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Abstract

The spectacular advances in protein and protein complex structure prediction hold
promises for the reconstruction of interactomes at large scale at the residue resolu-
tion. Beyond determining the 3D arrangement of interacting partners, modeling
approaches should be able to sense the impact of sequence variations such as point
mutations on the strength of the association. In this work, we report on DLA-
mutation, a novel and efficient deep learning framework for accurately predicting
mutation-induced binding affinity changes. It relies on a 3D-invariant description
of local 3D environments at protein interfaces and leverages the large amounts
of available protein complex structures through self-supervised learning. It com-
bines the learnt representations with evolutionary information, and a description
of interface structural regions, in a siamese architecture. DLA-mutation achieves
a Pearson correlation coefficient of 0.81 on a large collection of more than 2000
mutations, and its generalization capability to unseen complexes is higher than
state-of-the-art methods.

1 Introduction

Disease-related mutations are preferentially localized on protein interaction surfaces compared to
other regions of the protein [37, 10, 9]. These mutations affect the propensity and strength with
which two proteins interact. Several computational methods have been proposed for estimating
mutation-induced binding affinity changes (∆∆Gbind) by exploiting protein sequence and structural
information [38, 15, 29, 31, 32, 36, 40, 23]. In particular, ∆∆Gbind was found correlated with
atomic-distance patterns surrounding the residue subject to the mutation [28, 29, 31, 32]. This
correlation emphasises the importance of accounting for local geometrical and physico-chemical
environments around the mutation site. Recent methods have been leveraging powerful deep learning
techniques to extract abstract representations of the data. For instance, TopNetTree [36] applies
convolutional neural networks (CNN) and gradient-boosting trees on a set of pre-computed features
representing geometric, topological and contact patterns within the neighbourhood of the mutation
site. GraphPPI [23] further obviates the need for feature engineering by using a graph neural network
(GNN) that automatically extracts graphical features from an input 3D structure. The GNN is
pre-trained on a large body of protein complex structures through self-supervised learning. Self-
supervised representation learning has proven successful for predicting various protein structural
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Figure 1: The architectures of DLA framework. A. A representation of a protein interface (green
and yellow residues from each partner) as an ensemble of cubes (IC). Each cube (rk ∈ IC) is
centered and oriented around an interfacial residue. The central residue is masked and the cube
contains only those atoms that belong to the local environment. B. The pre-trained architecture
(ssDLA) is described in detail. It requires a self-supervised training, where the task is to predict
the amino acid type from its environment. C. Siamese architecture (DLA-Mutation) to predict the
changes of binding affinity upon point mutations. Two parallel branches extract descriptive features
from wild-type and mutant amino acids. Auxiliary features can be concatenated to the subtraction
between the embeddings from two branches to improve the performance.

and functional properties in the context of protein language models [30, 12, 3], for fixed-backbone
protein design [1, 17, 8], and for protein stability predictions [5, 39].

Here, we report on Deep Local Analysis(DLA)-Mutation, a novel and efficient deep learning-based
approach predicting mutation-induced binding affinity changes from local 3D environments around
the mutation site (Fig. 1). It builds on the DLA framework we previously introduced for assessing
the quality of protein complex conformations [25]. DLA applies 3D convolutions to locally oriented
residue-centred cubes encapsulating atomic-resolution geometrical and physico-chemical information
[27] (Fig. 1A). In this work, we expanded this framework by combining self-supervised representation
learning of 3D local interfacial environments (Fig. 1B) with supervised learning of ∆∆Gbind

exploiting both structural and evolutionary information (Fig. 1C). DLA-Mutation only takes as
input two cubes, corresponding to the environments around the wild-type and mutated residues,
respectively, and directly estimates ∆∆Gbind. It effectively bypasses the estimation of the binding
affinities ∆Gbind of the wild-type and mutated complexes, thus avoiding the accumulation of errors
on these quantities and allowing for large-scale applications.

2 Methods

2.1 Protein–protein interface representation

We represent a protein-protein interface as a set of locally oriented cubic volumetric maps centered
around each interfacial residue (Fig. 1A) (See Supplementary Information for details on building
the cubic volumetric map). We define interfacial residues as those displaying a change in solvent
accessibility between the free (isolated) protein and the complex [21]. We used NACCESS [18] with
a probe radius of 1.4Å to compute residue solvent accessibility.

