

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

1
2
3 **Striatal dopamine synthesis and cognitive flexibility differ between**
4 **hormonal contraceptive users and non-users**

5
6
7
8 Caitlin M. Taylor¹, Daniella J. Furman², Anne S. Berry³, Robert L. White III⁴, William J.
9 Jagust^{5,6}, Mark D'Esposito^{5,7}, Emily G. Jacobs^{1,8}

10
11
12
13
14 ¹Department of Psychological & Brain Sciences, University of California, Santa Barbara

15 ²Department of Neurology, University of California San Francisco

16 ³Department of Psychology, Brandeis University

17 ⁴Department of Neurology, Washington University School of Medicine

18 ⁵Helen Wills Neuroscience Institute, University of California Berkeley

19 ⁶Lawrence Berkeley National Laboratory

20 ⁷Department of Psychology, University of California Berkeley

21 ⁸Neuroscience Research Institute, University of California Santa Barbara

22
23
24
25
26

27 **Correspondence:**

28 Caitlin M. Taylor
29 Dept. of Psychological & Brain Sciences
30 University of California, Santa Barbara
31 Santa Barbara, CA 93106
32 caitlin.taylor@psych.ucsb.edu

33

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

34

Abstract

35

36 In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine
37 neurotransmission. Yet little is known about hormonal regulation of the dopamine system in the
38 human brain. Using Positron Emission Tomography (PET), we address this gap by comparing
39 hormonal contraceptive users and non-users across multiple aspects of dopamine function:
40 dopamine synthesis capacity via the PET radioligand 6-[¹⁸F]fluoro-m-tyrosine ([¹⁸F]FMT),
41 baseline D2/3 receptor binding potential using [¹¹C]raclopride, and dopamine release using
42 methylphenidate-paired [¹¹C]raclopride. Participants consisted of 36 healthy women (n=21
43 naturally cycling; n=15 hormonal contraceptive users), and men (n=20) as a comparison group.
44 A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal
45 contraceptive users exhibited greater dopamine synthesis capacity than naturally cycling
46 participants, particularly in dorsal caudate, and greater cognitive flexibility. Further, across
47 individuals the magnitude of striatal DA synthesis capacity was associated with cognitive
48 flexibility. No group differences were observed in D2/3 receptor binding or dopamine release.
49 Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's
50 hormone status. Hormonal contraception (in the form of pill, shot, implant, ring or IUD) is used
51 by ~400 million women worldwide, yet few studies have examined whether chronic hormonal
52 manipulations impact basic properties of the dopamine system. Findings from this study begin to
53 address this critical gap in women's health.

54

55

56

57

58

59

60

61

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

62 Sex hormones are powerful neuromodulators of learning and memory (1). Accumulating
63 evidence suggests that sex hormones' influence extends to the regulation of dopamine (DA) (2–
64 5), itself a neuromodulator of higher order cognitive functions (6–8). In rodents and nonhuman
65 primates, 17 β -estradiol (E2) and progesterone (P) modulate DA synthesis and release, alter DA-
66 D2 receptor availability, and modify the basal firing rate of dopaminergic neurons (9–15). For
67 example, E2 administration produces a dose-dependent increase in striatal DA (11) and
68 modulates goal-directed behavior (16) in rodents. Progesterone has a bimodal effect on striatal
69 DA concentration, with increases in DA in the first 12 hours after P perfusion, and inhibitory
70 effects 24h post-infusion. Further, surgical removal of the ovaries reduces tyrosine hydroxylase–
71 immunoreactive neurons in the substantia nigra (17) and prefrontal cortex (18). Estrogen
72 receptors are localized to regions that receive major projections from midbrain DA neurons,
73 including prefrontal cortex (PFC), dorsal striatum, and the nucleus accumbens (19). Despite the
74 substantial literature supporting sex hormones' role in DA neuromodulation in rodents and
75 nonhuman primates, little is known about hormonal regulation of the dopamine system in the
76 human brain.

77 Indirect evidence in humans suggests that estradiol modulates dopamine-dependent
78 cognitive function and prefrontal cortex activity (20–22,22,23). For example, Jacobs and
79 D'Esposito found evidence that estradiol regulates PFC activity and working memory
80 performance, and the direction of the effect depends on an individual's basal PFC dopamine tone
81 (indexed by catechol-O-methyltransferase activity) (20). Additional evidence suggests that
82 menstrual cycle phase influences dopamine-dependent motor and cognitive functions, including
83 response time on tests of manual coordination, working memory and cognitive flexibility
84 (24,25), and immediate reward selection bias (26).

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

85 Molecular PET imaging provides a more direct assessment of dopaminergic activity *in*
86 *vivo* in the human brain. Findings of sex differences in DA synthesis capacity (27), DA release
87 (28–30), and DA transporter density (31,32) again suggest a role for sex steroid hormones in
88 modulating aspects of DA functioning. Additional evidence comes from PET studies of women
89 in different phases of the menstrual cycle or during the menopausal transition. Wong et al. (33)
90 observed fluctuations in DA-D2 receptor density across the menstrual cycle in healthy
91 premenopausal women, and Pohjalainen et al. (34) observed greater variability in DA-D2
92 receptor density in premenopausal versus postmenopausal women, with the suggestion that
93 greater variability was attributable to hormonal fluctuations across the menstrual cycle. Evidence
94 is mixed, however, with some studies reporting no significant associations between DA signaling
95 and menstrual cycle phase or serum estradiol concentrations (35–37).

96 An underexplored population for studying hormonal influences on DA function is women
97 using hormonal contraception. Hormonal contraception (HC; in the form of pill, shot, implant,
98 ring or IUD) is used by ~400 million women worldwide (38), yet few studies have examined
99 whether chronic hormone manipulations affect basic properties of the dopamine system. In the
100 present study, we probed the impact of hormonal contraception on multiple properties of the DA
101 system using molecular PET imaging techniques, offering new insights into the relationship
102 between sex hormones and DA neurotransmission in the human brain. The study consisted of
103 young, healthy women and men, and paired pharmacological manipulation of the DA system
104 with PET imaging to assess synthesis capacity (radioligand [¹⁸F]fluoro-m-tyrosine), D2 receptor
105 availability (radioligand [¹¹C]raclopride) and DA release (radioligand [¹¹C]raclopride paired with
106 methylphenidate). This provides a unique opportunity to characterize differences in DA synthesis
107 capacity, basal DA receptor occupancy, and stimulated DA release in a single cohort. Next, we

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

108 investigated sex differences in DA neurotransmission. Finally, we examined whether differences
109 in DA neurotransmission were associated with DA-dependent cognition, using a behavioral
110 assessment of cognitive flexibility (39,40).

111 **Methods**

112 **Participants**

113 Participants consisted of 57 adults (mean age = 21.16, SD = 2.37, range: 18–28 years), including
114 37 women and 20 men (n = 28 Asian, 10 Hispanic or Latino, 9 White (not Hispanic or Latino), 2
115 Black or African-American, 3 more than one race or ethnicity, 2 other, and 3 declined to state).
116 Participants underwent PET and MRI imaging as part of a parent study on dopaminergic
117 mechanisms of cognitive control (e.g., see (40)). PET data from this sample have previously
118 been described in (41). This study was approved by Institutional Review Boards at the
119 University of California, Berkeley and Lawrence Berkeley National Laboratory. Participants met
120 the following eligibility criteria: (1) 18–30 years old, (2) right-handed, (3) current weight of at
121 least 100 pounds, (4) able to read and speak English fluently, (5) nondrinker or light drinker
122 (women: <7 alcoholic drinks/week; men: <8 alcoholic drinks/week), (6) no recent history of
123 substance abuse, (7) no history of neurological or psychiatric disorder as confirmed by clinician
124 interview, (8) no current psychoactive medication or street drug use, (9) not pregnant, and (10)
125 no contraindications to MRI. Most participants completed three PET scans over the course of
126 two separate sessions: [¹⁸F]FMT, and [¹¹C]raclopride + placebo and [¹¹C]raclopride +
127 methylphenidate on the same day; the exceptions were one participant (a naturally-cycling
128 woman) who did not complete the FMT scan due to technical issues, one participant (a naturally-
129 cycling woman) who did not produce reliable Raclopride scan data due to technical issues, and
130 two participants (hormonal contraceptive users) who did not complete Raclopride scans.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

131 *FMT sample.* Women were categorized based on hormone status: naturally cycling (NC, no
132 current reported use of hormonal contraception; n = 21, avg. age = 22.67 years, SD = 2.77) and
133 current users of hormonal contraception (HC, n = 15, avg. age = 20.43 years, SD = 1.91). Types
134 of hormonal contraception used included: combined oral contraception (OC, n = 10), vaginal
135 ring (n = 1), implant (n = 2), injection (n = 1), and hormonal intrauterine device (IUD, n = 1).

136 *RAC sample.* RAC data from one NC participant did not pass quality control and two HC users
137 (combined OC) did not have RAC sessions, yielding a final sample of 21 NC women (avg age =
138 20.67, SD = 1.91) and 13 HC users (avg age = 22.69, SD = 2.81).

139 In our secondary analyses, participants were grouped by self-reported sex (male, n = 20; female,
140 n = 37), and hormone status (male, NC, HC). Men and women did not differ significantly in age
141 or BMI, however HC users were older than males ($p = .03$, $d = 0.85$) and NC participants ($p =$
142 .01, $d = 0.94$) by 25 months on average (Table 1).

