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Abstract 7 

 The lake sturgeon (Acipenser fulvescens) is an ancient, octoploid fish faced with 8 

conservation challenges across its range in North America but a lack of genomic resources has 9 

hindered molecular research in the species. To support such research we aimed to provide a 10 

transcriptomic database from 13 tissues: brain, esophagus, gill, head kidney, heart, white muscle, 11 

liver, glandular stomach, muscular stomach, anterior intestine, pyloric cecum, spiral valve, and 12 

rectum. The transcriptomes for each tissue were sequenced and assembled individually from a 13 

mean of 98.3 million (±38.9 million std. dev.) reads each. In addition, an overall transcriptome 14 

was assembled and annotated with all data used for each tissue-specific transcriptome. All 15 

assembled transcriptomes and their annotations were made publicly available as a scientific 16 

resource. The non-gut transcriptomes provide important resources for many research avenues, 17 

however, the gut represents a compartmentalized organ system with compartmentalized 18 

functions and the sequenced gut tissues were from each of these portions. Therefore, we focused 19 

our analysis on mRNA transcribed in different tissues of the gut and explored evidence of 20 

microbiome regulation. Gene set enrichment analyses were used to reveal the presence of 21 

photoperiod and circadian-related transcripts in the pyloric caecum, which may support 22 
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periodicity in lake sturgeon digestion. Similar analyses were used to identify different types of 23 

innate immune regulation across the gut, while analyses of unique transcripts annotated to 24 

microbes revealed heterogeneous genera and genes among different gut tissues. The present 25 

results provide a scientific resource and information about the mechanisms of compartmentalized 26 

function across gut tissues in a phylogenetically ancient vertebrate. 27 

 28 
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 32 

Introduction 33 

 The lake sturgeon (Acipenser fulvescens) is an octoploid, ancient fish with conservation 34 

challenges across its range in North America (1). Molecular resources for lake sturgeon can thus 35 

support wide-ranging research questions about fundamental biology relevant to their 36 

conservation. However, such research has been hampered by the limited molecular resources 37 

available for studying the species. While a microsatellite panel and genotyping by sequencing 38 

have been used for population genetic research (235), microsatellites are not as informative as 39 

reduced representation sequencing for individual genotype information, and may miss patterns of 40 

admixture and hierarchical structure (6,7). Moreover, reference-free reduced representation 41 

sequencing is more vulnerable to stochasticity in results than reference-based approaches (i.e., 42 

with a reference genome or transcriptome) due to the bioinformatics pipelines used (8). 43 

Sequencing resources such as reference transcriptomes or a well-annotated genome would thus 44 
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enable more thorough molecular research, but the lack of sequence data for some species has 45 

complicated the development of new assays for research on stress responses. While some work 46 

has been done using specific primers developed to assay mRNA abundance in the species (9347 

11), the lack of a publicly available lake sturgeon transcriptome and genome has hindered 48 

molecular physiology and environmental DNA work (12).  49 

 Furthermore, the early divergence of sturgeons (13,14) make representative species such 50 

as lake sturgeon useful for studying questions about vertebrate evolution. For example, the 51 

pyloric caecum was first studied by Aristotle, who hypothesized about storage, fermentation, and 52 

digestive functions and caeca in fish digestive tracts were then later determined to increase gut 53 

surface area for digestion and absorption (15,16). Sturgeons represent the first evolutionary 54 

appearance of fused caeca with increased surface area (17,18), making these fish an important 55 

group for understanding the evolution of vertebrate digestive organs and function. An important 56 

caveat is that the presence and function of the lake sturgeon pyloric caecum should not be 57 

viewed as a basal state for Actinopterygii given that evolution in certain genes has been observed 58 

in other sturgeons and paddlefishes, and has presumably occurred in lake sturgeon as well (19359 

21). Nevertheless, the lake sturgeon pyloric caecum can be used as a representative tissue to 60 

study the evolution of vertebrate digestion (22).  61 

Alternatively, the lake sturgeon may be useful for studying vertebrate digestion from a 62 

whole-organism perspective, as gut microbiomes have been described in a wide variety of 63 

organisms, including insects, fishes, and humans (23326). The lake sturgeon microbiome has 64 

been linked to its physiological state, providing evidence for host-microbe interactions (27329). 65 

However, regulation of gut microbiota across different gut tissues has been well-characterized in 66 

only a few species, mostly humans and lab mice (26,30332). With messenger RNA sequencing, 67 
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nearly all mRNA transcripts from a tissue can be assembled and annotated regardless of species. 68 

The genus of a given transcript annotation can be inferred by using taxonomic information from 69 

transcriptome annotations4even if that genus is within Bacteria or Archaebacteria. Therefore, 70 

RNA sequencing in the lake sturgeon can be used to study gut microbiome heterogeneity and 71 

regulation, with implications for the evolution of gut microbiome regulation across vertebrates. 72 

While the community structure of the microbiome is heavily influenced by environmental factors 73 

