jointly trained®*® so that classification
scores from the discriminator act as feedback for the generator to improve generated image quality as training
progresses. A key feature of StyleGAN2® isits style-based generator®**, which splits the generator into a
mapping network and synthesis network (Supplementary Figure 15a). The mapping network isa simple 2-
layer multilayer perceptron that non-linearly transforms the latent gene expression and random noise into an
intermediate latent code®, which isincorporated asa“style” into the synthesis network to generate 512 pixels-
by-512 pixels RGB morphological images.

MorphNet Training. We trained the VAE?®? and GAN**! separately with different loss functions. For VAE®,
the model's were optimized to maximize the evidence lower bound (ELBO)®, which encourages the encoder
(parameterized by ¢) to learn an approximate posterior distribution g4 (z|x) given aprior distribution p,(z)
while also encouraging the decoder (parameterized by 6) to maximize the likelihood pg (x|z) of the original
input being reconstructed”®®’. Maximizing the ELBO is equivalent to minimizing the following loss:

Lyap(0,¢) = _Ez~q¢(z|x) [logpe(x|2)] + DKL(qd)(le) Il po(2)) Eqg.1

In the above equation, the first term represents the reconstruction loss® for the decoder and the second term
represents the distance between the learned posterior distribution from encoder and prior distribution as
measured using Kullback-Leibler (KL) divergence’®®’. All VAE models®?° were trained on asingle NVIDIA
V100 GPU with batch size of 128 for 100 to 400 epochs depending on dataset using Adam optimizer® with an
initial learning rate of 10" using the Python library scvi-tools®.

For GAN, the generator and discriminator were trained to minimize the standard adversarial loss® with
various regul arizations®®® as described in Karras et al*. We used the default hyperparameters recommended in
the StyleGAN2*"*® paper, except that we changed the regularization strength of R1 regularization® to y = 10.
Briefly, R1 regularization® penalizes the discriminator network gradient on the real data like the gradient
penalty used in WGAN-GP” and has been shown to stabilize GAN training®® ™. The equation for R1
regularization is shown below:

R,(¥) = g]EpD(X) [HVDll)(x)”z]
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All GAN models™ were trained on either NVIDIA V100 GPU or NVIDIA A40 GPU with abatch size of 8 for
amaximum of 25 million kimg (number of images seen by the discriminator) using Adam optimizers™
(learning rate = 2.5x10°, B, = 0, and 8, = 0.99). We saved the weights of the GAN networks and computed
metrics every 200 kimg.

Augmentation. To train the GAN of MorphNet with limited training data such as Patch-seq, we employed a
state-of -the-art augmentation technique for generative models called adaptive discriminator augmentation
(ADA)*. Previous research has shown that ADA can reduce the number of images required to train a GAN
from 10°— 10° to ~10°images™. ADA applies a set of image augmentations (pixel blitting, geometric, and color
transformations) with probability p to both real and generated images before passing them into the discriminator.
Thisis analogous to data augmentation strategiesused to prevent overfitting in image classification tasks. Two
key differences are that data augmentation is performed after the generator has produced the images so that the
generator doesn’'t learn to produce noisy images, and the augmentation probability p is adjusted to minimize
leakage of augmentation into the generated images (hence the name “ adaptive” discriminator augmentation).
The value of p adapts during training so that p isincreased/decreased when the discriminator starts to
overfit/underfit. Karras et al®!. proposed a simple heuristic 7 = E[D,,4:,], Which uses the portion of training set
that gets positive discriminator output as a heuristic for discriminator overfitting/underfitting.

Evaluations.
Fréchet I nception Distance. During training, we periodically evaluated the quality of images using the Fréchet
Inception Distance™ (FID) metric, which computes the statistical distance between the distribution of generated
images to real images. FID is computed by first extracting 2048-dimensional feature vectors for each real and
generated image using an ImageNet-pretrained Inception-V 3%’ architecture, then computing the Wasserstein-2
distance between the mean and covariance matrices of the feature vectors as shown below:

FID(2,9) = e — pg} + Tr(Se + 5, — 2(2:5,)7)
Values of FID can range from zero to infinity, with lower FID score indicating closer distributions between real
and generated images and hence better generated image quality®. For each dataset, we computed the FID score
from 5,000 generated images for each available cell type (i.e. 15K images for BNST, 25K for Isocortex, and
30K for MOp and Patch-seq). We constructed a set of the same number of real images, also balanced by class,
by sampling with replacement from the real data, and compared this set of images with the generated images
when calculating FID.

Evaluation by Cell Type Classification. To evaluate whether the generated morphological images reflected
the gene expression constraints, we trained a neural network to classify the transcriptional cell type of a
morphological image. We finetuned an ImageNet-pretrained ResNet50* model for each dataset, and picked the
best classification model based on accuracy and F1 score. After training the ResNet50 classifier on the real
images, we used the model to predict transcriptional cell types for the same generated images used in FID
calculation (as described in the previous section). An accuracy or F1 score closer to that of the real dataset
indicates the generated morphological images reflect gene expression constraints.