Masking procedure. The common practice when applying self-supervised learning to protein
sequences is to reconstruct some masked or the next amino acid(s), given their sequence context. This
task proved successful for natural language processing [11] before being transferred to proteins. We
employed a similar strategy here, by training DLA to recognize which amino acid would fit in a given
local 3D environment extracted from a protein-protein interface. Our aim in doing so is to capture
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intrinsic patterns underlying the atomic arrangements found in local interfacial regions. Formally, the
machine predicts the probability P (y|env) of the amino acid type y, for y ∈ {A,C,D, ...,W, Y },
conditioned on the interfacial local chemical environment env given as input. In practice, we process
the input cube before giving it to DLA by masking a sphere of radius rcÅ centered on an atom from
the central residue. Masking a fixed volume prevents introducing amino acid-specific biases. We
experimented with different values of rc (3 and 5Å) and different choices for the atom (Cα, Cβ ,
random). We found that a sphere of radius of 5Å with a randomly chosen center yielded both good
performance and expressive embedding vectors.

Auxiliary features. For predicting ∆∆Gbind, we combined the embeddings of the volumetric maps
with five pre-computed auxiliary features (Fig. 1C), among which four describe the wild-type residue:
(i) a one-hot vector encoding its structural region, either the protein interior (INT), the surface (SUR),
or, if it is part of the interface, the support (S or SUP), the core (C or COR), or the rim (R or RIM)
[21], (ii) its evolutionary conservation level TJET (a float value) computed by JET [13], (iii) its
physico-chemical propensity (PC, a float value) to be found at interfaces [26], and (iv) its circular
variance (CV, a float value) [24, 6] reflecting the extent to which it is buried inside the protein. The
fifth feature is a numerical score (a float value) estimating the functional impact of the mutation on
the monomeric protein. The score is computed by GEMME [20] from a multiple sequence alignment.

2.2 DLA architectures

We used the same core architecture for the self-supervised representation learning (Fig. 1B) and for
the supervised prediction of ∆∆Gbind (Fig. 1C). It comprises a projector, three 3D convolutional
layers, an average pooling layer, and a fully connected subnetwork. The projector maps the feature
vector of each voxel from the input cube into a vector of size 20. Each convolutional layer is
followed by a batch normalization layer. To avoid overfitting, we applied 40%, 20%, and 10%
dropout regularization to the input, the first and the second layers of the fully connected subnetwork.
The fully-connected subnetwork of the self supervised-DLA (ssDLA) architecture comprises three
successive layers of size 200, 20, and 20 (Fig. 1B). The last activation function (Softmax) outputs a
probability vector of size 20 representing the 20 amino acids. ssDLA’s loss function is the categorical
cross-entropy. The ∆∆Gbind predictor, DLA-Mutation, processes two input cubes in parallel,
corresponding to the wild-type and mutated residues, thanks to a Siamese architecture (Fig. 1C).
Within each branch, the average pooling layer is followed by two fully connected layers of size 200
and 20. The branches are then merged by subtracting the computed embeddings, and the auxiliary
features are concatenated to the resulting vector. The last layer is fully-connected, with one output
and linear activation function. The loss function is the mean squared error.

2.3 Databases

Experimental values for ∆∆Gbind. We used SKEMPI v2.0 [19], the most complete source for
experimentally measured binding affinities of wild-type and mutated protein complexes. It reports
measurements for over 7 000 point mutations coming from 345 protein complexes, including antibody-
antigen (AB/AG) and protease-inhibitor (Pr/PI) assemblies, and assemblies formed between major
histocompatibility complex proteins and T-cell receptors (pMHC-TCR). We selected a subset of
2 003 single-point mutations associated with 142 complexes. We call this subset S2003.

Protein-protein complex 3D structures. We created two databases of protein complex structures,
namely PDBInter and S2003-3D, for training and validation purposes. PDBInter contains 5 055
complex experimental structures curated from the PDB [4]. They do not share any family level
similarity between them nor with the 142 complexes from S2003, according to the SCOPe hierarchy
[14, 7]. S2003-3D contains 3D models of the wild-type and mutated complexes from S2003. They
were generated using the "backrub" protocol implemented in Rosetta [34]

See Supplementary Information for more details about the mutation selection process and the
generation of the structural databases.

2.4 Training and evaluation protocols

Training and validation of ssDLA. We divided the PDBInter database into train and validation sets
at the level of complexes. We generated 247 662 interfacial cubes from the training set and 34 174
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from the validation set. In both sets, we observed some differences in the frequencies of occurrence
of the different amino acids. Leucine is the most frequent one, while cysteine is the rarest (Fig. SI
1). To compensate for such imbalance and with the aim of penalizing more the errors made for the
less frequent amino acids, we assigned a weight to the loss of each amino acid type that is inversely
proportional to its frequency of occurrence. We trained ssDLA for 50 epochs (Fig. SI 2).