(33), the hypothetical presence of heterogeneity in genera and genes in the microbial community 74 

across the lake sturgeon gut would suggest the presence of tissue-specific microbial regulatory 75 

mechanisms. Moreover, fish may have been the first group of microbiome hosts to evolve an 76 

innate capacity for microbiome regulation (33). Ancient bony fish such as the lake sturgeon are 77 

thus valuable for studying the dynamics between host and microbiome. 78 

 While assembling a genome for a polyploid fish involves extensive chromatin and long-79 

read DNA sequencing (20), assembling a transcriptome is a more tractable task. Such 80 

transcriptomes enable in-depth analyses of molecular physiology, such as in population-specific 81 

thermal stress responses (34336). While RNA-seq and transcriptome-based approaches are less 82 

commonly used for population genetics than DNA-based approaches, single nucleotide 83 

polymorphisms in RNA can be used to investigate population structure and signatures of 84 

selection (37341). Transcriptomes would also enable investigations into evolution, both through 85 

descriptions of gene expression evolution (42,43) and by phylogenetic analyses of mutations 86 

(44,45). Therefore, transcriptome assembly, annotation, and dissemination enables broad 87 

research questions in physiology and genetics.  88 

 Multi-tissue and tissue-specific approaches to transcriptome assembly allow for more 89 

systematic and in-depth analysis than typical transcriptomics, which may use one tissue for more 90 
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focused investigations. For example, tissue-specific analyses revealed specialization in tissues 91 

and stages in cell division, photosynthesis, auxin transport, stress responses, and secondary 92 

metabolism in the tomato (Solanum pimpinellifolium) (46). In a livebearing fish, Poeciliopsis 93 

prolifica, multiple tissues were used with RNA-seq data to investigate placental evolution, where 94 

the abundance of clusters of transcripts was associated with different tissues (47). In the Atlantic 95 

salmon (Salmo salar), a blood-specific transcriptome was compared to other tissue 96 

transcriptomes to identify genes and gene ontology terms unique to blood (48). Thus 97 

transcriptome assembly with multiple tissues would provide a stronger resource for molecular 98 

research than single-tissue approaches. 99 

 One concern about transcriptomics in the lake sturgeon is that assembly may be affected 100 

by the octoploid status of the species (1). For instance, in situations where a transcriptome must 101 

be assembled without a reference genome, polyploid species are vulnerable to homeologs and 102 

ambiguous but similar sequences that decrease accuracy in the final assembly (49). One solution 103 

is to create transcriptomes specific to different conditions that may isolate different gene 104 

isoforms (49), a strategy consistent with the benefits of a multi-tissue, tissue-specific approach. 105 

In addition, different transcriptome assembly programs had varying success at accurately 106 

assembling polyploid transcriptomes, and careful selection of an assembly program such as 107 

Trinity can at least partly address challenges introduced by high ploidies (49352).  108 

 In this study, we assembled, annotated, and analyzed the transcriptomes of 13 tissues in 109 

the lake sturgeon, sequenced with short-read messenger RNA sequencing (i.e., Illumina). The 110 

tissues were: brain, esophagus, gill, head kidney, heart, white muscle, liver, glandular stomach, 111 

muscular stomach, anterior intestine, pyloric cecum, spiral valve, and rectum (Fig. 1). In 112 

addition, all data used to assemble each of the 13 tissue-specific transcriptomes was assembled 113 
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and annotated as an overall transcriptome. All transcriptomes and annotations were made 114 

publicly available for use as a scientific resource 115 

(https://figshare.com/projects/Lake_Sturgeon_Transcriptomes/133143). The brain, gill, head 116 

kidney, heart, white muscle, and liver transcriptomes have broad potential for studying many 117 

aspects of sturgeon biology. However, among the tissue-specific transcriptomes analyzed, the gut 118 

tissue transcriptomes represent components of an organ system with compartmentalized 119 

functions throughout (18). Because the 7 gut tissue transcriptomes were the major anatomically 120 

distinct regions of the lake sturgeon gut, these transcriptomes were used in more focused 121 

analyses and discussed in greater detail. Transcriptome annotations were analyzed in two ways: 122 

an exploratory approach using gene ontology terms (53) to identify unexpected transcript 123 

presence within and among tissues, and a guided approach informed by prior knowledge, where 124 

we used the lake sturgeon as a representative ancient fish to investigate different facets of 125 

vertebrate digestion. We focused on the pyloric caecum because the tissue first appears in 126 

sturgeons in terms of increased surface area for digestion and absorption (16,17). In addition, 127 

overall patterns of biological processes such as immune regulation across the gut and signatures 128 

of the lake sturgeon microbiome along different gut tissues were investigated. We observed 129 

circadian rhythm genes in the pyloric caecum, various types of innate immune regulation across 130 

gut tissues, and heterogeneity of bacteria and archaea associated transcripts in the lake sturgeon 131 

gut. 132 

 133 

Methods 134 

Sampling and Sequencing 135 
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 Lake sturgeon of approximately 2 years old and unknown sex were sampled haphazardly 136 

from holding tanks and euthanized with an overdose of buffered tricaine methanesulfonate 137 

solution (MS-222; Sigma-Aldrich). Tissue from each of the gill, liver, brain, head kidney, white 138 

muscle, and heart were extracted from the sturgeon, stored in RNAlater (Thermo Fisher), and the 139 

