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ABSTRACT

Fluctuating environments threaten fertility and viability. To better match the immediate, local
environment, many organisms adopt alternative phenotypic states, a phenomenon called “phenotypic
plasticity”. Local adaptation shapes phenotypic plasticity: natural populations that predictably encounter
fluctuating environments tend to be more plastic than conspecific populations that encounter a constant
environment. Despite pervasive evidence of such “adaptive phenotypic plasticity,” the evolution of the
gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the
hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors and that
these epigenetic factors vary across naturally occurring genotypes. To test these hypotheses, we
exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an
inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is
determined epigenetically: only a subset of genetically identical individuals enter diapause and this
diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of
epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted
in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we
demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is
highly polygenic — distinct suites of alleles mediate diapause plasticity across distinct genotypes — we
investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically,
we asked if these histone marks were similarly depleted in diapause of a geographically distinct,
comparatively less plastic genotype. We found evidence of genotypic divergence in both the gene
expression program and histone mark abundance. This study reveals chromatin determinants of
adaptive plasticity and suggests that these determinants are genotype-dependent, offering new insight
into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating
environments.
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INTRODUCTION

Fluctuating environments threaten survival and reproduction in natural populations. The evolution of
environment-dependent, phenotypic plasticity promotes the development of alternative phenotypes that
better match the immediate, local environment. For example, seasonal snow cover triggers a coat color
change from brown to white in the boreal snowshoe hare. Once the snow cover melts, the hare
redevelops a brown coat (1). Similarly, limited resource availability triggers Caenorhabditis elegans
juveniles to enter physiological arrest. Once resource availability improves, the juveniles resume
development into adults (2, 3). Across a species’ range, the degree of environmental fluctuation may
vary and selects for different degrees of phenotypic plasticity. Despite the clear relevance of such
adaptive phenotypic plasticity in organismal and population responses to a changing climate, the
molecular mechanisms that determine environment-induced plasticity are poorly understood (4-8).

Alternative plastic phenotypes are determined by coordinated up- and down- regulation of large swaths
of the genome in response to changes in environmental conditions [reviewed in (5, 6)]. The molecular
mechanisms that regulate alternative gene expression programs associated with phenotypic plasticity
are largely unknown. In contrast, the gene regulatory mechanisms of cell fate plasticity are well-
established. Epigenetic mechanisms such as DNA packaging into alternative “chromatin states”
regulate cell fate plasticity by determining distinct gene expression programs and, ultimately, distinct
cellular identities [(9-12) reviewed in (13-15)]. These alternative chromatin states include differential
chemical modifications to either the DNA or the histone proteins that make up the nucleosome around
which DNA wraps. The addition and removal of acetyl and methyl groups from histone tails can alter
the transcriptional state of the underlying DNA and promote distinct cell fates in response to intrinsic
developmental cues [(16, 17), reviewed in (18, 19)]. Intriguingly, extrinsic environmental cues can also
alter DNA packaging into chromatin (20-26). Drought, temperature, salinity, and exposure to toxins alter
the genome-wide distribution and abundance of acetyl and methyl groups on histone tails [reviewed in
(27, 28)]. The observation that chromatin state is both environment-sensitive and a key determinant of
cell fate during development raises the possibility that chromatin may mediate environment-sensitive
phenotypic plasticity (29).

Consistent with this possibility, a handful of studies have established causal links between chromatin
and phenotypic plasticity (29-34). Three of these studies probe chromatin-based regulation of reversible
developmental arrest. To escape unfavorable environmental conditions, some organisms have evolved
a state of dormancy in which development is suspended and senescence is slowed. Dormancy can
occur at any developmental stage, from embryo to adult. In juvenile dormancy, a paused transition
between developmental stages results in dramatic lifespan extensions. In adult dormancy, both somatic
lifespan and reproductive lifespan are extended. While several groundbreaking studies have identified
chromatin-based regulation of juvenile dormancy (32-34), the chromatin determinants of adult
dormancy, and specifically the adaptive preservation of reproductive potential at this life stage, have not
yet been explored. Moreover, we know virtually nothing about potentially adaptive genetic variation in
the epigenetic mechanisms that promote and constrain phenotypic plasticity (35).

To investigate chromatin-based regulation of adaptive reproductive preservation in dormancy, we
exploit the tractable model system, Drosophila melanogaster. D. melanogaster enters a form of adult
dormancy called diapause in response to the cold temperatures and short days of oncoming winter [as
defined in (36-39), but see (40)]. Drosophila diapause in females is characterized by extensive
physiological changes that result in increased lipid storage, increased stress tolerance, increased
lifespan extension, and suspended egg production. Suspended egg production is associated with
global changes to the ovary transcriptome (41-46) and results in retention of nearly full reproductive
potential following diapause (38, 43, 47, 48). Global changes to the ovary transcriptome under
diapause implicates chromatin regulation, making diapause an ideal model to study the epigenetic
determinants of reproductive dormancy.
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D. melanogaster diapause is also an ideal model for investigating the evolution of gene regulatory
mechanisms that mediate plasticity. Diapause plasticity is highly polygenic such that genetically distinct
individuals have only partially overlapping suites of alleles that promote diapause (49). Diapause
plasticity also varies adaptively (44, 50, 51). In populations from high latitudes with extreme winters, a
higher proportion of females enter diapause under simulated winter conditions than females from low
latitudes with mild winters (44, 50, 51). Similarly, a higher proportion of females enter diapause in
populations collected immediately following winter than those collected in the late summer (51). This
spatial- and temporal- variation in diapause plasticity, along with the observation that diapause plasticity
is highly polygenic in D. melanogaster, makes this system ideal for probing how epigenetic
determinants of plasticity vary across distinct genotypes.

Here we identify two epigenetic factors that regulate reproductive diapause through a mechanism
distinct from those previously identified in juvenile diapause (32-34). We also show that these
epigenetic determinants may vary across geographically distinct genotypes. These data provide new
insight into how organisms exploit epigenetic mechanisms to persist in fluctuating environments, and
how genetic variation may shape these epigenetic mechanisms.

RESULTS
Establishing a system to study epigenetic regulation of reproductive plasticity

To study the epigenetic determinants of reproductive lifespan extension under diapause, we
established a system wherein epigenetic regulation, including chromatin-based gene regulation, could
be isolated from the often-confounding effects of genotype, environment, and tissue heterogeneity. D.
melanogaster diapause emerged as a compelling candidate system. This system allows us to control
for genetic variation, to evaluate alternative developmental states in the same environment, and to
ensure tissue homogeneity across alternative reproductive states.

