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Abstract

We develop a new method, SBayesRC, that integrates GWAS summary statistics with
functional genomic annotations to improve polygenic prediction of complex traits. Our
method is scalable to whole-genome variant analysis and refines signals from functional
annotations by allowing them to affect both causal variant probability and causal effect
distribution. We analyse 28 traits in the UK Biobank using ~7 million common SNPs and 96
annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and by
up to 33% in trans-ancestry prediction, compared to the baseline method SBayesR which
does not use annotations, and outperforms state-of-the-art methods LDpred-funct, PolyPred-S
and PRS-CSx by 12-15%. Investigation of factors affecting prediction accuracy identified a
significant interaction between SNP density and annotation information, encouraging future
use of whole-genome sequence variants for prediction. Functional partitioning analysis
highlights a major contribution of evolutionary constrained regions to prediction accuracy

and the largest per-SNP contribution from non-synonymous SNPs.
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Introduction

Polygenic scores (PGS) for complex traits (also known as polygenic risk scores (PRS) for
common diseases) are playing increasingly important roles in research and medical
applications of the fast-growing genomic data from genome-wide association studies
(GWAS)!. PGS are used to provide evidence of polygenic adaptation of populations to
different environments?, to explore putative causal relationships between traits®, to improve
cost and efficiency of clinical trials*, and perhaps most importantly, to identify individuals
with high genetic risk of complex diseases®!°, which provides opportunities for preventative
medicine, early intervention, improved prognosis and personalised treatment!!"!3, However,
the clinical application of PGS is currently limited by the modest prediction accuracy for
most complex diseases. Furthermore, a substantial loss of prediction accuracy is observed

when applying PGS across ancestries!42°,

Current PGS methods (see ref?! for a review) rely on estimating the effects of common SNPs
that tag the causal variants by linkage disequilibrium (LD). The prediction accuracy then
depends on the estimation accuracy of the SNP effects and the extent to which the LD in the
GWAS population is the same as that in the target population. First, complex traits are
affected by many common causal variants each with a vanishingly small effect size, likely
due to the action of negative selection??->*, Therefore a very large sample size is required to
accurately estimate their effects. Given the limited sample sizes for most diseases, it would
be helpful to incorporate other information that are independent of the GWAS data. Second,
although the parsimonious assumption that common causal variants are shared across
ancestry groups has empirical support?>?, the LD between the causal variants and the SNP
markers are likely to vary between populations®°. Thus, to maximise prediction accuracy of
PGS across people of different ancestries requires selection of the causal variants into the

prediction equation rather than non-causal variants that tag the causal variants by LD.

Functional genomic annotations, e.g., the chromatin state and biological function of a
genomic region, are informative regarding the locations and effect sizes of the causal variants
underlying complex traits?®??. This information can be used to separate the likely causal
SNPs from non-causal SNPs in high LD with them?® and hence improve polygenic
prediction!'>?*-2, Harnessing functional annotations to improve prediction was first proposed
in livestock genetics in a method called BayesRC*3, a Bayesian method that incorporates

biological priors for SNP effects but requires individual-level genotype and phenotype data
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and only allows discrete annotation categories. Recent methodological development in
human genetics have allowed the integration of GWAS summary-level data with overlapping
annotations for polygenic prediction, such as AnnoPred®°, LDpred-funct’!, MegaPRS?? and
PolyPred!>. However, there are limitations in these methods. First, most of these methods
assume sparse genetic architecture by a mixture prior, which is superior to an infinitesimal
assumption and is likely a better representation for many traits?*-**36, but consider only a
subset of common variants, e.g., SNPs from a genotyping array or the HapMap3 panel®’, due
to computational feasibility. We caution that there is potentially a problem in modelling the
annotation information when considering only a subset of SNPs, because SNPs that tag the
causal variants by LD do not necessarily tag them by annotation, resulting in a mismatch
between effect size and biological function of the variant (as illustrated in Fig. 1a). Second,
these methods rely on the estimated per-SNP heritability enrichment for each annotation’® as

3339 arise from either differences in the

input data, which can, supported by empirical results
proportion of causal variants or in the distribution of effect sizes between annotation levels or
categories (Fig. 1b), but none of the methods explicitly accounts for these two sources of
information in the model. Third, all of them are stepwise weighting methods that require a
tuning sample of individual-level data from the target population, which is not available for

many traits.

Here, we propose a new method, SBayesRC, that addresses these limitations by 1) analysing
all imputed common SNPs simultaneously using an efficient algorithm, 2) refining the
annotation information using a hierarchical multi-component mixture prior that allows
annotation data to affect the probability of a SNP being causal as well as that of having a
certain magnitude of causal effect size, and 3) using a full Bayesian learning machinery that
estimates all parameters jointly from the data without a need of tuning. We apply our method
to 28 complex traits including diseases using up to 10 million imputed common SNPs with
96 functional annotations (including discrete and continuous annotations), consider both
within European ancestry and trans-ancestry prediction using UK Biobank*® and Lifeline*!
datasets, and make comparisons with the best methods in the literature (Table 1). We also
investigate factors that affect prediction accuracy when exploiting annotation data, and
consider connections between the genetic architecture of functional categories and their

contributions to prediction accuracy.
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Results

Method overview

SBayesRC extends SBayesR* to incorporate functional annotations and allows joint analysis
of all common SNPs in the genome. Similar to SBayesR, SBayesRC only requires summary
statistics from GWAS (i.e., marginal SNP effect estimates, standard errors, and GWAS
sample size) and LD correlations from a reference sample as input data. In addition to joint
SNP effect estimates for deriving PGS, SBayesRC also generates the fine mapping Bayesian
statistics of posterior inclusion probabilities (PIP) for SNPs as measures of trait associations,
and estimates of functional genetic architecture parameters such as SNP-based heritability

and polygenicity associated with the functional annotations.

The capability of simultaneously analysing all common variants is achieved by deriving a
low-rank model based on the eigen-decomposition on quasi-independent LD blocks in the
human genome*?. In each LD block &, we transform the summary-data-based model (as used
in SBayesR) into a new model where the joint effects of m SNPs are fitted to g« linear
combinations of marginal SNP effects (instead of m; marginal SNP effects), with g being the
number of top principal components that collectively explain more than a given proportion
(p) of variance in the LD matrix (Methods; Supplementary Fig. 1a). In such a model, the
dimension of the system of equations is gk x my, usually g« is much smaller than my, leading
to considerably less memory consumption and faster computation (Table 2). For instance,
when p = 99.5%, gi/mi = 0.2 on average across LD blocks for the 7.4 million common
SNPs used in this study (Supplementary Fig. 2). Essentially, the low-rank model refines the
signals in GWAS summary statistics by collapsing information from SNPs in high LD. This
also leads to independent residuals for the transformed observables, which warrants a more

robust algorithm by estimating the residual variance from the data (Methods).

We use an annotation-dependent prior to better model the distribution of SNP effects, and
learn both annotation parameters and SNP effects from the data. In SBayesR, SNP effects are
assumed to follow a mixture of normal distributions with different variances, including a
point mass at zero. This model accounts for a spectrum of genetic architecture from major-
gene to infinitesimal architecture and allows the data to inform which is the best-fit for the
trait of interest. It is, however, independent of genomic features, such as LD and minor allele

frequency (MAF) patterns and biological functions of different genomic regions. In
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SBayesRC, the probability parameters of the mixture distribution are estimated from a linear
model in which the individual SNP annotations are the independent variables. This describes
the probability that SNPs are causal variants and the probability distribution of their effect
sizes (Methods; Supplementary Fig. 1b). In other word, we allow the distribution of SNP
effects to be dependent on annotations, and this model will better capture the causal effects if
the distributions of effect sizes are truly different between annotations. Owing to the use of a
generalised linear model for the annotation effects, both binary and quantitative annotations
are accommodated irrespective of overlapping between them. Our method has been

implemented in a user-friendly software GCTB? and in a R package (Code availability).

