

Robustness vs productivity during evolutionary community assembly: short-term synergies and long-term trade-offs

Vasco J. Lepori¹, Nicolas Loeuille², and Rudolf P. Rohr¹

vasco.lepori@unifr.ch, nicolas.loeuille@sorbonne-universite.fr, and rudolf.rohr@unifr.ch

¹Department of Biology – Ecology and Evolution, University of Fribourg

Chemin du Musée 10, CH-1700 Fribourg, Switzerland.

²Sorbonne Université, UPEC, CNRS, IRD, INRA

Institute of Ecology and Environmental Sciences, IEES

F-75005 Paris, France.

1 Abstract

2 The realization that evolutionary feedbacks need to be considered to fully grasp
3 ecological dynamics has sparked recent interest in the effect of evolution on com-
4 munity properties like coexistence and productivity. However, modern coexistence
5 theory being limited to pairwise interactions, little is known about coevolution and
6 diversification in rich communities. We leverage the recent multidimensional co-
7 existence theory metrics, together with a structural community robustness metric,
8 to study such properties in a general trait-based model of competition on a niche
9 axis. We show that the effects of coevolution on coexistence are two-fold. In the
10 short-term our results show synergies emerging between increasing productivity and
11 reinforcing coexistence, while in the long-term, diversification and niche-packing
12 destabilize communities, thus inducing a long-term trade-off between productivity
13 and coexistence. In light of classical and recent work, our findings help advance
14 understanding of evolutionary effects in high-dimensional systems. We illustrate
15 how our theoretical predictions echo in observed empirical patterns. Finally, we
16 discuss their implications and provide testable hypotheses.

17 *Keywords:* Eco-evolutionary dynamics, evolutionary stable communities, diver-
18 sification, coexistence theory, structural stability, niche difference, fitness difference,
19 productivity, Pareto optimality

20

1 Introduction

21 While ecology and evolutionary biology have long developed as separate disciplines (Lewon-
22 tin, 2003), recent years have seen an effort to better grasp the feedbacks that link vari-
23 ations in the biotic environment (inter- and intraspecific interactions) and evolutionary
24 trajectories (McPeek, 2017). The realization that evolutionary changes can happen over
25 relatively short time-scales (Lankau and Strauss, 2007; Fussmann et al., 2007; Yoshida
26 et al., 2003; Hairston Jr et al., 2005) fostered a renewed interest in the interface be-
27 tween ecology and evolution, an area of research now named eco-evolutionary dynamics
28 (Hendry, 2009). The feedback loop between ecological interactions and evolutionary
29 change in characters can give rise to complex dynamics beyond the simple optimization
30 of growth rates, such as disruptive selection and evolutionary branching (Geritz et al.,
31 1998).

32 Understanding the effects of evolution on the maintenance of species diversity remains
33 an open question. At the single species level, evolutionary adaptation may save species
34 from extinction under specific conditions, a phenomenon named evolutionary rescue (Bell
35 and Gonzalez, 2009). But accounting for density- or frequency-dependent selection can
36 open up scenarios where a species evolve towards self-extinction (Matsuda and Abrams,
37 1994), a case dubbed evolutionary suicide in the adaptive dynamics literature (Ferriere
38 and Legendre, 2013). In a two species scenarios, there can be both evolution towards
39 stronger niche differentiation (Lankau, 2009) or one species can push the other to extinc-
40 tion (Dercole et al., 2006). Recently, Pastore et al. (2021) studied the effect of co-evolution
41 of niche positions in a model of two competing species in the framework of Chesson’s co-
42 existence theory (Chesson, 2000; Barabás et al., 2018a). Their work shows that evolution
43 tends to have a negative effect on coexistence by increasing competitive imbalance, an
44 outcome matching the experimental results of Hart et al. (2019).

45 In communities, we have no reason to expect that evolution, which is driven by dif-
46 ferences in individual fitness, will lead to optimization of emergent properties at a larger
47 organizational scale (here, communities) (Metz et al., 2008). Brännström et al. (2012)

48 highlighted the dual nature of evolution in rich competitive communities, which can lead
49 to the increase of diversity at different levels through generation of polymorphism and
50 speciation but also to competitive exclusion and evolutionary murder. Classical ecological
51 theory also predicts that stability in arbitrary large systems may be difficult: in randomly
52 interacting communities local dynamical stability decreased with richness (May, 1972),
53 but adding non-random interactions such as adaptive foraging or eco-evo dynamics can
54 counter this effect (Kondoh, 2003). Loeuille (2010) showed that evolution stabilizes mod-
55 erately rich communities but destabilizes more species-rich systems.

56 Importantly, dynamical stability - the return to equilibrium after a state perturbation
57 - is only half the picture (Rohr et al., 2014), the other half being feasibility - the exis-
58 tence of an equilibrium state where all species have positive abundances. The structural
59 framework developed by Saavedra et al. (2017) allows us to quantify the tolerance to per-
60 turbations in the parameter space (such as changes in growth rates due to environmental
61 factors). The study of feasibility of competing species on a niche axis is tightly linked to
62 what classical theory calls species packing, a concept which dates back to Hutchinson's
63 work on species niches (Hutchinson, 1957, 1979) and was mathematically formalized by
64 MacArthur (1969). In their paper, they studied the limit in similarity between species,
65 i.e., how close species can be on the niche axis while still coexisting. Case (1981) extended
66 this approach by including coevolutionary forces, and studied limiting similarity under
67 the constraint imposed by evolution. To our knowledge, a study of the evolutionary effect
68 on structural stability has never been proposed to this day.

69 If species interactions are important drivers of evolutionary change we expect that
70 communities arising from co-evolution, for which Edwards et al. (2018) suggested the term
71 Evolutionary Stable Communities (ESCs), should comprise a highly non-random subset
72 of all possible combinations of species. This has been advocated already by Rummel and
73 Roughgarden (1983), which analyzed island communities modeled through coevolution
74 processes versus random colonization. More recently, Aubree et al. (2020) showed that
75 coevolved communities were generally more productive, more stable, more resistant to

76 invasion than collections which were randomly assembled from the species pool.

77 Here, we aim to study how evolution and the emergence of polymorphism interplay
78 with coexistence and productivity constraints. Using the structural stability approach to
79 coexistence theory (Saavedra et al., 2017), we expand on previous approaches based on
80 species pairs and dynamical stability, to focus on multispecies co-evolutionary commu-
81 nities. Our aim is to go beyond previous works by 1) explicitly linking eco-evolutionary
82 dynamics and structural coexistence metrics; 2) discussing how these links vary in con-
83 trasting ways depending on the time scale that is considered; 3) Uncovering and explaining
84 the emergence of positive or negative correlations among various community properties,
85 particularly diversity, productivity and coexistence, along evolutionary trajectories.

86 To do so, we follow the structural indicators of niche and fitness difference. For a
87 given niche difference, small fitness differences increase robustness through equalizing
88 effects; similarly, for a given fitness difference, niche differences increase robustness due
89 to stabilizing effects. However, as is widely recognized, these two metrics do not exist
90 independently (Barabás et al., 2018b; Song et al., 2019), and we find they are insufficient
91 to paint a complete picture of extinction risks. Therefore, we make use of a structural
92 metric which quantifies the community robustness in the face of perturbations that would
93 cause loss of one or more of its constituent species (Medeiros et al., 2021). We track
94 all three metrics along evolutionary trajectories. Finally, we consider changes in total
95 community productivity, and contrast it with measures of coexistence.

96 We expect evolution to cause character displacement along the resource axis (Macarthur
97 and Levins, 1967; Dieckmann and Doebeli, 1999; Grant and Grant, 2006), which should
98 first result in an increase of niche differentiation. At the same time, divergence of niche
99 positions ultimately results in a decrease in the growth rate of phenotypes situated further
100 from the resource optimum, and in a larger imbalance of growth rates in the community
101 and greater fitness differences. We therefore expect that effects of evolution on coex-
102 istence and productivity may vary depending on the scale (environmental width) and
103 timeframe considered.

104

2 Materials and methods

105

2.1 Ecological dynamics

106 We study a niche-based model of competition based on generalized Lotka-Volterra dy-
107 namics (Volterra, 1931), following the α - r parametrization (Mallet, 2012). Each phe-
108 notype is defined by its position μ_i on a niche axis representing resources. Position on
109 the niche axis affects both the intrinsic growth rates $r(\mu_i)$ and the strength $\alpha(\mu_i, \mu_j)$ of
110 density-dependent competition interactions between types. This kind of model has been
111 commonly used to model competition on a niche axis (MacArthur, 1972), and has been
112 shown to readily lead to the evolutionary emergence of polymorphism (Dieckmann and
113 Doebeli, 1999). We use this behavior to explore the conditions of coexistence throughout
114 the diversification process. Population dynamics of a type i then follow:

$$\frac{dN_i}{dt} = N_i \cdot \left(r(\mu_i) - \sum_{j=1}^S \alpha(\mu_i, \mu_j) \cdot N_j \right) \quad i = 1, \dots, S. \quad (1)$$

115 We assume a Gaussian function for $r(\mu_i)$, with fecundity decreasing with distance from
116 a resource optimum μ_R , while including a small density-independent intrinsic mortality
117 m to prevent phenotypes with unreasonably large or small trait values from persisting at
118 virtually nil abundances:

$$r(\mu_i) = f_{\max} e^{-\frac{(\mu_i - \mu_R)^2}{2\sigma_R^2}} - m. \quad (2)$$

119 The parameter f_{\max} represents the maximum fecundity rate at the resource optimum,
120 while σ_R depicts the width of resources availability on the niche axis.