PureLink RNA Mini Kit (Thermo Fisher) was used for RNA extractions following manufacturer 140 

protocols. By contrast, gut samples (esophagus, glandular stomach, muscular stomach, anterior 141 

intestine, pyloric caecum, spiral valve, and rectum) were immediately placed in Trizol and 142 

extracted the same day following the manufacturer9s protocol (Thermo Fisher) to limit RNA 143 

degradation that can be associated with digestive enzymes and gut bacteria naturally present in 144 

the tissues (54). For all tissues, equal amounts of RNA were pooled from n=3 fish for 145 

sequencing.  146 

 Total RNA was sent to the Centre d'expertise et de services Génome Québec, Montreal, 147 

Quebec (http://gqinnovationcenter.com), where 250 nanograms of total RNA per tissue was used 148 

with the NEBNext Poly(A) Magnetic Isolation Module (New England BioLabs). Stranded cDNA 149 

libraries were created with the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina 150 

(New England Biolabs). Fish were sequenced for 100 base pair reads on one lane of a NovaSeq 151 

6000 (Illumina). A mean of 98.3 million (± 38.9 million standard deviation (s.d.)) reads were 152 

sequenced for each tissue (Table 1).  153 

 154 

Transcriptome Assembly and Annotation 155 

 Trinity was used for transcriptome assembly (52,55), while Trinotate was used for 156 

transcriptome annotation (56362). Both Trinity and Trinotate were used on mRNA sequencing 157 
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data from each tissue separately as tissue-specific transcriptomes, and with all data from the 13 158 

tissues as an overall transcriptome. Trinity was used for its effectiveness at assembling polyploid 159 

genomes (49). Transcriptome annotations were filtered for transcripts with E-values < 1x10-6 and 160 

bit scores > 50 (63). BUSCO v5.1.2 was used to assess transcriptome completeness with respect 161 

to the Actinopterygii odb10 dataset (64). The fishualize v0.2.3 package in the statistical 162 

computing environment R v1.1.2 was used to visualize results (65,66). To assess divergence in 163 

terms of mutation distance, Mash v1.1 was used to make pairwise comparisons between each 164 

transcriptome (67). Because evolutionary distance is not expected among transcriptomes from 165 

lake sturgeon sampled from a single population, the distances measured thus represent isoforms 166 

and paralogs among the gene models in the assembled transcriptomes.  167 

 168 

Annotation Analyses 169 

 The statistical computing environment R v1.1.2 and R package Tidyverse v1.3.1 were 170 

used throughout functional analyses of lake sturgeon transcriptomes (66,68). A gene set 171 

enrichment analyses was used to identify gene ontology terms for each transcriptome using 172 

enrichR v3.0 with the Biological Process 2021, Molecular Function 2021, and Cellular 173 

Component 2021 databases (53). Only gene ontology terms with a false discovery rate (q) < 0.05 174 

were retained as significantly enriched. The R package UpSetR v1.4.0 was used to assess 175 

uniqueness of gene ontology terms among tissues (69). This assessment of uniqueness among 176 

tissues was repeated in an analysis excluding peripheral tissues and specific to the esophagus, 177 

glandular stomach, muscular stomach, pyloric caecum, anterior intestine, spiral valve, and 178 

rectum to identify patterns specific to lake sturgeon gut tissues.  179 
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 Principal components analysis (PCA) was used to visualize differentiation among 180 

different tissues with respect to present genes and gene ontology terms. The overall 181 

transcriptome was excluded from PCA to explore variance among the tissue-specific 182 

transcriptomes. A PCA with prcomp in R was used on a table of presence or absence of gene 183 

names within each of the 13 tissues, along with separate PCAs for each of the Biological Process 184 

2021, Molecular Function 2021, and Cellular Component 2021 gene ontology databases. These 185 

PCAs were used to visualize differentiation among the different transcriptomes. The overall 186 

transcriptome was generally excluded from annotation comparisons as analyses of uniqueness 187 

among tissues focused on the set of the tissue-specific transcriptomes. However, the number of 188 

unique genes was assessed in the overall transcriptome to identify genes that were potentially 189 

missing or un-annotated from each tissue-specific transcriptome, but resolved with all data used 190 

in one assembly. The genes unique to the overall transcriptome were analyzed for gene ontology 191 

terms with the same databases as the tissue-specific transcriptomes. 192 

 193 

Microbial Analyses 194 

 The lake sturgeon microbiome was investigated by removing transcripts annotated to 195 

eukaryotes or viruses from the transcriptomes of all 13 tissues. Therefore, only transcripts 196 

annotated to bacteria or archaea remained from each transcriptome. A gene set enrichment 197 

analysis was performed on the microbe-annotated transcripts, but no significant gene ontology 198 

terms were identified. UpSet plots were used to identify uniqueness in annotated genes and 199 

microbial genera present among tissues.  200 

 201 
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Results 202 

Transcriptome Assembly and Annotation 203 

 The mean number of putative genes from the Trinity assemblies was 115,147 (± 24,405 204 

s.d.), while the mean number of transcripts was 197,567 (± 51,481 s.d.) (Table 1). After filtering 205 

out transcripts with annotations with bit scores < 50 and E-values > 1x10-6, the number of 206 

transcripts remaining with annotations among the tissue-specific transcriptomes was a mean of 207 