To train the classifier, we used an ImageNet-pretrained ResNet50* model with a modified classification
module at the end to output the appropriate number of classes. We finetuned the model by freezing thefirst 7
layers of ResNet50 (Conv, BatchNorm2D, RelLU, MaxPool 2D, and three Residual Blocks) and training only the
last residual block and the modified classification module. We noticed a significant increase in performance
when finetuning the weights associated with the last residual block, which may have enabled the classifier to
learn global features uniquely present in morphological images (not found in ImageNet data). Overall, there
were atotal of 23.8 million parameters, with 15.2 million trainable parameters and 8.5 million non-
trainable/frozen parameters. We trained the classifier using standard cross entropy loss using Adam optimizer®
with aninitial learning rate of 103, weight decay of 0.0003, and batch size of 64. The classifier was trained on
NVIDIA V100 GPU for atotal of 200 epochs, with alearning rate scheduler that reduced the learning rate by
factor of 10 after every 50 epochs.
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I nter pretation of Mor phNet. Here we describe methods to interpret the internal representations learned by
MorphNet and how groups of specific genes may affect neuronal and nuclear morphology.

L atent Space I nterpolation. To predict potential morphologies of cells transitioning between two cell types
(e.g. Lamp5 to Vip), we randomly chose two real cells as the start and end point for the transition. We then
obtained the 10-dimensional latent gene expression for each cell using the VAE of MorphNet. Then, we
precomputed five evenly spaced (linearly interpolated) intermediate latent positions to use as conditions for the
trained MorphNet generator. We repeated this procedure 100 times for Lamp5 to Vip transitions and 100 times
for Pvalb to Sst transitions and used the trained ResNet-50 classifier to predict cell type probabilities for each
interpolated step. Note that MorphNet can similarly predict morphology transitions among any two arbitrarily
chosen cdll types.

Vector Arithmetic using Differentially Expressed Genes. We used the scanpy> Wilcoxon rank-sum test to
identify differentially expressed genes for each cell type in Patch-seq. We considered genes with minimum
logfc value of 0.25 and adjusted p-value cutoff below 0.01 to be differentially expressed for each of the six cell
types. We then chose two start and end cell types (e.g. Lamp5 and Vip), and subtracted or set equal to zero all
differentially expressed genes for the starting cell type. Then, we added values to the differentially expressed
genes for the ending cell type, based on the cell’ s maximum gene expression value across all genes. This
strategy was used to preserve the minimum and maximum raw gene expression value and approximately keep
the same library size before and after subtracting and adding values to differentially expressed genes. Finally,
from the new raw gene expression vector, we obtained a previously unseen latent gene expression using trained
VAE model and fed the latent gene expression to the GAN generator to predict new morphologies.

Mor phological Axesof Variation. We used an unsupervised approach to identify dominant morphol ogical
axes learned by MorphNet™. Briefly, we performed singular value decomposition (SVD) on the weight matrices
learned by the Synthesis network® of the trained MorphNet GAN generator (Supplementary Figure 15a). The
right singular vectors represent the principal components of the GAN generator weights, which we used to
incrementally vary the latent code learned by MorphNet. This helps answer the simple but important question:
what specific morphological features can vary (and what are fixed) given aparticular gene expression profile?
We found that each of the singular vectors represents a distinct morphological feature that can vary for agiven
gene expression profile. We visualized these morphological features by generating images along two
morphological axes for MorphNet trained on MERFISH and MorphNet trained on Patch-seq in Supplementary
Figure 15b.

Data Availability
MERFISH data were downloaded from the Brain Image Library. Patch-seq data were downloaded from
https.//github.com/berenslab/mini-atlas and Brain Image Library.

Code Availability
Python implementation of MorphNet is available at https://github.com/single-cell-morphology. The online web
tool for predicting neuron morphology is available at https://morphnet.streamlitapp.com.
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Supplementary Figure 1. Schematic of CNN Baseline modd for predicting single-cell nuclear morphology or
neuronal from alatent gene expression vector.
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Supplementary Figure 2. a. UMAP of Vizgen MERFISH gene expression data colored by 14 Leiden clusters.
b. Relative proportions of neuronal and non-neuronal cell typesin MERFISH train and test sets. ¢. Confusion
matrix from classifying real MERFISH nuclear morphology images. d. (Left) Confusion matrix from
classifying real MERFISH nuclear morphology images using Scikit Learn’s Dummy Classifier with “stratified”
strategy. (Middle) Confusion matrix from classifying generated images from baseline model. (Right) Confusion
matrix from classifying generated images from MorphNet.
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Supplementary Figure 3. Mor phNet results on osmFI SH dataset. a. To obtain nuclear images from
osmFISH, we used the provided segmentation mask image generated based on PolyT staining. Each
morphology image spans the size of a single cell, with the nucleus highlighted via DAPI staining. b. Cell type
distribution of osmFISH. c. UMAP of osmFISH cells clustered using transcriptional (33 genes) signatures of
each cell. d. Comparison of real and generated images from training set. e. Comparison of real and generated
images from validation set.
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SWC File of Single Neuron Morphology