121 In line with previous works (MacArthur and Levins, 1967), we suppose that com-
122 petition strength is defined by the similarity among types. It then follows a Gaussian
123 function centered in μ_i , so that $\alpha(\mu_i, \mu_j) = \alpha(\mu_j, \mu_i)$, and interaction strength reaches its
124 maximum α_{\max} for $\mu_i = \mu_j$:

$$\alpha(\mu_i, \mu_j) = \alpha_{\max} e^{-\frac{(\mu_i - \mu_j)^2}{2\sigma_{\alpha}^2}}. \quad (3)$$

125 The parameter σ_{α} controls the width of the niche. This model is conceptually a size S

126 extension of the model used by Taper and Case (1992); Dieckmann and Doebeli (1999);
 127 Doebeli and Dieckmann (2000). The form of the competition function presents the agree-
 128 able property of being dissipative *sensu* Volterra (Volterra, 1931; Logofet, 1994). This
 129 implies that ecological dynamics possess one and only one globally stable equilibrium
 130 point. Moreover, if there exists a feasible equilibrium, i.e., $N_i^* > 0$ for all i , all ecolog-
 131 ical dynamics will converge to it regardless of initial abundances. Note that a feasible
 132 equilibrium must fulfill $r(\mu_i) = \sum_{j=1}^S \alpha(\mu_i, \mu_j) \cdot N_j^*$ for each i .

133 *2.2 Evolutionary dynamics*

134 We study evolution within the adaptive dynamics framework (Metz et al., 1995; Bränström
 135 et al., 2013), thereby accounting for both frequency- and density-dependent selection. The
 136 adaptive dynamics framework assumes clonal reproduction where mutations are infinites-
 137 imally small and rare, and a separation of timescales where ecology is assumed faster than
 138 evolution. This implies that advantageous mutations always go to fixation. The evolution
 139 of a quantitative trait is determined by the invasion fitness function, defined as the *per*
 140 *capita* growth rate of a rare mutant of traits μ'_i in a resident population of S phenotypes
 141 with traits μ_1, \dots, μ_S at their ecological equilibrium (Metz et al., 1992):

$$\omega_i(\mu'_i | \mu_1, \dots, \mu_S) = r(\mu'_i) - \sum_{j=1}^S \alpha(\mu'_i, \mu_j) \cdot N_j^*. \quad (4)$$

142 Note, that each phenotype i has its invasion fitness function ω_i .

143 The evolution over time of niche positions is determined by the canonical equation of
 144 adaptive dynamics (Dieckmann and Law, 1996):

$$\frac{d\mu_i}{dt} = c \cdot N_i^* \cdot \frac{\partial \omega_i(\mu'_i | \mu_1, \dots, \mu_S)}{\partial \mu'_i} \bigg|_{\mu'_i = \mu_i} \quad i = 1, \dots, S. \quad (5)$$

145 The partial derivatives

$$\frac{\partial \omega_i(\mu'_i | \mu_1, \dots, \mu_S)}{\partial \mu'_i} \bigg|_{\mu'_i = \mu_i} \quad i = 1, \dots, S \quad (6)$$

146 correspond to selection gradients, and they determine the direction of co-evolution of the

147 S niche positions. The coefficient c incorporates the mutation rate and the mutational
148 variance, which we assume to be equal for all phenotypes. Without loss of generality, we
149 can set $c = 1$ by rescaling the time axis. We integrate the canonical equation (Equ. 5)
150 numerically until an evolutionary singular strategy is reached, i.e, a set of traits μ_1^*, \dots, μ_S^* ,
151 at which all selection gradients vanish

$$\frac{\partial \omega_i(\mu'_i | \mu_1, \dots, \mu_S)}{\partial \mu'_i} \bigg|_{\mu'_i = \mu_i = \mu_i^*} = 0 \quad i = 1, \dots, S. \quad (7)$$

152 We start with a single monomorphic population and once we reach an evolutionary
153 singular strategy, we evaluate the evolutionary stability condition (invasibility of the
154 strategy) for each phenotype (Brännström et al., 2013; Metz et al., 1995). Invasibility
155 happens when the second derivative of the invasion fitness function (Equ. 4) with the
156 mutant trait is positive at the singular strategy (Dieckmann and Law, 1996; Geritz et al.,
157 1998). Evolutionary branching ensues, and we introduce a new phenotype at a small
158 distance of the singularity, thereby augmenting the dimensionality of the system. We
159 continue the simulation until all strategies are evolutionary stable, thereby forming an
160 Evolutionary Stable Community (ESC) *sensu* Edwards et al. (2018). The algorithm is
161 detailed in the Supplementary Materials S1.

162 2.3 Classical coexistence metrics

163 Along co-evolutionary trajectories where $S > 2$, we assess coexistence metrics. Within
164 the structural approach, coexistence is quantified by structural niche differences Ω and
165 structural fitness differences θ . These two metrics are extensions to species-rich systems of
166 the stabilizing niche difference and the fitness ratio, defined within the modern coexistence
167 theory framework (Chesson, 2000), and were introduced in their multispecies form by
168 Saavedra et al. (2017). The niche difference Ω quantifies the possibility of coexistence and
169 is mathematically defined as the solid angle of the domain of intrinsic growth rates leading
170 to coexistence given the interaction strength $\alpha(\mu_i, \mu_j)$, defining the feasibility domain
171 (Figure 1). In turn, the fitness difference θ quantifies the deviation from neutrality, i.e.,

172 to what extent a phenotype dominates the system. The fitness difference θ depends on
 173 both the intrinsic growth rates vector $\mathbf{r}(\mu_i)$ and the competition strength $\alpha(\mu_i, \mu_j)$. To
 174 compare values of niche difference across communities of different sizes S , we consider
 175 the standardized niche difference $\hat{\Omega} = \sqrt[s]{\Omega}$ (Song et al., 2018).

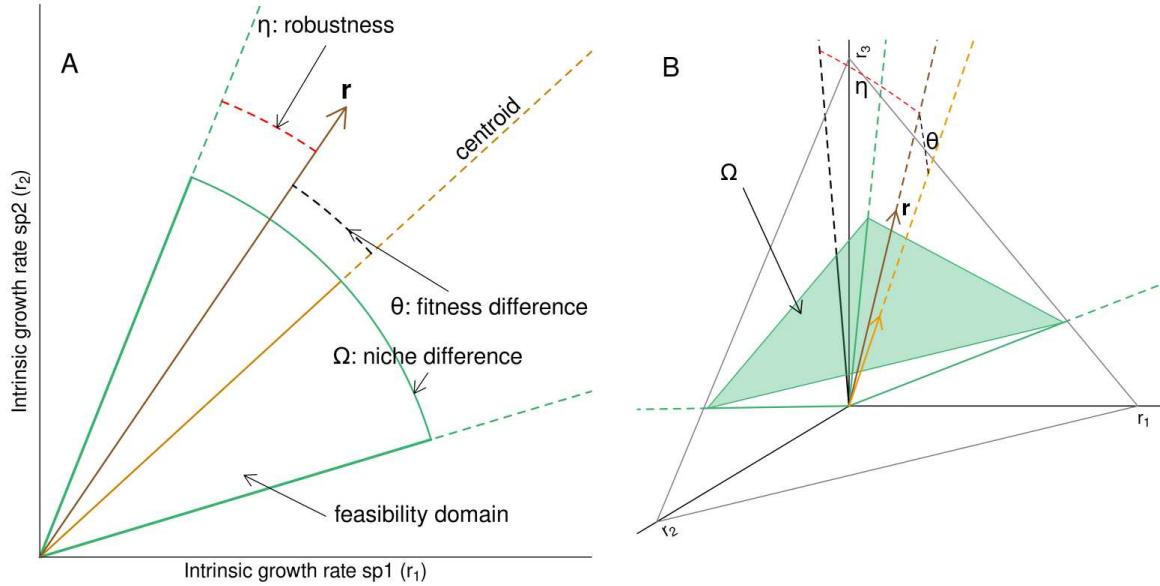


Figure 1: Geometric representation of the structural coexistence metrics for a 2-species system (panel A) and a 3-species system (panel B). On both panels, the green cone, called domain of feasibility, determines the set of intrinsic growth rates leading to a positive equilibrium for each species, i.e., to coexistence. The niche difference Ω is given by the amplitude of this cone, while the fitness difference θ measures the deviation of the vector of intrinsic growth rates (\mathbf{r}) from the centroid of the cone. Finally, η – structural measure of robustness – is given by the smallest angle between the vector of intrinsic growth rates and the border of the feasibility domain. It gives an indication of the fragility of the community with respect to perturbations on \mathbf{r} . Note that we illustrated the structural metrics for $S = 2$ and $S = 3$, but they are effectively defined and computed for S -rich systems (though they become hard to represent).