143 **Structural MRI Scan**

144 Images were acquired using a Siemens 3 T Trio Tim scanner with a 12-channel coil. Each
145 participant was scanned on 3 occasions using a high-resolution T1-weighted magnetization
146 prepared rapid gradient echo (MPRAGE) whole brain scan (TR=2,300 ms; TE=2.98 ms; FA=9°;
147 matrix=240 × 256; FOV=256; sagittal plane; voxel size=1 × 1 × 1 mm; 160 slices). The three
148 MPRAGE scans were aligned, averaged, and segmented using FreeSurfer version 5.1
149 (<http://surfer.nmr.mgh.harvard.edu/>) and the averaged template was used for coregistration with
150 the PET data.

151

152

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

153 **[¹⁸F]FMT PET Data Acquisition**

154 Participants underwent an [¹⁸F]FMT PET scan to measure dopamine synthesis capacity. Detailed
155 methods are provided in (39). PET data were acquired using a Siemens Biograph Truepoint 6
156 PET/CT scanner (Siemens Medical Systems, Erlangen, Germany) ~1 hour after participants
157 ingested 2.5 mg/kg of carbidopa to minimize the peripheral decarboxylation of [¹⁸F]FMT. After
158 a short CT scan, participants were injected with approximately 2.5 mCi of [¹⁸F]FMT as a bolus
159 in an antecubital vein ($M \pm SD$; specific activity = 947.30 ± 140.26 mCi/mmol; dose = 2.43 ± 0.06
160 mCi). Dynamic acquisition frames were obtained over 90 min in 3D mode (25 frames total: $5 \times$
161 $1, 3 \times 2, 3 \times 3, 14 \times 5$ min). Data were reconstructed using an ordered subset expectation
162 maximization algorithm with weighted attenuation, corrected for scatter, and smoothed with a
163 4mm full width at half maximum (FWHM) kernel.

164 **[¹¹C]Raclopride PET Data Acquisition**

165 Participants received two [¹¹C]raclopride PET scans an average of 21.65 days before or after the
166 [¹⁸F]FMT scan (median = 7 days) to measure D2/3 receptor occupancy and dopamine release. To
167 measure baseline D2/3 receptor occupancy, participants ingested a placebo pill approximately 1
168 hour before [¹¹C]raclopride scan 1. The placebo scan was always performed first. To measure
169 dopamine release, participants ingested 30 mg ($M \pm SD$ mg/kg: 0.46 ± 0.08) of methylphenidate
170 ~ 1 hour before [¹¹C] raclopride scan 2. Endogenous DA release was measured as the percent
171 signal change (PSC) in non-displaceable binding potential (BPND) from [¹¹C]raclopride scan 1
172 to [¹¹C]raclopride scan 2 ((placebo [¹¹C]raclopride – methylphenidate [¹¹C]raclopride)/placebo
173 [¹¹C]raclopride). Scans were conducted on the same day, 2 hours apart and participants were
174 blind to whether placebo or methylphenidate was administered. For both [¹¹C]raclopride scan 1
175 and [¹¹C] raclopride scan 2, after a short CT scan, participants were injected with approximately

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

176 10 mCi of [¹¹C]raclopride as a bolus in an antecubital vein. Dynamic acquisition frames were
177 obtained over 60 min in 3D mode (19 frames total: 5 × 1, 3 × 2, 3 × 3, 8 × 5). Reconstruction
178 was performed as described above.

179 **PET Data Analysis**

180 PET data were preprocessed using SPM8 software (Friston et al, 2007). To correct for motion
181 between frames, images were realigned to the middle frame. The first five images were summed
182 prior to realignment to improve realignment accuracy, as these early images have relatively low
183 signal contrast. Structural images were coregistered to PET images using the mean image of
184 frames corresponding to the first 20 min of acquisition as a target. The mean image for the first
185 20 min was used rather than the mean image for the whole scan time because it provides a
186 greater range in image contrast outside of striatum thus making it a better target for
187 coregistration.

188 [¹⁸F]FMT. Graphical analysis for irreversible tracer binding was performed using Patlak
189 plotting (42,43) implemented using inhouse software and Matlab version 8.2 (The MathWorks,
190 Natick, MA). Without measurement of the arterial input function [¹⁸F]FMT PET analysis used
191 reference region models. Cerebellar gray matter was used as the reference region because this
192 region shows very little tracer uptake, and has an extremely low density of DA receptors and
193 metabolites relative to striatum (44–47). The most anterior 1/4 of cerebellar gray was removed
194 from the reference region to limit contamination of signal from the substantia nigra and ventral
195 tegmental area. K_i images were generated from PET frames corresponding to 25 to 90min
196 (48,49), which represent the amount of tracer accumulated in the brain relative to the reference
197 region.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

198 *[¹¹C]Raclopride.* For [¹¹C]raclopride PET, reversible tracer binding was quantified using
199 simplified reference tissue model analysis (SRTM; (50)). Specifically, a basis function version of
200 the SRTM was applied as previously described (51) with posterior cerebellar gray matter used as
201 the reference region. The SRTM analysis was performed using inhouse software provided by Dr
202 Roger Gunn and Matlab version 8.2. SRTM analysis was used to determine BP_{ND}, which can be
203 defined as: BP_{ND}= f_{ND}B_{avail}/K_D where B_{avail} is the concentration of D2/3 receptors, K_D is the
204 inverse of the affinity of the radiotracer for D2/3 receptors, and f_{ND} is the free fraction of the
205 ligand in the nondisplaceable tissue compartment (52,53).

206 **Regions of Interest**

207 An ROI approach was used to test relationships between hormonal status and PET measures of
208 dopaminergic function in striatal subregions. Striatal subregions were manually drawn in native
209 space on each participant's averaged MPRAGE MRI scan using Mango software. The dorsal
210 caudate, dorsal putamen, and ventral striatum were segmented as described in (54). Inter-rater
211 reliability was high for manually drawn striatal subregions (see (39)).

212 As we did not hypothesize an effect of hemisphere, ROI values for our three ROIs (dorsal
213 caudate, dorsal putamen, and ventral striatum) were analyzed as voxel-weighted averages of left
214 and right hemisphere PET values as follows:

215
$$(\text{L value} \times \text{L ROI volume} + \text{R value} \times \text{R ROI volume}) / \text{Combined R + L ROI volume.}$$

216 All analyses on striatal values were conducted on partial volume corrected ROIs (PVC; (55)).
217 PVC was performed in native space (non-normalized data) and corrects for between-subject
218 differences in the inclusion of white matter and CSF in the measured volumes. To apply the PVC
219 in native space, we used FreeSurfer-generated ROIs for gray matter cortical and subcortical

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

220 regions, white matter, and cerebral spinal fluid. All statistical analyses were conducted using R
221 (version 1.2.5001)

222 **Cognitive Paradigm**

223 The task was an adaptation of the task-switching paradigm developed by Armbruster,
224 Ueltzhöffer, Basten, and Fiebach (56) and is described in detail in (40). Briefly, on each trial,
225 participants were required to respond quickly to digits between 1 and 9 (excluding 5) that
226 appeared in different shades of gray against a black background. On 82% of trials, a single digit
227 appeared above a central fixation. For these “ongoing task” trials, participants performed an
228 operation (odd/even or low/high decisions) on the digit and responded by pressing the index
229 finger of either their left or right hand. On the remaining 18% of trials, two digits appeared on
230 the screen simultaneously, one above and one below the fixation cross. The relative brightness of
231 the upper and lower digits varied and encoded a task cue. When the upper digit was brighter (6%
232 of trials), participants were instructed to ignore the lower digit and continue to apply the ongoing
233 task rule to the upper digit (“distractor trials”). When the lower digit was brighter (6% of trials),
234 participants were signaled to switch attention to the lower and to apply the alternate task rule to it
235 (“switch trials”). On the final third of these trials (6% of total trials), the difference in brightness
236 between the upper and lower digits was reduced (“ambiguous trials”). Ambiguous trials were not
237 considered in our analyses. Participants performed a total of 990 trials distributed across three
238 blocks with brief interposed breaks. Cognitive testing occurred prior to PET imaging. *Distractor*
239 *cost* was calculated as the difference between performance accuracy on “distractor” trials and
240 “ongoing” trials, and *switch cost* was calculated as the difference between performance accuracy
241 on “switch” versus “ongoing” trials. One NC participant did not undergo cognitive testing,

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

242 resulting in a final sample of 20 NC women (avg age = 20.67, SD = 1.91) and 15 HC users (avg
243 age = 22.69, SD = 2.81)

244 **Statistical Analysis**

245 *Impact of hormone status on DA neurotransmission.* Since hormonal contraceptive (HC) users
246 were older than naturally cycling (NC) participants, to compare markers of dopaminergic
247 signaling between HC and NC groups, we conducted 2×4 ANCOVA (hormone group \times
248 bilateral region of interest, controlling for the effects of age) for measures of interest (FMT K_i ,
249 [^{11}C]raclopride BP_{ND} and percent signal change (PSC) in [^{11}C]raclopride BP). We investigated
250 significant main effects with post-hoc one-way ANCOVAs to determine which regions were
251 driving the effect, controlling for the effects of age. Statistically significant findings that survived
252 Bonferroni correction for multiple comparisons are noted ($p_{\text{Bf}} .05/3$ regions = .0167). Partial
253 effect sizes (η^2) are reported for statistically significant findings.

254 Welch's t -tests were used to compare distractor costs and switch costs between our
255 comparison groups. One NC participant with unusable task data was omitted from these
256 analyses. Finally, as a follow-up to observed differences between NC and HC women, switch
257 costs were correlated with [^{18}F]FMT K_i PVC striatal values to evaluate a relationship between
258 performance and DA synthesis.