To control for genotypic effects on epigenetics, we inbred an isofemale line from a temperate North
American population (collected in Pennsylvania) by brother-sister mating for 10 generations. Under
simulated winter conditions (Fig. 1A), 87.9% of inbred females enter diapause (Fig. 1B). Importantly,
the incidence of diapause in this inbred line does not differ from the isofemale line from which it was
derived (y? test, p = 0.49), suggesting that residual, segregating genetic variation alone does not
account for the observed degree of plasticity. Incomplete diapause penetrance, where most females
arrest but some (12.1%) remain persistently reproductive upon exposure to simulated winter conditions,
allows us to control for environment in addition to genotype: we can compare the chromatin state of
inbred diapausing and persistently reproductive individuals in the same environment. Finally, to control
for tissue heterogeneity in all experiments that compared arrested and persistently reproductive
ovaries, we isolated ovary stages 1-7 (see Methods). Stages 1-7 are those represented in diapause
(Fig. 1B). This careful exclusion of development beyond stage 7 allowed us to control for cell type
composition between arrested and persistently reproductive ovaries.

The observation of environment-induced alternative phenotypic states across individuals of a single
genotype implicates epigenetic regulation. Another hallmark of epigenetic regulation is
transgenerational transmission of parental environmental conditions to offspring (52-55). To probe the
possibility that parental diapause is transmitted to offspring, we assayed diapause plasticity (the
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Figure 1. Establishing a system to study epigenetic regulation of adaptive phenotypic plasticity.
(A) Diagram of diapause assay design. Flies are reared at 25°C under a 12-hour dark/light cycle in an
incubator (light gray). Females are then transferred to an incubator set to 12°C under a 15-hour dark, 9-
hour light cycle (dark gray, simulated winter conditions). Females are maintained in simulated winter
conditions for 28 days before ovaries are assessed for diapause (% of females with arrested ovaries,
i.e., “diapause plasticity”). (B) Degree of plasticity in age-matched control at 25°C (left) and diapause
and persistently reproductive at 12°C (right). Ovaries from age-matched control females, diapause
females, and persistently reproductive females and cartoons (below) representing the ovaries with a
separated single ovariole, the basic unit of egg production in the Drosophila ovary. Dotted box indicates
stages 1-7 used for all RNA and protein assays (note that the arrested ovary has only stages 1-7,
created using Biorender.com). Scale bars = 0.5 mm (C) Diagram of transgenerational assay design.
After maintenance under simulated winter conditions for 28 days (dark gray incubator, see above),
females are assayed for diapause using a non-destructive method (see Methods). The females
previously in diapause (“naive females”) are then crossed to males at 25°C. Virgin females from this
cross (“daughters of diapause female”) are placed either into a 12°C incubator to assess diapause
plasticity or into a vial with males at 25°C to generate the granddaughters of diapause females. This
process is repeated with these granddaughters and the great-granddaughters of diapause females. (D)
Diapause plasticity of daughters, granddaughters, and great-granddaughters of females who underwent
diapause. y?, *** p<0.001. (E) Heatmap of the top 200 differentially expressed genes (by FDR) between
age-matched control, diapausing, and persistently reproductive ovaries. Blue-red gradient depicts the
Z-score of each gene. Red corresponds to upregulated genes and blue corresponds to downregulated
genes. (F) Heatmap of top 200 differentially expressed genes (by FDR) between diapause and
persistently reproductive ovaries. Blue-red gradient depicts the Z-score of each gene. Red corresponds
to upregulated genes and blue corresponds to downregulated genes. (G) Volcano plot showing
differential gene expression across diapausing and persistently reproductive ovaries. Triangles
represent genes with -logio FDR > 25.
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proportion of females that enter diapause) of daughters, granddaughters, and great-granddaughters of
inbred females that had undergone diapause (Fig. 1C). We first subjected a cohort of females to winter
conditions (12°C, Fig. 1C “naive females”). We allowed the subset of females that had entered
diapause to mate and reproduce at 25°C. We assayed one cohort of their daughters for diapause
plasticity (Fig. 1C “daughters”, one generation since diapause) and allowed a second cohort to mate
and reproduce at 25°C. We repeated this process until the great-granddaughter generation (Fig. 1C
“great granddaughters”, three generations since diapause). We note that, under this protocol, the
propagated daughters, granddaughters, and great-granddaughters are never exposed to winter
conditions. A subset of these progeny was sampled to determine diapause propensity and then
discarded. These experiments revealed that diapause entry in mothers reduces the proportion of
daughters in diapause (p<2.2x107'®), granddaughters (p<2.2x107'®), and great-granddaughters
(p=4.6x10"%), Fig. 1D). Moreover, this transgenerational effect decreases with each generation removed
from the initial incidence of diapause. The dilution of the transgenerational effect suggests dilution of an
epigenetic signal through generations [(56), reviewed in (57)]. Such transgenerational effects in an
inbred line further implicate a role for epigenetic regulation of diapause plasticity.

A classic readout of epigenetically regulated, alternative phenotypic fates is alternative gene expression
programs across genetically identical individuals (58). To profile gene expression across the two
reproductive fates, we performed RNA-seq on both arrested and persistently reproductive ovaries from
females maintained under simulated winter conditions for 28 days (see Methods). We also performed
RNA-seq on ovaries from age-matched control females maintained at 25°C for 28 days. We prepared
RNA from exclusively stages 1-7 in both arrested and reproductive ovaries to ensure tissue
homogeneity between samples (Fig. 1B).

RNA-seq revealed distinct gene expression profiles of age-matched control ovaries (25°C), arrested
ovaries (12°C), and persistently reproductive ovaries (12°C). Consistent with the well-documented,
pervasive effects of temperature alone on gene expression (59, 60), the 200 most differentially
expressed genes (by false discovery rate, “FDR”) are differentially expressed between age-matched
control ovaries at 25°C and ovaries at 12°C (Fig. 1E, Fig. S1A); however, within the 12°C treatment,
diapausing and persistently reproductive ovaries have distinct gene expression programs (Fig. 1F, Fig.
S1B). More genes are down-regulated than up-regulated in diapausing compared to persistently
reproductive ovaries, and more down-regulated genes have logz-fold change greater than two (Fig.
1G). Nevertheless, the significant upregulation of hundreds of genes in diapause suggests that D.
melanogaster diapause is not simply a generalized shut-down of gene expression but instead an
actively regulated state [see also (46)]. This differential gene expression between diapause and
persistently reproductive ovaries at 12°C, combined with the transgenerational effect of diapause,
suggests that epigenetic factors mediate reproductive arrest in the ovary.