id type X y z radius parent
1 1 4573 3047 1065 535 -1
2 3 4629 3025 1157 0.78 1
3 3 463.9 3021 1194 0.72 2
4 3 464.5 3026 1212 0.69 3
type description

0 unknown

1 soma

2 axon

3 basal dendrite

4 apical dendrite

Compartment Metadata
Supplementary Figure 4. Schematic illustrating the workflow to preprocess raw neuron morphology data into

2-dimensional morphology imagesto train MorphNet. For each neuron, we projected its 3-dimensional
coordinates into the xy-plane to create a RGB image of its morphology. Parts of the neurons were colored
according to their compartment type.
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Supplementary Figure 5. Generated Patch-seq images using cSNGAN. a. (Left) Generated morphol ogies of
cellsin the Patch-seq training set. (Right) Generated morphologies of cells in the Patch-seq testing set.
CcSNGAN does not generalize well to test set with just adversarial loss. b. (Left) Generated morphologies of
cellsin the Patch-seq training set using cSNGAN trained with interpolation loss. (Right) Generated
morphologies of cellsin the Patch-seq testing set using cSNGAN trained with interpolation loss.
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Supplementary Figure 6. a. Schematic of adaptive discriminator augmentation (ADA) technique. ADA
applies pixel blitting, geometric, and color transformations to both real and generated images with probability p
to prevent overfitting the discriminator. b. Effect of applying data augmentation to real images with p = 0.6 on
eight Patch-seq morphology images.
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Supplementary Figure 7. a. Schematic of classifying 2D neuron morphologies into one of six cell types (1T,
Lampb5, Pvalb, Vip, Shcg, or Sat). b. Cell type distribution between train and test set. Train and test set were split
using stratified splitting to match the distribution of cell types as closely as possible. ¢. Confusion matrix of
ResNet50-based classifier on test set. d. From |eft to right: Train and validation loss curves, accuracy, and F1
scores over 200 epochs of training. e. From left to right: Confusion matrices from dummy classifier, from
generated images of CNN-baseline, and from generated images of MorphNet.
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Supplementary Figure 8. Uncurated 512x512 results generated for M Op dataset for each of the six Patch-seqg
cell types.
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Supplementary Figure 9. Uncurated 512x512 results generated for Isocortex dataset for each of the five cell
types present in the dataset.
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Supplementary Figure 10. a. UMAP plot of BNST and MOP datasets obtained using trained VAE. b. UMAP
plot of BNST and M OP datasets obtained using LIGER (k=80). c. Percentage of cellsin Cluster 8, which shows
amixture of Lamp5 from MOP and BNST_CplIx3. d. Percentage of cellsin Cluster 76, which shows a mixture
of Sst from MOP and BNST_Sst. e. Percentage of cellsin Cluster 74, which shows a mixture of Vip from MOP
and BNST_Vip.
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Supplementary Figure 11. Uncurated 512x512 results generated for BNST dataset for BNST_Cplx3,
BNSTp_Sst, and BNST_Vip clusters.
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Real Lamp5 = -> Real Vip

Supplementary Figure 12. Uncurated 512x512 results for Lamp5 to Vip Transitions.
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Generating Neuronal Morphology
from scRNAseq data

Step 1. Upload scRNA-seq data

eprocessing and Obtaining Latent Gene

Step 3. Generating Morphology

Step 2. Preprocessing and Obtaining Latent Gene
Expression

b e UMA pict o your data and Patchssq

. Generating Morphology

Supplementary Figure 14. Screenshot of MorphNet webtool created using Streamlit. Users may upload their
single-cell RNA-seq dataset in AnnData format (limited to 200 MB per file) or use sample data. Upon
uploading the data, the webtool will generate UMAP of the learned latent gene expression and predicted
morphologies. Users have the option to download morphology images upon completion.
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Supplementary Figure 15. a. Schematic for interpretation of learned weights of trained MorphNet using
semantic factorization. b. Two examples from varying morphological axes for MorphNet trained on MERFISH,
which qualitatively affects cell size and vertical/horizontal orientation. c. Two examples from varying
morphological axesfor MorphNet trained on Patch-seq, which qualitatively affects degree of axonal and
dendritic branchings.
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