176

2.4 Structural robustness metric

177 While the classical metrics allow for partitioning coexistence effects, they do not give
 178 a clear indication of the absolute strength of coexistence. For example, if both Ω and
 179 θ increase, we do not know whether coexistence is favored or weakened. Hence, we
 180 utilize a complementary measure which we call η , the smallest angle between the vector
 181 of intrinsic growth rates \mathbf{r} and the border of the feasibility domain. This angle, which

182 we call “robustness”, gives an indication of the fragility of the community with respect
183 to perturbations on \mathbf{r} , i.e., how close the community is to losing of one or more of its
184 components. Figure 1 provides a representation of Ω , θ , and η in a system of $S = 2$. It
185 is worth noting that a version of this metric was used in Medeiros et al. (2021), where
186 it is called “full resistance”. The mathematics of how η is computed are detailed in the
187 Supplementary Materials S2.

188 *2.5 Productivity metrics*

189 Besides coexistence metrics, we also measure the evolution of productivity using the
190 proxy of total community biomass (or abundance) $N_{\text{tot}} = \sum_i N_i^*$ is (Tilman et al., 1997).
191 Biomass diversity effects (overyielding of polymorphic communities compared to mono-
192 cultures) can be due to complementarity in resource use, as well as selection for high-
193 yield phenotypes (high carrying capacity $K_i = r_i/\alpha_{ii}$). Both of these mechanisms can be
194 easily captured under our model, and are expected to vary along coevolutionary time.
195 Furthermore, we follow relative yield $Y_{\text{tot}} = (\sum_i N_i^*/K_i)$, another common currency of
196 biodiversity-productivity studies Vandermeer (1989); Loreau and Hector (2001).

197 *2.6 Randomizations*

198 We follow the coexistence metrics and productivity along co-evolutionary trajectories and
199 branching points. However, this does not tell us whether those properties are maximized
200 by evolution. To this end, we generate between 4'000 and 128'000 (depending on S)
201 communities for each singular strategy (branching point or stable strategy) of each sim-
202 ulation, by sampling uniformly sets of niche positions μ_i , conditioned on the resulting
203 community being feasible ($N_i^* > 0$ for all $i = 1, \dots, S$). We then compare the metrics
204 (niche and fitness difference and total biomass) of the sampled communities with the eco-
205 evolutionary trajectories. We use two different rules to define the range of niche positions
206 from which we sample. For the first rule, we sample communities within the range of
207 niche positions observed at the ESC (restricted range), which tells us if the evolutionary
208 community is unique within this bracket of niche positions. For the second rule (full

209 range), the range of sampled μ_i covers all niche positions leading to positive intrinsic
210 growth rate $r(\mu_i) > 0$. Such bounds are given by $\mu_R \pm \sqrt{2\sigma_R^2(\log f_{\max} - \log m)}$ and allow
211 us to compare strategies with respect to the whole trait space.

212 *2.7 Choice of parameter values*

213 To reduce the number of free parameters, we first transform the dynamical system into a
214 nondimensional form. That is, we freely chose the time unit, the abundance unit, and the
215 scale of the niche axis. Regarding the abundance and time unit, we can set without loss
216 of generality $\alpha_{\max} = 1$, $f_{\max} = 1$. The latter defines the ecological timescale, but adaptive
217 dynamics assumes that ecological equilibrium is reached before the next mutation occurs.
218 The combination of both determines the scale of species abundance and can arbitrarily
219 be rescaled. The additional mortality rate m remains, and thus cannot be freely chosen.
220 Regarding the niche axis, we can rescale, without loss of generality, its origin to $\mu_R = 0$.
221 Then we can also choose its scale by setting arbitrarily the resource width $\sigma_R = 1$ and
222 explore the effect of the niche width σ_{α} , or alternatively, we can also set arbitrarily the
223 niche width $\sigma_{\alpha} = 1$ and explore the effect of the resource width σ_R .

224 For simplicity, in the main text we show the results for one specific parametrization,
225 set to $m = 0.01$ and $\sigma_{\alpha} = 1$, and $\sigma_R = 1.7$. In the Supplementary Material S6 and S7,
226 we show that our findings are robust relative to different choices of environmental niche
227 width σ_R and mortality m .

228

3 Results

229 3.1 Co-evolutionary trajectories and branching events

230 Figure (2.A) shows a co-evolutionary trajectory, which undergoes diversification events
231 until it reaches a stable and convergent community (ESC). After each branching, we
232 observe a divergence in the niche positions, which leads to a decrease in the level of in-
233 terspecific competition. The evolutionary endpoint for the monomorphic situation (i.e.,
234 before the first branching) can be determined analytically. It converges to an evolutionary
235 singular strategy that is always located at the resource optimum $\mu^* = \mu_R$. Its invasibil-
236 ity depends on the width of the competition function (σ_α), the width of the resources
237 (σ_R), the maximum fecundity rate (f_{\max}), and the mortality rate (m). We show that
238 branching occurs if and only if $\sigma_R^2 \cdot (f_{\max} - m) > \sigma_\alpha^2 \cdot f_{\max}$ (Supplementary Materials S3).
239 Branching will therefore occur if the resource range is wide enough (as defined by σ_R)
240 and/or limiting similarity strong enough (small σ_α). This formula is alike the one derived
241 by Dieckmann and Doebeli (1999); Doebeli and Dieckmann (2000) but generalized to an
242 additional mortality term, which has an evolutionary stabilizing effect through reducing
243 the resident abundance at equilibrium. As expected by niche packing theory MacArthur
244 and Levins (1967); MacArthur (1969), the number of subsequent branching, and there-
245 fore, the number of species at the ESC, increases with the resource availability (σ_R) and
246 decreases with the competition width (σ_α), see Supplementary Material S4.

247 Figure 2B shows the evolution of the niche difference $\hat{\Omega}$. Between each branching point,
248 the niche difference increases. This can be expected from panel A showing that niche
249 positions diverge, which implies an increase in the niche difference and relaxed competi-
250 tion among phenotypes. But at the branching points, the addition of a new phenotype
251 very close to an existing one causes the average niche difference to abruptly decrease.
252 Hence, for a period, coexistence is driven by more neutral (fitness-equivalent) mecha-
253 nisms, rather than by strong niche separation. More specifically, branching points are
254 the only contiguous trait regions where indefinitely close phenotypes can coexist, creat-