Epigenetic marks H3K4me3 and H3K36me1 regulate diapause plasticity

Epigenetic regulation depends in part on chromatin modifications [reviewed in (61)]. The basic unit of
chromatin is the nucleosome, the octameric complex of histone proteins around which DNA wraps (62).
Residues on the tails of histones can be post-translationally modified, primarily by the addition or
removal of acetyl and methyl groups (63). These histone marks can alter the transcriptional activity of
the underlying DNA [reviewed in (64)]. To identify histone marks associated with diapause plasticity, we
prepared lysate from arrested ovaries and persistently reproductive ovaries (stages 1-7 only) and
screened six, highly abundant histone H3 modifications (65). Given the downregulation of most genes
in diapausing ovaries (Fig. 1G), we predicted either an excess of repressive marks or the depletion of
active marks. The screen revealed that repressive marks H3K27me3 and H3K9me3, as well as active
marks H3K27ac and H3K9ac, did not differ in abundance across diapausing and persistently
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Figure 2. H3K4me3 and H3K36me1 regulate diapause plasticity. (A) Representative western blots
showing histone mark abundance in diapausing and persistently reproductive ovaries. Quantification of
H3K4me3 and H3K36me1 signal relative to a-tubulin loading control for three biological replicates
(right). t-test, **p < 0.01. (B) Genotypes of experimental and control lines in histone mark manipulation
experiment. Blue chromosomes represent chromosomes from the focal inbred line. Experimental
genotypes encode a construct with a UAS promoter that drives a small hairpin RNA (“P{UAS-shRNA}").
These constructs are inserted into a chromosome-specific attP site (pink triangle). Control line attP
sites lack the inserted construct (white triangle). All lines are crossed to the same ovary-specific driver.
(C) Expected change of histone mark abundance after RNAi against histone mark writers and erasers
(above) and western blots validating histone mark depletion or enrichment (below). “chr.” =
chromosome. (D) Diapause plasticity of experimental (pink) and control (gray) genotypes. Expected
direction of change shown with a black dotted arrow. FET, * p < 0.05, *** p < 0.001. “chr.” =
chromosome. Note that we ruled out the possibility that diapause-independent effects of knockdown of
Set1 and Set2 on ovary development confounded these results (see Methods and Fig. S3B)
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reproductive ovaries (Fig. 2A, Fig. S2). In contrast, active marks H3K4me3 and H3K36me1 were
depleted in diapause (Fig. 2A, Fig. S2).

The depletion of active marks in diapausing ovaries could be a byproduct of the overall downregulation
of genes in diapause or could reflect a causal role of histone marks in determining diapause plasticity.
To test the prediction that the abundance of these marks in the ovary affect reproductive plasticity, we
manipulated histone mark abundance. Using the Gal4/UAS system (see Methods), we expressed in the
ovary short hairpin RNAs (shRNAs) that knock down transcripts of enzymes that deposit or remove
these histone marks (Fig. 2B,C). Given that diapause plasticity is well-known to vary across genotypes
(42, 45, 66, 67), we strictly controlled the genetic background of the experimental and control flies. To
generate the experimental lines, we introduced chromosomes carrying the focal shRNA construct,
integrated into an attP landing site, into the inbred line from Pennsylvania described above (Fig. 2B). To
generate the control lines, we introduced chromosomes that have the same attP landing site, but lack
the shRNA construct, into the same inbred line (Fig. 2B). We crossed these experimental and control
lines to a driver line that directs expression of the shRNA in the ovary.

We manipulated the abundance of three histone marks in the ovary and assayed diapause plasticity
(the proportion of females with arrested ovaries) using these rigorously controlled genotypes. First, we
manipulated a “control” histone mark, H3K9me3, which did not vary between diapausing and
reproductive ovaries (Fig. 2A, Fig. S2). Specifically, we knocked down JHDM2 (Fig. S3A), an enzyme
that demethylates H3K9. As expected, JHDM2 knockdown elevated H3K9me3 (Fig. 2C) but had no
effect on diapause plasticity (Fig. 2D, odds ratio=0.846, p>0.05). Next, we manipulated H3K36me1 and
H3K4me3, two histone marks depleted in arrested ovaries (Fig. 2A). We predicted that experimental
depletion of these marks would increase diapause plasticity, while experimental enrichment would
decrease diapause plasticity. This is exactly what we observed. To deplete H3K36me1, we knocked
down Set2, which encodes an enzyme that methylates H3K36 (Fig. 2C, Fig. S3A). Indeed, H3K36me1
depletion increased diapause plasticity (Fig. 2D, odds ratio=10.35, p<0.05). Similarly, we depleted
H3K4me3 by knocking down Set1, which encodes an enzyme that methylates H3K4 (Fig. 2C, Fig. S3A)
and again observed increased diapause plasticity (Fig. 2D, odds ratio=29.19, p<0.0001). We then
experimentally enriched H3K4me3 by knocking down lid, which encodes an enzyme that removes
H3K4 methylation (Fig. 2C, Fig. S3A). As predicted, this opposing manipulation decreased diapause
plasticity (Fig. 2D, odds ratio=0.175, p<0.0001). Observing this opposing effect of decreased diapause
blunted our concern that active mark depletion simply blocks ovary development beyond stage 7.
Furthermore, our observation of many persistently reproductive ovaries upon depletion of both
H3K36me1 and H3K4me3 in the context of the diapause plasticity-increasing transgenerational effect
also rejects the possibility that compromised ovary development confounds our results (Figure S3B,
see Methods). Together, these data suggest that H3K36me1 and H3K4me3 depletion, but not
H3K9me3 elevation, promotes diapause plasticity.

Diapause-associated chromatin state and gene expression are genotype-specific

Diapause plasticity in D. melanogaster is a highly polygenic trait that varies both geographically and
seasonally, as described above (44, 49-51). Because diapause is determined by variation at hundreds
of genes, geographically distinct populations share only partially overlapping alleles that promote (or
constrain) diapause plasticity. This distinct genetic architecture predicts distinct transcriptional
programs across natural populations and raises the possibility that distinct epigenetic mechanisms
contribute to diapause plasticity across distinct genotypes. To explore this possibility, we inbred an
additional line collected from subtropical Florida, a region with mild winters. As expected, this inbred
line has low diapause plasticity (14.9% diapause, Fig. 3A). Henceforth, we refer to the temperate inbred
line described above as “High Plasticity” or “HP” (87.9% diapause), and the subtropical inbred line as
“Low Plasticity” or “LP”.
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Figure 3. Assessing the diagnostic features of diapause in a low plasticity line. (A)
Representative images of diapausing and persistently reproductive ovaries of high plasticity (HP, blue)
and low plasticity (LP, yellow) inbred lines as well as the degree of plasticity (note: HP % diapause
reported in Figure 1B). Scale bar = 0.5 mm. (B) Representative images of germaria with 0, 1, 2, and 3
germline stem cells (“GSC,” designated by *, scale bar = 10um) stained with DAPI (blue), anti-Vasa
(red) and anti-a-Spectrin (green). Average number of germline stem cells at one day old, after 28 days
of treatment (25°C or diapause), and after five days post-treatment at 25°C for diapausing and age-
matched control ovaries of HP and LP females (scale bar = 25um, d="day”, 2-way ANOVA with fixed
effects = timepoint, treatment, error bars = SEM). (C) y-H2av signal in age-matched control and
diapausing ovaries of HP and LP females and quantification. Mann-Whitney U test, *** p<0.001, scale
bar = 50um.
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Given that the LP line is largely insensitive to the simulated winter conditions, we first determined
whether diapause in the LP line is a bona fide alternative developmental state or instead a generalized
stress response to simulated winter conditions [see (68)]. The D. melanogaster female’s generalized
stress response to unfavorable environmental conditions, like starvation or predator exposure,
manifests superficially as arrested ovary development (69-72). However, generalized stress response
in the ovaries is both cell biologically and functionally distinct from diapause (48). Previous studies have
demonstrated that diapause preserves fertility and germline stem cell number compared to age-
matched controls, while stress does not (48). Diapausing ovaries also accumulate the double-strand
break marker, y-H2av, due to the persistence of egg chambers in extended arrest (48). We found that
despite low responsiveness to simulated winter conditions, the LP line, like the HP line, preserves
germline stem cell number in diapause compared to age-matched controls (Fig. 3B). Furthermore, LP
and HP diapausing ovaries are similarly enriched for y-H2av compared to age-matched controls (Fig.
3C). Diapause also preserves fertility in the LP line compared to age-matched controls (Fig. S4). These
data suggest that the LP line enters a true diapause state in response to simulated winter conditions.