259 *Sex differences in DA neurotransmission.* To compare aspects of DA signaling by sex and
260 hormone status, we conducted 2×3 mixed ANCOVA (group \times bilateral region of interest,
261 controlling for age) for measures of interest (FMT K_i , [^{11}C]raclopride BP and percent signal
262 change (PSC) in [^{11}C]raclopride BP). Welch's t -tests were conducted to compare distractor costs
263 and switch costs by sex.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

264 Finally, to determine whether differences in hormonal status within women influenced
265 the detection of sex differences, we conducted 3×3 mixed ANCOVA (group \times bilateral region
266 of interest, controlling for age) for each measure of interest (FMT K_i , [^{11}C]raclopride BP and
267 percent signal change (PSC) in [^{11}C]raclopride BP). Significant main effects were investigated
268 using post-hoc one-way ANCOVAs, again to control for the effects of age.

269 **Results**

270 **271 DA neurotransmission differs with hormonal contraceptive use**

272 Striatal [^{18}F]FMT K_i

273 [^{18}F]FMT PET data was obtained to assess DA synthesis capacity in the striatum. ANCOVA
274 revealed significant main effects of age ($F(1,33) = 4.844, p = .035, \eta^2 = 0.13$), hormone status
275 ($F(1,33) = 7.753, p = .009, \eta^2 = 0.19$, **Fig. 1**) and region ($F(2,68) = 207.859, p < .00001, \eta^2 =$
276 0.86). Regional effects were expected as previously reported (41). There was no significant
277 interaction between hormone status and region. Results from post-hoc one-way ANCOVAs
278 indicate that hormonal contraceptive users exhibited greater FMT K_i values compared to
279 naturally cycling participants, with the largest effect in dorsal caudate ($F(1,33) = 9.611, p_{Bf} =$
280 .004). K_i values differed marginally between hormonal contraceptive users and naturally cycling
281 participants in dorsal putamen ($F(1,33) = 3.966, p = .055$) and ventral striatum ($F(1,33) = 3.754,$
282 $p = .061$) (**Table 2**).

283 Striatal [^{11}C]Raclopride BP

284 [^{11}C]Raclopride PET data was obtained to measure D2/3 receptor binding potential.
285 [^{11}C]Raclopride BP differed significantly by region ($F(2,64) = 389.281, p < .0001, \eta^2 = 0.92$).
286 Regional effects were expected as previously reported (41). There was no significant main effect

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

287 of age ($F(1,31) = 3.795, p = .061$) or hormone status ($F(1,31) = 0.09, p = .76$) on [^{11}C]raclopride
288 BP_{ND} values, nor was there an interaction between hormone status and region ($F(2,64) = 0.815, p = .447$) (see Supplemental Table 1 for values).

290 Percent Signal Change in Striatal [^{11}C]Raclopride BP

291 Methylphenidate-paired [^{11}C]raclopride PET data was acquired to measure DA release.
292 [^{11}C]Raclopride BP PSC values differed significantly by region ($F(2,64) = 389.281, p < .0001, \eta^2 = 0.92$). Again, regional effects were expected as previously reported (41). There were no
293 significant effects of age ($F(1,31) = 3.795, p = .061$) or hormone status ($F(1,31) = 0.092, p = .76$) on [^{11}C]raclopride BP PSC values, nor was there an interaction between status and region
294 ($F(2,64) = 0.815, p = .45$) (see supplemental Table 1 for values).

297 **DA neurotransmission does not differ by sex**

298 Striatal [^{18}F]FMT K_i

299 We observed a main effect of region on FMT values ($F(2,108) = 358.424, p < .0001, \eta^2 = 0.87$),
300 no main effect of sex ($F(1,53) = 0.415, p = .52$), and no interaction between sex and region
301 ($F(2,108) = .032, p = .97$).

302 Striatal [^{11}C]Raclopride BP

303 We observed a main effect of region on [^{11}C]raclopride BP values ($F(2,104) = 479.362, p < .0001, \eta^2 = 0.90$), but no main effect of sex ($F(1,52) = 0.084, p = .77$), and no interaction
304 between sex and region ($F(2,104) = 1.453, p = .24$).

306 Striatal [^{11}C]Raclopride BP Percent Signal Change

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

307 Again, we observed a main effect of region on percent signal change in [¹¹C]raclopride BP
308 values ($F(2,104) = 5.383$, $p = .006$, $\eta^2 = 0.09$, but no main effect of sex ($F(1,51) = 0.089$, $p =$
309 $.77$), and no interaction between sex and region ($F(2,104) = 1.488$, $p = .23$).

310 **Differences in DA neurotransmission by sex and hormone status**

311 **Striatal [¹⁸F]FMT K_i**

312 Despite differences in striatal DA synthesis capacity within women based on hormone status,
313 men did not differ appreciably from women in either hormone group. ANCOVA revealed
314 significant main effects of group ($F(2,52) = 5.058$, $p = .010$, $\eta^2 = 0.16$) and region ($F(2,106) =$
315 116.5 , $p < .00001$, $\eta^2 = 0.60$) (**Fig. 2**). There was no significant effect of age ($F(1,52) = 1.444$, p
316 $= .235$) and no interaction between group and region ($F(4,106) = 0.166$, $p = .96$). Post-hoc
317 Tukey's HSD test confirmed that the main effect of hormone status was driven by previously
318 reported significant differences between naturally cycling and hormonal contraceptive groups (p
319 $= .004$), with no differences between males vs. HC ($p = .20$) or vs. NC ($p = .12$).

320 **Striatal [¹¹C]Raclopride BP**

321 We identified a significant effect of region ($F(2,102) = 476.183$, $p < .0001$, $\eta^2 = 0.90$), however
322 there was no significant main effect of age ($F(1,50) = 1.330$, $p = .25$) or hormone status ($F(2,50)$
323 $= 0.044$, $p = .96$), nor an interaction between the two factors ($F(4,102) = 1.049$, $p = .39$).

324 **Striatal [¹¹C]Raclopride BP PSC**

325 There was a significant effect of region ($F(2,102) = 5.284$, $p = .007$, $\eta^2 = 0.09$), no significant
326 effect of age ($F(1,50) = 0.400$, $p = .53$) or hormone status ($F(2,50) = 0.081$, $p = .92$), and no
327 significant interaction between the two ($F(4,012) = 0.750$, $p = .56$).

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

328 **Individual differences in DA transmission are tied to differences in cognitive flexibility**

329 **Naturally Cycling vs Hormonal Contraceptive Users**

330 There was no statistically significant difference in *distractor cost* between hormonal

331 contraceptive users and naturally cycling participants ($t(31.9) = 0.093, p = .926$; **Fig. 3A**).

332 However, hormonal contraceptive users exhibited significantly reduced *switch cost* compared to

333 naturally cycling participants ($t(31.0) = -2.256, p = .031; d = -0.74$; age-adjusted) (**Fig. 3B**).

334 Across female participants, switch cost was inversely correlated with $[^{18}\text{F}]\text{FMT K}_i$ values in the

335 dorsal caudate (Pearson's $r(33) = -0.41, p = .016$) and ventral striatum ($r(33) = -0.34, p = .042$),

336 but not in the dorsal putamen ($r(33) = -0.29, p = .089$). Only the effect in the dorsal caudate was

337 statistically significant after correcting for multiple comparisons (**Fig. 4**). By contrast, there were

338 no significant correlations between $[^{18}\text{F}]\text{FMT K}_i$ values and distractor cost in any ROI (all $p >$

339 .6). There were no significant correlations among males between $[^{18}\text{F}]\text{FMT K}_i$ values and

340 switch or distractor costs in any ROI ($p > .2$ for all).

341 **Men vs Women**

342 We did not observe a difference in switch cost ($t(46.4) = -0.11, p = .91$) or distractor cost ($t(47.9)$

343 $= -0.47, p = .64$) between men and women (**Table 3**).

344 **Men vs Naturally Cycling vs Hormonal Contraceptive Users**

345 We did not observe significant effects of switch cost ($F(2,52) = 2.428, p = .098$) or distractor

346 cost ($F(2,52) = 0.1, p = .905$) between groups (**Table 3**).

347

348

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

349

Discussion

350 In this study, hormonal contraceptive users exhibited greater dopamine synthesis capacity (as
351 measured by [¹⁸F]FMT K_i) and greater cognitive flexibility than naturally cycling participants.
352 No group differences in D2/3 binding potential (^{[11}C]raclopride BP) or DA release
353 (^{[11}C]raclopride BP PSC) were observed. Though synthesis capacity differed significantly
354 between naturally cycling women and women on hormonal contraceptives, women overall did
355 not differ appreciably from men. This suggests that investigations into the influence of sex
356 hormones on DA neurotransmission may be hampered if limited to comparisons between sexes.
357 Together, these findings lay the groundwork for understanding how global manipulations of the
358 endocrine system, e.g. via hormonal contraceptives, impact dopamine neurotransmission and
359 related cognition.

360 **DA synthesis capacity differs by hormone status**

361 Though analyses by sex did not reveal differences in DA neurotransmission, when we applied a
362 more nuanced lens to the investigation of hormonal influence on DA function, we found that DA
363 synthesis capacity differed between hormonal contraceptive users and naturally cycling
364 participants, while D2/3 receptor binding potential and stimulated DA release did not differ
365 between groups. These findings are consistent with the preclinical literature. For example, in an
366 ablation-replacement study in ovariectomized rats (11), 17 β -estradiol add-back selectively
367 increased striatal DA synthesis but not release, as measured via local superfusion of E2 into the
368 caudate nucleus. Similarly, Algeri et al. (57) observed increased DA synthesis in the striatum and
369 forebrain of intact rats after acute (4 days) and chronic (30 days) oral administration of a
370 synthetic progestin and an estrogen.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

371 Estradiol's influence on DA synthesis capacity may be mediated by estradiol-induced
372 increases in phosphorylation of tyrosine hydroxylase (TH) (11), the enzyme that converts
373 tyrosine to L-dihydroxyphenylalanine (L-DOPA). Another mechanism of action may be the
374 hormonal regulation of aromatic L-amino acid decarboxylase (AADC) that converts L-DOPA to
375 DA (and is the target of [¹⁸F]FMT). AADC activity is dependent on pyridoxal phosphate (PLP),
376 or Vitamin B₆ (58,59), a nutrient and coenzyme with intermediate concentrations in basal ganglia
377 (60) that is reduced, in some cases to the point of deficiency, in HC users (61–64). If low levels
378 of PLP are associated with reduced AADC activity (65), we would expect HC users to exhibit
379 *reduced* [¹⁸F]FMT binding relative to naturally cycling women. We observed the opposite
380 pattern. Without information regarding vitamin B6 status for participants, the relationship
381 between PLP and [¹⁸F]FMT binding remains untested.

