

# Widespread chromatin context-dependencies of DNA double-strand break repair proteins

## ONE SENTENCE SUMMARY

A multiplexed screen reveals how dozens of proteins sense the local chromatin context to tune the balance between two DNA repair pathways.

## AUTHORS

Xabier Vergara<sup>1,2,4</sup>, Anna G. Manjón<sup>2,4</sup>, Ben Morris<sup>3,4</sup>, Ruben Schep<sup>2,4</sup>, Christ Leemans<sup>2,4</sup>, Mathijs A. Sanders<sup>5,6</sup>, Roderick L. Beijersbergen<sup>3,4</sup>, René H. Medema<sup>2,4\*</sup> and Bas van Steensel<sup>1,4\*</sup>

## AFFILIATIONS

<sup>1</sup>Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands

<sup>2</sup>Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands

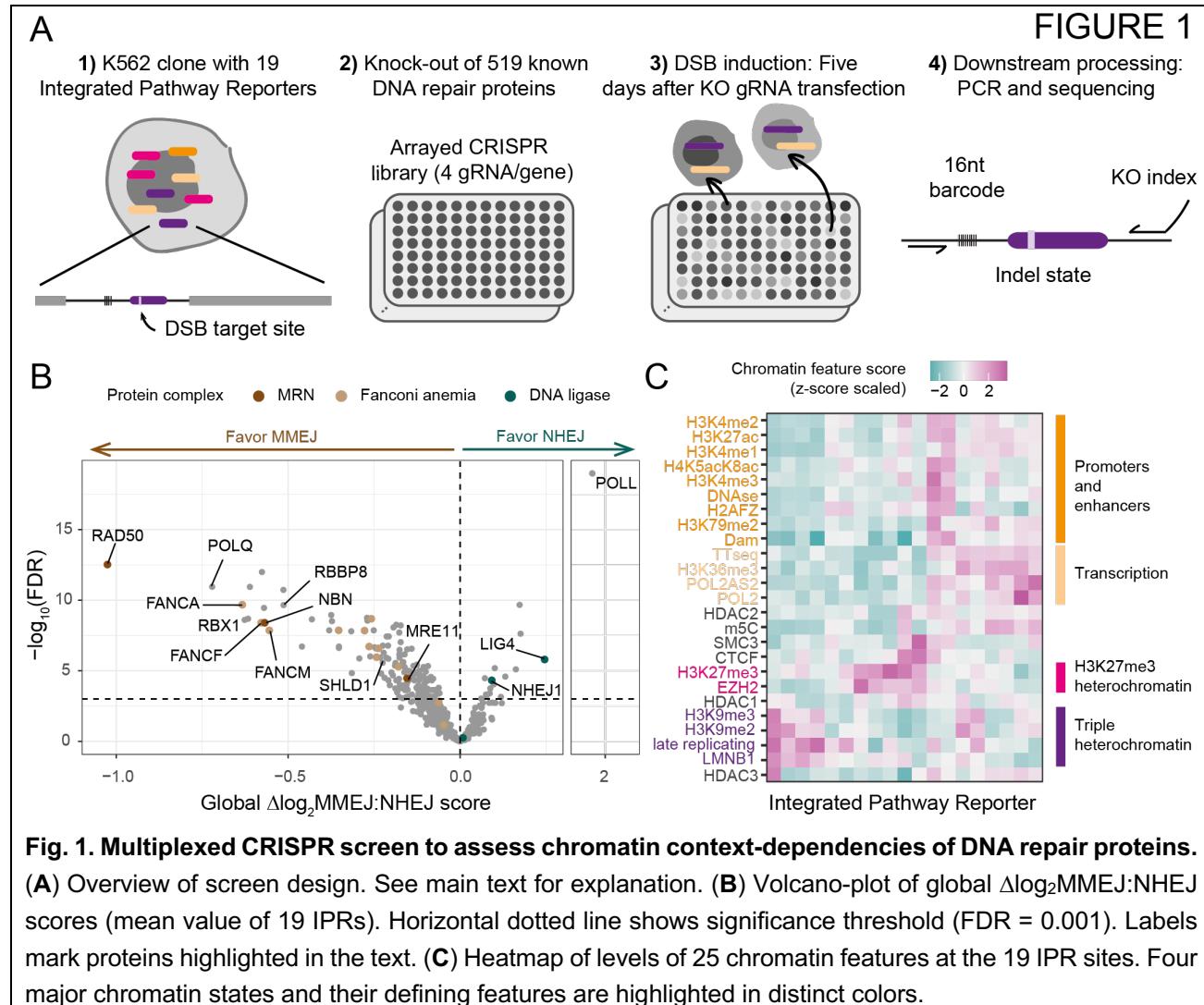
<sup>3</sup>Division of Molecular Carcinogenesis, Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands

<sup>4</sup>Oncode Institute, Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands

<sup>5</sup>Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands

<sup>6</sup>Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK

\*correspondence: b.v.steensel@nki.nl, r.medema@nki.nl


## ABSTRACT

DNA double-strand breaks are repaired by multiple pathways, including non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ). The balance of these pathways is dependent on the local chromatin context, but the underlying mechanisms are poorly understood. By combining knockout screening with a dual MMEJ:NHEJ reporter inserted in 19 different chromatin environments, we identified dozens of DNA repair proteins that modulate pathway balance dependent on the local chromatin state. Proteins that favor NHEJ mostly synergize with euchromatin, while proteins that favor MMEJ generally synergize with distinct types of heterochromatin. BRCA2 is an example of the former, which is corroborated by chromatin-dependent shifts in mutation patterns of BRCA2<sup>-/-</sup> cancer genomes. These results uncover a complex network of proteins that regulate MMEJ:NHEJ balance in a chromatin context-dependent manner.