Genome-wide simulation based on real genotypes and annotation data

We first used simulation to calibrate our low-rank model which requires a specification of
two parameters: the minimum width (cM) of a LD block after merging contiguous small
quasi-independent LD blocks*?, and the minimum proportion (p) of variance in the LD
matrix explained by the selected principal components in each LD block. We simulated
GWAS data using 1,154,522 SNPs on 328,501 individuals of European ancestry in the UKB
and calculated the prediction accuracy in a hold-out sample of 14,000 individuals. We found
that in general the prediction accuracy increased with the increasing minimum value of LD
block width, reaching to a plateau at the width of 4cM (Supplementary Fig. 3). When p
increased from 85% to 99.95%, prediction accuracy improved due to increased amount of LD
information, which allowed SNPs to better track the causal variants, reaching a plateau at

p = 99.5%. Thus, for the best computational performance and a stable prediction accuracy,
we decided to use a minimum block width of 4cM and p = 99.5% in the subsequent analyses

unless otherwise noted.

We then checked the robustness of our method to two common challenges in the real data
analysis: 1) differences in LD between GWAS and LD reference datasets, and 2) unequal
GWAS sample sizes across SNPs (Supplementary Note), in comparison to two state-of-the-
art methods using summary statistics, LDpred2* and SBayesR**. For all methods, the
prediction accuracies decreased when the LD reference sample size was too small relative to
the GWAS sample size (large variation in LD by chance), but SBayesRC (no annotation
used) preserved more prediction accuracy than the other methods (Fig. 2a and

Supplementary Fig. 4). In an extreme case where African ancestry individuals were used to
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estimate LD correlations, ~70% prediction accuracy was preserved in SBayesRC, whereas
neither LDpred2 nor SBayesR was able to reach to convergence. For the scenario of unequal
per-SNP sample sizes, we simulated two cohorts with a proportion of SNPs genotyped in
only one cohort (i.e., non-overlapped SNPs) and obtain the summary statistics from the meta-
analysis (Methods). As the proportion of overlapped SNPs decreased, SBayesR more often
failed in convergence and LDpred2 had a faster rate of decrease in prediction accuracy than
SBayesRC (Fig. 2b). Of note, LDpred2 tended to preserve prediction performance at the cost
of biased estimates in SNP-based heritability and polygenicity (Supplementary Fig. 6). In
contrast, in SBayesRC, the impact of model misspecification was mostly absorbed in the
residual variance which is a nuisance parameter in the model, with no or only marginal bias
to the other important genetic architecture parameters (Supplementary Fig. 5-6). These
results demonstrated that SBayesRC is more robust than the competing methods to the model

misspecifications that are likely to occur in practice.

We next evaluated the benefit of using functional annotation data and considering more SNPs
beyond the HapMap3 panel (a commonly used panel in the current prediction methods such
as LDpred2 and SBayesR). We expanded the simulation to include 7,356,518 imputed
common SNPs and incorporated functional annotations to simulate the causal effects. In the
simulation, we sampled the causal variants from the 7M SNPs, with their effects sampled
from a mixture distribution depending on the observed functional annotations from the

curated annotation dataset**

(LD score regression baseline model BaselineLD v2.2) and the
annotation effects estimated from the SBayesRC analysis in UKB height (Methods). As
expected, we observed a significant improvement in prediction accuracy when using more
SNPs and/or annotation data in SBayesRC (Fig. 2¢). Compared to using 1M HapMap3 SNPs,
using all 7M SNPs improved the prediction accuracy by 14.4% (the difference in prediction
RéBayesRc between 7M and 1M SNPs divided by that with 1M SNPs). Compared to the no

annotation model, the model incorporating annotation data improved the prediction accuracy
by 2.0% and 3.8% when using 1M HapMap3 and 7M common SNPs, respectively. A similar
pattern was observed in LDpred-funct that using annotation data on 7M SNPs gave higher
prediction accuracy than that on 1M SNPs, but the prediction accuracy was substantially
lower than that from our method in each scenario (Fig. 2¢ and Supplementary Fig. 7). We
hypothesize that the advantage of exploiting annotations is because of both better

identification of causal variants and better estimation of their effect sizes. This hypothesis is
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supported by the results that for a given PIP threshold, incorporating annotations in the model
led to a higher power and a lower false discovery rate (FDR) for identifying the causal
variants (Fig. 2d,e) and a stronger correlation in the estimated and true SNP effects (Fig. 2f).
Coupled with the higher prediction accuracy, the SNP-based heritability estimate increased
toward to the true value in the simulation when more SNPs with annotation data were used

(Supplementary Fig. 9).

Improved prediction accuracy within European ancestry

We performed 10-fold cross-validation in the UKB sample and cross-biobank prediction in
the Lifeline cohort to assess the performance of SBayesRC for predicting individuals of
European ancestry (Methods). As in the simulation, the per-SNP annotation data were from
BaselineLD v2.2%4, which included 83 binary annotations such as coding, promoter,
enhancer, or conserved variants and 13 quantitative annotations such as predicted allele age
and background selection statistic. There were in total 10M imputed common SNPs in the
UKB. After matching SNPs across GWAS, validation and annotation data sets, 7M common

SNPs were retained for the subsequent analyses (Methods).

In the UKB cross-validation, we analysed 28 independent traits including 8 diseases
(Supplementary Table 1). We compared the performance of our method using 7M SNPs,
annotation data, or both, to that of common practice of using 1M HapMap3 SNPs without
any annotation, and to the performance of other methods including C+PT*, SBayesR™,
LDpred2* and LDpred-funct®!. Other than C+PT, all these methods are joint-effect models
that generate joint SNP effects as predictors, in which SBayesR and LDpred2 are widely used
methods for analysing HapMap3 SNPs and LDpred-funct is the latest method that can
analyse 7M SNPs and incorporate annotations (Table 1). For the ease of comparison, the
prediction accuracy from each method was calculated as the relative value to that from
SBayesR from out-of-sample prediction, i.e., relative prediction accuracy of method x = §2 =

R} — R3payesk . -
Rz—ayes, where R? is the prediction accuracy. We report the mean §2 over 10-fold cross-
SBayesR

validation. When using HapMap3 SNPs only, SBayesRC without annotations gave
approximately the same prediction accuracy as SBayesR, which was significantly higher than

that of LDpred2 (6pored2 = —3.2%, Wilcoxon signed rank exact test P-value = 1.4x1077)

(Fig. 3a). Compared to using HapMap3 SNPs without annotations, the prediction accuracy
was improved by 2.8% (P=0.001) or 3.2% (P=3.2x107") corresponding to using either 7M
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SNPs or annotation data in our method. When using both 7M SNPs and annotation data, the
relative prediction accuracy increased to 14.2% (P=7.5x10), substantially higher than using
either source of information alone, suggesting a strong interaction between the SNP density
and annotations (see more discussion below). Although more SNPs together with annotation
data also improved the mean relative prediction accuracy from LDpred-funct, it was not

significantly greater than that of the baseline method (max SEDpred_funct = 3.5%; P=0.58),

i.e., SBayesR using 1M HapMap3 SNPs without annotations. In LDpred-funct, results from
that traits varicose veins, risk taking and waist-hip ratio (adjusted for BMI) were large
outliers which all had a relatively low SNP-based heritability (hdyp < 0.074) and low

baseline SBayesR R? (RSBayesR < 0.022); in addition, although the prediction accuracies for

these traits were relatively high, the regression slopes were largely biased (Supplementary
Table 2-3). On average across all traits, SBayesRC gave 11.9% higher prediction accuracy
than LDpred-funct using 7M SNPs and annotation data (P=5.5x107). In line with the
literature?!#>-#7, all of the above joint-effect models were markedly superior to the C+PT
approach (a marginal-effect model; 8¢, pr = —50.8%; P=7.5x10"), which did not show any
improvement from using more SNPs, consistent with the finding of a recent study*®. In
addition to high prediction accuracy, SBayesRC gave regression slopes close to one across
different traits, suggesting no significant prediction bias, better than those from other

methods (Supplementary Fig. 12).