Training and validation of DLA-Mutation. We trained DLA-Mutation by fine-tuning the weights
of ssDLA and integrating all the auxiliary features. Machine learning approaches for predicting
mutation-induced ∆∆Gbind typically consider each sample independently when splitting the data
between train and test sets [15, 31, 32, 36, 40]. However, this assumption is not valid since several
samples may correspond to different mutations taking place in the same complex or even the same
position of a complex. Here, we assessed the two types of split, namely mutation-based, where all
samples are treated independently, and complex-based, where we guaranteed that no complex was
shared between the train and test sets. We performed 10-fold cross validation only with the mutation-
based splitting procedure. For the complex-based one, we hold out 32 complexes displaying 391
mutations for the testing phase, and trained DLA-Mutation on the rest of the dataset. For comparison
with other predictors we selected 112 mutations from 17 complexes as the test set. This set is the
intersection between S2003 and the benchmark set for which the results of the other methods were
reported in [15]. We retrained the model using 945 mutations from S2003 with complexes sharing
less than 30% sequence identity with those from test set.

3 Results

3.1 Inferring interfacial amino acid types from 3D local environments

We first assessed the ability of ssDLA to recover the identity of a masked amino acid from its local
environment (Fig. 2A). ssDLA successfully and consistently recognises the amino acids containing
an aromatic ring, namely F, Y, W, H, and most of the charged and polar ones, namely E, K, R, and
to a lesser extent Q and D, as well as methionine (M), cysteine (C), glycine (G), and proline (P),
whatever their structural region. By contrast, the location of alanine (A), isoleucine (I) and leucine
(L) influences their detection. While they are ranked in the top 3 in the support and the core, they are
almost never recognised in the rim. Inversely, the polar asparagine (N) is recognised when located in
the rim or the core, but not the support. The model often confuses the hydroxyl-containing serine (S)
and threonine (T) on the one hand, and the hydrophobic I and L on the other hand. Overall, it tends
to over-populate the rim with aspartate (D). These tendencies differ from those reported previously
for a similar task and data representation [1]. In particular, the model from [1] identifies glycine and
proline with very high success and tends to confuse F, Y and W. Such differences may be explained
by the fact that the authors masked the side chain of the central residue, instead of a constant volume.
This choice may encourage the model to put more importance on the size and the shape of the missing
part in making its prediction, than on its physico-chemical environment. Let us also stress that the
model reported in [1] is trained on monomeric proteins.

3.2 DLA-Mutation outperforms state-of-the-art ∆∆G predictors

We used Pearson correlation coefficient (PCC) and root mean squared error (RMSE) as the evaluation
metrics. DLA-Mutation achieved a PCC = 0.812 in the 10-fold mutation-based cross validation
procedure (Fig. SI 5). We further evaluated DLA-Mutation using the complex-based split with the
test set of 391 mutations. Combined with the auxiliary features, DLA-Mutation reached a PCC =
0.720 in ∆∆G prediction. We also investigated the influence of the mutated residue’s structural
region (support, core, rim, interior or surface), the complex biological function, or the amino acid size
change upon mutation (Fig. 2). 89% of the mutations are located on the interface with the majority
of them belonging to the core. DLA-Mutation performs better on the core residues (PCC=0.798) than
those from rim (PCC=0.586) and support (PCC=0.506). The mutations in the support display the
highest variability. The majority of mutations happen on the interface of protease-inhibitor assemblies.
DLA-Mutation performs well for this subset with PCC=0.765. The performance drops on the other
class down to 0.3-0.4. This might be explained by the low diversity of substitutions in these classes,
with the overwhelming majority (> 84%) of the mutations being substitutions to alanine. Although
the predictions of DLA-Mutation are robust to the change of the amino acid size, the correlation is
better for the neutral group (PCC=0.775) (See Supplementary Information for details). Our approach
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Figure 2: Predictive performance of DLA-Mutation. A. Recovery of the central amino acid by
ssDLA in the self-supervised representation task, using the validation set of PDBInter. The three
logos represent the propensities of each amino acid to be predicted (having maximum score in the
output layer), depending on the true amino acid (x-axis) and on its structural region (see Methods).
The colors indicate geometrical and physico-chemical properties (Table SI 1). B. Performance in
predicting ∆∆Gbind on the testing set of 391 mutations from 32 unseen protein complexes classified
by different characteristics. The overall performance is PCC=0.72. The dots are colored with
respect to the structural region of the mutant residue (top left), the biological function of the protein
complex (top right), the change in the size between wild-type and mutant residue (bottom left) and
the minimum sequence identity shared with any training complex.