## MAIN TEXT

1        **Background: chromatin context effects on DSB repair pathways.** DNA double-strand  
2 breaks (DSB) are repaired by multiple repair pathways such as non-homologous end-joining  
3 (NHEJ), homologous recombination (HR) and microhomology-mediated end joining (MMEJ).  
4 These pathways act in an equilibrium that is referred to as the DNA repair pathway  
5 balance(reviewed in 1). Defects in this balance can compromise genome stability, but also offer  
6 opportunities for therapy, particularly in cancer (2). Pathway balance is influenced by several  
7 factors, including cell cycle (3), break complexity (4) and the chromatin context in which a DSB  
8 occurs (5, 6). The latter is generally attributed to molecular interactions between specific repair  
9 proteins and distinct chromatin proteins, in some instances regulated by posttranslational  
10 modifications (7-9). Such local interactions can alter the recruitment of the repair protein to a DSB,  
11 or modulate its activity in the repair process. Yet, the overall extent and the principles of this  
12 interplay between chromatin and repair proteins have remained poorly studied. Here, by screening  
13 hundreds of DNA repair proteins, we uncover that chromatin context has a widespread influence  
14 on the relative contribution of specific DNA repair proteins to repair pathway balance.

15        **Experimental design.** We focused on the balance between NHEJ and MMEJ, which are  
16 two of the main mutagenic DSB repair pathways, particularly for DSBs generated during CRISPR  
17 editing (10). We applied a sequencing-based assay that determines the MMEJ:NHEJ balance after  
18 induction of a DSB by Cas9, with high accuracy and in multiple genomic loci in parallel(6). For this  
19 we employed a human K562 cell line with 19 barcoded Integrated Pathway Reporters (IPRs)  
20 inserted throughout the genome ([Fig. 1A](#)). Importantly, the integration sites represent all major  
21 known chromatin types (6) (see below). In this cell line we conducted three biological replicates of  
22 a 96-well CRISPR/Cas9 screen to knock out (KO) 519 proteins that had previously been linked to  
23 at least one DNA repair pathway ([Fig. 1A & Fig. S1A-C; Table S1-S2; Detailed protocol in](#)  
24 [methods](#)). For each KO we then induced a DSB in all IPRs; after 72 hours to allow repair to occur,  
25 we isolated genomic DNA and sequenced the IPRs to determine the MMEJ:NHEJ balance as the  
26 ratio between the signature indels +1 (NHEJ<sub>ins</sub>) and -7 (MMEJ<sub>del</sub>) ([Table S3](#)) (6). For each IPR-KO  
27 combination we then computed the  $\log_2$  fold change in MMEJ:NHEJ balance [ $\Delta\log_2\text{MMEJ:NHEJ}$ ]  
28 relative to the average of a set of 33 mock KO control samples (in which gRNA was omitted in the  
29 KO step). We averaged the results of three replicates, resulting in a 519 x 19 matrix of  
30  $\Delta\log_2\text{MMEJ:NHEJ}$  scores ([Table S4](#)). These scores reflect the contribution of each tested protein  
31 to the MMEJ:NHEJ balance in 19 well-characterized chromatin contexts ([Fig. S1D](#)).  
32

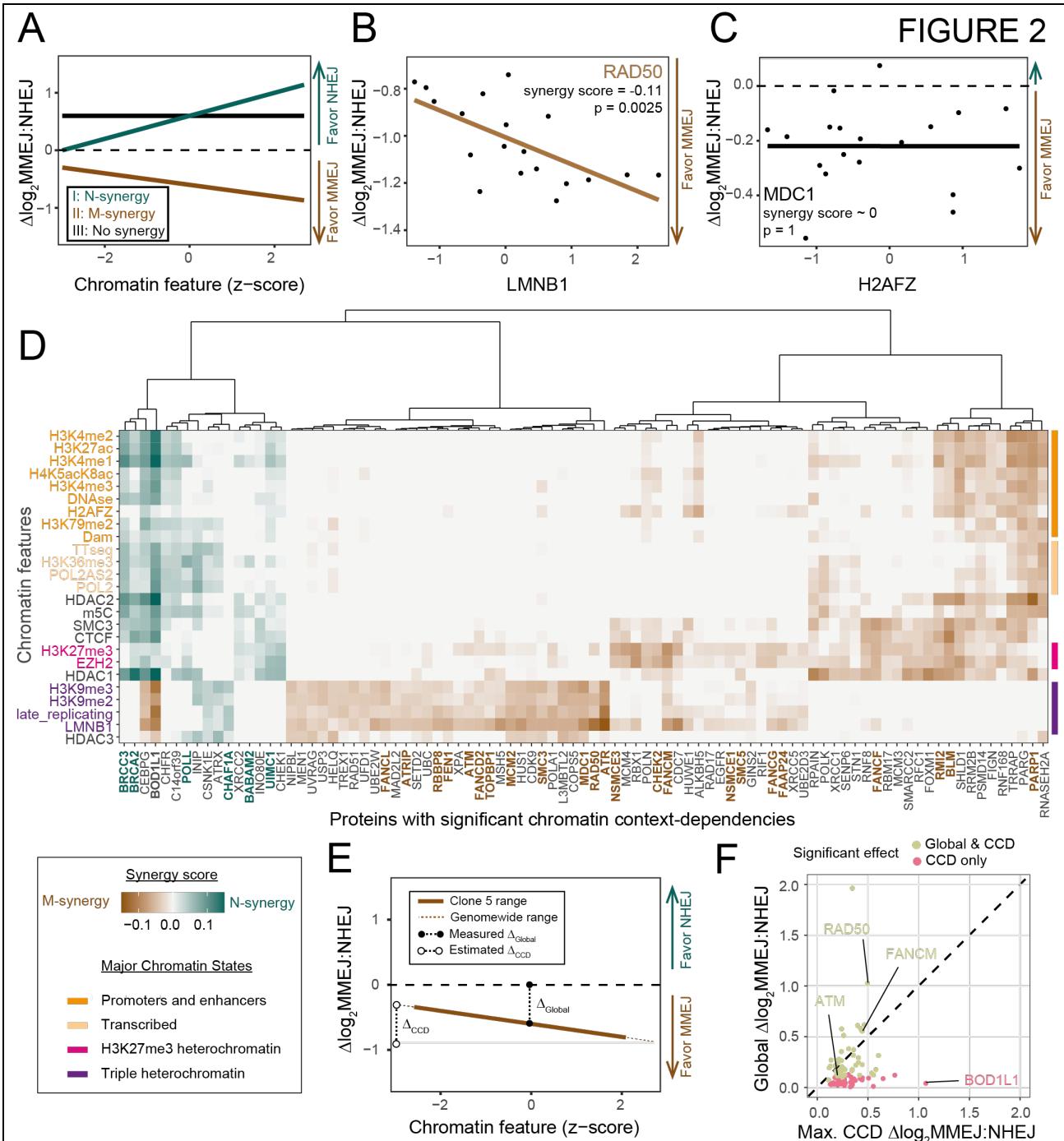


33

34

35  
36  
37  
38

**Fig. 1. Multiplexed CRISPR screen to assess chromatin context-dependencies of DNA repair proteins.**


(A) Overview of screen design. See main text for explanation. (B) Volcano-plot of global  $\Delta\log_2\text{MMEJ:NHEJ}$  scores (mean value of 19 IPRs). Horizontal dotted line shows significance threshold (FDR = 0.001). Labels mark proteins highlighted in the text. (C) Heatmap of levels of 25 chromatin features at the 19 IPR sites. Four major chromatin states and their defining features are highlighted in distinct colors.