In the cross-biobank prediction analysis, we focused on the analysis of height and body mass
index (BMI) for which GWAS summary statistics are publicly available with different
sample sizes. We used summary statistics from UKB and GIANT consortium*® (sample size
up to 0.7 million) for training, and validated in the Lifeline cohort (n=11,842)*'. All the
training and validation datasets were of European ancestry. As expected, the prediction
accuracy improved as the training sample size increased for both height and BMI in all
methods. SBayesRC had the highest prediction accuracy in each sample size, outperforming
LDpred2 by 4.0-21.9% (which only used 1M HapMap3 SNPs without annotations), and
outperforming LDpred-funct by 7.1-26.3% (which used the same data as SBayesRC but
required additional tuning dataset) (Fig. 3b). Using the largest sample size to date
(ngiant=0.7M) and SBayesRC with 7M SNPs and 96 per-SNP annotations, we achieved a
maximum prediction R? of 0.40 for height and 0.16 for BMI in the Lifeline cohort, explaining
65% and 73% of SNP-based heritability estimated by SBayesRC (h2yp = 0.62 for height and
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0.22 for BMI), which serves as the theoretical upper bound of the out-of-sample prediction

accuracy for each trait.

Improved accuracy in trans-ancestry prediction

To test whether the superiority of using functional annotations with genome coverage for
prediction is transferable into other populations of different ancestries, we performed trans-
ancestry prediction in UKB, where predictors derived from GWAS in European ancestry
were validated in samples of South Asian (SAS), East Asian (EAS), and African (AFR)
ancestries, respectively. In this analysis, we calculated two types of relative prediction
accuracy for each trait. In the first type, the benchmark was the prediction accuracy of
SBayesR with 1M HapMap3 SNPs averaged across 10 folds of cross-validation in the
European ancestry. In the second type, the benchmark was the prediction accuracy of
SBayesR trained in the GWAS of European ancestry and validated in each of the other
ancestries. To reduce sampling variation in relative prediction accuracy, we removed 10 traits
with prediction accuracy (R?) from SBayesR less than 0.05 in the cross-validation in
European ancestry and one trait failed to converge with PolyPred-S (age at menarche),

retaining 17 traits for the trans-ancestry prediction.

We compared our method to two recently developed methods designed for trans-ancestry
prediction, PolyPred-S>° and PRS-CSx!4 (Table 1). Because both methods require a tuning
sample of individual-level data from the target population to generate the final SNP weights
for prediction, we held out a sample of 500 individuals from the validation dataset for each
non-European ancestry for SNP weights tuning. Given the genetic discrepancies between
ancestries, the tuning step is critical and could override the differences between models in
themselves. For a fair comparison, we also allowed our approach to use this tuning data by
first running SBayesRC in each of the GWAS datasets of different ancestries separately and
then combining the SNP effects with weights estimated from the tuning data (we refer this

analysis strategy to as SBayesRC-multi; Methods and Table 1).

Relative to the prediction accuracy within European ancestry, the trans-ancestry prediction
accuracy attenuated with increased genetic distance to the European ancestry, regardless of
methods (Fig. 4a), in line with previous studies'#!%#8, Despite the overall decline in
prediction accuracy, the use of high-density SNPs beyond HapMap3 or annotation data

increased prediction accuracy when benchmarking with that of SBayesR observed within

10
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each of the ancestries (Fig. 4b). Consistent with the patterns observed within European
ancestry, SBayesRC using both 7M SNPs and annotation data gave the highest prediction
accuracy, with a relative improvement of 16.0% in SAS (P=1.5x107), 22.6% in EAS
(P=2.1x10%), and 33.7% in AFR (P=4.6x107), averaged across traits. In contrast, we did not
observe large improvement using PolyPred-S, except in the AFR population (mean relative
prediction accuracy of 2.6% with P=7.9x107 in SAS; 2.0% with P=0.55 in EAS; 29.9% with
P=6.7x107 in AFR). On average, SBayesRC outperformed PolyPred-S by 13.2%, 19.7% and
13.2% in SAS, EAS and AFR, respectively (mean improvement of 15.4% across the three
non-European ancestries). A notable outlier was vitamin D which had 331% improvement in
PolyPred-S on the basis of RéBayesR = 0.0018 in AFR. This remarkable improvement is
likely achieved from the use of tuning sample in PolyPred-S, which can help to identify
causal variants that are in high LD in EUR but have very different LD in AFR. Using
additional set of GWAS summary statistics from Biobank Japan (BBJ°!), PRS-CSx
outperformed SBayesRC by only 0.4% for predicting EAS individuals in the UKB but was
inferior to SBayesRC-multi by 13.5% (Fig. 4¢). Note that the summary statistics were
separately analysed in SBayesRC-multi but were jointly modelled in PRS-CSx. The fact that
SBayesRC-multi was favoured suggests that the benefit of leveraging functional annotations
with all imputed SNPs outweighs the benefit of joint modelling summary statistics from

multiple populations at a subset of SNPs.

In addition to improved prediction accuracy, SBayesRC used less computational resources
than other methods (Table 2). For the analysis of 7M SNPs with 96 annotations, SBayesRC
required 75 GB RAM and 9.5 computing hours per core with 4 CPU cores, which are

commonly available in a standard computing cluster.

Significant interaction between SNP density and annotation information

Results above have shown that using a full imputation SNP set (i.e., not limiting to the
HapMap3 panel) or using annotation data can each lead to a significant improvement in
prediction accuracy. Moreover, using 7M SNPs and annotation data together remarkably
outperformed using either one source of information alone, suggesting an interaction effect
between SNP density and annotation information for prediction. To test and quantify the
significance of this interaction effect, we calculated the relative prediction accuracy of

exploiting annotations in the model, i.e., (RZynot — R%0)/R%, Where RZ,,o¢ is the

11
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prediction accuracy with annotations and RZ,, is that without annotations, given a set of
SNPs. As shown in Fig. 5, using 7M SNPs resulted in a significantly higher relative
prediction accuracy of exploiting annotations than using 1M HapMap3 SNPs in both
simulation and real trait analyses, manifesting a significant interaction effect. More
specifically, regardless of the level of heritability in simulation, sample size of GWAS in real
traits, within- or cross-ancestry prediction, the use of 7M SNP annotations (y) led to about
twice as much improvement as that of using 1M SNP annotations (x) (Fig. 5; regression
slope = 1.88 with P=1.4x10" from regression of y on x weighted by the number of traits in
each data point). For example, in the cross-validation of complex traits in the UKB European
sample, incorporating annotations increased prediction accuracy by 4.4% with 1M HapMap3
SNPs but by 11.2% with 7M imputed SNPs. This is consistent with our hypothesis that the
annotations at the SNPs in LD with a causal variant may not track the annotation at the causal
variant, resulting in a loss in information (Fig. 1a). To pursue the maximum improvement,
we further considered all imputed common variants in the UKB (~10M SNPs) by extracting
their annotations from the PolyPred model (Methods), but did not observe more
improvement in prediction accuracy (Supplementary Fig. 15), suggesting a saturation of
association signals detectable by imputation. Thus, it is likely that the benefits of leveraging
annotation data for polygenic prediction will be maximized when analysing variants at

sequence level.