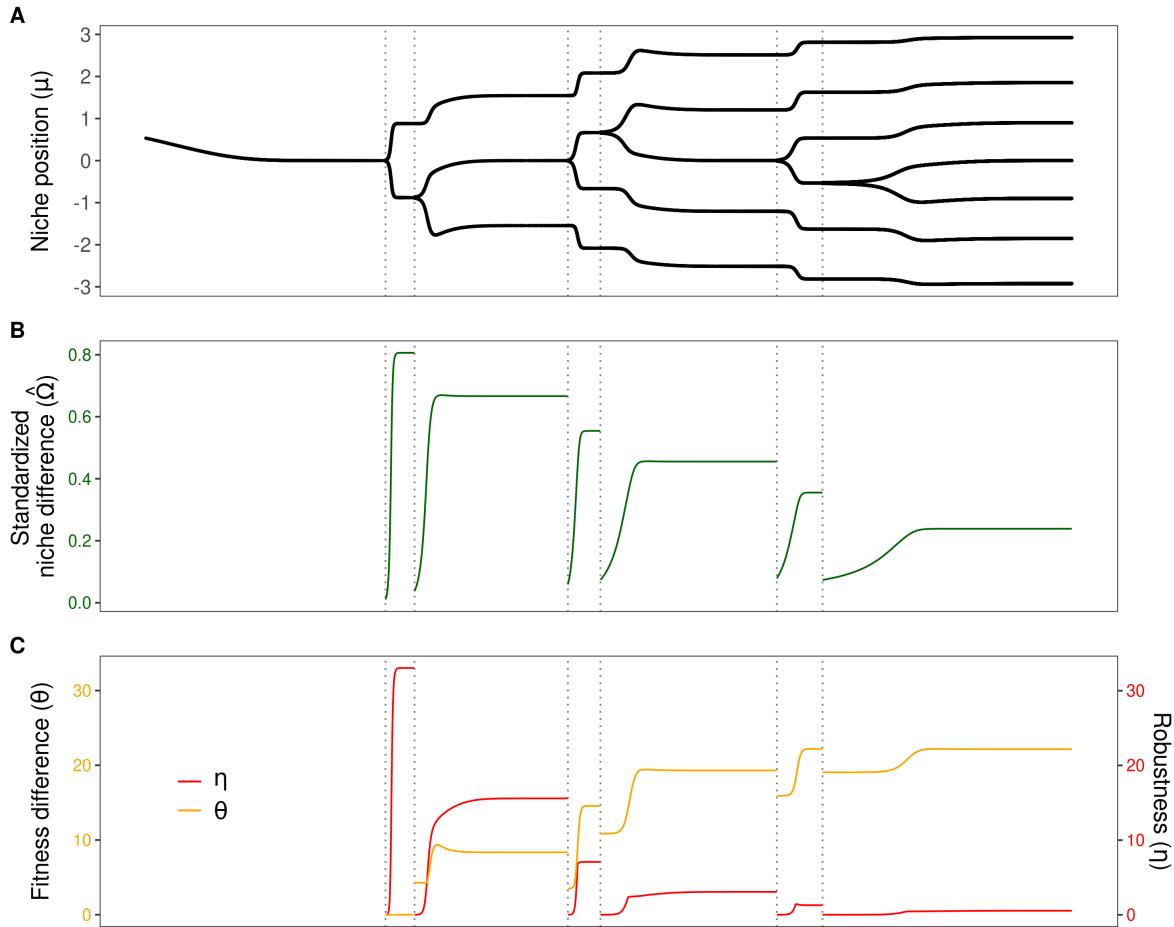
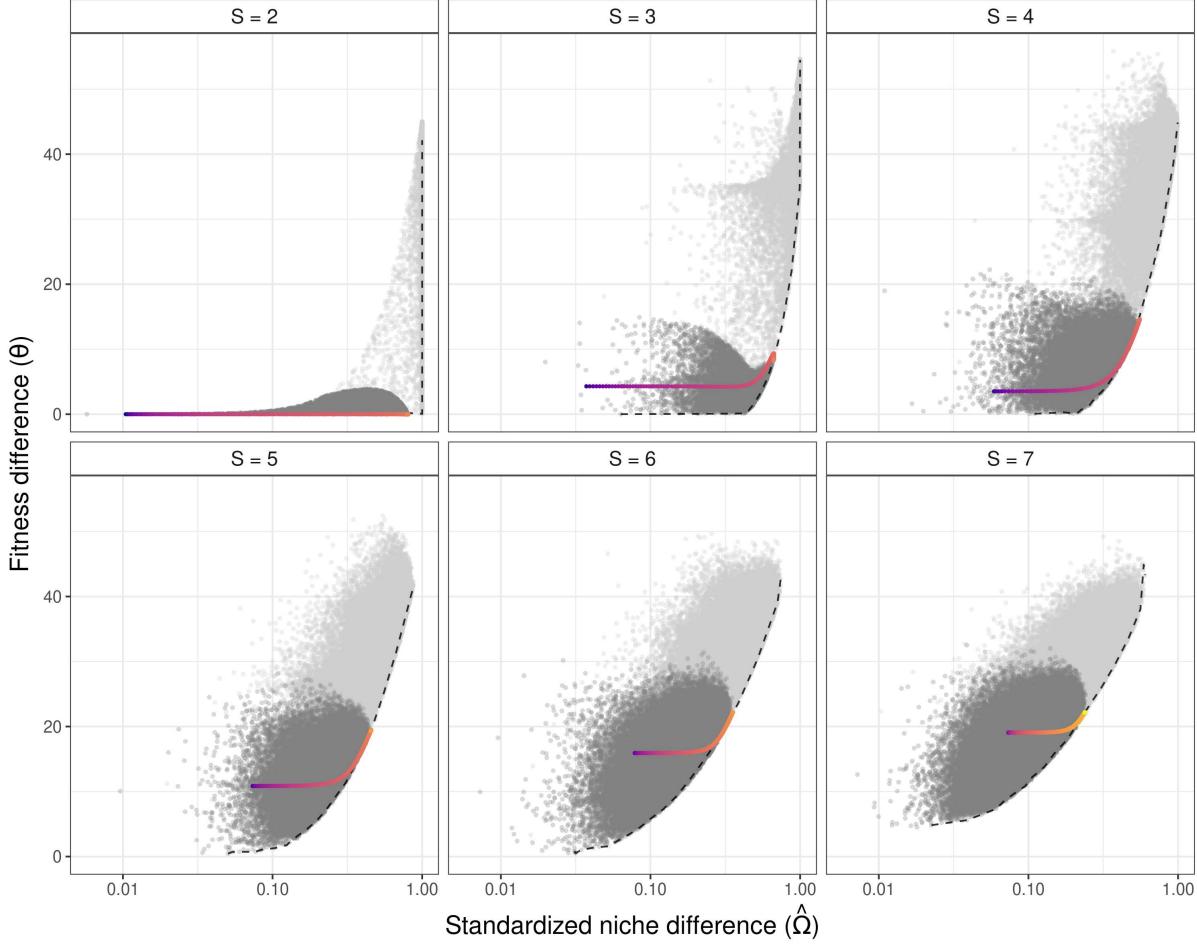


Figure 2: **Evolutionary trajectory.** Panel **A** shows the evolutionary trajectory of the niche positions μ_i . The vertical dotted lines indicate evolutionary branching. Panel **B** shows the evolution of the niche difference ($\hat{\Omega}$). Panel **C** shows the evolution of fitness difference (θ) and the robustness (η). For this figure, the resource width has been set to $\sigma_R = 1.7$, the niche width to $\sigma_\alpha = 1$, and the mortality term to $m = 0.1$.


255 ing a niche-neutrality continuum *sensu* Song et al. (2019). Conversely, fitness differences
256 θ increase all along evolutionary trajectories, which undermines community robustness
257 (Fig. 2C). Fitness differences θ are initially zero when only two types coexist, as their
258 trait positions are symmetric around the resource center. They later tend to increase for
259 $S > 2$ as phenotypes start differing in their intrinsic growth rates, reflecting imbalances
260 between strong and weak competitors. Note that because evolution here increases both
261 niche differences (stabilizing effect) and fitness differences (unequalizing effect) between
262 branching points, its overall effect on coexistence is not obvious. We therefore use the
263 robustness indicator – the angle η – to assess the evolution of the distance to the border to
264 the feasibility domain. Figure 2C shows that the robustness η tends to increase between
265 the branching points, so that the overall effect of a simultaneous increase in both fitness
266 and niche difference ultimately results in more robust communities. As logically expected,
267 η decreases at each branching point. Moreover, as S increases and the community be-
268 comes saturated, the value of η becomes very small. Once maximum phenotype packing
269 is achieved (at ESC), small perturbations in \mathbf{r} suffice to lead to non-feasibility, and the
270 community is structurally more fragile than an undersaturated one (fewer phenotypes
271 than at the ESC).

272 Supplementary Materials S6 and S7 show that these results are consistent when vary-
273 ing the resource width σ_R and the mortality rate m .

274 3.2 Projection into coexistence space

275 Figure 3 illustrates how coexistence metrics $\hat{\Omega}$ and θ change along the evolutionary tra-
276 jectory of figure 2 when $S \geq 2$. Remember that large niche differences $\hat{\Omega}$ and small fitness
277 differences θ enhance persistence. In the background, we show the coexistence metrics of
278 randomized communities that were produced according to the two rules presented in the
279 Methods.

280 Considering all randomized communities, it appears that communities that have small
281 fitness differences most often also have small niche differences. This is due to both

Figure 3: Variations of coexistence metrics along evolutionary trajectories. The figure is split into six panels according to the number of phenotypes S . Each panel therefore represents a slice (in between two branching points) of the trajectory presented in figure 2. The colored line represents the projection of the evolutionary trajectory of figure 2 into the space of coexistence metrics for a given S , variations of color from purple to orange indicating evolutionary time. The X-axis represents the standardized niche difference ($\hat{\Omega}$), while the Y-axis stands for the fitness difference (θ). Gray points represent randomized feasible communities, with niche position value sampled from the restricted range explored by evolution (1st rule; dark gray) or the full range leading to positive intrinsic growth rates (2nd rule; light gray). Pareto fronts among randomized communities are shown using dashed lines.

282 selecting for feasible communities, but also to ecological constraints under this model,
283 which generate a global trade-off at the community level between the two coexistence
284 metrics. Points that optimize one of the two properties relative to the other lie on a
285 Pareto front. Figure 3 shows that evolution leads to this Pareto-optimality, and more
286 specifically to the point on this front that also maximizes the standardized niche difference
287 within the restricted range (first randomization rule). More extreme niche positions would
288 also allow larger niche differences, but this decrease in competition would come at the
289 cost of decreasing intrinsic growth rates for the phenotypes further from the resource
290 optimum, thereby increasing fitness differences θ .

291 Regarding community robustness (η), figure 4 indicates that evolution optimizes it
292 within the range of niche positions explored by evolution (first randomization rule), but
293 greater robustness could (rarely) be reached for the second randomization rules. However,
294 among the niche positions explored by evolution and for a given number of phenotypes,
295 evolution converges to more robust communities, by optimizing the niche difference Ω
296 and the robustness η .

297 Supplementary Materials S6 and S7 show that these results are consistent when vary-
298 ing the resource width σ_R and the mortality rate m .