39

40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53

**Repair proteins affecting pathway balance globally.** We first assessed the impact of the tested proteins on the global MMEJ:NHEJ balance, i.e., irrespective of the local chromatin context, by evaluating the mean  $\Delta\log_2\text{MMEJ:NHEJ}$  scores of the 19 IPRs. At an estimated false discovery rate (FDR) of 0.001, 149 proteins *favor MMEJ* (Fig. 1B), i.e., these proteins either are required for full MMEJ activity or they inhibit NHEJ when present. Among these are known key components of the MMEJ pathway, such as POL $\theta$  (POLQ), proteins of the MRN complex and CtIP (RBBP8). We also found that several Fanconi anemia (FA) proteins (e.g., FANCA, FANCF, FANCM, FANCD2), which are central proteins of inter-strand crosslink (ICL) repair, favored MMEJ. Unexpectedly, proteins that either directly (SHLD1 (11)) or indirectly (RBX1 (12)) limit long-range resection, a key step for HR, favored MMEJ. This suggests that limitation of long-range resection favors MMEJ over NHEJ. Conversely, 16 proteins favored NHEJ globally, including known components of the NHEJ pathway, such as Ligase IV (LIG4) (13, 14), XLF (NHEJ1) (15, 16) and DNA polymerase lambda (POL $\lambda$ ) (17). Thus, the screen confirmed several known key proteins in the repair of DSBs generated by Cas9 and other nucleases (17, 18).

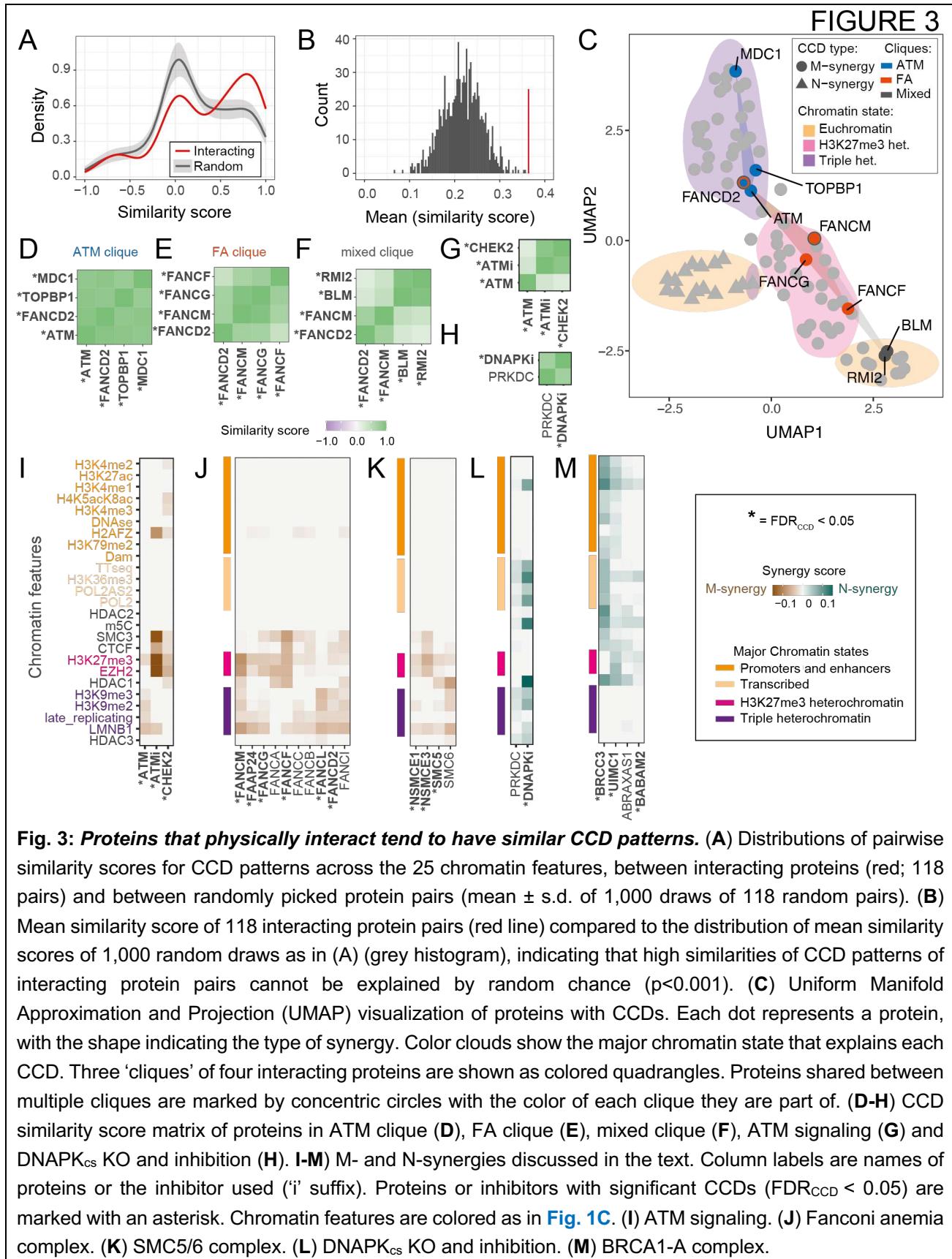
54



55  
56 **Fig. 2. CCDs of 89 DNA repair proteins.** (A) Illustration of M- and N-synergy concepts. For chromatin  
57 feature – protein combinations with N-synergy (I in green)  $\Delta\log_2\text{MMEJ:NHEJ}$  scores increase as the  
58 chromatin feature levels increase. For combinations with M-synergy (II in brown)  $\Delta\log_2\text{MMEJ:NHEJ}$  scores  
59 decrease as the chromatin feature levels increase. For combinations with no synergy (III in black)  
60  $\Delta\log_2\text{MMEJ:NHEJ}$  scores do not correlate with the individual chromatin features. (B) M-synergy example:  
61 linear fit (brown line) of RAD50  $\Delta\log_2\text{MMEJ:NHEJ}$  scores with LMNB1 interaction levels. (C) No synergy