Other factors affecting accuracy of prediction leveraging functional annotations
Here we investigate other factors, besides SNP density, that affect accuracy of prediction
leveraging functional annotations, including SNP-based heritability, GWAS sample size,
properties of minor allele frequency (MAF) and LD, the number of annotations, and the

strategy of analysis.

Stratifying traits based on the SNP-based heritability estimates from SBayesR found that
traits with lower SNP-based heritability tended to benefit more from exploiting annotation
data on 7M SNPs (regression slope = -15.7, P=0.031; Fig. 6a). When down sampling the
UKB data for GWAS in height and BMI, the relative prediction accuracy using 7M SNPs and
annotations was higher with a smaller GWAS sample size, whereas using more SNPs alone
required a larger sample size to give a higher improvement in prediction accuracy (Fig. 6b).

This is expected because including annotations in the model is analogous to adding more data
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as annotations are independent of genome variations, whereas including more SNPs in the
model alone increases the number of parameters to estimate therefore consuming more
degrees of freedom. Given that most traits have a polygenic architecture, low SNP-based
heritability or small sample size means low power in GWAS. Thus, results from this analysis
suggest that traits with insufficient power would benefit more from leveraging annotation

data for prediction.

To investigate whether functional annotations provide additional information than LD and
MAF properties, we evaluated the relative prediction accuracy for height and BMI by first
fitting 13 MAF related annotations from BaselineLD only and gradually adding 4 LD bins,
21 core annotations>2, and finally the full set of 96 annotations. We found that the relative
prediction accuracy increased with just fitting MAF, had no significant change when adding
LD bins, and further increased with additional functional annotations (Fig. 6¢). In addition,
conditional on MAF and LD bins, the improvement was larger with 96 functional annotations
than that with 21 core annotations. These results suggest that functional annotations are more
informative than LD and MAF annotations, and using a rich set of functional annotations

altogether is better than using a few key functional categories.

Lastly, we compared alternative strategies of analysing all common SNPs with annotations.
Simultaneous fitting of 7M SNPs in the model is computationally impractical in most

MCMC-based methods. One strategy is to perform a stepwise analysis®*>*

as below. Step 1,
estimation of impact of functional annotations on SNP effects, which is often quantified by
estimation of the annotation-specific enrichment in per-SNP heritability using S-LDSC?*.
Step 2, prioritisation of all SNPs based on their functional annotations and results in step 1.
Final analysis uses a subset of the SNPs that rank from the top in step 2. To compare our
method to such a stepwise strategy, we selected the top 1M SNPs from 7M SNP set based on
the results from S-LDSC*, and performed the prediction analysis in height and BMI. For
SBayesRC in which annotations were not assigned, the functionally-prioritised 1M SNP set
had a higher prediction accuracy than the 7M SNPs, whereas for SBayesRC in which
annotations were assigned, the functionally prioritised 1M SNPs was slightly better than the
same set of SNPs without re-estimation the annotation effects but was inferior to the 7M

SNPs (Fig. 6d), suggesting that the unified analysis is better than the stepwise analysis in

refining the information from annotation data.
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Contributions of functional categories to prediction accuracy

We have shown that functional annotations are useful to improve polygenic prediction. We
then sought to identify which functional annotations are of most importance. To this end, we
constructed functional category-specific PGS using SNPs within that functional category and
their effect estimates from the genome-wide analysis of SBayesRC. Overall, categories with
more SNPs contributed more to the prediction accuracy, but with apparent outliers (Fig. 7a).
We found that evolutionary constrained regions, albeit small in SNP set size, had the greatest
contribution among all categories without flanking windows. For example, regions that are
conserved across 29 eutherian mammals (Conserved_LindbladToh>® in BaselineLD) only
covers 2.9% of the genome but contributed 40.5% of prediction accuracy averaged across
traits, resulting in 14.0-fold enrichment in the per-SNP contribution to prediction accuracy
(per-SNP predictability enrichment = 40.5/2.9). For comparison, the coding regions (1.6% of
the genome) contributed 25.9% of prediction accuracy, with a per-SNP predictability
enrichment fold of 16.5. This result suggests that evolutionary constrained variants are as
informative as the coding variants with respect to complex trait prediction, despite only
33.2% coding variants are annotated as constrained variants. Across functional categories, the
per-SNP contribution to prediction accuracy was in proportion to the per-SNP contribution to
heritability (Fig. 7b), suggesting that the variance explained by a SNP in the GWAS sample
can be transferred into predictive ability of the SNP in the validation sample. The largest per-
SNP predictability was from the non-synonymous SNPs in the coding sequence (41.4-fold

enrichment), which also had the largest enrichment in per-SNP heritability.

We prioritised functional annotations based on their per-SNP heritability enrichment
averaged across traits analysed in this study. The top 20 had mean fold enrichment in per-
SNP heritability, which ranged from 3.8 to 18.8, included non-synonymous variants,
evolutionary constrained regions, coding sequence and regulatory elements, by-and-large
consistent with the results from S-LDSC (Supplementary Fig. 16). Our method allows us to
go on ask whether the enrichment in per-SNP heritability is due to more causal variants or
larger effect sizes in the category. We found that conditional on the other annotations, the
non-synonymous SNPs category were enriched in both the proportion of causal variants and
the magnitude of effect sizes (Fig. 7¢). Moreover, compared to evolutionary conserved
regions in mammals, conserved regions in primates had lower proportion of null SNPs and

higher proportions of SNPs with small to large effects in human traits.
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Discussion

We have introduced a novel method, SBayesRC, for polygenic prediction of complex traits
using GWAS summary statistics of the full set of imputed SNPs and incorporating diverse
functional annotations on each SNP. Compared to the common practice of using 1M
HapMap3 SNPs, using 7M imputed common SNPs and 96 per-SNP annotations, we observed
14% improvement in prediction accuracy within European ancestry averaged over 28
complex traits and diseases, and up to 33% across ancestries averaged over 18 well powered
traits. Our observation of improved prediction exploiting annotation data is consistent the

findings in the previous studies!®-29:30-33.46.54

. Our method outperformed the best method for
within European ancestry prediction using annotations, LDpred-funct, by 12%, and the best
method for cross-ancestry prediction using annotations, PolyPred-S, by 15% averaged across
ancestries (20% in EAS), and that without annotations but jointly models GWAS summary
statistics from multiple populations, PRS-CSx, by 14% when the data from the EAS ancestry
was also used in our method. Furthermore, we found a significant interaction between SNP
density and annotation information for prediction accuracy by observing consistent results

across datasets that use of 7M SNPs doubled the benefits of incorporating annotations into

prediction as compared to IM HapMap3 SNPs.