382 The selectivity of our findings to differences in AADC activity (as measured with
383 [¹⁸F]FMT) and not DA release or D2/3 receptor binding (both measured with [¹¹C]raclopride)
384 also suggests the possibility that other catecholamine systems may be impacted. AADC is a
385 critical enzyme in the formation of catecholamines in general, including serotonin (60). In rodent
386 studies, chronic treatment with oral hormonal contraceptives increases brain levels of tryptophan
387 and serotonin (66–67, reviewed in 68). Future investigations should clarify whether global sex
388 steroid hormone manipulations alter DA synthesis capacity specifically, or the catecholamine
389 system generally.

390 While [¹⁸F]FMT is a straightforward measure of AADC enzyme activity, which should
391 directly reflect DA synthesis, RAC is a more complex signal. RAC combines several measures,
392 including the binding potential or number of D2/3 receptors (B_{avail}), and the dissociation constant
393 or how probable the ligand–receptor complex is to dissociate (K_D). One limitation of our study is

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

394 that naturally cycling participants were not staged according to menstrual cycle phase. DA
395 release and DA-D2 receptor availability vary across the estrus (3,12,13) and menstrual cycles
396 (10), though see (29,36). In ovariectomized rodents, 17 β -estradiol administration augments
397 striatal D2 receptor density (B_{avail}), but does not influence binding affinity (1/ K_D) (reviewed in
398 (69)). Thus, it is possible that differences in DA release and baseline binding potential between
399 HC users and unstaged NC women exist, but were obscured in our sample. However, data from
400 Smith and colleagues (37) suggest this is unlikely. In their study, DA release (as measured via
401 [^{18}F]fallypride paired with D-amphetamine) did not differ between women using hormonal
402 contraception and naturally cycling women staged within the first 10 days of their menstrual
403 cycle.

404 Another consideration is that FMT signal increases over the adult lifespan. Braskie et al.
405 (70) observed greater striatal FMT Ki values in older participants (mean age = 67) relative to
406 younger participants (mean age = 23). In young adults, higher FMT Ki values in caudate are
407 associated with increased working memory capacity (7). In contrast, in older adults greater
408 striatal FMT signal may reflect potential compensation for deficits elsewhere in the DA system
409 (e.g. prefrontal cortex). In a recent study of DA synthesis and working memory capacity in
410 cognitively normal older adults, we (71) observed that adults with the highest FMT Ki values
411 also display the greatest atrophy in posterior parietal cortex, raising the possibility of a
412 compensatory response with aging. In the present study of younger adults, HC users were
413 slightly older than NC participants (2 years on average), but the age range of our sample was
414 limited (18–28 years) and results remained significant after controlling for age. Thus, it is
415 unlikely that the group differences we observed are attributable to general effects of aging.
416 Further, our results do not support the idea that higher FMT Ki values reflect suboptimal DA

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

417 functioning, given that HC users had higher FMT Ki values and greater cognitive flexibility.
418 Higher FMT Ki values in young adults have consistently been associated with better cognitive
419 flexibility (39,72) as well as with working memory capacity (7).

420 **Consistent effects across hormonal contraceptive regimens**

421 The women in our HC group were on different forms of hormonal contraception, including the
422 combined oral contraceptive pill, vaginal ring, subdermal implant, injection, and hormonal IUD.
423 Exploratory analyses suggest that the relationship between HC use and potentiated DA synthesis
424 capacity is independent of route of administration (**Supplemental Figure 1**). Hormonal
425 contraception (HC) can alter endogenous hormone concentrations to varying extents depending
426 on the formulation and method of delivery. Oral contraceptives and the depot
427 medroxyprogesterone injection exert powerful and sustained suppression of endogenous sex
428 hormone production (73–75), while hormonal IUDs and implants generally exert less
429 pronounced suppression of endogenous hormone levels (75–79). It is possible that the impact of
430 HC on DA occurs via altering endogenous hormone levels, but is likely not solely attributable to
431 endogenous hormone suppression, per se.

432 The synthetic hormones introduced by the HC regimen, not the alteration of endogenous
433 hormones alone, may be driving changes within the DA system. In one of the few studies of
434 synthetic hormones' effects on striatal DA, Jori & Dolfini (80) report decreased striatal DA
435 levels in intact female rats after acute and chronic oral administration of steroid contraceptive
436 drug combinations (mestranol with either lynestrenol, norethindrone or norethynodrel). While we
437 did not observe differences in DA receptor binding potential or release, the direction of the effect
438 on DA synthesis capacity that we observed was similar between users of oral contraception ("the
439 pill", which is primarily a combination of ethinyl estradiol and progestin) and users of other

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

440 forms of hormonal contraception (including implants, injection, and hormonal IUDs) that
441 primarily contain progestin. This suggests that the progestin component, alone or in concert with
442 endogenous or exogenous estrogen, could be influencing the observed effects. A general
443 consensus from animal and human research is that endogenous estradiol augments DA function
444 (reviewed in (2)), while the influence of progesterone has not been fully characterized (24). Still,
445 progesterone receptor expression in embryonic DA neurons suggests a potentially powerful role
446 of progesterone in modulating DA signaling. In a study of mouse embryonic stem cells, Diaz and
447 colleagues (81) studied the expression of steroid hormone receptors in differentiated DA
448 neurons. They report that 92% of DA neurons expressed progesterone receptors and only 19% of
449 these neurons co-expressed tyrosine hydroxylase and ER- α . Other studies report effects of
450 progesterone, independent of estrogens, on DA release (14,82). Future investigations delineating
451 the influence of synthetic progestins alone and in combination with ethinyl estradiol on DA-ergic
452 function will provide mechanistic insight into the results reported here.

453 **Hormonal modulation of dorsal caudate vs striatum broadly**

454 We observed a significant difference in DA synthesis capacity between HC and NC groups
455 across the striatum, and post-hoc tests revealed the strongest effect to be in dorsal caudate
456 (Figure 1). Thus, it remains unclear whether the effects of hormonal contraception are specific to
457 dorsal caudate, or broadly alter striatal DA synthesis capacity. In a case study of oral
458 contraceptive-induced hemichorea using $^{18}\text{FDG-PET}$, investigators observed striatal
459 hypermetabolism, with increased glucose metabolism in the body of the left caudate nucleus
460 (contralateral to the dyskinesia) (83), suggesting certain caudate-specific effects of oral
461 contraception.

462 **Individual differences in dopamine synthesis capacity are tied to cognitive flexibility**

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

463 Hormonal contraceptive users differed from naturally cycling women on switch cost but not on
464 distractor cost in this task-switching paradigm, suggesting a specific effect on cognitive
465 flexibility. This reduced switch cost (i.e., greater cognitive flexibility) in hormone users is
466 consistent with our observation of greater striatal DA synthesis capacity in hormone users
467 relative to naturally cycling women. Previous studies have reported an association between task
468 switching performance and DA synthesis capacity, specifically in the dorsal caudate (39,72,84).
469 Our results suggest an influence of hormonal contraceptive use on the corticostriatal circuitry
470 underlying executive functioning. Future studies should consider whether other measures of
471 executive functioning are influenced, and, by extension, whether dopaminergic medications used
472 to treat disorders of executive function (e.g. ADHD) exert unique effects with or without
473 concomitant use of hormonal contraception.

474 **Strengths and Limitations**

475 Together, this study provided a unique opportunity to examine differences in basal dopamine
476 receptor occupancy, stimulated dopamine release, and dopamine synthesis capacity in a single
477 cohort, based on women's hormonal contraceptive status. However, a number of limitations
478 should be considered. First, naturally cycling participants were not staged according to menstrual
479 cycle phase, and as a result we may not have had sensitivity to detect differences in DA signaling
480 between contraceptive users and women at different phases of the menstrual cycle (as opposed to
481 naturally cycling women generally). Second, the route of administration and formulation of the
482 hormonal contraceptive regimen varied (e.g. patch, pill, IUD, implant). Detailed information on
483 participants age of initiation and duration of hormone use would enhance our understanding of
484 the time course with which hormonal contraceptives impacts the DA system.

485 **Conclusions**

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

486 This PET imaging study revealed differences in dopamine synthesis capacity between hormonal
487 contraceptive users and naturally cycling women. Measures of DA binding potential and
488 stimulated DA release were similar between groups. Hormonal contraception (in the form of pill,
489 shot, implant, ring or IUD) is used by ~400 million women worldwide (38), yet few studies have
490 examined whether hormonal manipulations impact basic properties of the dopamine system.
491 Findings from this study begin to address this critical gap in women's health. Moving forward, it
492 is important to consider hormone use as a factor in studies of DA function. More broadly, our
493 findings motivate consideration of the clinical implications of concomitant use of commonly
494 used DA-based medications and hormonal contraceptives.