62 example: linear fit (black line) of MDC1  $\Delta\log_2\text{MMEJ:NHEJ}$  scores with H2AFZ levels. (D) Heatmap of synergy  
63 scores of all 89 proteins with significant CCDs. Proteins (columns) mentioned in the text are highlighted in  
64 bold. Chromatin features (rows) are colored and ordered as in **Fig. 1C**. (E) Comparison of CCD effect sizes  
65 to global effect sizes of the proteins in (D). Global effect sizes are absolute values of global  $\Delta\log_2\text{MMEJ:NHEJ}$   
66 scores as calculated in **Fig. 1B**. CCD effect sizes are the predicted genome-wide dynamic range of  
67  $\Delta\log_2\text{MMEJ:NHEJ}$  values for each protein KO, as a function of variation in chromatin context (see Methods).

68  
69 **Many repair proteins show significant chromatin context-dependency.** Next, we asked  
70 which proteins exhibited chromatin context-dependency (CCD) of their  $\Delta\log_2\text{MMEJ:NHEJ}$  scores  
71 across the 19 IPRs. As we and others previously demonstrated, integrated reporters generally  
72 adopt the local chromatin state (6, 19-21). We therefore used a set of high-quality epigenome maps  
73 from K562 cells (**Table S5**) to infer the levels of 25 chromatin features on each of the IPRs (**Fig.**  
74 **1C, Table S6**). We then applied a three-step linear modeling approach (see Methods, **Fig. S2-3**)  
75 to identify proteins for which the  $\Delta\log_2\text{MMEJ:NHEJ}$  scores correlated significantly with one or more  
76 chromatin features. According to this analysis, 89 (17.1%) of all tested proteins showed a significant  
77 CCD at 5% FDR cutoff. Of 33 mock KO samples only one (3%) passed this cutoff, confirming the  
78 low rate of false positives. These results indicate that a surprisingly large proportion of DNA repair  
79 proteins modulate the MMEJ:NHEJ balance with a significant CCD (**Table S7**).


80 **Distinct patterns of synergies.** Next, for each of the identified proteins we asked which  
81 chromatin features explain the CCD. For this we considered the slope of linear fits that correlate  
82  $\Delta\log_2\text{MMEJ:NHEJ}$  scores with each individual chromatin feature (see Methods, **Fig. S4**). A synergy  
83 score (slope) is positive when the repair protein favors NHEJ with increasing levels of the chromatin  
84 feature (**I in Fig. 2A**). We will refer to this as "N-synergy". When the synergy score is negative, the  
85 protein favors MMEJ with increasing levels of the chromatin feature (**II in Fig. 2A**); this we will refer  
86 to as "M-synergy". For example, we found that RAD50 is M-synergistic with Lamin B1 (LMNB1)  
87 (**Fig. 2B & Fig. S4D**), indicating that RAD50 favors MMEJ preferentially in regions that interact with  
88 the nuclear lamina. A synergy score near zero points to a lack of detectable synergy of the tested  
89 pair (**III in Fig. 2A**), as exemplified by the repair protein MDC1 and the chromatin feature H2AFZ  
90 (**Fig. 2C**).

91 **M- and N-synergies: distinct distributions across chromatin types.** Hierarchical  
92 clustering of the synergy scores of all 89 proteins with significant CCDs revealed striking patterns  
93 (**Fig. 2D**). First, 16 proteins have N-synergies while 75 have M-synergies, with two proteins  
94 overlapping due to mixed synergies. Thus, proteins with M-synergies are much more prevalent  
95 than proteins with N-synergies. This may reflect a higher complexity of the MMEJ pathway  
96 compared to the NHEJ pathway (17, 18, 22). Second, N-synergies predominantly involve  
97 euchromatic features, such as marks of active promoters and enhancers (e.g., H3K4me3 and  
98 H3K27ac) and transcription activity (e.g., TT-seq, POL2 and H3K36me3) (**Fig. 2D**). Only a few  
99 proteins show N-synergy with heterochromatin, either alone or in combination with a subset of  
100 euchromatic marks. Third, M-synergies are divided over three main clusters, with prominent roles  
101 for distinct classes of heterochromatin. One cluster of 33 proteins has consistent M-synergy with

102 heterochromatin that is marked by a combination of H3K9me2/3, late replication and interactions  
103 with LMNB1. We will refer to this type of heterochromatin as "triple heterochromatin". A second  
104 cluster of 31 proteins is primarily M-synergistic with H3K27me3-marked heterochromatin, often  
105 combined with LMNB1; and a third cluster of 11 proteins shows M-synergy with various  
106 euchromatin marks, frequently combined with H3K27me3. Thus, the vast majority of M-synergies  
107 involve either triple or H3K27me3 heterochromatin, unlike most N-synergies. (**Fig. 2D**). The skewed  
108 distribution of M- and N-synergies between heterochromatin and euchromatin provides an  
109 explanation for the earlier observation that the MMEJ:NHEJ ratio tends to be higher in  
110 heterochromatin (6). Interestingly, two proteins (BOD1L1 and CEBPG) are both M- and N-  
111 synergistic, indicating that they have opposite roles dependent on the chromatin context (**Fig 2D**).

112 **CCD effects compared to global effects.** Of the 89 proteins with significant CCDs, 46  
113 modulate MMEJ:NHEJ balance globally with preferential impact on specific chromatin contexts  
114 (e.g. RAD50, FANCM or ATM). In these cases, CCD and global effects tend to have similar effect  
115 sizes (**Fig. 2E-F & Fig. S5**, see Methods). Additionally, 43 proteins only modulate MMEJ:NHEJ  
116 balance in specific chromatin contexts (**Fig. 2E-F**). Thus, the magnitude of CCD effects is often  
117 similar or larger than the chromatin-independent contributions of individual proteins.