The interaction between SNP density and annotation information is likely due to fewer
“errors” in the annotation data when more variants are uncovered through imputation. When
the causal variants are unobserved, SNPs used in the analysis can capture the causal effects
by LD but may be annotated differently from the annotations at the causal variants. In other
word, the causal effects are assigned to other variants with “incorrect” annotations. This
would dilute the information from each annotation and smooth out the differences in effect
size distribution between annotations if the unobserved causal variants are distributed at
random, or would cause a systematic bias in the annotation effect estimates if the unobserved
causal variants are enriched in some annotation categories. In either case, the annotation data
are used less effectively. As shown in the simulation study, the estimation for the proportion
of SNPs in each non-zero distribution was biased when using the 1M subset of SNPs
(Supplementary Fig. 10), in concordance with the lower prediction accuracy than using a
full SNP panel including the causal variants (Supplementary Fig. 11). In the real data
analysis, we observed a significant improvement from 1M to 7M imputed SNPs but no
further difference to 10M imputed SNPs (Supplementary Fig. 15), likely due to the

limitation of imputation accuracy. Thus, it is expected that using variants at sequence level
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will maximize the efficiency of borrowing information from the annotation data for

prediction.

We found that the combination of high-density SNPs and functional annotations provides
most benefit to traits with low SNP-based heritability or small GWAS discovery sample sizes
through provision of additional information to allele frequency and linkage disequilibrium
categories, and is best used in a unified analysis where all parameters are estimated in one
model. These results highlight the utility of leveraging functional annotations for predicting
disease risk, as most common diseases do not have a high SNP-based heritability and the
effective sample sizes are still limited for many diseases. These results support the need for
generation of more high-quality functional annotations, because empirically they provide
extra information in addition to non-functional dependent annotations, such as MAF and LD
(none of the MAF or LD categories were present in the top 20 annotation categories ranked
based on the per-SNP contribution to prediction accuracy; Fig. 7¢). Our method can
incorporate many annotations and estimate both annotation effects (binary and/or
quantitative) and SNP effects from the data without additional tuning steps. Our results
suggest that such a unified computational framework is more desirable than the stepwise
approaches commonly used in the previous studies>*->*. These results are useful to inform the

experimental design of leveraging functional annotations for prediction in the future.

We proposed a rank reduction approach to account for correlations between marginal effects
such that the joint effects of genome-wide SNPs are fitted to a set of observables with
independent residuals. There are several advantages of using this low-rank model. First, it
substantially improved the model robustness. We showed that our method is robust to the LD
differences between GWAS and reference samples and the per-SNP sample size variation
resulted from the meta-analysis between cohorts with different genotyping platforms. This is
not only owing to elimination of numerous small eigenvalues/eigenvectors in each LD block
which are subject to high sampling variation in LD, but also because independence of
transformed summary statistics enables the sampling of block-wise residual variance, which
introduces a mechanism to manage the convergence issue due to violation of model
assumptions. It has been found that SNP effect sizes would blow up during MCMC when the
model fails to converge. In this case, the sampled values of residual variances would be large
if the SNP effect sizes tend to blow up, which will in turn shrink them back toward zero,

preventing failure in convergence. Second, the low-rank model substantially improved the
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computational efficiency which allows us to fit a large number of SNPs with only a small
fraction of computation resource compared to the original model. In theory, SBayesRC is
scalable to fit variants at sequence level via calibrating the required proportion of variance in
LD explained by the selected eigenvalues/eigenvectors, making it a powerful tool to analyse
the incoming large-scale whole-genome sequence data. Third, this low-rank model depicts a

general framework that can be applied with different priors as used in other methods.

We noted several limitations in this study. First, although our method is scalable to analysis
of whole-genome sequence data, only imputed common SNPs that were functionally
annotated were analyzed due to limitations in availability of whole-genome sequence data
when conducting the study. We investigated use of up to 10 million imputed SNPs with
MAF > 0.01 but did not observe a significant improvement comparing to the 7 million SNP
set, suggesting a likely saturation of information from imputation and warranting a follow-up
study with sequence variants. Second, our low-rank model requires eigen-decomposition on
the LD matrices which can be expensive if they are computed one by one. We performed
eigen-decomposition on the 7 million SNP set using parallel computing and provide the
results online for use by the research community, assuming that the SNPs in their GWAS
summary data match with the SNPs we used to generate the LD data. This could be an issue
if some SNPs in the LD data are not included in the GWAS, although most studies impute to
the same reference data we used (HRC reference panel®). One approach to address this is to
impute the summary statistics for those “missing” SNPs>’ (Supplementary Note). We found
empirically that the loss of prediction accuracy was marginal unless the missing rate was
greater than 40%. Third, our method is robust to LD and per-SNP sample size variation,
which has been found to be the major cause of the convergence problem in SBayesR and
other summary-statistics based methods, but it is still subject to errors in the GWAS summary
statistics, such as genotyping errors and allelic mislabeling. Thus, application of additional
quality control on the summary statistics prior to the analysis may be required in some
circumstances>®. Fourth, for trans-ancestry prediction, there is possibly further improvement
in prediction accuracy by modelling summary statistics from multiple populations jointly as
in PRS-CSx!4, but we leave such an extension of our method to a future project. Fifth, in
theory, our method can be applied to a very large number of variants given a memory usage
by calibrating the rank reduction parameter, but a too low threshold value may result in a loss
of prediction accuracy and therefore requires calibration with caution. Sixth, this study used

general annotations curated by the BaselineLD model®¥, which does not include annotations
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from recent studies using single-cell sequencing technology that uncover more cell-type
specific epigenetic marks and chromatin states>-%2. Given mounting knowledge about which
tissues or cell types are relevant to complex traits inferred from GWAS data and single-cell
RNA-seq data, using annotations derived from the trait-relevant tissues or cell types are

expected to generate more accurate predictors.

In conclusion, the method proposed in this study is a powerful tool to improve polygenic
prediction in complex traits and diseases. Our findings provide a guideline how to make best
use of functional annotation data for prediction and which functional categories are most
useful for within European and trans-ancestry prediction. We anticipate further improved
prediction accuracy in the future when the method is applied to whole-genome sequence data

with high-quality trait-relevant annotations.
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Methods

Summary-data-based low-rank model

Consider a general form of the summary-data-based model for fitting SNP joint effects:
b=Rp +¢ (1)

where b is the vector of GWAS marginal effect estimates (assuming the genotype matrix X

has already been standardised with mean zero and variance one), R = %X’X is the LD

correlation matrix, N is the GWAS sample size, f is the vector of SNP joint effects, and € is

the vector of residual terms with Var(g) = %Roez. When the marginal effects are estimated

from GWAS using genotypes at 0/1/2 scale (b”), b can be estimated using b, standard error,
and GWAS sample size (Supplementary Note).

Sparse LD matrices estimated from a reference sample are often used to improve
computational feasibility, including banded*-**, shrunk3>-3 and block-diagonal'#** matrices.
To derive our low-rank model, we use a block-diagonal LD matrix based on the quasi-
independent LD blocks found in the human genome*?. For the best performance, we merge
small contiguous blocks to a single block with the minimum width of 4 ¢M, resulting in 591
merged blocks for the European ancestry. For each block i, we perform eigen-decomposition
on R; (the subscript is ignored for simplicity in notation)
R = UAU’
where U is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. By
1
multiplying both sides of Eq (1) by A™2U’, we have
w=Qp +e (2)

1 1

where w = A7zU’b is a linear combination of marginal SNP effect estimates, Q = AzU’ is
1

the new coefficient matrix, and the new residuals € = %A‘iU’X'e are independently and

identically distributed, i.e., € ~ N(0,152). To account for high LD between SNPs and LD
variations between GWAS and LD reference samples, we opt to include eigenvectors and
eigenvalues for the top principal components (PCs) that collectively explain at least p
proportion of the variance in LD. Assuming g top PCs are selected given a value of p, the
dimension of w and Q is g X 1 and g X m, respectively, with m being the number of SNPs in
the block. Because ¢ is often much smaller than m, Eq (2) is a low-rank model and
computationally more efficient than Eq (1). We investigated the impact of p on the method

and decided to use p = 99.5% in practice, which led to a reduction of about 80% rows from
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the original summary-data-based model at a negligible loss in predictive performance
(Supplementary Fig. 2-3). In addition, Eq (2) has independent residuals so that it is
straightforward to estimate the residual variance, which helps to improve the robustness of
the method (Supplementary Note). This low-rank model is general and can be applied to
any other methods that make different assumptions on the distribution of . A more detailed

derivation is given in the Supplementary Note.