To investigate whether the epigenetic mechanisms mediating plasticity are distinct across diverged
genotypes, we first asked if genetic variation in diapause plasticity manifests as transcriptional
variation. We conducted RNA-seq on diapausing and persistently reproductive ovaries from the LP line
and compared the statistically significant differential gene expression to that of the HP line (Fig. S5, Fig.
1E). To isolate those genes that are up- and down-regulated specifically in diapause, we normalized
the list of genes that were differentially expressed between diapausing and persistently reproductive
ovaries (both at 12°C) to gene expression of age-matched control ovaries (25°C). Specifically, we
included in downstream analyses only those genes that were differentially expressed between
diapausing and persistently reproductive ovaries and between diapausing and age-matched control
ovaries in a given genotype, removing genotype-specific expression that was independent of diapause.
We compared this reduced list of diapause-specific genes across the two genotypes (433 in HP, 606 in
LP) and determined which genes were differentially expressed in both HP and LP (“genotype-
independent”), differentially expressed only in the HP line (“HP-specific”), or differentially expressed
only in the LP line (“LP-specific’). While many genes that are up- or down- regulated in diapause are
shared across the HP and LP lines (201 genes, Fig. 4A), most differentially expressed genes are
genotype-dependent (611 genes, Fig. 4A). Consistent with the known polygenic basis of diapause
plasticity, these results suggest that HP and LP diapause plasticity are associated with only partially
overlapping transcriptional programs.

We predicted that the genes up- or down-regulated in diapausing ovaries in only one genotype
(“genotype-dependent”) may regulate pathways that promote reproductive arrest common to both
genotypes. Consistent with this prediction, we found evidence that genotype-dependent gene
expression in HP and LP diapause converges on common biological processes. For example, two
metabolic pathways involved in ATP synthesis (“The citric acid (TCA) cycle and respiratory electron
transport” and “Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat
production by uncoupling proteins”) are enriched in both HP-specific and LP-specific genes up-
regulated in diapause (Table 1, highlighted in green). Moreover, twelve pathways are enriched for both
genotype-independent genes and genotype-dependent genes upregulated in diapause (Table 1,
highlighted in gray). This finding suggests that some pathways are utilized by both genotypes via the
expression of overlapping genes and non-overlapping genes. There were no significant pathways
overrepresented for genes downregulated in HP-dependent genes and only a single pathway
overrepresented for genotype-independent downregulated genes; consequently, common pathways
could not be detected for down-regulated genes. These results suggest that diapause in both
genotypes depends on the activation of common pathways despite pervasive genotype-dependent
gene expression.
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Figure 4. Diapause-associated gene expression and diapause-associated chromatin state are
genotype-specific. (A) Differential gene expression across diapausing and persistently reproductive
ovaries in HP and LP genotypes. Gray points represent genes that are not significantly differentially
expressed in either genotype. Green points represent genes that are differentially expressed in both
genotypes (FDR < 0.05). Blue points represent genes that are differentially expressed in the HP
genotype only (FDR < 0.05). Yellow points represent genes that are differentially expressed in the LP
genotype only (FDR < 0.05). (B) Representative western blots showing the abundance of H3K4me3
and H3K36me1 in diapausing and persistently reproductive ovaries from the LP inbred genotype
females (above). Quantifications of H3K4me3 and H3K36me1 signal relative to a-tubulin loading
control for three replicates (below). t-test, n.s. = p>0.05, (compare to Figure 2A).
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Table 1. Pathway enrichment for genes up-regulated in diapause. Gray pathways are significant in
all categories (genotype-independent, HP-specific and LP-specific genes). Green pathways are
significant in both HP-specific and LP-specific genes. Blue pathways are significant in both genotype-
independent and HP-specific genes. No pathways are significant in both genotype-independent and
LP-specific genes.

genotype- HP- LP-
Pathway independent specific specific
(FDR) (FDR) (FDR)

GTP hydrolysis and joining of the 60S ribosomal : ) )
subunit (R-DME-72706) 4.08E-102 4.21E-03 4.20E-02
SRP-dependent cotranslational protein targeting to
membrane (R-DME-1799339) 3.82E-101 5.49E-03 4 99E-02
Nonsense Mediated Decay (NMD) independent of the ) _ _
Exon Junction Complex (EJC) (R-DME-975956) lsEon Szels 0 liBeis e
Formation of a pool of free 40S subunits (R-DME- 1.58E-99 3.93E-06 3.12E-03
72689) ] ] '
L13a-mediated translational silencing of
Ceruloplasmin expression (R-DME-156827) 157 =Rk REEETE ] IAgE D
Eukaryotic Translation Initiation (R-DME-72613) 4.93E-98 6.47E-06 1.46E-03
Cap-dependent Translation Initiation (R-DME-72737) 5.54E-98 7.76E-06 1.82E-03
Nonsense Mediated Decay (NMD) enhanced by the ) _ )
Exon Junction Complex (EJC) (R-DME-975957) A= IIE0Z | 22nE0e
Nonsense-Mediated Decay (NMD) (R-DME-927802) 6.55E-98 1.23E-02 2.41E-02
Translation (R-DME-72766) 1.99E-84 1.98E-05 1.43E-03
Metabolism of RNA (R-DME-8953854) 1.26E-70 1.85E-03 1.84E-03
Metabolism of proteins (R-DME-392499) 1.62E-47 5.59E-05 1.76E-02
The citric acid (TCA) cycle and respiratory electron ns 8.59E-04 1.49E-02

transport (R-DME-1428517)

Respiratory electron transport, ATP synthesis by
chemiosmotic coupling, and heat production by n.s. 2.92E-03 2.88E-02
uncoupling proteins. (R-DME-163200)

Ribosomal scanning and start codon recognition (R-

DME-72702) 1.08E-38 5.60E-06 n.s.
Translation initiation complex formation (R-DME-