495 **End Notes**
496

497 **Acknowledgements.** This work was supported by NIH AG044292 (W.J.), the Daryl and
498 Marguerite Errett Discovery Award (C.M.T), and a NARSAD Young Investigator Grant from
499 the Brain & Behavior Research Foundation (E.G.J.).

500 **Author contributions.** The overall project was conceived by M.T.D. and W.J.J., with study
501 aims conceived by C.M.T. and E.G.J.; W.J.J., D.J.F., R.L.W. and A.S.B. and performed the
502 experiments; data analysis was conducted by C.M.T. and D.J.F; C.M.T. and E.G.J. wrote the
503 manuscript; M.T.D., A.S.B., D.J.F., W.J.J., R.L.W., C.M.T, and E.G.J. edited the manuscript.

504 **Conflict of interest.** The authors declare no competing financial interests.

505 **SI.** Supplementary information is available at MP's website

506

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

507
508

References

509 1. Taxier LR, Gross KS, Frick KM (2020): Oestradiol as a neuromodulator of learning and memory [no.
510 10]. *Nature Reviews Neuroscience* 21: 535–550.

511 2. Barth C, Villringer A, Sacher J (2015): Sex hormones affect neurotransmitters and shape the adult
512 female brain during hormonal transition periods. *Frontiers in Neuroscience* 9: 37.

513 3. Yoest KE, Quigley JA, Becker JB (2018): Rapid effects of ovarian hormones in dorsal striatum and
514 nucleus accumbens. *Hormones and Behavior* 104: 119–129.

515 4. Sun J, Walker AJ, Dean B, van den Buuse M, Gogos A (2016): Progesterone: The neglected hormone
516 in schizophrenia? A focus on progesterone-dopamine interactions. *Psychoneuroendocrinology* 74: 126–
517 140.

518 5. Becker JB (1999): Gender Differences in Dopaminergic Function in Striatum and Nucleus Accumbens.
519 *Pharmacology Biochemistry and Behavior* 64: 803–812.

520 6. Iversen SD, Iversen LL (2007): Dopamine: 50 years in perspective. *Trends in Neurosciences* 30: 188–
521 193.

522 7. Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008): Working Memory Capacity
523 Predicts Dopamine Synthesis Capacity in the Human Striatum. *J Neurosci* 28: 1208–1212.

524 8. Cools R, Arnsten AFT (2022): Neuromodulation of prefrontal cortex cognitive function in primates:
525 the powerful roles of monoamines and acetylcholine. *Neuropsychopharmacol* 47: 309–328.

526 9. Asghari R, Lung MSY, Pilowsky PM, Connor M (2011): Sex differences in the expression of
527 serotonin-synthesizing enzymes in mouse trigeminal ganglia. *Neuroscience* 199: 429–437.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

528 10. Czoty PW, Riddick NV, Gage HD, Sandridge M, Nader SH, Garg S, *et al.* (2009): Effect of
529 Menstrual Cycle Phase on Dopamine D2 Receptor Availability in Female Cynomolgus Monkeys [no. 3].
530 *Neuropsychopharmacology* 34: 548–554.

531 11. Pasqualini C, Olivier V, Guibert B, Frain O, Leviel V (1995): Acute Stimulatory Effect of Estradiol
532 on Striatal Dopamine Synthesis. *Journal of Neurochemistry* 65: 1651–1657.

533 12. Lévesque D, Gagnon S, Di Paolo T (1989): Striatal D1 dopamine receptor density fluctuates during
534 the rat estrous cycle. *Neuroscience Letters* 98: 345–350.

535 13. Becker JB, Cha J-H (1989): Estrous cycle-dependent variation in amphetamine-induced behaviors and
536 striatal dopamine release assessed with microdialysis. *Behavioural Brain Research* 35: 117–125.

537 14. Dluzen DE, Ramirez VD (1990): In vitro progesterone modulation of amphetamine-stimulated
538 dopamine release from the corpus striatum of ovariectomized estrogen-treated female rats: response
539 characteristics. *Brain Research* 517: 117–122.

540 15. Dluzen DE, Ramirez VD (1984): Bimodal Effect of Progesterone on in vitro Dopamine Function of
541 the Rat Corpus striatum. *NEN* 39: 149–155.

542 16. Uban KA, Rummel J, Floresco SB, Galea LAM (2012): Estradiol Modulates Effort-Based Decision
543 Making in Female Rats. *Neuropsychopharmacol* 37: 390–401.

544 17. Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE (2000): Estrogen Is
545 Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson's
546 Disease and Memory. *J Neurosci* 20: 8604–8609.

547 18. Kritzer MF, Kohama SG (1998): Ovarian hormones influence the morphology, distribution, and
548 density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult
549 Rhesus monkeys. *Journal of Comparative Neurology* 395: 1–17.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

550 19. Björklund A, Dunnett SB (2007): Dopamine neuron systems in the brain: an update. *Trends in*
551 *Neurosciences* 30: 194–202.

552 20. Jacobs EG, D’Esposito M (2011): Estrogen Shapes Dopamine-Dependent Cognitive Processes:
553 Implications for Women’s Health. *J Neurosci* 31: 5286–5293.

554 21. Diekhof EK, Geana A, Ohm F, Doll BB, Frank MJ (2021): The Straw That Broke the Camel’s Back:
555 Natural Variations in 17 β -Estradiol and COMT-Val158Met Genotype Interact in the Modulation of
556 Model-Free and Model-Based Control. *Frontiers in Behavioral Neuroscience* 15: 142.

557 22. Jacobs EG, Weiss B, Makris N, Whitfield-Gabrieli S, Buka SL, Klibanski A, Goldstein JM (2017):
558 Reorganization of Functional Networks in Verbal Working Memory Circuitry in Early Midlife: The
559 Impact of Sex and Menopausal Status. *Cereb Cortex* 27: 2857–2870.

560 23. Jacobs EG, Weiss BK, Makris N, Whitfield-Gabrieli S, Buka SL, Klibanski A, Goldstein JM (2016):
561 Impact of Sex and Menopausal Status on Episodic Memory Circuitry in Early Midlife. *J Neurosci* 36:
562 10163–10173.

563 24. Hidalgo-Lopez E, Pletzer B (2017): Interactive Effects of Dopamine Baseline Levels and Cycle Phase
564 on Executive Functions: The Role of Progesterone. *Front Neurosci* 11.
565 <https://doi.org/10.3389/fnins.2017.00403>

566 25. Hampson E, Kimura D (1988): Reciprocal Effects of Hormonal Fluctuations on Human Motor and
567 Perceptual-Spatial Skills. *Behavioral Neuroscience* 102: 456–9.

568 26. Smith CT, Sierra Y, Oppler SH, Boettiger CA (2014): Ovarian Cycle Effects on Immediate Reward
569 Selection Bias in Humans: A Role for Estradiol. *Journal of Neuroscience* 34: 5468–5476.

570 27. Laakso A, Vilkman H, Bergman J örgen, Haaparanta M, Solin O, Syvälahti E, *et al.* (2002): Sex
571 differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. *Biological Psychiatry*
572 52: 759–763.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

573 28. Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B, *et al.* (2006): Sex Differences in
574 Amphetamine-Induced Displacement of [18 F]Fallypride in Striatal and Extrastriatal Regions: A PET
575 Study. *AJP* 163: 1639–1641.

576 29. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J, *et al.* (2006): Sex Differences in
577 Striatal Dopamine Release in Healthy Adults. *Biological Psychiatry* 59: 966–974.

578 30. Manza P, Shokri-Kojori E, Wiers CE, Kroll D, Feldman D, McPherson K, *et al.* (2022): Sex
579 differences in methylphenidate-induced dopamine increases in ventral striatum. *Mol Psychiatry* 27: 939–
580 946.

581 31. Lavalaye J, Booij J, Reneman L, Habraken JBA, van Royen EA (2000): Effect of age and gender on
582 dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. *Eur J Nucl Med* 27: 867–
583 869.

584 32. Mozley LH, Gur RC, Mozley PD, Gur RE (2001): Striatal Dopamine Transporters and Cognitive
585 Functioning in Healthy Men and Women. *AJP* 158: 1492–1499.

586 33. Wong DF, Broussolle EP, Wand G, Villemagne V, Dannals RF, Links JM, *et al.* (1988): In Vivo
587 Measurement of Dopamine Receptors in Human Brain by Positron Emission Tomography Age and Sex
588 Differences. *Annals of the New York Academy of Sciences* 515: 203–214.

589 34. Pohjalainen T, Rinne JO, Någren K, Syvälähti E, Hietala J (1998): Sex Differences in the Striatal
590 Dopamine D2 Receptor Binding Characteristics in Vivo. *AJP* 155: 768–773.

591 35. Nordström A-L, Olsson H, Halldin C (1998): A PET study of D2 dopamine receptor density at
592 different phases of the menstrual cycle. *Psychiatry Research: Neuroimaging* 83: 1–6.

593 36. Petersen N, Rapkin AJ, Okita K, Kinney KR, Mizuno T, Mandelkern MA, London ED (2021):
594 Striatal dopamine D 2 -type receptor availability and peripheral 17 β -estradiol. *Mol Psychiatry* 1–10.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

595 37. Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK, *et al.* (2019): Lack of
596 consistent sex differences in d-amphetamine-induced dopamine release measured with [18F]fallypride
597 PET. *Psychopharmacology* 236: 581–590.

598 38. United Nations (2019): *Contraceptive Use by Method 2019: Data Booklet*. UN.
599 <https://doi.org/10.18356/1bd58a10-en>

600 39. Berry AS, Shah VD, Jagust WJ (2018): The Influence of Dopamine on Cognitive Flexibility Is
601 Mediated by Functional Connectivity in Young but Not Older Adults. *Journal of Cognitive Neuroscience*
602 30: 1330–1344.