SBayesRC
SBayesRC is a Bayesian method built on the low-rank model described above, assuming a

multi-normal mixture distribution for SNP effects. Specifically, we assume that
5

Bj ~ z 1N (0, v,0Z)

k=1

where o/ is the total SNP-based genetic variance estimated from the data, y =
[0,0.001,0.01, 0.1, 1]'% depict the scaling factor of five distributions as the mixture
components including a distribution of zeros and four normal distributions where each SNP a
priori explains 0.001% to 1% of genetic variance, and 7y is the probability for the SNP

effect belong to the k™ distribution.

In contrast to SBayesR* which assumes the same 1), for all SNPs, here the probability of
distribution membership 7, is SNP specific and depends on the annotations on each SNP.
Let A be the matrix of annotations with a dimension of the number of SNPs m by the number
of annotations c¢. For each SNP, we model

f(”jk) = U + Xi—1 Ajiag (3)
where f(*) is a link function that maps the probability variable 7, to the real line, py is the
intercept capturing the overall proportion of SNPs belong to the k™ distribution in the
genome, Aj; is the value of annotation / on SNP j (0 or 1 for binary annotations or
standardised value with mean 0 and variance 1 for quantitative annotations), and ay; is the
effect of annotation / on the membership probability to the k™ distribution. This generalized
linear model allows functional annotations to affect the probability of a SNP being causal
(1 — mj;) and accommodates any distribution of the causal effect (by mixture of a finite
number of normal distributions) given the cumulation of functional annotations, regardless of

discrete or quantitative annotations, and accounts for overlapping between annotations.
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Through estimation of ay; from the data, this computational framework provides a machinery
to make inference on the functional genetic architecture of the trait, because f~1(ay;)
quantifies the deviation of the ™ distribution membership probability, driven by annotation /,
to the baseline model where all annotation values equal to zero, conditional on the presence
of the other annotations. The estimates of ay, ..., as; altogether provide a more detailed
description about functional architecture than the per-SNP heritability enrichment estimate
for an annotation category (Supplementary Note and Supplementary Fig. 10,14). We
assume a flat prior for y; and a normal prior for ay; ~ N(0,0¢,) with 6§, ~ x7*(ve, 74)

where v, = 4 and 72 = 1.

For a mixture distribution of five components, there are 5 X (¢ + 1) annotation parameters to
estimate from the data (including the intercept). In addition, ;) is subject to a constraint that
P Ty, = 1 for any SNP. As a consequence, the sampling scheme for @y is not
straightforward. Although the Metropolis-Hastings algorithm can be used to sample all a
jointly to account for the dependence between elements of 7;, finding the optimal tuning
parameters for the proposal distribution could be difficult and specific to trait. To remove the
dependence between probability parameters, we employed an alternative parameterization for
modelling membership probabilities and annotation effects. Let §; be the indicator for the
mixture component membership for SNP j:

6; = k with probability 7;,; k = 1to 5
We define a conditional probability that the SNP effect belongs to the A™ distribution given
that it has passed the bar for the (k-1)" distribution as

pjkzPr(5j2k|6j2k—1) fork > 2
such that T =1 —pj;, Wi, = (1 — pj3)pj2, Tj3 = (1 — pj4)pj3pj2, Ty = (1 —
pj5)pj4pj3pj2, and Tjs = pjsPjaPj3Pj2- We then apply the generalized linear model, Eq (3),
to link pj, with @;. In this parameterisation, all pj; are independent, which means that e,
can be sampled in parallel in each MCMC iteration, and ay,; can be sampled from its full
conditional distribution using Gibbs sampling algorithm when the probit link function is
chosen, namely f (p jk) = CD(p jk) where @(+) is the cumulative density function (CDF) of
the standard normal distribution. More details about the alternative parameterization and the

Markov chain Monte Carlo (MCMC) sampling scheme are described in the Supplementary
Note. In all SBayesRC analyses in this study, we ran MCMC for 3,000 iterations with the
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first 1,000 iterations as burn-in and the rest used for posterior inference. Running a longer

chain did not change the prediction accuracy in the simulation and real trait analysis.

UK Biobank

The UK Biobank (UKB) is a large volunteer cohort with sample size more than 500,000 from
across the United Kingdom and has extensive phenotypic and genotypic information from the
participants. Informed consent with the protocol’s approval from National Research Ethics
Service Committee was signed by all participants. The genotype data was generated using
two array chips, the Applied BiosystemsTM UK Biobank AxiomTM Array and the Applied
BiosystemsTM UK BiLEVE AxiomTM Array. The UKB analysis team conducted the SNP
imputation with reference panels from Haplotype Reference Consortium®® (HRC) and the
UKI10K project®. We called the imputed data to BED format by PLINK with best-guest
calling, kept the SNPs with MAF > 0.01, Hardy-Weinberg Equilibrium test P > 10-1°,
imputation info score > 0.6 in European samples. We used the GCTA software®® to remove
the cryptic relatedness in the UKB based on the HapMap3 SNPs in each population. The
samples were pruned by estimated relatedness larger than 0.05, keeping the unrelated
samples only. We also removed the samples with mismatched sex information in phenotype
and genotype, and samples withdrew the participation. The final dataset contains 4 ancestries,
European (EUR, N=347,800), East Asian (EAS, N=2,252), South Asian (SAS, N=9,436) and
African (AFR, N=7,000).

We matched the SNPs between UKB, the annotation baseline model BaselineLD v2.2 and
LifeLine cohort, extracted the common SNPs among those 3 datasets, resulting in 7,356,518
SNPs and 1,154,522 HapMap3 SNPs. For a secondary analysis, we further included up to
9,705,522 imputed common SNPs with their annotation data extracted from PolyPred-S,
which used BaseLineLF (an extended version of BaseLineLLD v2.2 to include annotations at
the low-frequency variants). We randomly sampled 5,991 EUR samples as the tunning
sample for C+PT and LDpred2 and performed 10 cross validation in the remaining samples
(341,809). The 55 traits with relatively large sample size (N > 110,000) were extracted
from all 4 ancestries. The phenotypes with continuous values were filtered within the range
of mean +/- 7SD and then rank-based inverse-normal transformed within each ancestry and

sex group.

1000 Genomes and UK10K data
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In addition to the LD reference from UKB, we also used two other whole genome sequence
data sets. We downloaded genotype data from 1000 Genomes Project (phase 3)%7. We kept
samples labelled as “GBR”, “CEU”, “TSI”, “IBS” and “FIN” as European samples. We
extracted the same SNP sets QCed above (7,356,518), and removed the cryptic relatedness
based on the HapMap3 SNPs by GCTA software (cut-off value for GRM 0.05), resulted in
494 unrelated samples. We used the genotype data from UK 10K project®® which consists of
3781 individuals and 45.5 million genetics variants. We extracted the SNP sets QCed above
and kept the 3642 unrelated samples by GCTA software.

Lifeline cohort

From the Lifeline cohort we used 36,305 samples and 17 million SNPs after imputation and
QC (imputation info score > 0.3, MAF > 0.0001 and HWE > 1e-6). We kept the sample with
age > 20 years old and removed the samples with the phenotypic value (height and BMI) out
the range of mean +- 5SD. We further removed the related samples and retained 11,842

unrelated samples for out-of-sample prediction.