299 *3.3 Evolution of productivity*

300 In general, co-evolutionary dynamics increase productivity. While strict optimization
301 can be proven in the monomorphic situation (Supplementary Materials S3), productiv-
302 ity increase also happens throughout diversification, as illustrated by figure 5. For the
303 total abundance (panel A), the co-evolutionary trajectory, though not strictly optimal,
304 is among the most productive communities. This holds for the two randomization rules.
305 We have seen on figure 3, that within the restricted range of randomization, co-evolution
306 tends to maximize niche differentiation, and thus to decrease interspecific competition.
307 Given a fuller range of randomization, however, communities with larger niche differ-
308 entiation can be sampled. Results for the relative yield metric are presented in the

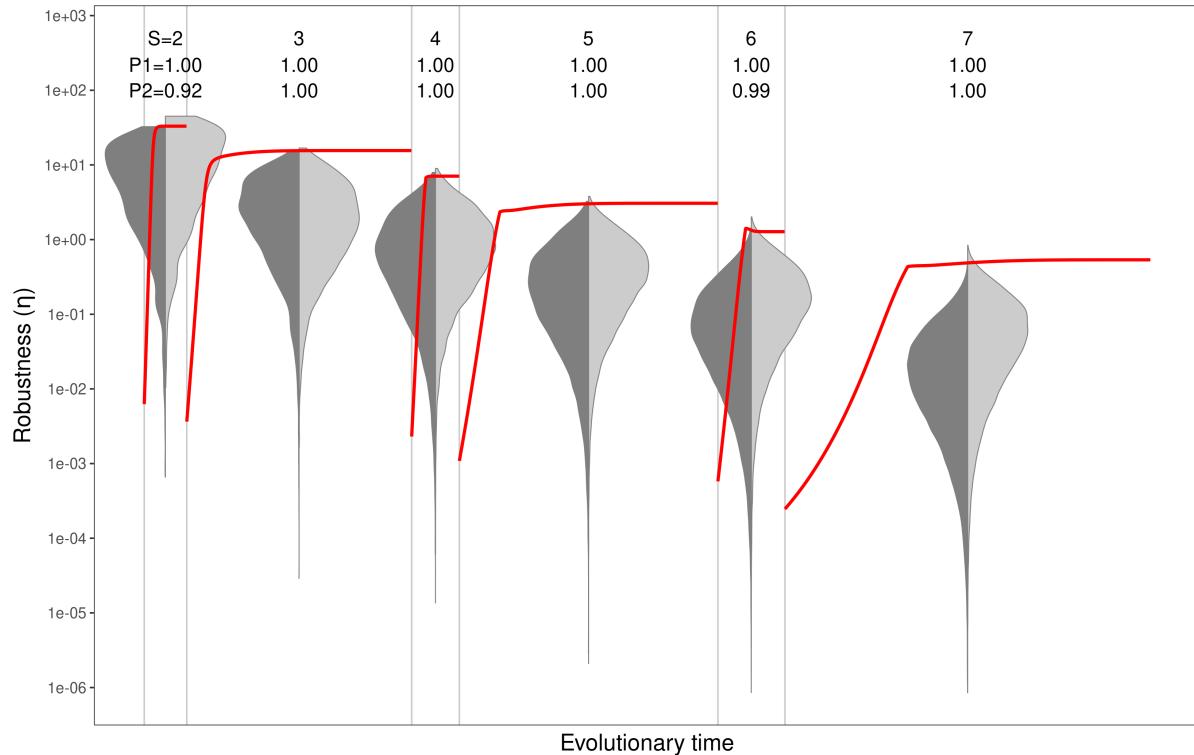


Figure 4: **Evolution of community robustness.** The red line shows the evolution of η . Gray points represent randomized feasible communities, with niche position value sampled from the restricted range explored by evolution (1st rule; dark gray) or the full range leading to positive intrinsic growth rates (2nd rule; light gray). At the singular strategy, the evolved community reaches a value of η greater or equal to than a proportion P_1 and P_2 of randomized communities according to the first and second randomization rules, respectively.

309 Supplementary Materials S5.

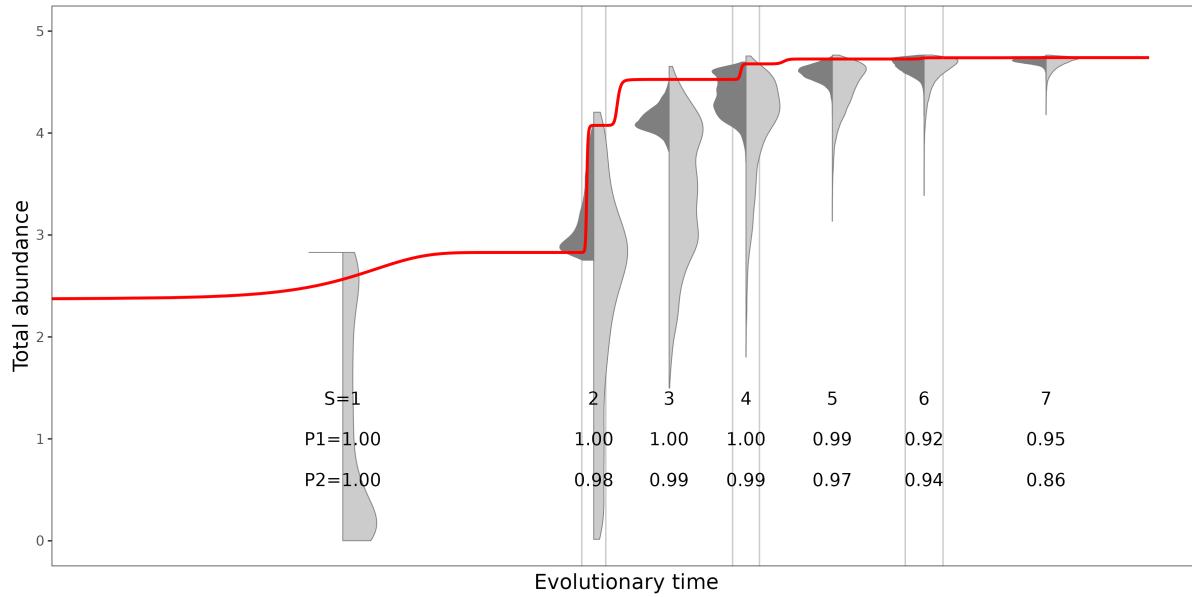


Figure 5: **Productivity along evolutionary trajectories.** Evolution of productivity. Here the numbers $P1$ and $P2$ in the second row of text indicate the percentage of randomized communities that are less productive than the ESC. For $S=1$, biomass production is optimized at the ESC. For $S=6$, the ESC is in the 80th percentile of the most productive communities. Point clouds represent randomization in the narrow (1st rule; dark gray) or the full range (2nd rule; light gray).

310

4 Discussion

311 In light of global changes, understanding the way evolution shapes and affects commu-
312 nity robustness is paramount. Communities are currently reshuffled by the arrival of
313 non-native species and by range shifts (Alexander et al., 2016). How these novel, evo-
314 lutionary non-equilibrium communities differ from ESCs is unclear. We also need to
315 assess under which conditions and how quickly evolution may prevent species from going
316 extinct following environmental change, considering not only population-level processes
317 (as in evolutionary rescue) but also larger spatial or organizational scales (Urban, 2016).
318 Previous studies showed that mechanisms such as adaptive foraging, which can be evo-
319 lutionary in nature, can stabilize complex systems (Kondoh, 2003; Valdovinos et al.,
320 2013). Recently a handful of studies, both theoretical and experimental, have explored
321 this question for pairs of coevolving species within the framework of modern coexistence
322 theory Pastore et al. (2021); Hart et al. (2019). Here we go further by employing recent
323 theoretical advances to investigate the question for species-rich systems ($S > 2$) where
324 diversity arises through subsequent branching events. We show that evolution of coexis-
325 tence properties follows two distinct trends on two different timescales, while productivity
326 systematically increases along evolutionary trajectories.

327 The short-term trend, in-between branching events, allows for increased efficiency in
328 resource partitioning and decreased competition. On this timescale, evolution promotes
329 niche differentiation ($\hat{\Omega}$), but this effect is counterbalanced by a simultaneous increase
330 in fitness difference (θ) (Fig. 2). Hence, coexistence is enhanced by favoring niche par-
331 titioning, rather than by neutral mechanisms. Since we observe both an increase in the
332 stabilizing mechanisms (increase in niche differences) and a reduction of the equalizing
333 mechanism (in fitness differences), as in (Pastore et al., 2021), we use the measure of
334 robustness η introduced earlier to show that between branching communities, evolution
335 selects less fragile communities with respect to environmental perturbations that impact
336 growth rates \mathbf{r} (Saavedra et al., 2017). The fact that coexistence metrics are usually not
337 independent is already appreciated (Barabás et al., 2018a; Song et al., 2019), but we here

338 show how they are readily coupled throughout evolutionary dynamics. This link is made
339 obvious in our trait-based model (Fig. 3), where niche position affects both growth rates
340 and competition strength, and in turn Ω and θ . This interdependence makes it impossible
341 to minimize simultaneously niche overlap and fitness differences (Fig. 3). Still, evolution
342 leads to communities that are not strict optima of Ω nor minima of θ but rather lie on
343 a Pareto front, an optimal compromise that is reached between niche increasing differ-
344 entiation and restricting fitness imbalances. In a rare direct empirical test of this short
345 term effect, Hart et al. (2019) find an increase in fitness difference after evolution, but
346 not one in niche difference, which they explain may have been prevented by competition
347 for a single discrete, non-substitutable resource. Still, evidence of (evolutionary) niche
348 differentiation measured as character displacement abounds in other natural and experi-
349 mental settings (Grant and Grant, 2006; Dayan and Simberloff, 2005), hence confirming
350 that we should also expect evolution to increase both metrics in nature.