603 40. Furman DJ, White RL III, Naskolnakorn J, Ye J, Kayser A, D’Esposito M (2020): Effects of
604 Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype. *Journal of Cognitive*
605 *Neuroscience* 32: 804–821.

606 41. Berry AS, Shah VD, Furman DJ, White Iii RL, Baker SL, O’Neil JP, *et al.* (2018): Dopamine
607 Synthesis Capacity is Associated with D2/3 Receptor Binding but Not Dopamine Release [no. 6].
608 *Neuropsychopharmacology* 43: 1201–1211.

609 42. Patlak CS, Blasberg RG (1985): Graphical evaluation of blood-to-brain transfer constants from
610 multiple-time uptake data. Generalizations. *J Cereb Blood Flow Metab* 5: 584–590.

611 43. Sossi V, Holden JE, de la Fuente-Fernandez R, Ruth TJ, Stoessl AJ (2003): Effect of dopamine loss
612 and the metabolite 3-O-methyl-[18F]fluoro-dopa on the relation between the 18F-fluorodopa tissue input
613 uptake rate constant K_{occ} and the [18F]fluorodopa plasma input uptake rate constant K_i. *J Cereb Blood*
614 *Flow Metab* 23: 301–309.

615 44. Camps M, Cortés R, Gueye B, Probst A, Palacios JM (1989): Dopamine receptors in human brain:
616 autoradiographic distribution of D2 sites. *Neuroscience* 28: 275–290.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

617 45. Farde L, Hall H, Ehrin E, Sedvall G (1986): Quantitative Analysis of D2 Dopamine Receptor Binding
618 in the Living Human Brain by PET. *Science* 231: 258–261.

619 46. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994): Distribution of D1- and D2-
620 Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain [no. 4].
621 *Neuropsychopharmacol* 11: 245–256.

622 47. Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, *et al.* (1993): Localization of D1
623 and D2 dopamine receptors in brain with subtype-specific antibodies. *Proceedings of the National
624 Academy of Sciences* 90: 8861–8865.

625 48. Ito H, Ota M, Ikoma Y, Seki C, Yasuno F, Takano A, *et al.* (2006): Quantitative analysis of dopamine
626 synthesis in human brain using positron emission tomography with L-[β -11C]DOPA. *Nuclear Medicine
627 Communications* 27: 723–731.

628 49. Ito H, Shidahara M, Takano H, Takahashi H, Nozaki S, Suhara T (2007): Mapping of central
629 dopamine synthesis in man, using positron emission tomography with L-[β -11C]DOPA. *Ann Nucl Med* 21:
630 355–360.

631 50. Lammertsma AA, Hume SP (1996): Simplified Reference Tissue Model for PET Receptor Studies.
632 *NeuroImage* 4: 153–158.

633 51. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997): Parametric Imaging of Ligand-
634 Receptor Binding in PET Using a Simplified Reference Region Model. *NeuroImage* 6: 279–287.

635 52. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, *et al.* (2007): Consensus
636 Nomenclature for in vivo Imaging of Reversibly Binding Radioligands. *J Cereb Blood Flow Metab* 27:
637 1533–1539.

638 53. Slifstein M, Laruelle M (2001): Models and methods for derivation of in vivo neuroreceptor
639 parameters with PET and SPECT reversible radiotracers. *Nuclear Medicine and Biology* 28: 595–608.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

640 54. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang D-R, *et al.* (2001): Imaging
641 Human Mesolimbic Dopamine Transmission with Positron Emission Tomography: I. Accuracy and
642 Precision of D₂ Receptor Parameter Measurements in Ventral Striatum. *J Cereb Blood Flow Metab* 21:
643 1034–1057.

644 55. Rousset OG, Ma Y, Evans AC (1998): Correction for Partial Volume Effects in PET: Principle and
645 Validation. *Journal of Nuclear Medicine* 39: 904–911.

646 56. Armbruster DJN, Ueltzhöffer K, Basten U, Fiebach CJ (2012): Prefrontal Cortical Mechanisms
647 Underlying Individual Differences in Cognitive Flexibility and Stability. *Journal of Cognitive*
648 *Neuroscience* 24: 2385–2399.

649 57. Algeri S, Ponzio F, Dolfini E, Jori A (1976): Biochemical Effects of Treatment with Oral
650 Contraceptive Steroids on the Dopaminergic System of the Rat. *Neuroendocrinology* 22: 343–351.

651 58. Hartvig P, Lindner KJ, Bjurling P, Långström B, Tedroff J (1995): Pyridoxine effect on synthesis rate
652 of serotonin in the monkey brain measured with positron emission tomography. *J Neural Transmission*
653 102: 91–97.

654 59. Rahman MK, Nagatsu T, Sakurai T, Hori S, Abe M, Matsuda M (1982): Effect of pyridoxal
655 phosphate deficiency on aromatic l-amino acid decarboxylase activity with l-dopa and l-5-
656 hydroxytryptophan as substrates in rats. *The Japanese Journal of Pharmacology* 32: 803–811.

657 60. Ebadi M (1985): Regulation and function of pyridoal phosphate in CNS. *Selected Topics from*
658 *Neurochemistry*. Elsevier, pp 341–376.

659 61. Luhby AL, Brin M, Gordon M, Davis P, Murphy M, Spiegel H (1971): Vitamin B6 metabolism in
660 users of oral contraceptive agents. I. Abnormal urinary xanthurenic acid excretion and its correction by
661 pyridoxine. *The American Journal of Clinical Nutrition* 24: 684–693.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

662 62. Bennink HJTC, Schreurs WHP (1974): Disturbance of tryptophan metabolism and its correction
663 during hormonal contraception. *Contraception* 9: 347–356.

664 63. Wilson SM, Bivins BN, Russell KA, Bailey LB (2011): Oral contraceptive use: impact on folate,
665 vitamin B6, and vitamin B12 status. *Nutrition Reviews* 69: 572–583.

666 64. Rios-Avila L, Coats B, Chi Y-Y, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF (2015):
667 Metabolite profile analysis reveals association of vitamin B-6 with metabolites related to one-carbon
668 metabolism and tryptophan catabolism but not with biomarkers of inflammation in oral contraceptive
669 users and reveals the effects of oral contraceptives on these processes. *J Nutr* 145: 87–95.

670 65. Allen GFG, Neergheen V, Oppenheim M, Fitzgerald JC, Footitt E, Hyland K, *et al.* (2010): Pyridoxal
671 5'-phosphate deficiency causes a loss of aromatic l-amino acid decarboxylase in patients and human
672 neuroblastoma cells, implications for aromatic l-amino acid decarboxylase and vitamin B6 deficiency
673 states. *Journal of Neurochemistry* 114: 87–96.

674 66. Baker JM, Bond SW, Handley SL (1977): Effects of long-term treatment with contraceptive steroids
675 on plasma and brain tryptophan, brain 5-hydroxytryptamine, and locomotor activity in female mice
676 [proceedings]. *Br J Pharmacol* 59: 531P-532P.

677 67. Daabees TT, Mohy El-Din MM, Zeitoun R, Makar AB (1981): Injectable and oral contraceptive
678 steroids in relation to some neurotransmitters in the rat brain. *Biochemical Pharmacology* 30: 1581–1585.

679 68. Porcu P, Serra M, Concas A (2019): The brain as a target of hormonal contraceptives: Evidence from
680 animal studies. *Frontiers in Neuroendocrinology* 100799.

681 69. Di Paolo T (1994): Modulation of Brain Dopamine Transmission by Sex Steroids. *Reviews in the*
682 *Neurosciences* 5. <https://doi.org/10.1515/REVNEURO.1994.5.1.27>

683 70. Braskie MN, Wilcox CE, Landau SM, O’Neil JP, Baker SL, Madison CM, *et al.* (2008): Relationship
684 of Striatal Dopamine Synthesis Capacity to Age and Cognition. *J Neurosci* 28: 14320–14328.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

685 71. Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, *et al.* (2021):
686 Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. *Cerebral Cortex*
687 bhab379.

688 72. Berry AS, Shah VD, Baker SL, Vogel JW, O'Neil JP, Janabi M, *et al.* (2016): Aging Affects
689 Dopaminergic Neural Mechanisms of Cognitive Flexibility. *J Neurosci* 36: 12559–12569.

690 73. Gaspard UJ, Romus MA, Gillain D, Duvivier J, Demey-Ponsart E, Franchimont P (1983): Plasma
691 hormone levels in women receiving new oral contraceptives containing ethinyl estradiol plus
692 levonorgestrel or desogestrel. *Contraception* 27: 577–590.

693 74. Rivera R, Yacobson I, Grimes D (1999): The mechanism of action of hormonal contraceptives and
694 intrauterine contraceptive devices. *American Journal of Obstetrics and Gynecology* 181: 1263–1269.

695 75. Croxatto HB, Mäkäräinen L (1998): The pharmacodynamics and efficacy of Implanon®/Norplant®
696 is a registered trademark of the Population Council, New York.: An overview of the data. *Contraception*
697 58: 91S-97S.

698 76. Barbosa I, Bakos O, Olsson S-E, Odlind V, Johansson EDB (1990): Ovarian function during use of a
699 levonorgestrel-releasing IUD. *Contraception* 42: 51–66.

700 77. Xiao B, Zeng T, Wu S, Sun H, Xiao N (1995): Effect of levonorgestrel-releasing intrauterine device
701 on hormonal profile and menstrual pattern after long-term use. *Contraception* 51: 359–365.

702 78. Luukkainen T, Lähteenmäki P, Toivonen J (1990): Levonorgestrel-Releasing Intrauterine Device.
703 *Annals of Medicine* 22: 85–90.