Public data from GWAS meta-analysis for height and BMI

We assess the prediction accuracy for height and BMI from the summary data public
available*’. We kept the same variant set in the UKB, extracted the SNPs with per-SNP
sample size within mean +/- 3 SD and the difference in allele frequency between GWAS and
LD reference samples smaller than 0.2. The summary data was further QCed by DENTIST?®
to filter the SNPs with potential errors, removed the SNPs with P DENTIST < 5x10® and

P GWAS > 0.01. All the summary data were imputed to the same variant panel.

Cross-validation in UKB

We performed ten-fold cross-validation in the UKB with 341,809 unrelated individuals of
European ancestry. We chose 55 traits from the UKB with relatively large sample size and
pruned the traits with pair-wise phenotypic correlation |r| < 0.3. 31 independent traits were
selected for the prediction analysis, including 11 binary traits and 20 continuous traits, where
3 binary traits were further removed due to a very low average prediction accuracy (mean R?
< 0.01 among all methods in the European cross-validation). The sample sizes for the final
set of 28 independent traits are shown in Supplementary Table 1. We partitioned the total

sample into ten equal-sized disjoint subsamples. For each fold, we retained one subsample as
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validation and other remaining nine subsamples as training data. We repeated the process ten
times. The summary statistics for each fold were generated by PLINK?2 software$® with sex,
age, and first 10 principal component as covariates. Linear regression was used for
continuous traits and logistic regression for binary traits. We performed the cross-validation
for all independent traits in those methods: clumping and P value thresholding (C+PT)
implemented in PLINK 1.9 software, SBayesR®, SBayesRC, LDpred2* and LDpred-funct®!,
SBayesR and LDpred2 were only run in 1M HapMap3 common SNPs due to high
computational burden. C+PT, LDpred-funct and SBayesRC were run in both 1M and "M
common SNP sets. The functional annotation for LDpred-funct and SBayesR-AL was from
BaseLine model 2.2 (from LDpred-funct) which contains 96 annotations, of which 14 are
MATF related (10 MAFbins, MAF Adj Predicted Allele Age, MAF Adj ASMC and

MAF _Adj LLD AFR). We calculated the PGS using genotypes from independent
validation set in each fold and obtained the prediction R? from linear regression of true
phenotype on the PGS from each method for quantitative trait and McFadden’s pseudo-R? for
logistic regression. The final R? was subtracted the value from full model (PGS + sex + age +
10 PC) to null model (sex + age + 10PC). Then, we calculated the relative prediction

R% — REBayesr : . -
accuracy by ———>== where x is each method compared and R? is the prediction
SBayesR

accuracy, then the relative prediction accuracy values are averaged across ten folds.

Trans-ancestry prediction

We used the summary statistics from all European unrelated samples as the training data
(sample sizes showed in Supplement Table 1). The prediction accuracy was calculated as in
the within European ancestry prediction by comparing the null model without PGS and the
full model with PGS. We randomly selected 500 tuning samples for methods requiring a
tuning step and excluded them from the PGS calculation in all methods. The settings for
different methods used in the study are described as below.

SBayesR family. We ran SBayesR and SBayesRC using the summary statistics of UKB

EUR, and then applied the estimated SNP effects directly to the genotypes of individual from
SAS, EAS and AFR ancestries in the UKB.

PolyPred-S. We followed the steps in ref!> to first apply PolyFun + SuSiE in fine-mapping of
7M SNPs with functional annotations from BaseLineLF and LD data from the PolyPred
program which was calculated from the UKB (a step called PolyFun-pred). Then, the mix
SNP weights were optimised in 500 tuning samples of the target ancestry using both the
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predictors from Polyfun-pred and predictors from SBayesR (using training samples of
European ancestry). We obtained the PGS from the optimised SNP weights and genotypes
for each target ancestry (SAS, EAS and AFR) in the UKB.

PRS-CSx and SBayesRC-multi. We evaluated these two methods based on their performance

in predicting individuals of EAS ancestry, because of availability of GWAS summary
statistics from BioBank Japan (BBJ)*! in the public domain. There were 11 traits in common
between our selected traits and BBJ, of which 3 traits were diseases. PRS-CSx requires 500
cases in the tunning samples but there were no sufficient EAS case/control samples for the
disease traits in UKB, hence the analysis was performed in the 8 continuous traits
(Supplementary Table 5). The 500 hold-out samples from UKB EAS were used as the
tunning sample. We matched the SNPs in the summary data from BBJ and UKB and
removed SNPs with MAF < 0.005 in either population. After QC, 4,906,538 SNPs remained
with functional annotations, of which 1,011,961 SNPs were in the HapMap3 panel. We ran
PRS-CSx with GWAS summary statistics from UKB EUR and BBJ populations and LD data
from UKB EUR and EAS downloaded from the website
(https://github.com/getian107/PRScsx), using the default parameters. After obtaining the SNP
weights specific to EUR and EAS populations, we calculated the EUR-based and EAS-based
PGS with genotypes from UKB EAS, and then estimated the optimal weights to combine the
two sets of PGS using the EAS tuning samples with phenotypes, as suggested by PRS-CSx.
The prediction accuracy was calculated from the optimised PGS and phenotypes in the
remaining EAS validation samples. Followed the same strategy from PRS-CSx, we extended
our method to utilise GWAS data from multiple populations (SBayesRC-multi). Instead of
joint modelling, we run SBayesRC with summary statistics from UKB EUR and LD from
UKB EUR, and run SBayesRC with summary statistics from BBJ and LD from UKB EAS
separately. Then, the final SNP effects for EAS individuals were derived by combining the
EUR- and EAS-based PGS in the EAS tuning samples as described above.

Simulations

We performed two sets of simulations, one in 1M HapMap3 SNPs, and another in 7M
imputed SNPs, following the BayesR model which allows the SNPs effects have different
variance. We randomly selected 10,000 variants from the whole genome as causal variants,
of which 6,000 had small effects sampled from N(0, 0.01), 30 had medium effects sampled
from N(0, 0.1), and 10 variants had large effects following N(0, 1). Then, the effect sizes

were scaled to give a trait heritability of 0.5. We repeated the simulation 10 times, with 10
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sets of different causal variants. We also simulated a case with a trait heritability of 0.1 and
the same number of causals. For the simulation scenario incorporating annotation data, we
used the annotation effects estimated from height in real data analysis and calculated the per-
SNP probability of membership in each mixture component by probit link function, then

sampled the causal effects from that distribution.

Data Availability
The UK Biobank data are available through formal application to the UK Biobank
(http://www.ukbiobank.ac.uk). All the other datasets used in this study are available in the

public domain.