76,319 (± 19,737 s.d.) representing a mean 12,350 (± 1,217 s.d.) unique genes with annotations 208 

(Table 1). 3,065 genes were identified in analysis of uniqueness that included the overall and 209 

tissue-specific transcriptomes, although uniqueness from gene sets for the tissue-specific 210 

transcriptomes were skewed downward (Supplementary Figure S1). Tissue-specific 211 

transcriptome completeness ranged from a minimum of 33.7% (heart) to a maximum of 82.2% 212 

(rectum) (overall mean 65.1% ± 15.7% s.d.) (Fig. 2). Divergence among tissue-specific 213 

transcriptomes, as assessed by Mash, was statistically significant in each pairwise comparison (p 214 

< 0.05), although distances between transcriptomes were greatest between gut tissues and the 215 

heart, liver, and white muscle tissues (Fig. 3A).  216 

 217 

Annotation Analyses 218 

 A mean of 832 (± 123 s.d.) biological process gene ontology terms were identified among 219 

the 13 tissue-specific transcriptomes (Table 2). Among biological process gene ontology terms, 220 

367 were shared across all tissues, but a substantial number were also unique to individual 221 

tissues such as 101 gene ontology terms in the liver and 71 in the heart (Fig. 4; Supplementary 222 

Tables S1-S13). Qualitatively similar patterns of shared gene ontology terms among all tissues, 223 
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with substantial numbers of terms unique to each tissue, were observed in the molecular function 224 

and cellular component databases (Supplementary Figures S2 & S3). A similar pattern of 225 

uniqueness was also present among biological process gene ontology terms in the gut tissues. 226 

Here, 464 terms were shared among all gut tissues, but smaller numbers of terms were unique to 227 

individual tissues, such as 59 unique to the anterior intestine and 46 unique to the pyloric caecum 228 

(Supplementary Figure S4). For molecular function and cellular component, a mean of 131 (± 19 229 

s.d.) and 150 (± 21 s.d.) gene ontology terms were identified, respectively. Molecular function 230 

and cellular component gene ontology terms were qualitatively similar in patterns of uniqueness 231 

both when considering all 13 tissues (Supplementary Tables S1-S13) and among gut-only tissues 232 

(Supplementary Tables S14-S20). No significant gene ontology terms were identified from the 233 

overall transcriptome, possibly because the Fisher exact test used in enrichR was implemented 234 

for experimental designs, as opposed to surveys of gene presence (70). Five molecular function 235 

gene ontology terms were significant in a search of the 3,065 genes unique to the overall 236 

transcriptome among all transcriptomes analyzed, while no biological process or cellular 237 

component terms were significant. The significant molecular function gene ontgoloy terms were: 238 

peptide alpha-N-acetyltransferase activity (GO:0004596; combined score = 329), peptide N-239 

acetyltransferase activity (GO:0034212; combined score = 255), phosphatidate phosphatase 240 

activity (GO:0008195; combined score = 251), lipid phosphatase activity (GO:0042577; 241 

combined score = 173), and lysine N-methyltransferase activity (GO:0016278; combined score = 242 

38). PCAs revealed differentiation between the liver transcriptome and those from other tissues 243 

in each comparison, especially in a PCA of terms in the cellular components gene ontology 244 

database (Fig. 3B; Supplementary Figure S5). Gut tissues tended to cluster together compared to 245 
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other tissues in each PCA, but because gut and peripheral tissues were extracted using separate 246 

protocols, some differentiation between the two groups of tissues may be a technical artifact. 247 

 In the pyloric caecum, the gene ontology terms photoperiodism (GO:0009648) and 248 

entrainment of circadian clock by photoperiod (GO:0043153) were uniquely present and related 249 

to periodicity (Supplementary Table S11). Patterns of tissue-specific immune regulation were 250 

uniquely present in several gut tissues. Rac protein signal transduction (GO: 0016601) was 251 

uniquely present in the glandular stomach and may also represent a part of the innate immune 252 

system with its role in neutrophil recruitment (Supplementary Table S8). Negative regulation of 253 

immune response (GO:0045824) and autophagy of peroxisomes (GO:0030242) were unique to 254 

the muscular stomach (Supplementary Table S9). Positive regulation of host by viral 255 

transcription (GO:0043923) was uniquely present in the anterior intestine (Supplementary Table 256 

S10). Toll-like receptor 9 signaling pathway (GO:0034162), toll-like receptor signaling pathway 257 

(GO:0002224), and cellular response to interleukin-12 (GO:0071349) were each uniquely 258 

present in the spiral valve, consistent with a role for the tissue in the innate immune system 259 