72649) 1.52E-38 5.56E-06 n.s.
Activation of the mRNA upon binding of the cap-

binding complex and elFs, and subsequent binding to 2.13E-38 5.60E-06 n.s.
43S (R-DME-72662)

Formation of the ternary complex, and subsequently, _ )

the 43S complex (R-DME-72695) SEAISlE SIS n.s.
rRNA processing in the nucleus and cytosol (R-DME- _ )

8868773) 2.66E-20 3.76E-02 n.s.
rRNA processing (R-DME-72312) 2.80E-20 3.90E-02 n.s.
Major pathway of rRNA processing in the nucleolus 2 97E-20 4 05E-02 ns
and cytosol (R-DME-6791226) ) ) -
Metabolism (R-DME-1430728) n.s. 1.16E-05 n.s.
Signaling by Nuclear Receptors (R-DME-9006931) n.s. 3.92E-02 n.s.
Metabolism of amino acids and derivatives (R-DME- ns 4.42E-02 ns
71291) B ' -
mRNA Splicing (R-DME-72172) n.s. n.s. 2.91E-02
mRNA Splicing - Major Pathway (R-DME-72163) n.s. n.s. 3.04E-02
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Genotype-dependent gene expression raises two alternative hypotheses that could explain distinct
epigenetic regulation of diapause across distinct genotypes. Diapause plasticity in the HP and LP lines
could be regulated by distinct epigenetic marks at the distinct sets of genes associated with diapause.
Alternatively, the same epigenetic mark, like H3K4me3, could be depleted at distinct sets of genes
across the two genotypes. To evaluate these alternative hypotheses, we tried a genome-wide
chromatin profiling approach that requires minimal sample material [CUT&RUN, (73)]. Unfortunately,
attempts to profile the minimal tissue from stages 1-7 of the diapausing and persistently reproductive
ovaries were unsuccessful. We therefore turned to histone mark abundance to determine whether
distinct chromatin states underlie diapause in distinct genotypes. Similar to the HP line, H3K9ac,
H3K9me3, H3K27ac and H3K27me3 abundance did not differ between diapausing and persistently
reproductive ovaries of the LP line (Fig. S2). However, unlike the H3K4me3 and H3K36me1 depletion
that we observed in diapausing ovaries of the HP line, these two marks were invariant across the two
reproductive states in the LP line (Fig. 4B). These data are consistent with distinct chromatin states of
diapausing ovaries across the HP and LP lines. These data also highlight the idea that global
downregulation of the genome during diapause is not inevitably associated with loss of a pervasive,
active histone mark. Future work will identify the epigenetic factors that determine gene expression and
diapause plasticity in the LP line.

DISCUSSION

Here we describe a new, tractable system for studying genetic variation in epigenetic regulation of
adaptive phenotypic plasticity. Importantly, this model system controls for the confounding effects of
genetic variation, environment, and tissue heterogeneity on chromatin packaging, allowing us to isolate
functional links between chromatin modifications and phenotypic state. We discovered that
environment-dependent reproductive arrest in D. melanogaster is mediated by at least two histone
marks, H3K4me3 and H3K36me1. We also found that this epigenetic mechanism may be shaped by
genetic variation — these two marks were depleted in diapausing ovaries of a temperate, high plasticity
genotype but were similarly abundant across diapausing and reproductive ovaries in a subtropical, low
plasticity genotype. These data raise the possibility of a distinct epigenetic basis of diapause plasticity
across distinct genotypes.

Previous studies in non-model or emerging model systems have demonstrated compelling causal links
between chromatin and diapause. Two major chromatin silencing pathways emerged from these
studies: DNA methylation in Nasonia wasps (34) and H3K27me3 in the Cotton bollworm moth (33) and
the Turquoise killifish (32). D. melanogaster has minimal DNA methylation (74); consequently, we
focused on histone marks like H3K27me3. Surprisingly, the screen of histone marks revealed no
difference in abundance of H3K27me3 between arrested and persistently reproductive ovaries [as was
found in bollworm pupa (33)], and we did not detect differential expression of enzymes that write, read,
or erase H3K27me3 [as was found in killifish embryos (32)]. These observations implicated a distinct
chromatin mechanism regulating D. melanogaster reproductive diapause. Our focus on the ovary may
account for this difference. Previous studies probed paused developmental transitions during juvenile
phases, either embryonic or larval, rather than the adult reproductive tissues. Consistently, H3K27me3
is a classic regulator of developmental fate (75). It is also possible that H3K27me3, along with
H3K4me3 and H3K36me1, regulates diapause plasticity but gross H3K27me3 abundance does not
vary between reproductive states.

The discovery that H3K4me3 depletion promotes reproductive diapause is reminiscent of earlier studies
of somatic aging. From yeast to mammals, aging is associated with a general increase in active
chromatin marks like H3K4me3 and an overall increase in transcription [reviewed in (76)]. In
Drosophila, H3K4me3 depletion extends lifespan (77). Like these studies of somatic aging, we found
not only that H3K4me3 depletion promotes reproductive diapause but also that diapause is associated
with a genome-wide decrease in gene expression in the high plastic (HP) genotype. These results
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suggest that the chromatin state of the diapausing HP ovary mirrors that of young somatic tissues.
Given that the chromatin determinants of age-dependent reproductive decline (78) are not nearly as
well explored as the determinants of somatic aging [reviewed in (76, 79)], this system offers a new
foothold for understanding how a youthful chromatin state contributes to the preservation of
reproductive potential.

Chromatin mediates not only development and aging within a generation but also mediates epigenetic
information transfer between generations [reviewed in (80, 81)]. Our discovery of distinct epigenetic
states between arrested and persistently reproductive ovaries raised the possibility that information
about the maternal environment is transferred to the next generation. Consistent with diapause-induced
transmission of epigenetic information, we found that diapause entry reduces subsequent diapause
plasticity of genetically identical daughters, granddaughters, and great-granddaughters. Such
transgenerational memory requires a DNA sequence-independent “message” to be passed from parent
to offspring through the germline. The identity of this message remains mysterious; however, we
speculate that either alternative chromatin packaging or specific transcripts, possibly small RNA(s) (82,
83), of diapausing ovaries transmits this heritable epigenetic information. The discovery of
transgenerational information transfer from mother to daughter — in a model system — puts forward D.
melanogaster diapause as a powerful new resource for studying epigenetic inheritance.

Our discovery of epigenetic regulation of a highly polygenic and adaptively varying trait offered us the
unique opportunity to explore the effect of genetic variation on epigenetic regulation. This study brings
together the historically distinct areas of epigenetic regulation and genetic variation in plasticity. We
uncovered evidence of genetic variation of epigenetic marks causally linked to diapause plasticity.
Unfortunately, the sensitivity of diapause plasticity to genetic background precluded us from using RNAI
to test directly the hypothesis that the low plasticity, subtropical derived line is insensitive to H3K4me3
and H3K36me1 manipulation. Furthermore, our attempts to conduct genome-wide chromatin profiling
across our two genotypes were unsuccessful. Innovation in genome-wide histone mark profiling on
minimal tissue will allow us to further probe the possibility that diapause in the ovary is regulated by
distinct epigenetic mechanisms in distinct genotypes.