Code Availability

SBayesRC is implemented in a publicly available software GCTB at
https://cnsgenomics.com/software/gctb/#Download and a R package at
https://github.com/zhilizheng/SBayesRC.
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Figure 1 Characteristics of functional annotation data. a) Functional annotations provide
orthogonal information that help to distinguish the causal variant from the SNP in perfect LD
with it. However, when the causal variant is not observed, the SNP that tags the causal
variants by LD captures the causal effect but does not share the same annotation with the
causal variant, resulting in a mismatch between effect size and annotation category. b)
Functional categories can differ in both the proportion of causal variants and the distribution
of causal effect sizes, either of which can lead to an enrichment or depletion in per-SNP

heritability in a functional category.
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Figure 2 Assessing the performance of our methods by simulations. a) Robustness of

SBayesRC to the choice of LD reference. b) Robustness of SBayesRC to the unequal per-

SNP sample sizes in the meta-analysis. ¢) Improvement of prediction accuracy using

SBayesRC with high-density SNPs, annotation data, or both, in comparison to LDpred-funct.

d) Power of identifying causal variants using models with or without high-density SNPs or

annotation data. e) False discovery rate (FDR) of identifying causal variants using model

with or without high-density SNPs or annotation data. f) Correlations between the estimated

and true effect sizes at SNPs with posterior inclusion probability (PIP) greater than a
threshold.
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Figure 3 Prediction performance using SBayesRC with 7M SNPs and annotation data in
European populations. a) Relative prediction accuracy of different methods to SBayesR using
IM HapMap3 SNPs, averaged from ten-fold cross-validation in the UKB. b) Out-of-sample
prediction accuracy for height and BMI, using UKB (N = 0.05 to 0.3M by down sampling) or
GIANT dataset* (N = 0.7) as training and an independent dataset of Lifeline as validation.

33


https://doi.org/10.1101/2022.10.12.510418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.12.510418; this version posted October 14, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a 125 Py
8 . ==
© ]
100+ - - =8 == _ ..
§ Method
3 075 ° 1M SNPs w/o annot
& o )
c E 1M SNPs with annot
% . E3 7M SNPs w/o annot
? 050 E 7M SNPs with annot
Y PolyPred-S
2025 $
«©
]
o [ ]
OOO L T T T
EUR SAS EAS AFR
Population
b Ko
[ ]
’\? L ]
2 1004 22.6%
= :
I ° ° Method
3 o
g 501 160% ° ° 1M SNPs w/o annot
[ ]
s 13.3% * ? E 1M SNPs with annot
= o
% ° =$ — * % $ % Er:EI 7M SNPs w/o annot
0 = = —8— e e tesm oo ER S e - - - e -F-e -
g L $ ° E 7M SNPs with annot
]
§ e PolyPred-S
2 50
g
E
L ]
EUR SAS EAS AFR
Population
Cc 50 17.8% 4.9 ”
)
2 40+
© 17.4%
3
O 30 .
& Train dataset
c
% 20 1 EUR
8 F-J EUR+EAS
S
8 104 ‘
>
o
Q 0+
E
PRS-CSx 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot With annot W/o annot With annot
Methods

Figure 4 Trans-ancestry prediction using SBayesRC with 7M SNPs and annotation data. a)
Relative prediction accuracy (ratio) to that of SBayesR with 1M HapMap3 SNPs averaged
across 10 folds of cross-validation in the European ancestry. b) Relative prediction accuracy
(% of improvement) to that of SBayesR trained in the GWAS of European ancestry and
validated in each of the other ancestries. VitD in PolyPred-S AFR population had a value of
331%, which is removed from the graph for a clear presentation. ¢) Relative prediction
accuracy as in panel b either using summary statistics from UKB of European ancestry alone
or together with those from BBJ of East Asian ancestry for trans-ancestry prediction in the
UKB population of East Asian ancestry (8 traits available). The number above each boxplot

indicates the mean value across traits. Data provided in Supplementary Table 4 and 5.
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Figure 5 Comparison between 1M HapMap3 SNPs and 7M imputed SNPs for the
improvement (%) in prediction accuracy for SBayesRC using annotations relative to
SBayesRC without annotations. The slope of regression of results from 7M SNPs on results

from 1M SNPs is 1.88 (s.e.=0.22).
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Figure 6 Other factors affecting accuracy of prediction incorporating functional annotations.
a) Traits with low heritability tend to benefit more from using annotation data. b) GWAS
with small sample sizes tend to benefit more from using annotation data. ¢) Improvement in
prediction accuracy increases with the number of annotations upon the MAF and LD (+
Baseline core/full = MAF+LD+Baseline core/full). d) Full analysis of all SNPs and
annotation data is superior to the stepwise analysis that prioritises the top 1M SNPs based on

their annotations and fits them in the model.
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Figure 7 Contribution of functional categories to the total prediction accuracy and estimation
of functional genetic architecture in complex traits. a) Proportion of prediction accuracy
against proportion of SNPs in each functional category. b) Per-SNP contribution to prediction
accuracy against per-SNP contribution to heritability in each functional category. c¢) Per-SNP
heritability enrichment and distribution of effect sizes shown by the proportion of SNP
effects belonging to each of the five mixture distributions across the top 20 and bottom 5

functional categories.
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Table 1 Summary of prediction methods used in this study.

Method

Features

Use
annotations

Use all
imputed SNPs

Require
tuning data

C+PT#

LDpred2*®

LDpred-funct®!

SBayesR¥

SBayesRC (this
work)

PolyPred-S!3

PRS-CSx'*

SBayesRC-multi
(this work)

Non-parametric method based on GWAS marginal effect estimates of a subset of independent SNPs obtained
by LD clumping and p-value thresholding.

Bayesian mixture model that fits SNPs jointly with a point-normal prior. It is more powerful than C+PT by
accounting for sparse genetic architecture and LD between SNPs.

Stepwise method that starts with an infinitesimal model with functionally informed priors and then considers
sparse genetic architecture empirically by regularizing SNP effects in bins of different magnitude using cross-
validation. Compared to LDpred2, it incorporates functional annotations and analyses all imputed SNPs.

Multi-component mixture model that assumes a finite mixture of normal distributions for SNP effects. It
accounts for complex genetic architecture. All parameters in the mixture distribution are estimated from data.

Extension of SBayesR to incorporate functional annotations and allow for fitting all imputed SNPs jointly. It
considers differences between annotations in both the proportion of causal variants and the magnitude of
causal effect sizes.

Stepwise method that combines SNP effect estimates from a functionally informed fine-mapping approach®
for 18M SNPs with those from SBayesR for 1M HapMap3 SNPs. It is flexible to the choice of method that
generates the joint-effect estimates of HapMap3 SNPs, for which SBayesR is recommended when LD
reference sample closely matches the GWAS sample. It is proposed mainly for cross-population prediction,
and uses a sample from the target population for weighting the SNP effects.

Multi-discovery method designed to improve cross-population prediction by jointly modelling summary
statistics data from multiple ancestrally diverse populations. It borrows information across populations by a
shared continuous shrinkage prior but still requires a tuning data to maximize the prediction accuracy in the
target population. It does not consider functional annotations and is computationally challenging to fit more
than 1M HapMap3 SNPs.

Extension of SBayesRC to combine the SNP effect estimates from multiple populations after running
SBayesRC in each population separately. Similar to PRS-CSx, a tuning sample of individual-level data is used
to derive the final predictors for the target population. However, unlike PRS-CSx, the GWAS summary
statistics from different populations are not jointly modelled.

No

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
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Table 2 Computation resource required for different methods. Results are average values

across traits using 4 CPU cores when multi-thread is supported for the method.

Method (No. SNPs) Runtime (hours) Memory (GB) Required Storage (GB)
SBayesRC (7M) 9.5 75.1 130

LDpred-funct (7M) 6.0 120.6 40-50 per trait
PolyPred-S (7M) 19.8! 71.7 2,800

LDpred2 (1M) 5.5 53.4 43

SBayesRC (1M) 1.2 7.8 5.6

SBayesR (1M) 0.5 27.0 22

PRS-CSx (1M) 14.22 4.7 5.6

!'In PolyPred-S, fine-mapping is the most time-consuming step and is suggested to run by blocks in parallel.
Here we used a single core and divided the runtime by 4 for comparison to others.

2 Per data set runtime: total runtime / number of training data sets (= 2).
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