704 79. Coelingh Bennink HJT (2000): The pharmacokinetics and pharmacodynamics of Implanon®, a
705 single-rod etonogestrel contraceptive impl. *The European Journal of Contraception and Reproductive*
706 *Health Care* 5: 12–20.

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

707 80. Jori A, Dolfini E (1976): Modifications of Striatal Dopamine Levels by Steroid Contraceptive Drugs
708 in Mice and Rats. *NEN* 21: 74–78.

709 81. Díaz NF, Guerra-Arraiza C, Díaz-Martínez NE, Salazar P, Molina-Hernández A, Camacho-Arroyo I,
710 Velasco I (2007): Changes in the content of estrogen α and progesterone receptors during differentiation
711 of mouse embryonic stem cells to dopamine neurons. *Brain Research Bulletin* 73: 75–80.

712 82. Petitclerc M, Bédard PJ, Di Paolo T (1995): Progesterone releases dopamine in male and female rat
713 striatum: A behavioral and microdialysis study. *Progress in Neuro-Psychopharmacology and Biological
714 Psychiatry* 19: 491–497.

715 83. Vela L, Sfakianakis GN, Heros D, Koller W, Singer C (2004): Chorea and contraceptives: Case report
716 with pet study and review of the literature. *Movement Disorders* 19: 349–352.

717 84. Klanker M, Feenstra M, Denys D (2013): Dopaminergic control of cognitive flexibility in humans and
718 animals. *Frontiers in Neuroscience* 7.

719

720

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

Table 1. Participant demographics by sex and hormone status

	Age	BMI
Men (n= 20)	20.7 ± 2.1	23.8 ± 5.3
Women (n = 37)	21.4 ± 2.5	23.7 ± 4.2
Naturally Cycling (NC, n = 22)	20.6 ± 2.0	23.0 ± 3.9
Hormonal Contraception (HC, n = 15)	22.7 ± 2.8	24.7 ± 4.6
NC vs HC cohen's d (Welch's <i>p</i>)	0.94 (.01 ¹)	n.s.
Men vs Women	n.s.	n.s.
Men vs NC vs HC Kruskal–Wallis <i>p</i>	.03	n.s.

¹Indicates significance with Bonferroni correction (*p* < .0167)

Types of hormonal contraception used (n):

Combined OC (10), Vaginal ring (1), Implant (2), Injection (1), Hormonal IUD (1)

721

722

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

Table 2. Dopamine synthesis capacity ($[^{18}\text{F}]\text{FMT}$ Ki Values) by group and striatal region of interest

	Dorsal Caudate	Dorsal Putamen	Ventral Striatum
Male	.0278 \pm .0034	.0346 \pm .0030	.0209 \pm .0034
Female (combined)	.0272 \pm .0033	.0343 \pm .0037	.0204 \pm .0049
Naturally cycling	.0256 \pm .0025	.0331 \pm .0033	.0190 \pm .0053
Hormonal Contraceptive	.0295 \pm .0030	.0360 \pm .0037	.0224 \pm .0037
HC vs NC partial η^2 , p -value	.23, .004 ¹	.11, .055 ²	.10, .061 ²
Female vs Male partial η^2 , p -value	.02, n.s.	<.01, n.s.	<.01, n.s.
Male vs NC vs HC partial η^2 , p -value	.18, .006 ¹	.08, n.s.	.10, .064 ²

¹Indicates significance with Bonferroni correction ($p < .0167$)

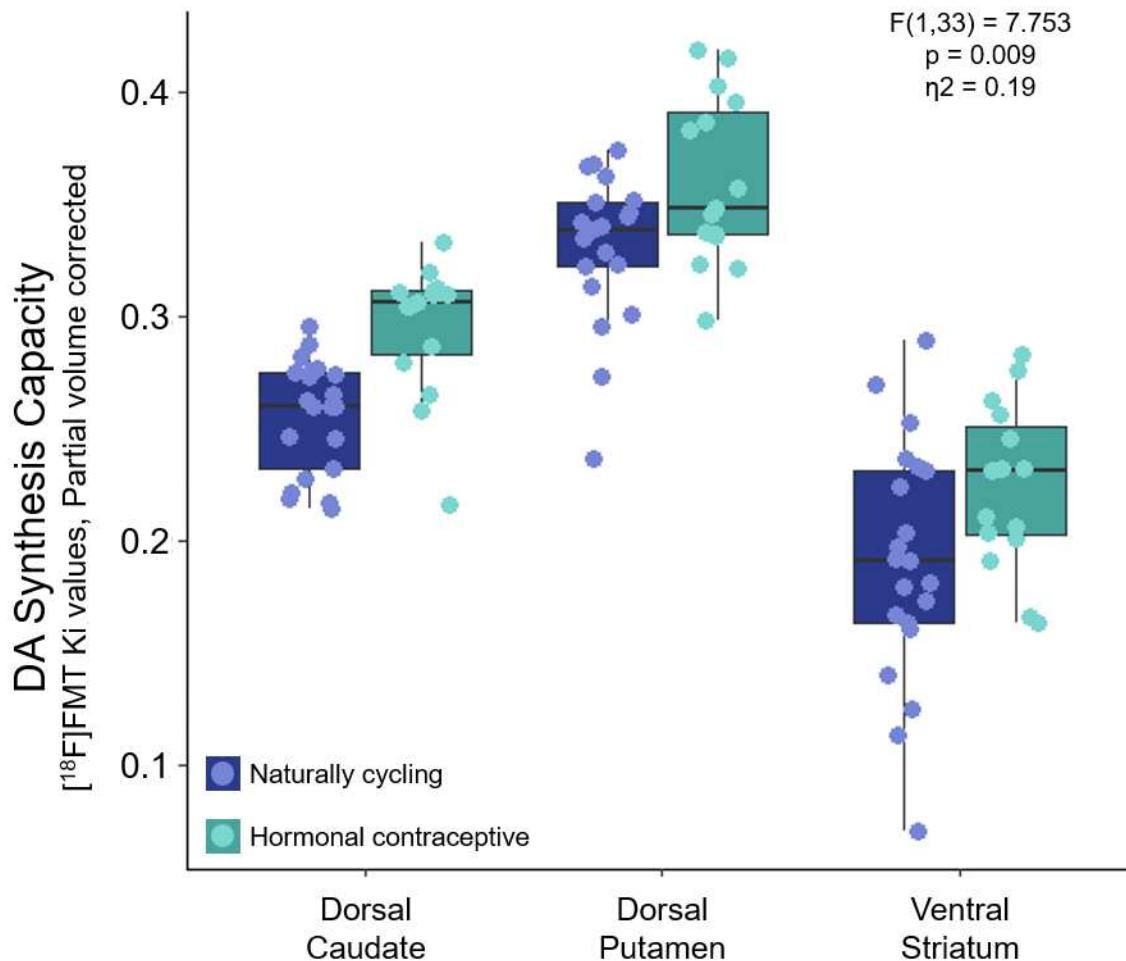
²Indicates uncorrected $p < .10$

n.s. indicates $p > .10$

723

724

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

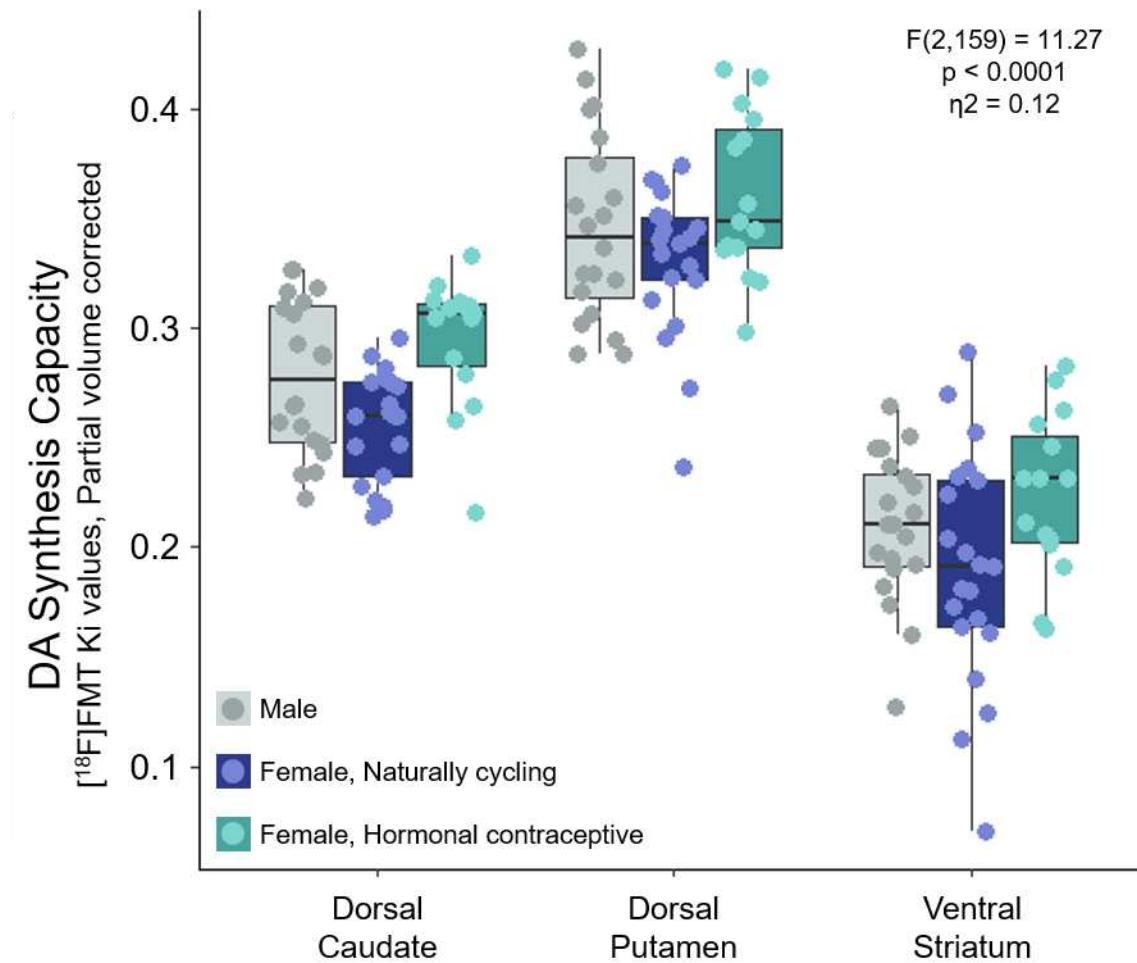

Table 3. Performance on task switching paradigm by group

	Distractor Cost	Switch Cost
Men (n= 20)	0.035 ± 0.040	0.125 ± 0.108
Women (n = 36)	0.029 ± 0.051	0.121 ± 0.132
Naturally Cycling (NC, n = 21)	0.029 ± 0.054	0.160 ± 0.149
Hormonal Contraception (HC, n = 15)	0.030 ± 0.048	0.070 ± 0.085
NC vs HC cohen's d (Welch's <i>p</i>)	n.s.	-0.74 (.03)
Men vs Women	n.s.	n.s.
Men vs NC vs HC Kruskal–Wallis <i>p</i>	n.s.	n.s.