118 **Interpretation of M- and N- synergies.** We note that M-synergy does not necessarily imply  
119 that the protein locally boosts MMEJ; it may also locally suppress NHEJ and thereby shift the  
120 balance. Similarly, N-synergy may be either due to local activation of NHEJ or local suppression of  
121 MMEJ. Furthermore, we emphasize that the synergies as defined here do not necessarily imply a  
122 direct molecular link between the repair protein and the chromatin feature; the feature may also be  
123 a proxy for an unknown chromatin feature that is closely linked. For this reason, most of our  
124 analyses below focus on the major known chromatin states that are represented by one or more  
125 features in our dataset. We also note that some hits in our screen can be explained by indirect  
126 effects. For example, FOXM1 and EGFR are known to be regulators of various genes that encode  
127 DNA repair proteins (23, 24), while there is no evidence that they directly mediate DNA repair.  
128 Below we highlight findings that are more likely to involve close interactions with chromatin.



146 **M-synergies of canonical MMEJ proteins.** Among canonical components of the MMEJ  
147 pathway, several exhibit M-synergy. This includes RAD50 (**Fig. 2B**), CtIP/RBBP8 and FEN1, which  
148 show exclusive M-synergy with triple heterochromatin; and PARP1 which has selective M-synergy  
149 with euchromatin and H3K27me3 (**Fig. 2D**).

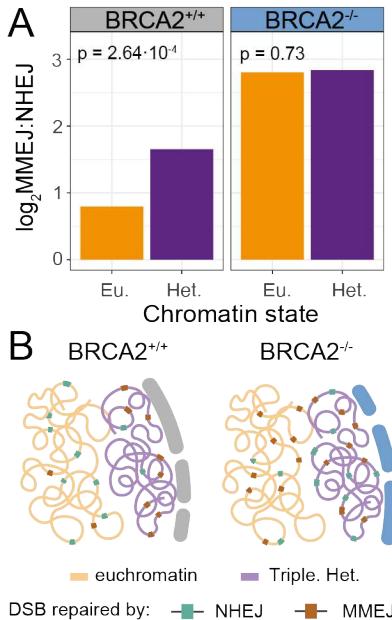
150 **Proteins that interact tend to have similar CCD patterns.** Some proteins that are part of  
151 the same complex, such as BLM and RMI2 (25), show highly similar M-synergy (**Fig. 2D**). We  
152 asked whether this is a general trend among pairs of proteins that are known to physically interact  
153 *in vivo* according to the BioGRID database (26). We identified  $n = 118$  interacting pairs among  
154 proteins with significant CCDs (**Table S8**). Similarities in CCD patterns were significantly higher  
155 between physically interacting proteins than expected by random sampling (**Fig. 3A-B**, empirical  
156 test  $p < 0.001$ ). Among the 118 interacting pairs, we even found three 'cliques' of at least four  
157 proteins that are connected by pairwise physical interactions (**Fig. 3C**). One of these cliques  
158 encompasses ATM and its phosphorylation targets MDC1, TOPBP1, and FANCD2. All these  
159 proteins show highly similar M-synergies with triple heterochromatin (**Fig. 3D**). TOPBP1 interacting  
160 proteins ATRIP and ATR also show M-synergies with triple heterochromatin. In line with this, ATM,  
161 TOPBP1, ATR and ATRIP have been previously linked to repair of heterochromatin DSBs (27, 28).

162 **Role of ATM signaling in heterochromatin.** To further investigate the CCD of ATM in  
163 heterochromatin, we treated cells with the ATM kinase activity inhibitor KU55933 (**Fig. S6A-B**).  
164 ATM inhibition exhibited significant M-synergies with H3K27me3 and interactions with LMNB1, but  
165 did not exhibit M-synergies with other triple heterochromatin features. This CCD pattern is more  
166 similar to CHEK2, ATM's main signal transducer (29), than ATM itself (**Fig. 3G&I**). This suggests  
167 that loss of ATM downstream signaling impacts CCDs differently than losing ATM itself, in line with  
168 earlier observations that loss and inhibition of ATM can have different effects (30, 31). These data  
169 underscore the importance of the ATM signaling axis in repair of DSB in heterochromatin.

170 **Heterochromatin M-synergy of the FANC complex.** Additionally, we found a clique that  
171 consists of Fanconi anemia (FA) proteins (FANCF, FANCM, FANCG and FANCD2) (**Fig. 3E**) and  
172 a third clique with two FA proteins together with BLM and RMI2 (**Fig. 3F**). Although FA proteins are  
173 primarily known to be involved in repair of inter-strand cross-links (32), they have also been  
174 implicated in MMEJ (18). Six out of 12 tested FA proteins show selective M-synergies with either  
175 H3K27me3 or triple heterochromatin, or both. Moreover, four additional FA proteins (FANCA,  
176 FANCB, FANCC and FANCI) showed similar trends although they individually did not pass the  
177 significance threshold (**Fig. 3J**). These results indicate that the FA complex is an important  
178 regulator of MMEJ:NHEJ balance in heterochromatin.

179 **M-synergy of the SMC5/6 complex.** Another complex implicated in DSB repair in  
180 heterochromatin is the SMC5/6 complex (28, 33). SMC5, NSE1 (NSMCE1) and NSE3 (NSMCE3)  
181 exhibit M-synergies with H3K27me3 and LMNB1. SMC6 displays similar M-synergy although it did  
182 not pass the significance threshold (**Fig. 3K**). These data indicate that the SMC5/6 complex  
183 preferentially modulates MMEJ:NHEJ balance in H3K27me3 and lamina-associated  
184 heterochromatin.

185 **Highlights of N-synergies.** Among canonical components of the NHEJ pathway, only  
186 POLL exhibits significant N-synergy. Our data indicate that the ability of POLL to promote NHEJ is  
187 facilitated by euchromatin, particularly in transcribed regions. DNA-PKcs (PRKDC), another crucial  
188 regulator of NHEJ, showed only a weak, non-significant N-synergy pattern (**Fig. 3H**). However,  
189 treatment of cells with the DNA-PKcs inhibitor M3814 yielded a pattern that was similar but much  
190 stronger (**Fig. 3L**, **Fig. S6A-B**). Treatment with a potent small-molecule inhibitor is expected to  
191 have a higher penetrance than the Cas9-mediated KOs in our screen, which have incomplete  
192 efficacy (Methods and **Fig. S7**). The consistent pattern indicates that DNA-PKcs is primarily N-  
193 synergistic with transcribed parts of the genome, and to a lesser extent with triple heterochromatin.