Genotypic variation in the epigenetic regulation of diapause raises the possibility that distinct epigenetic
factors are positively selected to confer distinct degrees of reproductive arrest. Intriguingly, genes
encoding many epigenetic factors exhibit latitudinal clines, including enzymes that methylate and
demethylate H3K4 and H3K36 (84-86). Future research comparing the chromatin regulation of
diapause in many distinct genotypes from various geographic regions and seasonal timepoints may
uncover spatial and temporal variation in epigenetic regulation of diapause. This system is now well-
positioned to offer the first glimpses of how adaptive evolution shapes epigenetic mechanisms
underlying adaptive phenotypic plasticity. Understanding these evolutionary processes is vital: genetic
variation of epigenetic regulation likely shapes how natural populations respond to the extreme
seasonal environments arising from ongoing climate change (87).

MATERIALS AND METHODS

Drosophila stocks and culturing

We constructed the High Plasticity (“HP”) inbred line from an isofemale line collected from Media,
Pennsylvania in July, 2018. To inbreed the line, we mated one brother and one sister each generation
for 10 generations. We similarly constructed the Low Plasticity (“LP”) line from an isofemale line
collected in Miami, Florida in July 2018. We maintained stocks at 25°C in 12-hour light/dark cycles on
standard molasses food.

Diapause assay
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To assay diapause, we subjected 0-6 hour-old virgin females to 12°C and a short-day light cycle (9
hours of light, 15 hours of darkness) for 28 days. To assay whether a female was in diapause, we
dissected out the ovaries and determined the latest developmental stage of the ovary as defined in
Saunders et al. [1989, (41)]. Specifically, we designated females as undergoing diapause if they lacked
vitellogenic egg chambers (stage 8 or later, Fig. 1B). We designated females as “persistently
reproductive” if both ovaries had one or more egg chambers at stage 8 or later. We excluded from
experiments those rare females (<1%) whose ovaries fell between these categories.

Transgenerational assay

To assess transgenerational effects of diapause, we induced diapause as described above but
determined the reproductive state of females without dissection using a modification of the “Bellymount”
protocol described in (88). We positioned females between two cover slips with a drop of 50% glycerol
and determined the reproductive state by visualizing through the abdomen the presence or absence of
egg chambers at stage 8 or later. We then crossed females in diapause (“naive females”, Fig. 1C,D) to
males from the same inbred line at 25°C. We placed virgin female offspring from this cross either into a
12°C incubator (“daughters of diapause females,” Fig. 1C,D) to assess diapause rate or into a vial with
males at 25°C to generate granddaughters of the generation 0 diapause females. We repeated this
process with these granddaughters as well as the great-granddaughters of the generation 0 diapause
(“naive”) females. We compared diapause plasticity of generation 0 to that of daughters,
granddaughters, and great-granddaughters using y? test.

RNA-sequencing and analysis

To define the gene expression associated with diapause while controlling for genotype, temperature,
and age, we induced diapause as described above. We kept age-matched control flies as virgins in an
incubator set to 25°C and a long day light cycle (12 hours of light, 12 hours of dark) for 28 days. We
flipped these control females onto fresh food every 7 days due to accelerated mold growth on the food
at 25°C. We isolated equivalent egg chamber stages from ovaries across reproductive states. For
persistently reproductive ovaries and age-matched control ovaries, we dissected off accessory
structures and then isolated by microdissection ovary stages 1-7 only (Fig. 1B). For arrested ovaries,
we removed the accessory structures only. We prepared total RNA (Mirvana miRNA isolation kit,
Thermo Fisher, Waltham, MA) from three replicates of 50 pooled ovaries for each condition in each
genotype. In total, we prepared 18 samples (HP diapause, HP persistently reproductive, HP age-
matched control, LP diapause, LP persistently reproductive, and LP age-matched control) and 18
libraries using NEBNext Ultra Il (directional) with Poly-A selection, and sequenced libraries using
lllumina 2x150 for a total of 30M reads per sample (Admera Health Biopharma Services, South
Plainfield, NJ). All sequencing reads are available on the Sequencing Read Archive (NCBI), accession
number PRJNA884433.

We trimmed raw reads using Trimmomatic (v.0.39) (89) and mapped reads to the D. melanogaster
reference transcriptome using STAR aligner (v.2.7.10) (90). We estimated expression levels using
FeatureCounts (v.2.0.3) (91) and analyzed differential expression using DESeq2 (v.1.36.0) in R (92).
We discarded genes with fewer than 50 reads total across all samples in these analyses. We defined
genes as significantly differentially expressed if the false discovery rate (FDR) was less than 0.05.
Upon analyzing differential expression, we found that six and seven genes in the HP and LP lines,
respectively, were significantly differentially expressed between diapausing and persistently
reproductive ovaries (FDR < 0.05) but had a high standard error (IfcSE >1). In both genotypes, only a
single replicate of the (pooled) persistently reproductive ovaries had an elevated number of reads
mapping to these genes. We discovered that these genes belong to the multi-copy chorion gene
cluster, which undergoes selective, 15-80-fold, gene amplification (endo-replication) in the ovarian
follicle cells from ovary stages 8-14 (93). This observation is consistent with a small amount of
contamination of a later stage egg chamber. Indeed, the chorion genes accounted for the deviation of
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the single replicate from the other two replicates in both genotypes. Furthermore, excluding these
genes had no effect on the conclusions drawn from the data.

To compare diapause-specific gene expression between the HP and LP lines, we used the age-
matched control ovaries to normalize genes that were differentially expressed between diapausing and
persistently reproductive ovaries. We included in downstream analyses only those genes that were
differentially expressed between diapausing and persistently reproductive ovaries and between
diapausing and age-matched control ovaries in a given genotype. In other words, we excluded genes
that are specifically up- or down-regulated in persistently reproductive ovaries compared to both
diapause and age-matched controls. After generating this reduced list of significantly differentially
expressed genes for both HP and LP genotypes, we compared across the two gene lists and
determined which genes were differentially expressed in both HP and LP (“genotype-independent”),
differentially expressed only in the HP line (“HP-specific”), or differentially expressed only in the LP line
(“LP-specific”, see Fig. 4A).

We performed pathway enrichment analysis of differentially expressed genes using the Reactome
Pathway Database (v.81) (94) We considered pathways significantly enriched if there were five or more
genes in a given category and the FDR was less than 0.05.