351 Our results suggest that costs in terms of community robustness may happen on a
352 longer timescale, where evolution leads to diversification along with evolutionary niche
353 packing. Branching points, by virtue of addition of one more phenotype, whose trait value
354 and fitness are initially very close to an existing one, have a simultaneously equalizing
355 and destabilizing effect. As the community size increases, robustness and niche differences
356 peak at increasingly lower levels. This is a consequence of trying to pack a greater amount
357 of phenotypes in the same resource width σ_R (Fig. 2). Classical theory shows that the
358 number of phenotypes that can be packed on a resource axis is a function of resource
359 width σ_R relative to the niche width of species (MacArthur and Levins, 1967). But when
360 evolution is allowed in the community, the richness at the ESC is lower than under
361 strict maximum (non-evolutionary) packing. In fact, ESCs are by definition uninvadable,
362 because the fitness landscape for any possible invading trait value μ_m is zero at the
363 resident trait values μ_1, \dots, μ_S and negative everywhere else; however, richer, feasible non-
364 evolutionary configurations do exist for a given environment. This result has been shown
365 to be consistent across a range of models, for both continuous and discrete resources

366 (e.g., Case (1981); Rummel and Roughgarden (1983); Shores et al. (2008)). It is worth
367 pointing out that the answer to whether evolution helps or hinders coexistence is context-
368 dependent: when the community is undersaturated (fewer members than at the ESC),
369 evolution drives an increase in robustness η . Conversely, by starting with feasible but
370 supersaturated communities (more diversity than allowed at the ESC), η will repeatedly
371 drop to zero and we observe a sequence of extinction events until the ESC is reached.
372 For example, Shores et al. (2008) found that evolution destabilizes communities, which
373 can be explained by the fact that they started with supersaturated communities. This
374 also helps explain why (Loeuille, 2010) found evolution to be usually stabilizing for small
375 communities (likely undersaturated), while its effect is reversed for rich communities
376 (likely oversaturated). Empirical evidence for the longer term effects of evolution on
377 community properties is difficult to acquire, but could be found in phylogenetic patterns
378 of niche conservatism (Mayfield and Levine, 2010). For example, Yguel et al. (2016) report
379 patterns consistent with increased productivity along time due to niche diversification and
380 filling.

381 Ultimately, the evolutionary process results in ESCs that are highly non-random with
382 respect to their structure and properties. Coevolved communities also show more evenly-
383 spaced trait distributions than non-evolutionary communities in the model of Barabás
384 and D'Andrea (2016) (but see Bennett et al. (2013)). Our results show that they are
385 also more structurally robust. This has important implications in the context of global
386 change: if coevolved communities are more robust to environmental stresses (changes in
387 temperature, water, nutrients levels), this could have important consequences in terms
388 of managing global changes that may need to be considered when guiding conservation
389 efforts. Indeed, studies on the effects of global change often focus on single-species re-
390 sponses, but many have argued that community-level responses should be given more
391 attention (Walther, 2010; Alexander et al., 2016; Gilman et al., 2010). Because commu-
392 nity composition and interactions are modified by climate change and invasive species,
393 leading to new assemblages that likely depart from coevolved structures (David et al.,

394 2017; Blowes et al., 2019), our results suggest that the robustness of these new commu-
395 nities may be relatively poor. Further experimental testing of community-level responses
396 to environmental stress in co-evolved versus randomized assemblages should prove an
397 exciting and critically needed avenue of research, and the structural approach provides
398 a useful theoretical framework to tackle the question. Experimental testing could for in-
399 stance be undertaken using systems that rapidly diversify (e.g., the *Pseudomonas* system
400 in Rainey and Travisano (1998)).

401 Regarding productivity, rich randomized communities tend to be more productive on
402 average than poor ones (Fig. 5). By requiring randomized communities to be feasible,
403 we however introduce a selection bias: in this sense, the positive slope between richness
404 and productivity is indeed a byproduct of coexistence (Pillai and Gouhier, 2019), since
405 the conditions that promote coexistence (namely niche differences), are also those that
406 promote complementarity and greater productivity. Thus, we observe the emergence of
407 trade-offs between community properties: higher total biomass values are possible among
408 randomized communities, but these tend to have larger fitness imbalance and/or lower
409 community robustness. This finding echoes results of Rohr et al. (2016) showing that very
410 productive communities have low evenness, while those with lower deviation from the fea-
411 sibility domain center (θ) have intermediate levels of biomass production. In agreement
412 with Aubree et al. (2020), our results also show that evolutionary communities are often
413 more productive on average than randomized ones, especially when species richness is low.
414 Total abundance increases monotonically along evolutionary trajectories, first because of
415 selection for higher intrinsic growth rates in the monomorphic case (selection effect), then
416 due to a better use of the resource space by the diversifying phenotypes (complementar-
417 ity effect) (Fig. 2). This is consistent with the expectation that increased diversification
418 within and across species should lead to occupation of vacant niche spaces, leading to
419 increased niche complementarity and utilization, and ultimately increased abundances
420 at the consumer level (a hypothesis supported by Yguel et al. (2016)). For instance,
421 some of the largest biodiversity ecosystem-functioning experiments have consistently re-

422 ported an increase in the net effect of biodiversity on biomass production and of niche
423 complementarity across a decade (Fargione et al. (2007); Marquard et al. (2009); Cardi-
424 nale et al. (2007)). Similarly, Stefan et al. (2022) showed that plant-plant interactions
425 shifted towards increased complementarity and yield over just a few generations of coex-
426 istence, while van Moorsel et al. (2018) report higher productivity in polycultures with
427 an 8-year co-evolution history compared to identical-composition, but evolutionary naive
428 plant communities. This evidence strongly supports the idea that the complementarity
429 effect often observed in biodiversity-ecosystem functioning experiments is expected from
430 an evolutionary point of view, and likely reinforcing along evolutionary trajectories. A
431 consequence of this result is that many BEF studies may have underestimated the produc-
432 tivity gains due to biodiversity, by assembling *de-novo* communities, instead of coevolved
433 ones. Conversely, relative yield measures might have been overestimated (Supplementary
434 Material S5).

435 It is, however, possible to find more productive combinations among the random com-
436 munities. Indeed, strict evolutionary optimization of total biomass at equilibrium only
437 arises for the monomorphic case in this class of model and is lost in higher-dimensional
438 systems (Rohr and Loeuille, 2022). Mathematically, this is because for $S = 1$, the se-
439 lection gradient coincides with the gradient of $r(\mu)$ (Supplementary Materials S3). In
440 polymorphic systems, maximizing biomass productivity would require further niche dif-
441 ferentiation, at the expense of increasing fitness imbalance, which is not achieved under
442 the Pareto-optimality engendered by evolution. This runs contrary to a widespread belief
443 that evolution begets optimality: while growth rate optimization might be the norm in
444 simple systems with weak or no interactions, this assumption does not generally hold true
445 if we introduce realistic eco-evolutionary feedback loops (see also Lion and Metz (2018)
446 for a treatment in epidemiological models and Metz and Geritz (2016) for a discussion
447 on optimization principles).

448 Several questions remain open for investigation. We considered only competitive in-
449 teractions and a single resource axis, so that packing more than two species with the same

450 amount of niche overlap between all of them is impossible Macarthur and Levins (1967).
451 If phenotypes were arranged in a multidimensional trait space, neutral configurations with
452 multiple species would be possible. In addition, we considered only evolving niche posi-
453 tions in our model, but niche width could also evolve, leading to possible diversification
454 between generalists and specialists species. Nevertheless, the theoretical predictions of
455 our study need to be further experimentally tested. Although there is empirical support
456 in biodiversity ecosystem-functioning studies regarding the increase in niche complemen-
457 tarity and biomass production over time, it remains unclear whether those predictions
458 would hold in co-evolved communities emerging from diversification. Experimentally,
459 comparison of properties of ESCs to non-evolutionary communities is complicated by the
460 fact that ESCs are conceptually useful, but whether they are frequent in nature, and how
461 to go about identifying them, is unclear (Edwards et al., 2018). Despite these hurdles,
462 experimental tests of our theoretical results could provide timely evidence that would
463 contribute to our understanding of evolution of communities properties and their inter-
464 play in rich systems. Such experiments could be undertaken in microbial systems, where
465 rapidly evolving communities could be compared to control treatments of non-coevolved
466 assemblages (Rainey and Travisano, 1998; Altermatt et al., 2015).

467 Data and code

468 Numerical simulations of eco-evolutionary trajectories were performed in Julia 1.5.1
469 (Bezanson, Edelman, Karpinski, and Shah, 2017), while computation of metrics of co-
470 existence and plotting of results were done in R 4.0.3 (R Core Team, 2020). Code to
471 reproduce the analyses will be made available on github.