Experimental ΔΔG Experimental ΔΔG Experimental ΔΔG Experimental ΔΔG Experimental ΔΔG
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Figure 3: A comparison between DLA-Mutation and other approaches in the prediction of
∆∆G. Performance on 112 mutations associated to 17 complexes for DLA-Mutation (A), FoldX (B),
BindProfX (C), iSEE (D) and mCSM (E).

is robust to sequence identity overlap between train and test sets (Fig. 2). The complexes of the
majority of the mutations share less than 30 % sequence identity with the training set. Finally, we
compared the performance of DLA-Mutation with those of BindProfX, FoldX, iSEE and mCSM on
17 complexes displaying 112 mutations (Fig. 3). For this subset, DLA-Mutation reached PCC=0.48,
outperforming the other approaches.

4 Discussion

We have proposed a deep learning-based method for assessing the impact of mutations on protein-
protein binding affinity. It derives and contrasts representations of the local geometrical and physico-
chemical environments around the mutation site in the wild-type and mutated forms with a Siamese
architecture. The representations are enriched with evolutionary information coming from sequences
related to the protein bearing the mutation. Beyond improving the prediction of ∆∆Gbind over
the state of the art, it would be interesting to investigate what the representations learnt during the
self-supervised step can tell us about the specificity of interfacial environments and the functions of
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protein interactions. Future developments will also aim at systematically scanning protein complex
interfaces on a proteome-wide scale.
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Supplementary Information
Building the cubic volumetric map

To build the cubic volumetric map, the atomic coordinates of the input structure are first transformed
to a density function [27]. The density d at a point v⃗ is computed as

d(v⃗) =
∑

i≤Natoms

exp
[

−

( v⃗ − a⃗i

Ã

)2]

ti, (1)

where a⃗i is the position of the ith atom, Ã is the width of the Gaussian kernel set to 1Å, and ti is a
vector of 167 channels that correspond to residue-specific atom types (O, C, N and S). The hydrogen
atoms are discarded. Then, the density is projected on a 3D grid comprising 24× 24× 24 voxels of
side 0.8Å. The map is oriented by defining a local frame based on the common chemical scaffold
of amino acid residues in proteins [27]. More precisely, for the nth residue, the (x⃗, y⃗, z⃗) directions
and the origin of the cube are defined by the position of the atom Nn, and the directions of Cn−1 and
C³n with respect to Nn. The X-axis is parallel to the vector pointing from Cn−1 to Nn. The Y-axis,
perpendicular to the X-axis, is defined in such a way that C³n lies in the half-plane Oxy with y > 0.
The Z-axis is defined as the vector product X × Y . The origin of the cube is determined in such a
way that Nn is located at position (6.1Å, 6.6Å, 9.6Å). This choice ensures that all the atoms of the
central residue fit in the cube. More details can be found in [27]. This representation is invariant to
the global orientation of the structure while preserving information about the atoms and residues
relative orientations.

Selection process on SKEMPI V2.0

In the SKEMPI v2.0 database, the mutations happening in the interface (SUP, COR, RIM), in
particular in the core (COR), induce bigger changes in binding affinity than the ones located in the
non-interacting surface (SUR) or the interior (INT) of the protein (Fig. SI 3). Overall, we observed a
tendency for the mutations to be deleterious rather than beneficial. The most impactful single-point
mutation is located in the complex 1CHO with ∆∆Gbind = 8.802 kcal/mol. We restricted our
experiments to the entries for which the binding affinity were measured by a reliable experimental

A B

Figure SI 1: Frequency of interfacial amino acids in the train and validation sets. A. Train set. B.
Validation set.
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Figure SI 2: Train and validation loss curves of ssDLA. The x-axis is the number of epochs and the
y-axis is the log-loss (categorical cross-entropy). The number of channels is either 167 in case of
ssDLA-167 (A) or 4 in case of ssDLA-4 (B).

method, namely ITC, SPR, FL, or SP, as done in [35]. This first filtering step led to 4,974 entries
associated with 255 protein complexes. We retained 4,634 entries from 245 complexes by excluding
mutation entries with ambiguous free energy or without energy change. We then focused only on
the 3,393 single-mutation entries coming from 222 complexes. After removing duplicated entries (a
protein complex with the same mutations), we remained with 2,975 mutations. We finally randomly
selected a subset of 2,003 mutations associated with 142 complexes. We call this subset S2003.

Structural databases

Curation of PDBInter

We downloaded all PDB biological assemblies (June 2020 release) from the FTP archive
rsync.wwpdb.org::ftp/data/biounit. We discarded the entries with more than 100 chains or with
a resolution lower than 5Å. We also removed the protein chains smaller than 20 residues or with more
than 20% of unknown residues. We then redundancy-reduced the resulting dataset using annotations
from the SCOPe database [14, 7].