(Supplementary Table S12). Positive regulation of viral life cycle (GO:1903902) was uniquely 260 

present in the esophagus (Supplementary Table S2). 261 

 262 

Microbial Analyses 263 

  A mean of 38 (± 19 s.d.) bacterial and archaeal genera were observed among 13 264 

transcriptomes. A mean of 73 (± 52 s.d.) genes were annotated to bacteria or archaea among the 265 

same 12 transcriptomes. Both microbial genera and annotated genes showed a pattern of high 266 
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uniqueness in each tissue, although 8 genera and 7 genes were present among all tissues (Fig. 5; 267 

Supplementary Figure S6). 268 

 269 

Discussion 270 

A Database of Transcriptomes 271 

 The 13 tissue-specific transcriptomes and one overall transcriptome presented in this 272 

study are a genomic resource publicly available for studying sturgeons. Transcriptomes are most 273 

commonly used for molecular physiology, and the gill transcriptome presented here has already 274 

been applied to study thermal stress between latitudinally separated populations of lake sturgeon 275 

(36). These transcriptomic resources may be used to characterize physiological responses to 276 

environmental conditions, which may in turn be used to inform conservation management (71). 277 

As lake sturgeon represent a species that exhibits extensive phenotypic plasticity (9,72,73), these 278 

transcriptomes also have potential for supporting fundamental research on the molecular basis of 279 

resilience to environmental change. Gene ontology terms revealed tissue-specific patterns in each 280 

of the transcriptomes presented here, such as 101 biological process terms unique to the liver and 281 

71 unique to the heart. These terms thus represent transcriptional processes that would otherwise 282 

have been missing from the transcriptome database if only a single tissue was considered. 283 

Therefore, the 13 tissues we studied enable a broad range of analyses that would be otherwise 284 

intractable, allowing for in-depth assessments of shared and tissue-specific processes, along with 285 

genetic and physiological studies. 286 

 Among the 13 tissue-specific transcriptomes assembled, 7 were from the gut (esophagus, 287 

glandular stomach, muscular stomach, pyloric caecum, anterior intestine, spiral valve, and 288 
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rectum), and 6 were from peripheral tissues (brain, gill, head kidney, heart, liver, and white 289 

muscle). The gut and peripheral tissue transcriptomes separated into different groups using two 290 

methods (PCA with present genes and metagenome distance estimation), although some 291 

separation between the two groups of tissues may be attributed to different RNA extraction 292 

methods used. Nevertheless, the distinction between the two groups is consistent with differences 293 

in physiological function. The peripheral tissue transcriptomes enable a variety of research 294 

questions on the lake sturgeon, such as liver and gill often used in work exploring the vertebrate 295 

stress response (74,75). Tissues such as the brain, heart, head kidney, and white muscle can be 296 

informative for developmental questions, with potential connections to nutrition and stress 297 

among other biological processes (74,76379). Meanwhile, the 7 gut transcriptomes represent the 298 

major anatomically distinct regions of the gut. Because the gut encompasses an organ system 299 

with distinct compartmentalization of function (18), the 7 gut transcriptomes provide an 300 

opportunity to study distinct digestion-related mechanisms. Gut transcriptomics was predicted to 301 

accelerate research on intestinal pathogen responses, dietary manipulations, and osmoregulatory 302 

challenges (26), and the present data contribute to a longstanding body of work investigating 303 

physiological mechanisms of the vertebrate gut (15,16). We thus provide all 13 tissue-specific 304 

transcriptomes and one overall transcriptome as a scientific resource from this study, but focus 305 

on discussing observations among the gut tissues. 306 

 307 

Circadian Rhythm Transcripts in the Pyloric Caecum 308 

 The pyloric caecum is a tissue of interest because it is absent in Agnatha and 309 

Chondrichthyes, but is present in Actinopterygii (17,18,22). Given sturgeon9s status as an ancient 310 

actinopterygian, sister to the rest of the clade (13), they represent an early evolutionary 311 
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appearance of the pyloric caecum. Analyses of tissue-specific transcriptome annotations revealed 312 

notable patterns of transcript presence within pyloric caecum, which may have implications for 313 

different mechanisms of lake sturgeon digestion. For instance, gene ontology terms 314 

photoperiodism (GO:0009648) and entrainment of circadian clock by photoperiod (GO: 315 

0043153) were unique to the pyloric caecum. In addition, among the core clock genes of clock, 316 

bmal1, per (1, 2, and 3), and cry (1 and 2), all expressed in teleost pineal organs (80), clock, 317 

cry1, and cry2 were present in the lake sturgeon pyloric caecum. Cry1 and cry2, which are 318 

photoreceptors with important roles in circadian rhythms, were also transcribed in brain, liver, 319 

heart, retina, muscle, spleen, gill, and intestine of European seabass (Dicentrarchus labrax), 320 

where rhythmic expression was observed in the brain and liver (81). Notably, the clock-related 321 

gene ontology terms observed in the present data were unique to the pyloric caecum, but 322 

individual genes were present among other tissues such as the brain. Gene ontology terms used 323 

in the present analyses were filtered for significance from a Fisher exact test (70). Therefore, 324 

transcriptomes with annotated clock genes but without enriched gene ontology terms present 325 

represent those with too few genes within the clock-related gene ontology terms to be significant. 326 