Western blotting and analysis

To assay histone mark abundance in the ovary, we isolated by microdissection ovary stages 1-7 (see
above) in 1X PBS and ground the material in RIPA buffer (Cell Signaling Technology, Danvers, MA),
Protease Inhibitor Cocktail (Roche, Basel, Switzerland), and PMSF (Cell Signaling Technology,
Danvers, MA). To promote solubility, we incubated the lysate in Benzonase (Sigma Aldrich, St. Louis,
MO) for 30 min at 4°C. We probed the blots with anti-H3K4me3 (Active Motif, Carlsbad, CA), anti-
H3K36me1 (Abcam, Cambridge, UK), anti-H3K27me3 (Active Motif, Carlsbad, CA), anti-H3K27ac
(Abcam, Cambridge, UK), anti-H3K9me3 (Abcam, Cambridge, UK), and anti-H3K9ac (Abcam,
Cambridge, UK) at 1:1000 dilution. We probed with anti-a-tubulin (Developmental Studies Hybridoma
Bank, lowa City, IA) as a loading control (also 1:1000 dilution). We used anti-mouse and anti-rabbit
HRP secondaries (Kindle Biosciences, Greenwich, CT) both at 1:1000. We exposed the blots with
Kwikquant western blot detection kit and imaged with a Kwikquant imager (Kindle 277 Biosciences,
Greenwich, CT). We quantified relative fluorescence of marks according to Stael et al. (2022) and
normalized all measurements to diapause (95). We ran a third biological replicate only if we detected
consistent differences in abundance across two replicates. For marks H3K4me3 and H3K36me1, we
ran three biological replicates and compared abundance across diapausing and reproductive ovaries
using Mann-Whitney U test.

Tissue-specific knockdown of histone writers and erasers and analysis of diapause plasticity
To knockdown expression of histone mark writers and erasers, we took advantage of preconstructed D.
melanogaster lines from the Transgenic RNAI Project (96). These lines encode “Upstream Activating
Sequence” (UASp)-driven short hairpins (shRNA) that target transcripts encoding D. melanogaster
JHDM?2 (Bloomington Drosophila Stock Center “BDSC” #32975), Set2 (BDSC #55221), Set1 (BDSC
#33704), and lid (BDSC #36652). These cassettes are inserted into attP landing sites. Given the well-
known effects of genetic background on diapause plasticity (42, 45, 66, 67), we carefully introgressed
the chromosome encoding each UASp-shRNA construct (Set2 and lid on chromosome Il, JHDM2 and
Set1 on chromosome lll) into the HP inbred line (see Fig. S6 for crossing scheme). Furthermore, we
ensured no recombination using a combination of balancer chromosomes and transmission only
through males (which do not recombine) to tightly control the genetic background of the control and
experimental flies (Fig. S6). Moreover, we only compared experimental genotypes encoding the UASp-
shRNA construct in a given attP site to control genotypes encoding the same chromosome encoding
the same attP site but lacking the UASp-shRNA construct (BDSC #36304 for chromosome |l, BDSC
#36303 for chromosome lll). To verify the presence of these constructs after the multi-generation
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crossing scheme, we used PCR to amplify the AmpR gene introduced along with the UAS-shRNA
construct (Table S1). We crossed these stable stocks to the MTD-Gal4 driver (BDSC #31777), which
expresses the GAL4 transcription factor throughout the ovary (97).

To validate the knockdown of transcription by RNAI, we performed RT-qPCR on RNA prepared from
ovaries stages 1-7 in control and experimental shRNA genotypes at 48 hours after eclosion at 25°C
(Table S1). To validate the depletion or enrichment of histone mark abundance by RNAi against the
target chromatin writers and erasers, we conducted western blotting (as above) on protein lysate
prepared from stages 1-7 ovaries from control and experimental shRNA genotypes 48 hours after
eclosion at 25°C. We note that RNAI efficiency decreases with decreasing temperature (98, 99),
disabling us from distinguishing between the effects of RNAi on diapause entry and maintenance.

To determine whether experimental manipulation of histone mark abundance altered diapause
plasticity, we assayed diapause in control and experimental RNAi lines by dissecting ovaries after 28
days in diapause-inducing conditions, as described above. We analyzed diapause plasticity using an
odds ratio (implemented in R) comparing diapause plasticity between control and RNAI lines, which
represents the change in likelihood of diapause given the presence of transcript knockdown.

D. melanogaster ovary development depends in part on chromatin-mediated gene regulation. We
sought to rule out the possibility that the observed increase in incidence of arrest (“diapause plasticity”)
upon transcript knockdown was simply due to a block in ovary development, independent of diapause.
This was of particular concern given that experimental depletion of H3K36me1 and H3K4me3
increased diapause to nearly 100%. We reasoned that increasing the dynamic range of diapause
plasticity in both experimental and control lines could allow us to determine if ovary development was
blocked upon transcript knockdown at 12°C. To decrease the baseline diapause plasticity in both
experimental and control lines, we took advantage of the transgenerational decrease in diapause
plasticity (Fig. 1D). We exposed females from the UAS-shRNA and control lines to diapause conditions
and assayed ovary development using the modified Bellymount method described above. We then
crossed females in diapause to the MTD-Gal4 driver (BDSC #31777), and exposed daughters from this
cross to simulated winter conditions and assayed for diapause plasticity. We found that fewer than 30%
of these daughters have arrested ovaries, suggesting that Set7 or Set2 knockdown alone does not
block ovary development at 12°C (Fig. S3B).

Immunofluorescence and image analysis

To evaluate whether the LP line entered canonical diapause similarly to the temperate HP line, we
conducted immunofluorescence on ovaries following (100). To assay germline stem cell number, we
stained ovaries with anti-a-spectrin (1:300, Developmental Studies Hybridoma Bank, lowa City, IA) and
anti-Vasa (1:50, Developmental Studies Hybridoma Bank, lowa City, IA). Following criteria described in
(101), we defined germline stem cells as the anterior-most Vasa-positive cells in the stem cell niche
that display an anterior a-spectrin signal (the “spectrosome”). Scanning through each z-stack, we
counted the number of germline stem cells from 10 germaria in 5 ovary pairs, for a total of 50 germaria.
We used a 2-way ANOVA to evaluate the statistical significance of the effects of treatment (diapause
and age-matched control) and time (28 days in treatment vs. 5 days recovered from treatment). To
assay double-strand break abundance, we stained ovaries with anti-y-H2Av (1:1000, Developmental
Studies Hybridoma Bank, lowa City, IA). To quantify the average fluorescence of y-H2Av in ovaries, we
outlined representative stage 4 egg chambers with the Freehand tool in FIJI (v.1.0) (102). Also in FIJI,
we calculated the fluorescent signal intensity using the polygon tool to define the borders of the tissue.
We used the “measure tool” to calculate the mean pixels within these boundaries. We normalized all
fluorescence intensity values of the HP line to the mean intensity value of the age-matched control in
HP, and all fluorescence intensity values of the LP line to the mean intensity value of the age-matched
control in LP. We calculated fluorescence from 10 replicates of stage four egg chambers in five ovary
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pairs, for a total of 50 egg chambers. We compared the mean fluorescence of y-H2av in diapause and
age-matched control ovaries using a Mann-Whitney U test (implemented in R).