194 Another protein known to promote NHEJ is BD1L1 (34). Our data indicate that this  
195 regulatory role of BD1L1 is restricted to euchromatin (**Fig. S4E**), while it additionally shows M-  
196 synergy in triple heterochromatin (**Fig. S4F**). Also noteworthy is CAF1A (CHAF1A), the only protein  
197 that exhibits exclusive N-synergy with triple heterochromatin. CAF1A is a component of the CAF1  
198 complex that is particularly important for nucleosome assembly in heterochromatic parts of the  
199 genome, and it has previously been found to interact with NHEJ gatekeepers KU80 and DNA-PKcs  
200 (35).

201 Other N-synergistic proteins have previously been linked to various other repair pathways,  
202 underscoring extensive cross-talk between pathways (36). An example is the BRCA1-A complex,  
203 which fine tunes BRCA1-mediated resection (37, 38). Its subunits BRCC36 (BRCC3), RAP80  
204 (UIMC1) and BRE (BABAM2) exhibit N-synergies with euchromatic features, and ABRAXAS1  
205 shows similar patterns but did not pass the significance threshold (**Fig. 3M**).

206 **Impact of CCD of BRCA2 on human cancer genomes.** Furthermore, BRCA2 shows N-synergy  
207 with euchromatin (**Fig. S4A**). In this case the N-synergy may be due to local suppression of MMEJ,  
208 because suppression of MMEJ by BRCA2 has been reported (39, 40). To further validate these  
209 findings and to study the potential impact on genome-wide DSB repair in human cancer, we  
210 compared the genomic distribution of short deletions with either MMEJ or NHEJ signatures in  
211 BRCA2<sup>-/-</sup> and BRCA2<sup>+/+</sup> genome-instable tumors (data from (41); **Table S9-S10**; see Methods).  
212 MMEJ and NHEJ deletions are more frequent in BRCA2<sup>-/-</sup> tumors compared to BRCA2<sup>+/+</sup> tumors,  
213 unlike other indel signatures (**Fig. S8A**). Based on our screen results (**Fig. S4A**), we predicted that  
214 in BRCA2<sup>-/-</sup> tumors – compared to BRCA2<sup>+/+</sup> tumors – the  $\log_2$ MMEJ:NHEJ ratio should increase  
215 relatively more in euchromatin compared to lamina-associated heterochromatin. Indeed, this is  
216 what we observed (**Fig. 4A**). Large deletions (> 1.4kb) with MH at their break sites (which we  
217 assume to be primarily repaired by MMEJ) also showed a striking shift towards euchromatin in  
218 BRCA2<sup>-/-</sup> tumors compared to BRCA2<sup>+/+</sup> tumors (**Fig. S8D**), consistent with N-synergy of BRCA2  
219 with euchromatin (**Fig. 4B**). This result illustrates that CCD of a repair protein can directly impact  
220 the type of mutations that accumulate in different chromatin contexts in tumors.

221

FIGURE 4



**Fig. 4. Impact on mutation distribution in cancer genomes.** (A) Total MMEJ and NHEJ signature indel  $\log_2$  ratio in euchromatin (Eu.) and constitutive lamina-associated heterochromatin (Het.) of BRCA2-positive ( $\text{BRCA2}^{+/+}$ ,  $n = 22$ ) and BRCA2-deficient tumors ( $\text{BRCA2}^{-/-}$ ,  $n = 41$ ). p-values are calculated by Fisher's exact test applied to the total count of each deletion signature per tumor type (Fig. S8B-C). (B) Cartoon illustrating BRCA2 N-synergy.

222  
223  
224  
225  
226  
227

228  
229      **Overall interpretation and implications of the study.** Our data uncover a much more  
230 complex network of regulatory interplay between repair proteins and chromatin components than  
231 previously thought (42). Generally, the effect sizes of CCDs of individual proteins that we uncovered  
232 here are modest (typically do not exceed ~50%, see Methods, Fig. 2F). However, redundancies  
233 may obscure effects of individual KOs, and penetrance of the KOs in our screen is incomplete  
234 (~65%; see Methods, Fig. S7), causing underestimation of the effect sizes. Considering the large  
235 number of proteins exhibiting CCDs, their collective effect is likely to be substantial. Most likely,  
236 other DNA repair pathways that we did not probe are also subject to extensive CCDs. Multiplexed  
237 IPR screens as described here help to uncover these regulatory networks and provide a foundation  
238 for further exploration of the underlying molecular mechanisms.