The present results do not contradict prior work that identified clock genes in other tissues, but 327 

do provide novel findings of core clock genes in the pyloric caecum that may be related to 328 

feeding periodicity. 329 

Feeding periodicity has been observed in numerous fish species (e.g., Merlagius 330 

merlangus, (82); Limanda limanda, (83)), across herbivores, detritovores, insectivores, 331 

zooplanktivores, and macrophyte feeders (84). Because feeding periodicity is phylogenetically 332 

and ecologically widespread among fishes, we predict that physiological digestive mechanisms 333 

may contribute to the phenomenon. A circadian rhythm in metabolic rate was observed in lake 334 
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sturgeon exposed to a 12-hour light-dark cycle, where metabolism was highest at sunrise (85). 335 

The lake sturgeon used for the present study were also fed predictably, three times a day with a 336 

12-hour light-dark cycle. Given the dual observations that feeding periodicity exists across fish 337 

species (84) and the presence of several core clock genes in the lake sturgeon pyloric caecum, we 338 

developed alternative hypotheses that may address underlying mechanisms of periodicity in the 339 

lake sturgeon, that may be applicable in other fishes (86). 340 

 First, we hypothesized that physiological mechanisms of digestion periodicity may be 341 

regulated by diel circadian clock rhythms in the pyloric caecum. Therefore, we predict diel 342 

fluctuations in transcript abundance of clock, cry1, and cry2 along with other circadian rhythm-343 

related genes only in the pyloric caecum of laboratory-held lake sturgeon consistent with feeding 344 

times and a 12-hour light-dark cycle. Specific roles for physiological mechanisms of digestion 345 

periodicity could include intestinal motility, intestinal function, innate immunity, microbiome 346 

regulation, or cell proliferation (87394). Alternatively, we hypothesized that the circadian rhythm 347 

genes observed in the pyloric caecum may represent a part of a whole-gut circadian response 348 

wave consistent with a phenomenon hypothesized in lab mice (95). That is, a whole-gut 349 

circadian response may have been initiated at feeding and was observed by chance in the pyloric 350 

caecum by sampling individuals approximately 17-18 hours after feeding. Therefore, from this 351 

hypothesis we predict diel fluctuations of transcript abundance of clock, cry1, and cry2 in the 352 

pyloric caecum, and other gut tissues. More posterior gut tissues, such as the spiral valve, may 353 

therefore show expression of the three predicted genes but chronologically later than the pyloric 354 

caecum. By contrast, the glandular and muscular stomachs may show evidence of this circadian 355 

response wave earlier in time than the pyloric caecum because of their position prior to the 356 

caecum in the gut. While the first hypothesis about physiological functions of digestion as 357 
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regulated by the pyloric caecum focuses on one gut tissue, the hypotheses are not necessarily 358 

mutually exclusive. A circadian response wave may pass through different gut tissues, but the 359 

pyloric caecum may play key roles in downstream processes from the circadian wave. This 360 

circadian response wave may be entrained by food intake times if it is consistent with 361 

mammalian physiology (96). Therefore, a timepoint- and tissue-specific approach is needed to 362 

test this hypothesis. 363 

 364 

Microbial Observations 365 

 As lake sturgeon represent an early stage of Actinopterygian gut evolution, several 366 

observations in the present database of tissue-specific transcriptomes were notable. One example 367 

is the presence of transcripts related to innate immunity in the spiral valve. As gut tissues may be 368 

in contact with food and potential associated pathogens from the external environment, innate 369 

immunity and immune responses involved in digestion may help to protect the fish from food or 370 

environment related pathogens (97). Cartilaginous fishes have gut-associated lymphoid tissues in 371 

the spiral valve (98,99), consistent with the present observations of innate immune-related 372 

transcripts in the lake sturgeon spiral valve. Gene ontology terms related to toll-like receptor 373 

signaling pathways and cellular responses to interleukin were unique to the spiral valve in lake 374 

sturgeon, while terms related to innate immune function were also present in the muscular 375 

stomach, glandular stomach, and anterior intestine. The gene ontology term positive regulation 376 

of viral life cycle is not an immune response in itself, but its unique presence in the esophagus 377 

provides some evidence for the necessity of an innate immune response in other gut tissues. 378 