Backrub modelling and generation of S2003-3D

We generated conformational ensembles for the wild-type and mutated complexes from S2003. We
followed a modeling protocol similar to that reported in [2]. It relies on the backrub method [34] for
sampling side chain and backbone conformational changes. Our goal was to accurately mimic and
explore the fluctuations around a native state. We refer to each generated conformation as a backrub
model. We generated 30 backrub models for each wild-type or mutated complex. This amount was
shown to be sufficient for estimating free energies in [2].

The protocol unfolds in two optimization steps carried out on the side chains and the backbone (Fig.
SI 4):
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Figure SI 3: Analysis on SKEMPI V 2.0. ∆∆G associated to single point mutations corresponding
to five regions: COR (1500 mutations), SUP (437 mutations), RIM (824 mutations), INT (223
mutations), and SUR (423 mutations).

142 complexes
2003 single-point

 mutations Discrete combinatorial rotamer optimization of 
side-chains using backbone-based side-chain 

rotamer library of Dunbrack

Quasi-Newton minimization for 
continuous optimization of backbone 

and side-chain torsion angles

> 7000 Samples
[Structure, Mutation,

�G,�GMT]

Wild-type
complex
structure

30 raw 
models

Mutation(s)
Backrub modelling

Repacking

Filtering
and

selection

SKEMPI V2

S2003
Local 

minimization 
of torsion 

angles

Monte 
Carlo 

simulation

30 models
mutation 1

30 models
mutation 2

30 models
mutation N

S2003-3D
Mutation

and 
Repacking

30 models
wild-type

Figure SI 4: Pipeline for the generation of mutated complexes with backrub. After filtering
the SKEMPI V2.0 database, we retained 2003 single point-mutations for 142 complexes (S2003).
A wild-type structure undergoes a local minimisation of backbone and side-chain torsion angles
followed by a Monte Carlo simulation step. We applied it to produce thirty models for each mutated
structure and thirty for the wild-type. This process is followed by a repacking step applied to wild-type
and mutation models. For the mutation positions at the interface of each model, we compute the
associated cubic volumetric maps.

1. for the backbone and the side chains, it applies quasi-Newton minimization for continuous
optimization of torsion angles: Φ, Ψ, χ1, χ2, χ3, etc.

2. for the side chains only, it performs Monte Carlo simulation with the backbone-based
side-chain rotamer library of Dunbrack [33] for discrete combinatorial rotamer optimization,
also known as repacking.
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Performance assessment

Visualisation of ssDLA’s ability to recover the central amino acid.

To visualise the performance of the model, we generated logos from pseudo alignments of 20 columns
corresponding to the 20 amino acids. In the column corresponding to the amino acid ai, the frequency
of occurrence of each amino acid aj depends on its propensity to be predicted by ssDLA (i.e. having
maximum probability score among the 20 candidate amino acids) when the true central residue
of the input cube is ai. If some amino acid was never predicted, we simply put a gap character.
We classify and color the amino acids based on their physico-chemical and geometrical properties
(Table SI 1). We defined seven classes, namely the aromatic amino acids (ARO: F, W, Y, H), the
hydroxyl-containing ones plus Alanine (CAST: C, A, S, T), the aliphatic hydrophobic ones (PHOB: I,
L, M, V), the positively charged ones (POS: K, R), the polar and negatively charged ones (POL-N: N,
Q, D, E), Glycine (GLY) and Proline (PRO). The classification was taken from [22]. It previously
proved relevant for predicting the functional impact of mutations [20].

Table SI 1: Seven classes of amino acids.

Class name Description Amino acid(s) Representative color

ARO Aromatic F, W, Y, H Green
CAST Hydroxyl-containing and Alanine C, A, S, T Black
PHOB Aliphatic hydrophobic I, L, M, V Red
POS Positively charged K, R Purple
POL-N Polar and negatively charged N, Q, D, E Blue
GLY Glycine G Gray
PRO Proline P Orange

Change of the amino acid size upon mutation.

We calculated the change of amino acid size as a volume difference (δV ) between wild-type and

mutant following [16]. A mutation was classified as "neutral" if |δV | < 10Å
3

, as small to large if

δV > 10Å
3

, and as large to small if δV < −10Å
3

.
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Figure SI 5: The predictive performance of DLA-Mutation is evaluated on 2003 mutations
following a mutation-based 10-fold cross validation. The experimental setup is with pre-training
and including complete set of auxiliary features.
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