472 Funding

473 This work has been funded by the Swiss National Science Foundation grant 31003A_182386.

474

References

475 Alexander, J. M., Diez, J. M., Hart, S. P., and Levine, J. M. 2016. When Climate
476 Reshuffles Competitors: A Call for Experimental Macroecology. *Trends in Ecology and Evolution* 21:47:1–11. ISSN 01695347.

477

478 Altermatt, F., Fronhofer, E. A., Garnier, A., Giometto, A., Hammes, F., Klecka, J.,
479 Legrand, D., Mächler, E., Massie, T. M., Pennekamp, F., Plebani, M., Pontarp, M.,
480 Schtickzelle, N., Thuillier, V., and Petchey, O. L. 2015. Big answers from small worlds:
481 A user’s guide for protist microcosms as a model system in ecology and evolution.
482 *Methods in Ecology and Evolution* 6:218–231. ISSN 2041210X.

483 Aubree, F., David, P., Jarne, P., Loreau, M., Mouquet, N., and Calcagno, V. 2020.
484 How community adaptation affects biodiversity–ecosystem functioning relationships.
485 *Ecology Letters* 23:1263–1275. ISSN 14610248.

486 Barabás, G. and D’Andrea, R. 2016. The effect of intraspecific variation and heritability
487 on community pattern and robustness. *Ecology Letters* 19:977–986. ISSN 14610248.

488 Barabás, G., D’Andrea, R., and Stump, S. M. 2018a. Chesson’s coexistence theory.
489 *Ecological Monographs* 0:1–27. ISSN 00129615.

490 Barabás, G., D’Andrea, R., and Stump, S. M. 2018b. Chesson’s coexistence theory.
491 *Ecological Monographs* 88:277–303. ISSN 15577015.

492 Bell, G. and Gonzalez, A. 2009. Evolutionary rescue can prevent extinction following
493 environmental change. *Ecology Letters* 12:942–948. ISSN 1461-0248.

494 Bennett, J. A., Lamb, E. G., Hall, J. C., Cardinal-McTeague, W. M., and Cahill Jr., J. F.
495 2013. Increased competition does not lead to increased phylogenetic overdispersion in
496 a native grassland. *Ecology Letters* 16:1168–1176. ISSN 1461-0248.

497 Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. 2017. Ju-
498 lia: A fresh approach to numerical computing. SIAM review 59:65–98. URL
499 <https://doi.org/10.1137/141000671>.

500 Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, J. M., Moyes,
501 F., Magurran, A., McGill, B., Myers-Smith, I. H., Winter, M., Bjorkman, A. D.,
502 Bowler, D. E., Byrnes, J. E. K., Gonzalez, A., Hines, J., Isbell, F., Jones, H. P.,
503 Navarro, L. M., Thompson, P. L., Vellend, M., Waldock, C., and Dornelas, M. 2019.
504 The geography of biodiversity change in marine and terrestrial assemblages. Science
505 366:339–345. ISSN 0036-8075, 1095-9203.

506 Bränström, Å., Johansson, J., Loeuille, N., Kristensen, N., Troost, T. A., Lambers, R.
507 H. R., and Dieckmann, U. 2012. Modelling the ecology and evolution of communities:
508 A review of past achievements, current efforts, and future promises. Evolutionary
509 Ecology Research 14:601–625. ISSN 1522-0613.

510 Bränström, Å., Johansson, J., and von Festenberg, N. 2013. The Hitchhiker’s Guide to
511 Adaptive Dynamics. Games 4:304–328.

512 Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Hector, A., Srivastava,
513 D. S., Loreau, M., and Weis, J. J. 2007. Impacts of plant diversity on biomass
514 production increase through time because of species complementarity. Proceedings
515 of the National Academy of Sciences 104:18123–18128.

516 Case, T. J. 1981. Niche packing and coevolution in competition communities. Proceedings
517 of the National Academy of Sciences of the United States of America 78:5021–5025.
518 ISSN 00278424.

519 Chesson, P. 2000. Mechanisms of Maintenance of Species Diversity. Annual Review of
520 Ecology and Systematics 31:343–366. ISSN 0066-4162.

521 David, P., Thébault, E., Anneville, O., Duyck, P. F., Chapuis, E., and Loeuille, N., 2017.
522 Chapter One - Impacts of Invasive Species on Food Webs: A Review of Empirical

523 Data. Pages 1–60 in D. A. Bohan, A. J. Dumbrell, and F. Massol, eds. Advances
524 in Ecological Research, volume 56 of *Networks of Invasion: A Synthesis of Concepts*.
525 Academic Press.

526 Dayan, T. and Simberloff, D. 2005. Ecological and community-wide character displace-
527 ment: The next generation. *Ecology Letters* 8:875–894. ISSN 1461-0248.

528 Dercole, F., Ferrière, R., Gragnani, A., and Rinaldi, S. 2006. Coevolution of slow–fast
529 populations: Evolutionary sliding, evolutionary pseudo-equilibria and complex Red
530 Queen dynamics. *Proceedings of the Royal Society B: Biological Sciences* 273:983–990.

531 Dieckmann, U. and Doebeli, M. 1999. On the origin of species by sympatric speciation.
532 *Nature* 400:354–357. ISSN 00280836.

533 Dieckmann, U. and Law, R. 1996. The dynamical theory of coevolution: A derivation
534 from stochastic ecological processes. *Journal of Mathematical Biology* 34:579–612.
535 ISSN 14321416.

536 Doebeli, M. and Dieckmann, U. 2000. Evolutionary branching and sympatric speciation
537 caused by different types of ecological interactions. *American Naturalist* 156. ISSN
538 00030147.

539 Edwards, K. F., Kremer, C. T., Miller, E. T., Osmond, M. M., Litchman, E., and Klaus-
540 meier, C. A. 2018. Evolutionarily stable communities: A framework for understanding
541 the role of trait evolution in the maintenance of diversity. *Ecology Letters* 21:1853–1868.
542 ISSN 14610248.

543 Fargione, J., Tilman, D., Dybzinski, R., Lambers, J. H. R., Clark, C., Harpole, W. S.,
544 Knops, J. M., Reich, P. B., and Loreau, M. 2007. From selection to complementarity:
545 Shifts in the causes of biodiversity–productivity relationships in a long-term biodiver-
546 sity experiment. *Proceedings of the Royal Society B: Biological Sciences* 274:871–876.

547 Ferriere, R. and Legendre, S. 2013. Eco-evolutionary feedbacks, adaptive dynamics
548 and evolutionary rescue theory. *Philosophical Transactions of the Royal Society B:*
549 *Biological Sciences* 368:20120081.

550 Fussmann, G. F., Loreau, M., and Abrams, P. A. 2007. Eco-evolutionary dynamics of
551 communities and ecosystems. *Functional Ecology* 21:465–477. ISSN 02698463.

552 Geritz, S. A., Kisdi, É., Meszéna, G., and Metz, J. A. 1998. Evolutionarily singular
553 strategies and the adaptive growth and branching of the evolutionary tree. *Evolutionary
554 Ecology* ISSN 02697653.

555 Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., and Holt, R. D. 2010. A
556 framework for community interactions under climate change. *Trends in Ecology and
557 Evolution* 25:325–331. ISSN 01695347.

558 Grant, P. R. and Grant, B. R. 2006. Evolution of character displacement in Darwin's
559 finches. *Science* 313:224–226. ISSN 00368075.

560 Hairston Jr, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., and Fox, J. A. 2005. Rapid
561 evolution and the convergence of ecological and evolutionary time. *Ecology Letters*
562 8:1114–1127. ISSN 1461-0248.

563 Hart, S. P., Turcotte, M. M., and Levine, J. M. 2019. Effects of rapid evolution on species
564 coexistence. *Proceedings of the National Academy of Sciences of the United States of
565 America* 116:2112–2117. ISSN 10916490.

566 Hendry, A. P. A. P., 2009. Eco-evolutionary dynamics. Princeton University Press,
567 Princeton. ISBN 9781400883080.

568 Hutchinson, G. E. 1957. Concluding remarks. Cold Spring
569 Harbor Symposia on Quantitative Biology 22:415–427. URL
570 <http://symposium.cshlp.org/content/22/415.short>.

571 Hutchinson, G. E., 1979. An introduction to population ecology. Yale University Press,
572 New Haven, Conn., 1st ed. 1978, 3rd print. 1978 ; 1st ed., 4th print. 1979 edition. ISBN
573 0300021550.

574 Kondoh, M. 2003. Foraging Adaptation and the Relationship Between Food-Web Com-
575 plexity and Stability. *Science* 299:1388–1391.

576 Lankau, R. A. 2009. Genetic Variation Promotes Long-Term Coexistence of *Brassica*
577 *nigra* and Its Competitors. *The American Naturalist* 174:E40–E53. ISSN 0003-0147.

578 Lankau, R. A. and Strauss, S. Y. 2007. Mutual feedbacks maintain both genetic and
579 species diversity in a plant community. *Science* 317:1561–1563. ISSN 00368075.

580 Lewontin, R., 2003. Building a science of population biology. Pages 7–20 *in* R. S.
581 Singh and M. K. Uyenoyama, eds. *The Evolution of Population Biology*. Cambridge
582 University Press, Cambridge.