These heterogeneous signals of host-microbiome interactions along the gut are consistent with 379 
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evidence of host-microbiome interactions from 16S rRNA and DNA sequencing from microbial 380 

samples and the lake sturgeon spiral valve (27).  381 

The tissue-specific transcriptome database enabled analyses of bacterial and archaeal 382 

transcripts as well as genera across different gut tissues. Many of these microbial transcripts and 383 

genera were unique to different gut sections, thus we concluded that the microbiome is likely 384 

heterogenous across the lake sturgeon gut. A caveat is that the presence of microbial genera and 385 

transcripts in certain tissues may be attributed to contamination, such as in the brain, white 386 

muscle, and heart, along with transcripts or genera shared among all tissues (7 genes and 8 387 

genera identified as shared among all 13 tissues). However, patterns of microbial presence were 388 

consistent with microbiome regulation and tissue-specific function for gut tissues. For example, 389 

among microbial genera unique to each tissue, the muscular stomach had the greatest number 390 

present (15), followed by the spiral valve (12), and the anterior intestine (6). A qualitatively 391 

similar pattern was found with transcripts of genes annotated to bacteria and archaea unique to 392 

each tissue, with the muscular stomach (114), spiral valve (101), esophagus (50), glandular 393 

stomach (23), rectum (18), and pyloric caecum (14) all supporting unique microbial 394 

communities. These results demonstrate that the greatest number of unique microbial genera and 395 

genes were identified in gut tissues as opposed to tissues outside of the gut. Therefore, the 396 

present results are consistent with a heterogeneous microbial community with tissue-specific 397 

mRNA transcription in the lake sturgeon gut.  398 

Other work identified microbial community shifts in the lake sturgeon spiral valve in 399 

response to a failure to transition diets and with feeding cessation (29). Similarly, spiral valve 400 

microbiome community composition changed in response to exposure to common antibiotics, 401 

drugs, and chemicals used in lake sturgeon aquaculture (28). Therefore, gut microbiome 402 
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community composition is dynamically connected to the physiological state of lake sturgeon 403 

(27). Because unique patterns of microbial genera and genes were found in both the spiral valve 404 

and other gut tissues in the present data, the analyses of gut transcriptomes demonstrate that host-405 

microbiome interactions may occur along much of the lake sturgeon gut, and that the interactions 406 

may be spatially heterogeneous and specific to different gut tissues. Thus the transcriptomes used 407 

here may support work in the lake sturgeon that resolves spatially distinct mechanisms of host-408 

microbiome interactions.  409 

 410 

Conclusions 411 

 In the present study, 13 tissue-specific transcriptomes and one overall transcriptome were 412 

presented as a resource for lake sturgeon research. Overlap of gene ontology terms was analyzed 413 

among tissues. While shared patterns indicated consistent transcriptomic functions among 414 

tissues, the presence of unique gene ontology terms showed that sequencing transcriptomes from 415 

multiple tissues enabled research questions that would otherwise be intractable. Moreover, the 416 

analysis of unique gene ontology terms among tissues revealed the presence of transcribed genes 417 

related to photoperiodicity in the pyloric caecum, an observation consistent with a role for 418 

periodicity in digestive physiology in an ancient fish. Transcripts involved in innate immune 419 

function were found in the spiral valve and other gut tissues, which provide evidence in support 420 

of a prior hypothesis about the emergence of innate immunity in the gut of cartilaginous fishes 421 

and are consistent with specialization in immune function across gut tissues. An analysis of 422 

genes annotated to bacteria and archaea indicated potentially heterogeneous microbiota and 423 

microbial functions along different gut tissues, consistent with specialization in immune function 424 

and microbiome regulation along the lake sturgeon gut. As lake sturgeon are representative of 425 
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sturgeon and paddlefish9s status as ancient fishes, they constitute an early stage in the 426 

differentiation of several gut tissues. Studying this early stage in differentiation of the gut as an 427 

organ system with distinct functions provided insights into digestive function, immunity, and 428 

microbiome regulation. These results are both a resource for lake sturgeon research and provide 429 

information about the mechanisms of compartmentalized function across gut tissues. 430 
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Tables and Figures 709 

Table 1. Assembly and annotation statistics for each of 13 tissue-specific transcriptomes of the 710 

lake sturgeon (Acipenser fulvescens). Number of reads represents the number of short read 711 

mRNA sequences used in assembly, number of putative genes refers to the number of gene 712 

models assembled in Trinity, and number of transcripts represents the total number of transcripts 713 

identified. The numbers of transcripts with annotations and number of unique annotated genes 714 

refers to annotations performed with Trinotate and associated programs. Means and standard 715 

deviations among all 13 transcriptomes are reported at the bottom of the table. The tissue-716 

specific transcriptomes are labeled by tissue, while the transcriptome labeled 8Overall9 refers to 717 

an assembly that included all data used to make the 13 tissue-specific transcriptomes. 718 

 719 

 720 

  721 

Tissue 

Number of 

Reads 

Number 

of 

Putative 

Genes 

Number of 

Transcripts 

Number of 

Transcripts with 

Annotations 

Number of 

Unique 

Annotated 

Genes 

Brain 52583855 116196 185242 120970 13252 

Gill 64243963 165299 250456 103501 12848 

Head Kidney 51005951 104228 174924 147225 12363 

Heart 61776431 115141 161496 58872 10709 

Liver 52606238 68560 98998 47739 9817 

White Muscle 65292771 64372 93273 50022 10143 

Esophagus 133351646 136859 251276 78883 13319 

Glandular 

Stomach 149907748 130979 243955 77889 13263 

Muscular 

Stomach 138604614 120933 221499 69953 12807 

Pyloric Caecum 146607316 118211 220417 71752 12836 

Anterior 

Intestine 114334754 105674 197080 66478 12388 

Spiral Valve 112481602 122567 225357 71406 13004 

Rectum 134824388 127892 244401 80825 13580 

      
Mean 98278559.77 115147.00 197567.23 80424.23 12333.00 

Standard 

Deviation 38868780.36 25504.38 51480.67 27125.92 1215.21 

Overall 1277621277 484570 770984 326367 18290 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.511976doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.12.511976
http://creativecommons.org/licenses/by/4.0/