For all immunofluorescence experiments, we mounted ovaries with ProLong Gold Antifade Reagent
with DAPI (Thermo Fisher Scientific, Waltham, MA). We imaged slides at 63x magnification on a Leica
TCS SP8 Four Channel Spectral Confocal System. For each experiment, we used the same imaging
parameters across genotypes and reproductive state.

Fertility assay

To further evaluate whether the LP line entered canonical diapause similarly to the temperate HP line,
we assayed diapause-induced preservation of fertility in both lines. We counted progeny of females
crossed to wildtype (W'''®) males after diapause exit at 28 days in 12°C. We compared these females
to age-matched controls (maintained at 25°C for 28 days) crossed in parallel to wildtype (w''"®) males.
In each vial, we crossed three females and six males. We replicated each cross across 12 vials and
flipped each cross onto fresh food every three days. To exclude age-dependent male fertility effects, we
replaced the six males every three days with one to three day old males. We recorded the number of
adult progeny from each flip. We compared the mean number of progeny from diapause and age-
matched control using a Mann-Whitney U test (implemented in R).
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834  Figure S1. Principal component analysis (PCA) of RNA-seq reads from the temperate North

835  American inbred line. (A) PCA of RNA-seq reads from diapausing (square), persistently reproductive
836 (circle), and age-matched control (triangle) ovaries, stages 1-7 only. Note that temperature explains
837  most of the variance between the three samples (PC1, 90%). (B) PCA of RNA-seq reads from

838 diapausing and persistently reproductive ovaries only.
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Figure S2. Western blots probed for various histone marks on multiple biological replicates.
Blots of ovary lysate prepared from diapausing and persistently reproductive ovaries and quantification
relative to a-tubulin loading control of (A) H3K4me3, (B) H3K36me1, (C) H3K27ac, (D) H3K9ac, (E)
H3K27me3, and (F) H3K9me3. Blue boxes delineate replicates shown in Fig. 2A, yellow boxes
delineate replicates shown in Fig. 4B. D = diapause, PR = persistently reproductive.
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Figure S3. Quality control of RNAi experiments. (A) RT-gPCR confirming knockdown (KD) of
transcripts targeted by RNAI. Note Set2 and lid knockdown genotypes are compared to chromosome |l
control genotype, while Set1 and JHDM2 knockdown genotypes are compared to chromosome |l|
control genotype. (B) Comparison of diapause plasticity upon histone writer knockdown in the ovaries
of females whose mothers that had either undergone diapause (“transgenerational”) or not (data from
Fig. 2). The abundance of persistently reproductive ovaries in both genotypes under the
transgenerational treatment verified that knockdown of Set7 or Set2 alone does not block ovary
development at 12°C (see Methods). “chr.” = chromosome.
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852  Figure S4. Total progeny from diapause and age-matched control females of HP (blue) and LP line
853  (yellow). Each replicate represents a vial of three females. t-test, *** p<0.001, ** p<0.01
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Figure S5. Heat map and principal component analysis (PCA) of LP line RNA-seq reads. (A)
Heatmap of the top 200 significantly differentially expressed genes (by FDR) between age-matched
control, diapausing, and persistently reproductive ovaries, stages 1-7 only. Blue-red gradient depicts
the Z-score of each gene. Red corresponds to upregulated genes and blue corresponds to
downregulated genes. (B) Heatmap of the top 200 significantly differentially expressed genes (by FDR)
between diapausing and persistently reproductive ovaries only. Blue-red gradient depicts the Z-score of
each gene. Red corresponds to upregulated genes and blue corresponds to downregulated genes. (C)
PCA of RNA-seq reads from diapausing (square), persistently reproductive (circle), and age-matched
control (triangle) ovaries. Note that temperature explains most of the variance among the three samples
(PC1, 87%). (D) PCA of RNA-seq reads from diapausing and persistently reproductive ovaries.

33


https://doi.org/10.1101/2022.10.11.511590
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.11.511590; this version posted January 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

+= wildtype chromosome

* = focal inbred line chromosome
TRIP = UAS-shRNA for experimental lines, no insertion for control lines (see Methods)

TRIiP on chromosome Il

Q wie; —n_. D x J yiscv: P{TRIPattP40 ; +

O’TMG¢

Pin *
w18 . X K — K

d P{T RiP}attP40 ’ TM6 ? ' CyO ’
from cross A

* - Cyo L% . _Pin
o e e X RI* e

from cross B

P{TRiP}attP40’ TM6 l

* - P{TRiP}attP40 %
Cyo

TRIiP on chromosome /]
9 wite - Pin_ . x d yiscv'; + ; P{TRiP}attP2

Cyo ' TM6 ¢

1
S wie + “RlPkatth X 9|_k *: :—A

L_____l
from cross A

. % _ P{TRiP}attP2 Dr
* - ke —
d "“Pin 'T TMe X‘ ?I** e

from cross B

% - % - PTRiPjattP2

S 1 VT3
crosses Aand B
Pin Dr
* O’ TS s e
X w CyO ' TMsé

@ * ;
cross A. /

*;*;*Xd;cy_o’TMs
¥ %

I —— * K
’ CyO ’ T TMe

cross B.

L______I

* *
* ! — * - % - %
g* mmor X 9 **

R *

* * . .

¥ — Kk * - - % * - % - ¥ K —
9 ' CyO '’ xJ * Pin g * Dr X ? TM6
¢ from cross A

from cross A

Pin Dr
5o ¥ R V3 i

Evans et al. Figure S6


https://doi.org/10.1101/2022.10.11.511590
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.11.511590; this version posted January 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

864  Figure S6. Crossing scheme used to generate RNAi and control lines. Brown dashed boxes
865  correspond to lines constructed from cross A (bottom) and green dashed boxes correspond to lines
866  constructed from cross B (bottom).
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867 SUPPLEMENTARY TABLE LEGEND

868
869 Table S1. Primers used in study.
870
Forward Reverse Purpose
TTTGCCTTCCTGTTTTTGCT ATAATACCGCGCCACATAGC Amplifies the AmpR
gene to screen for the
introduction of TRiP
chromosomes
TAATGCTGCGGCCGTTGAGG CGAACAACTCTAGCTCCTCC RT-gPCR primer for
lid transcription [1]
GTTTTCAGTGCATGACCAAG GGCAACGAGCTCTAGTGATG RT-gPCR primer for
JHDM?2 transcription
[2]
CGTTCGGAATATCAACCTGGTC | GTAACGATAGAGTCTGGTACCAC | RT-gPCR primer for
Set1 transcription [3]
ACGGGTGGCTAATATGGAGA TTCTTCTCCGTGCGAAAAAC RT-gPCR primer for
Set2 transcription [4]
ATGACCATCCGCCCAGCATAC | GTTCTGCATGAGCAGGACCTCC | RT-gPCR primer for
RP49 transcription
(housekeeping gene)
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