239 **REFERENCES**

- 240 1. R. Scully, A. Panday, R. Elango, N. A. Willis, DNA double-strand break repair-pathway  
241 choice in somatic mammalian cells. *Nat Rev Mol Cell Biol* **20**, 698-714 (2019).
- 242 2. N. J. O'Neil, M. L. Bailey, P. Hieter, Synthetic lethality and cancer. *Nat Rev Genet* **18**, 613-  
243 623 (2017).
- 244 3. N. Hustedt, D. Durocher, The control of DNA repair by the cell cycle. *Nat Cell Biol* **19**, 1-9  
245 (2016).
- 246 4. A. Schipler, G. Iliakis, DNA double-strand-break complexity levels and their possible  
247 contributions to the probability for error-prone processing and repair pathway choice.  
248 *Nucleic Acids Res* **41**, 7589-7605 (2013).
- 249 5. F. Aymard *et al.*, Transcriptionally active chromatin recruits homologous recombination at  
250 DNA double-strand breaks. *Nat Struct Mol Biol* **21**, 366-374 (2014).
- 251 6. R. Schep *et al.*, Impact of chromatin context on Cas9-induced DNA double-strand break  
252 repair pathway balance. *Mol Cell* **81**, 2216-2230 e2210 (2021).
- 253 7. S. L. Sanders *et al.*, Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites  
254 of DNA damage. *Cell* **119**, 603-614 (2004).
- 255 8. Y. Huyen *et al.*, Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand  
256 breaks. *Nature* **432**, 406-411 (2004).
- 257 9. Y. Sun *et al.*, Histone H3 methylation links DNA damage detection to activation of the  
258 tumour suppressor Tip60. *Nat Cell Biol* **11**, 1376-1382 (2009).
- 259 10. M. van Overbeek *et al.*, DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-  
260 Mediated Breaks. *Mol Cell* **63**, 633-646 (2016).
- 261 11. D. Setiaputra, D. Durocher, Shieldin - the protector of DNA ends. *EMBO Rep* **20**, (2019).
- 262 12. Y. Xie *et al.*, RBX1 prompts degradation of EXO1 to limit the homologous recombination  
263 pathway of DNA double-strand break repair in G1 phase. *Cell Death Differ* **27**, 1383-1397  
264 (2020).
- 265 13. F. Robert, M. Barbeau, S. Ethier, J. Dostie, J. Pelletier, Pharmacological inhibition of DNA-  
266 PK stimulates Cas9-mediated genome editing. *Genome Med* **7**, 93 (2015).
- 267 14. V. T. Chu *et al.*, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-  
268 induced precise gene editing in mammalian cells. *Nat Biotechnol* **33**, 543-548 (2015).
- 269 15. C. J. Tsai, S. A. Kim, G. Chu, Cernunnos/XLF promotes the ligation of mismatched and  
270 noncohesive DNA ends. *Proc Natl Acad Sci U S A* **104**, 7851-7856 (2007).
- 271 16. A. Craxton *et al.*, PAXX and its paralogs synergistically direct DNA polymerase lambda  
272 activity in DNA repair. *Nat Commun* **9**, 3877 (2018).
- 273 17. J. A. Hussmann *et al.*, Mapping the genetic landscape of DNA double-strand break repair.  
274 *Cell* **184**, 5653-5669 e5625 (2021).
- 275 18. S. M. Howard, D. A. Yanez, J. M. Stark, DNA damage response factors from diverse  
276 pathways, including DNA crosslink repair, mediate alternative end joining. *PLoS Genet* **11**,  
277 e1004943 (2015).
- 278 19. W. Akhtar *et al.*, Chromatin position effects assayed by thousands of reporters integrated  
279 in parallel. *Cell* **154**, 914-927 (2013).
- 280 20. M. Corrales *et al.*, Clustering of Drosophila housekeeping promoters facilitates their  
281 expression. *Genome Res* **27**, 1153-1161 (2017).
- 282 21. C. Leemans *et al.*, Promoter-Intrinsic and Local Chromatin Features Determine Gene  
283 Repression in LADs. *Cell* **177**, 852-864 e814 (2019).
- 284 22. A. Sfeir, L. S. Symington, Microhomology-Mediated End Joining: A Back-up Survival  
285 Mechanism or Dedicated Pathway? *Trends Biochem Sci* **40**, 701-714 (2015).
- 286 23. P. Khongkow *et al.*, FOXM1 targets NBS1 to regulate DNA damage-induced senescence  
287 and epirubicin resistance. *Oncogene* **33**, 4144-4155 (2014).
- 288 24. M. Kriegs *et al.*, The epidermal growth factor receptor modulates DNA double-strand break  
289 repair by regulating non-homologous end-joining. *DNA Repair (Amst)* **9**, 889-897 (2010).

290 25. L. Wan *et al.*, Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase  
291 with homologous recombination repair. *Proc Natl Acad Sci U S A* **110**, 10646-10651 (2013).  
292 26. C. Stark *et al.*, BioGRID: a general repository for interaction datasets. *Nucleic Acids Res*  
293 **34**, D535-539 (2006).  
294 27. A. A. Goodarzi *et al.*, ATM signaling facilitates repair of DNA double-strand breaks  
295 associated with heterochromatin. *Mol Cell* **31**, 167-177 (2008).  
296 28. I. Chiolo *et al.*, Double-strand breaks in heterochromatin move outside of a dynamic HP1a  
297 domain to complete recombinational repair. *Cell* **144**, 732-744 (2011).  
298 29. S. Matsuoka *et al.*, Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.  
299 *Proc Natl Acad Sci U S A* **97**, 10389-10394 (2000).  
300 30. Y. Shiloh, Y. Ziv, The ATM protein kinase: regulating the cellular response to genotoxic  
301 stress, and more. *Nat Rev Mol Cell Biol* **14**, 197-210 (2013).  
302 31. S. Choi, A. M. Gamper, J. S. White, C. J. Bakkenist, Inhibition of ATM kinase activity does  
303 not phenocopy ATM protein disruption: implications for the clinical utility of ATM kinase  
304 inhibitors. *Cell Cycle* **9**, 4052-4057 (2010).  
305 32. G. P. Crossan, K. J. Patel, The Fanconi anaemia pathway orchestrates incisions at sites of  
306 crosslinked DNA. *J Pathol* **226**, 326-337 (2012).  
307 33. J. Torres-Rosell *et al.*, The Smc5-Smc6 complex and SUMO modification of Rad52  
308 regulates recombinational repair at the ribosomal gene locus. *Nat Cell Biol* **9**, 923-931  
309 (2007).  
310 34. R. Bayley *et al.*, H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ.  
311 *Mol Cell* **82**, 1924-1939 e1910 (2022).  
312 35. M. Hoek, M. P. Myers, B. Stillman, An analysis of CAF-1-interacting proteins reveals  
313 dynamic and direct interactions with the KU complex and 14-3-3 proteins. *J Biol Chem* **286**,  
314 10876-10887 (2011).  
315 36. T. S. Nambiar, L. Baudrier, P. Billon, A. Ciccia, CRISPR-based genome editing through the  
316 lens of DNA repair. *Mol Cell* **82**, 348-388 (2022).  
317 37. L. Feng, J. Wang, J. Chen, The Lys63-specific deubiquitinating enzyme BRCC36 is  
318 regulated by two scaffold proteins localizing in different subcellular compartments. *J Biol  
319 Chem* **285**, 30982-30988 (2010).  
320 38. Y. Hu *et al.*, RAP80-directed tuning of BRCA1 homologous recombination function at  
321 ionizing radiation-induced nuclear foci. *Genes Dev* **25**, 685-700 (2011).  
322 39. S. Ahrabi *et al.*, A role for human homologous recombination factors in suppressing  
323 microhomology-mediated end joining. *Nucleic Acids Res* **44**, 5743-5757 (2016).  
324 40. J. Zamborszky *et al.*, Loss of BRCA1 or BRCA2 markedly increases the rate of base  
325 substitution mutagenesis and has distinct effects on genomic deletions. *Oncogene* **36**, 746-  
326 755 (2017).  
327 41. A. L. H. Webster *et al.*, Fanconi Anemia Pathway Deficiency Drives Copy Number Variation  
328 in Squamous Cell Carcinomas. *bioRxiv*, 2021.2008.2014.456365 (2021).  
329 42. T. Clouaire, G. Legube, A Snapshot on the Cis Chromatin Response to DNA Double-Strand  
330 Breaks. *Trends Genet* **35**, 330-345 (2019).  
331 43. E. K. Brinkman *et al.*, Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand  
332 DNA Breaks. *Mol Cell* **70**, 801-813 e806 (2018).  
333 44. E. K. Brinkman, T. Chen, M. Amendola, B. van Steensel, Easy quantitative assessment of  
334 genome editing by sequence trace decomposition. *Nucleic Acids Res* **42**, e168 (2014).  
335 45. A. Hendel *et al.*, Quantifying genome-editing outcomes at endogenous loci with SMRT  
336 sequencing. *Cell Rep* **7**, 293-305 (2014).  
337 46. R. Schep, C. Leemans, E. K. Brinkman, T. van Schaik, B. van Steensel, Protocol: A  
338 Multiplexed Reporter Assay to Study Effects of Chromatin Context on DNA Double-Strand  
339 Break Repair. *Front Genet* **12**, 785947 (2021).  
340 47. A. M. Yu, M. McVey, Synthesis-dependent microhomology-mediated end joining accounts  
341 for multiple types of repair junctions. *Nucleic Acids Res* **38**, 5706-5717 (2010).