 

30 

 

Table 2. Gene ontology (GO) terms and microbial information for each of 13 tissue-specific 722 

transcriptomes of the lake sturgeon (Acipenser fulvescens). GO terms were identified by using all 723 

unique annotated genes in a transcriptome with EnrichR. The Biological Process 2021, 724 

Molecular Function 2021, and Cellular Component 2021 databases were searched for the GO 725 

analyses, where only significant terms (q < 0.05) were retained for downstream analyses. Present 726 

microbial genera and genes were identified using annotation information from Trinotate.  727 

 728 

Tissue 

Biological 

Process GO 

Terms 

Molecular 

Function 

GO Terms 

Cellular 

Component 

GO Terms 

Microbial 

Genera 

Microbial 

Genes 

Brain 684 111 152 25 31 

Gill 888 145 149 24 33 

Head Kidney 924 149 152 25 28 

Heart 1017 148 174 16 22 

Liver 992 164 183 21 32 

White Muscle 954 152 186 12 16 

Esophagus 742 131 138 56 105 

Glandular Stomach 691 110 131 45 83 

Muscular Stomach 729 117 135 75 177 

Pyloric Caecum 879 126 157 30 55 

Anterior Intestine 848 136 145 38 67 

Spiral Valve 744 119 124 65 169 

Rectum 671 98 118 47 84 

      
Mean 827.92 131.23 149.54 36.85 69.38 

Standard Deviation 118.55 18.93 20.51 18.77 51.43 

 729 
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Figure 1. Illustration of a lake sturgeon (Acipenser fulvescens) and the gut tissues used for 731 

transcriptome assemblies in the present study. Beneath most gut tissues are representative, 732 

significant (q < 0.05), gene ontology terms unique to the tissue identified with EnrichR. The gene 733 

ontology terms present in the esophagus, glandular stomach, muscular stomach, anterior 734 

intestine, and spiral valve represent possible innate immune system processes specific to each gut 735 

tissue in the present transcriptomes. The gene ontology terms present in the pyloric caecum were 736 

processes related to circadian rhythms, unique to the tissue among the transcriptomes analyzed.737 

 738 
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Figure 2. Transcriptome completeness assessed with BUSCO. Single complete represents 740 

orthologs that were present singly in a transcriptome, while duplicated complete represents 741 

orthologs duplicated in the transcriptome that matched the BUSCO profile. Fragmented 742 

orthologs were present in the transcriptomes, but not within the expected range of alignments in 743 

the BUSCO profile. Missing orthologs were those present in the BUSCO profile, but missing in 744 

the transcriptome completely. The tissue-specific transcriptomes are labeled by tissue, while the 745 

transcriptome labeled 8Overall9 refers to an assembly that included all data from the 13 tissues. 746 

The BUSCO profile used in the present analysis was the Actinopterygii odb10 dataset. The lake 747 

sturgeon icon and colours used were from the fishualize package in R. 748 
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Figure 3. Divergence among 13 tissue-specific transcriptomes of the lake sturgeon (Acipenser 751 

fulvescens). A) is a heatmap of pairwise distances between transcriptomes assessed with Mash, 752 

where higher Mash distances correspond to greater evolutionary divergence between the 753 

transcriptomes. Because no evolutionary divergence is expected for transcriptomes from one 754 

population of one species, these distances represent isoforms and paralogs of gene models. 755 

Higher values indicate more divergence. B) is a principal components analysis (PCA) of present 756 

and absent genes in the 13 transcriptomes, performed with prcomp in R. Gut and peripheral 757 

tissues were distinguished for visualization, where gut tissues were the esophagus, glandular 758 

stomach, muscular stomach, anterior intestine, spiral valve, and rectum, while peripheral tissues 759 

were the brain, gill, head kidney, heart, white muscle, and liver. The distinction in colour 760 

between gut and peripheral tissues is only for visualization, and was not used to categorize data a 761 

priori in the PCA. 762 

 763 
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Figure 4. UpSet plot of shared and unique gene ontology (GO) terms from each of 13 tissue-766 

specific transcriptomes of the lake sturgeon (Acipenser fulvescens). The GO terms presented here 767 

are from the Biological Process 2021 database, significant at q < 0.05. The R package UpSetR 768 

was used to visualize these data. 769 
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Figure 5. UpSet plot of shared and unique genes annotated to microbes (bacteria or archaea) 772 

from each of 13 tissue-specific transcriptomes of the lake sturgeon (Acipenser fulvescens). 773 

Annotations were performed with Trinotate, and bacterial or archaeal genes were identified by 774 

filtering for those groups among filtered transcriptome annotation reports.775 

 776 
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