583 Lion, S. and Metz, J. A. 2018. Beyond R₀ Maximisation: On Pathogen Evolution
584 and Environmental Dimensions. *Trends in Ecology and Evolution* 33:458–473. ISSN
585 01695347.

586 Loeuille, N. 2010. Influence of evolution on the stability of ecological communities.
587 *Ecology Letters* 13:1536–1545. ISSN 14610248.

588 Logofet, D. O., 1994. Matrices and Graphs: Stability Problems in Mathemat-
589 ical Ecology, CRC Press, New York (1993)., volume 56. CRC Press. URL
590 [http://link.springer.com/10.1016/S0092-8240\(05\)80313-1](http://link.springer.com/10.1016/S0092-8240(05)80313-1).

591 Loreau, M. and Hector, a. 2001. Partitioning selection and complementarity in biodiver-
592 sity experiments. *Nature* 412:72–6. ISSN 0028-0836.

593 MacArthur, R. 1969. Species packing, and what competition minimizes. *Proceedings of*
594 *the National Academy of Sciences* 64:1369–1371. ISSN 0027-8424.

595 MacArthur, R. and Levins, R. 1967. The Limiting Similarity , Convergence , and Di-
596 vergence of Coexisting Species Author (s): Robert MacArthur and Richard Levins
597 Source : The American Naturalist , Vol . 101 , No . 921 (Sep . - Oct ., 1967), pp .
598 377-385 Published by : The University of C. American Naturalist 101:377–385.

599 MacArthur, R. H., 1972. Geographical ecology. Patterns in the distribution of species.
600 Harper and Row.

601 Mallet, J. 2012. The struggle for existence: How the notion of carrying capacity, K,
602 obscures the links between demography, Darwinian evolution, and speciation. Evolution-
603 ary Ecology Research 14:627–665. ISSN 15220613.

604 Marquard, E., Weigelt, A., Temperton, V. M., Roscher, C., Schumacher, J., Buchmann,
605 N., Fischer, M., Weisser, W. W., and Schmid, B. 2009. Plant species richness and
606 functional composition drive overyielding in a six-year grassland experiment. Ecology
607 90:3290–3302. ISSN 1939-9170.

608 Matsuda, H. and Abrams, P. A. 1994. Runaway Evolution to Self-Extinction Under
609 Asymmetrical Competition. Evolution 48:1764–1772. ISSN 0014-3820.

610 May, R. M. 1972. Will a large complex system be stable? Nature 238:413–414. ISSN
611 00280836.

612 Mayfield, M. M. and Levine, J. M. 2010. Opposing effects of competitive exclusion on the
613 phylogenetic structure of communities. Ecology Letters 13:1085–1093. ISSN 1461023X.

614 McPeek, M. A., 2017. Evolutionary Community Ecology, Volume 58. Monographs in
615 Population Biology ; 77. Princeton University Press,, Princeton, NJ. ISBN 1-4008-
616 8821-2.

617 Medeiros, L. P., Song, C., and Saavedra, S. 2021. Merging dynamical and structural
618 indicators to measure resilience in multispecies systems. Journal of Animal Ecology
619 90:2027–2040. ISSN 1365-2656.

620 Metz, J., Geritz, S., Meszena, G., Jacobs, F., and van Heerwaarden, J., 1995.
621 Adaptive dynamics: A geometrical study of the consequences of nearly faith-
622 ful reproduction. Iiasa working paper, IIASA, Laxenburg, Austria. URL
623 <http://pure.iiasa.ac.at/id/eprint/4497/>.

624 Metz, J., Mylius, S., and Diekmann, O. 2008. When does evolution optimize? *Evol.*
625 *Evolutionary Ecology Research* 10.

626 Metz, J. A. and Geritz, S. A. 2016. Frequency dependence 3.0: An attempt at codifying
627 the evolutionary ecology perspective. *Journal of Mathematical Biology* 72:1011–1037.
628 ISSN 14321416.

629 Metz, J. A. J., Nisbet, R. M., and Geritz, S. A. H. 1992. How should we define ‘fitness’
630 for general ecological scenarios? *Trends in Ecology & Evolution* 7:198–202. ISSN
631 0169-5347.

632 Pastore, A. I., Barabás, G., Bimler, M. D., Mayfield, M. M., and Miller, T. E. 2021. The
633 evolution of niche overlap and competitive differences. *Nature Ecology and Evolution*
634 Pages 21–23. ISSN 2397334X.

635 Pillai, P. and Gouhier, T. C. 2019. Not even wrong: The spurious measurement of
636 biodiversity’s effects on ecosystem functioning. *Ecology* 100:1–12. ISSN 00129658.

637 R Core Team, 2020. R: A Language and Environment for Statistical Com-
638 puting. R Foundation for Statistical Computing, Vienna, Austria. URL
639 <https://www.R-project.org/>.

640 Rainey, P. B. and Travisano, M. 1998. Adaptive radiation in a heterogeneous environ-
641 ment. *Nature* 394:69–72. ISSN 1476-4687.

642 Rohr, R. P. and Loeuille, N. 2022. Effects of evolution on niche displacement and
643 emergent population properties, a discussion on optimality. *Oikos* n/a:e09472. ISSN
644 1600-0706.

645 Rohr, R. P., Saavedra, S., and Bascompte, J. 2014. On the structural stability of
646 mutualistic systems. *Science* 345. ISSN 10959203.

647 Rohr, R. P., Saavedra, S., Peralta, G., Frost, C. M., Bersier, L. F., Bascompte, J., and
648 Tylianakis, J. M. 2016. Persist or produce: A community trade-off tuned by species
649 evenness. *American Naturalist* 188:411–422. ISSN 00030147.

650 Rummel, J. D. and Roughgarden, J. 1983. Some Differences between Invasion-Structured
651 and Coevolution-Structured Competitive Communities: A Preliminary Theoretical
652 Analysis. *Oikos* 41:477. ISSN 00301299.

653 Saavedra, S., Rohr, R. P., Bascompte, J., Godoy, O., Kraft, N. J., and Levine, J. M.
654 2017. A structural approach for understanding multispecies coexistence. *Ecological
655 Monographs* 87:470–486. ISSN 15577015.

656 Shoresh, N., Hegreness, M., and Kishony, R. 2008. Evolution exacerbates the paradox of
657 the plankton. *Proceedings of the National Academy of Sciences of the United States
658 of America* 105:12365–12369. ISSN 00278424.

659 Song, C., Barabás, G., and Saavedra, S. 2019. On the Consequences of the Interdepen-
660 dence of Stabilizing and Equalizing Mechanisms. *The American Naturalist* 194:000–
661 000. ISSN 0003-0147.

662 Song, C., Rohr, R. P., and Saavedra, S. 2018. A guideline to study the feasibility domain
663 of multi-trophic and changing ecological communities. *Journal of Theoretical Biology*
664 450:30–36. ISSN 10958541.

665 Stefan, L., Engbersen, N., and Schöb, C. 2022. Rapid transgenerational adaptation in
666 response to intercropping reduces competition. *eLife* 11:e77577. ISSN 2050-084X.

667 Taper, M. L. and Case, T. J. 1992. Models of character displacement and the theoretical
668 robustness of taxon cycles. *Evolution* 46:317–333. ISSN 00143820.

669 Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. 1997. The
670 Influence of Functional Diversity and Composition on Ecosystem Processes. *Science*
671 277:1300–1302.

672 Urban, M. 2016. Improving the forecast for biodiversity under climate change. *Science*
673 (New York, N.Y.) 353:1293–1310. ISSN 1095-9203.

674 Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D., and Ramos-Jiliberto, R. 2013.
675 Adaptive foraging allows the maintenance of biodiversity of pollination networks. *Oikos*
676 122:907–917. ISSN 1600-0706.

677 van Moorsel, S. J., Hahl, T., Wagg, C., De Deyn, G. B., Flynn, D. F. B., Zuppinger-
678 Dingley, D., and Schmid, B. 2018. Community evolution increases plant productivity
679 at low diversity. *Ecology Letters* 21:128–137. ISSN 1461-0248.

680 Vandermeer, J. H., 1989. *The Ecology of Intercropping*. Cambridge University Press.

681 Volterra, V., 1931. *Leçons sur la théorie mathématique de la lutte pour la vie*. Les grands
682 classiques Gauthier-Villars. J. Gabay, Sceaux. ISBN 2876470667.

683 Walther, G.-r. 2010. Community and ecosystem responses to recent climate change.
684 *Philosophical Transactions of the Royal Society B: Biological Sciences* 365:2019–24.
685 ISSN 1471-2970.

686 Yguel, B., Jactel, H., Pearse, I. S., Moen, D., Winter, M., Hortal, J., Helmus, M. R.,
687 Kühn, I., Pavoine, S., Purschke, O., Weiher, E., Violle, C., Ozinga, W., Brändle, M.,
688 Bartish, I., and Prinzing, A. 2016. The evolutionary legacy of diversification predicts
689 ecosystem function. *American Naturalist* 188:398–410. ISSN 00030147.

690 Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. 2003. Rapid
691 evolution drives ecological dynamics in a predator-prey system. *Nature* 424:303–306.
692 ISSN 00280836.