725

726

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

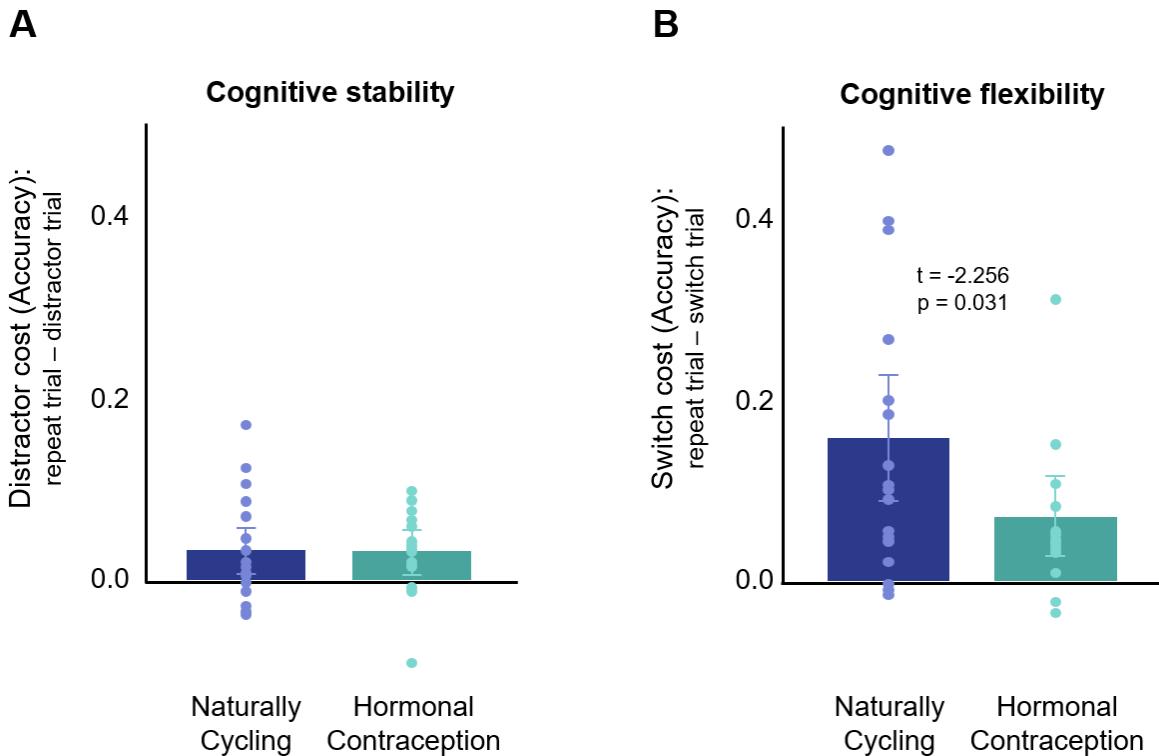

727

728 **Figure 1. Effect of hormone status on DA synthesis capacity.** [¹⁸F]FMT Ki values in naturally
729 cycling females and hormonal contraceptive users by striatal region of interest. Striatal DA
730 synthesis capacity was greater in hormonal contraceptive users relative to naturally cycling
731 women, with the most pronounced effects observed in dorsal caudate.

732

733

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

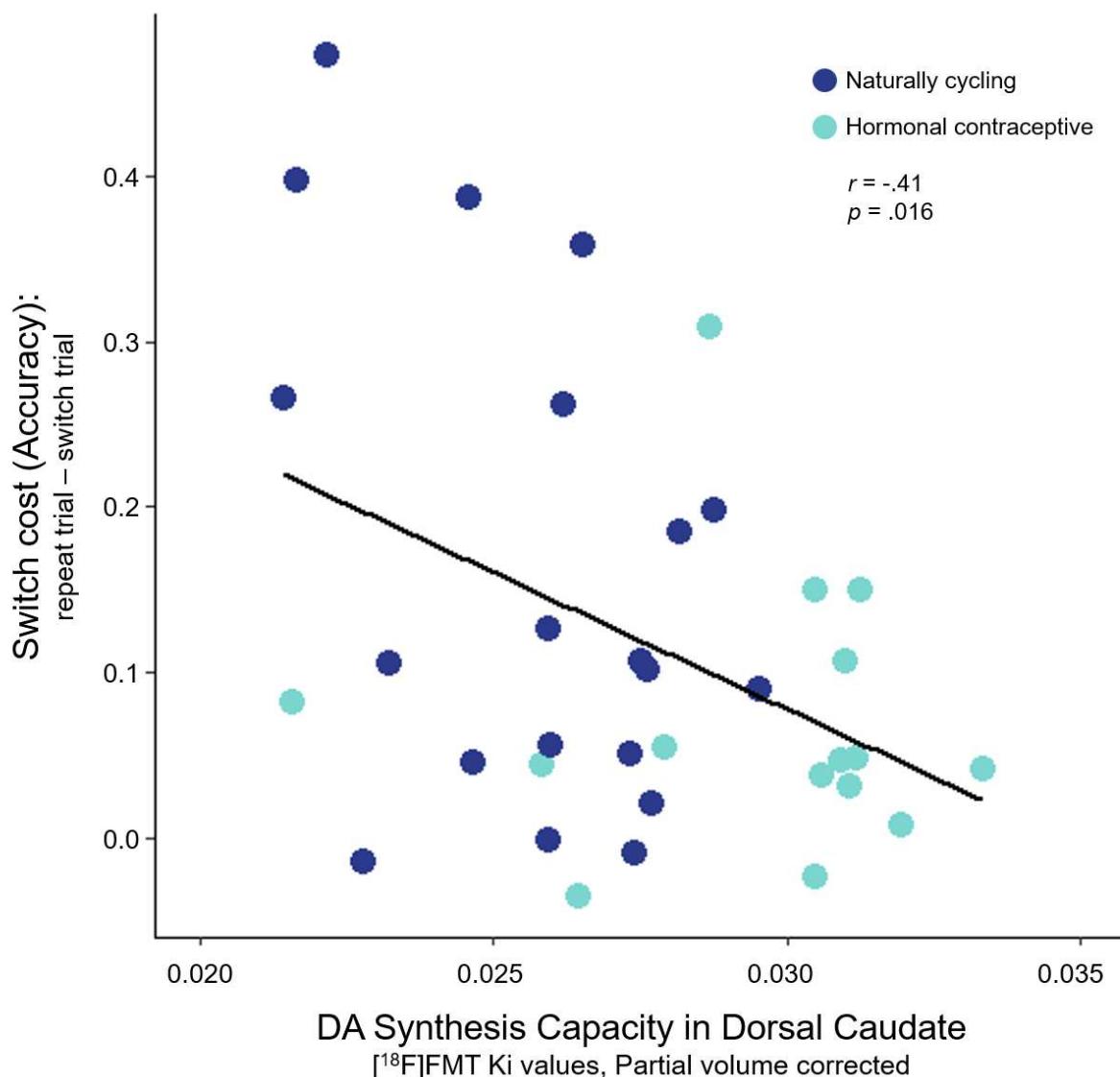

734

735 **Figure 2. No evidence for sex differences in DA synthesis.** [¹⁸F]FMT Ki values in males,
736 naturally cycling females and hormonal contraceptive users by striatal region of interest. There
737 were no significant differences between males and females (as a whole or by hormone status). As
738 before, striatal DA synthesis capacity was greater in hormonal contraceptive users relative to
739 naturally cycling women.

740

741

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis


742

743 **Figure 3. Cognitive flexibility differs between naturally cycling and hormonal**
744 **contraceptive groups.** Performance on a task switching paradigm reveals no difference in
745 cognitive stability between groups, indicated by no difference in distractor costs on
746 distractor/ongoing trials. In contrast, hormonal contraceptive users exhibited greater cognitive
747 flexibility compared to naturally cycling participants, indicated by a smaller performance cost on
748 task-switching trials

749

750

RUNNING HEAD: Hormonal contraceptive use and dopamine synthesis

751

752 **Figure 4. Cognitive flexibility correlates with DA synthesis capacity in dorsal caudate in**
753 **women.** We observed a significant negative correlation between performance on a task
754 switching paradigm and [¹⁸F]FMT Ki values in dorsal caudate across our female participants
755 (both NC and HC).