342 48. S. H. Chan, A. M. Yu, M. McVey, Dual roles for DNA polymerase theta in alternative end-  
343 joining repair of double-strand breaks in *Drosophila*. *PLoS Genet* **6**, e1001005 (2010).  
344 49. L. Moore *et al.*, The mutational landscape of normal human endometrial epithelium. *Nature*  
345 **580**, 640-646 (2020).  
346 50. Icgc TcgA Pan-Cancer Analysis of Whole Genomes Consortium, Pan-cancer analysis of  
347 whole genomes. *Nature* **578**, 82-93 (2020).  
348 51. Encode Project Consortium, An integrated encyclopedia of DNA elements in the human  
349 genome. *Nature* **489**, 57-74 (2012).  
350 52. C. J. Ott *et al.*, Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic  
351 Lymphocytic Leukemia. *Cancer Cell* **34**, 982-995 e987 (2018).  
352 53. A. C. Salzberg *et al.*, Genome-wide mapping of histone H3K9me2 in acute myeloid  
353 leukemia reveals large chromosomal domains associated with massive gene silencing and  
354 sites of genome instability. *PLoS One* **12**, e0173723 (2017).  
355 54. C. Schmidl, A. F. Rendeiro, N. C. Sheffield, C. Bock, ChIPmentation: fast, robust, low-input  
356 ChIP-seq for histones and transcription factors. *Nat Methods* **12**, 963-965 (2015).  
357 55. R. N. Shah *et al.*, Examining the Roles of H3K4 Methylation States with Systematically  
358 Characterized Antibodies. *Mol Cell* **72**, 162-177 e167 (2018).  
359 56. J. Dekker *et al.*, The 4D nucleome project. *Nature* **549**, 219-226 (2017).  
360 57. B. Schwalb *et al.*, TT-seq maps the human transient transcriptome. *Science* **352**, 1225-  
361 1228 (2016).  
362

363 **ACKNOWLEDGEMENTS**

364 We thank the NKI Genomics and Research High Performance Computing core facilities for  
365 technical support; members of our laboratories and Titia Sixma for inspiring discussions and helpful  
366 comments; Jacqueline Jacobs, Heinz Jacobs and Jeroen van den Berg for help with KO library  
367 gene set curation. **Funding:** This work was supported by ZonMW TOP grant 91215067 (to R.H.M.  
368 and B.v.S.), European Research Council (ERC) Advanced Grant 694466 (to B.v.S.); NIH Common  
369 Fund “4D Nucleome” Program grant U54DK107965 (B.v.S.); NWO Zwaartekracht (to R.H.M.). The  
370 Oncode Institute is partly supported by KWF Dutch Cancer Society. **Author Contributions:** X.V.,  
371 A.G.M, R.S, B.v.S, R.H.M conceived and designed the study. A.G.M, B.M and X.V. performed  
372 experiments. X.V., C.L. and M.S. performed data analysis. B.v.S, R.H.M and R.L.B supervised the  
373 study. X.V., B.v.S and R.H.M. wrote the manuscript with input of all authors. **Competing interests:**  
374 The authors declare no conflict of interest. **Data and materials availability:** All data shown in this  
375 paper have been deposited in the Short Read Archive (BioProject no. PRJNA882344). All code to  
376 analyze the data and create the figures is available on GitHub  
377 ([https://github.com/vansteensellab/CCD\\_repair\\_protein\\_project](https://github.com/vansteensellab/CCD_repair_protein_project)).

378

379 **SUPPLEMENTARY MATERIALS**

380 Materials and Methods

381 Figs. S1 to S8

382 Scheme 1 to 6

383 Tables S1 to S10

384 References (43-57)

|     |                                                                                                                   |           |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------|
| 385 | <b>MATERIALS AND METHODS, SUPPLEMENTARY TABLES AND FIGURES</b>                                                    |           |
| 386 | <b>MATERIALS AND METHODS.....</b>                                                                                 | <b>16</b> |
| 387 | <b>A. EXPERIMENTAL PROCEDURES .....</b>                                                                           | <b>16</b> |
| 388 | CELL LINE AND CULTURE CONDITIONS .....                                                                            | 16        |
| 389 | DESIGN OF KO gRNA LIBRARY .....                                                                                   | 16        |
| 390 | SCREEN PROCEDURE .....                                                                                            | 16        |
| 391 | <i>Overview</i> .....                                                                                             | 16        |
| 392 | <i>Liquid handling</i> .....                                                                                      | 16        |
| 393 | <i>Day 1: Induction of Cas9 and transfection of KO gRNA library (scheme 1)</i> .....                              | 17        |
| 394 | <i>Day 5: passaging of cells and quality checks (scheme 2)</i> .....                                              | 18        |
| 395 | <i>Day 6: induction of DSBs in IPRs by transfection with LBR2 gRNA (scheme 3)</i> .....                           | 19        |
| 396 | <i>Day 9: cell lysis and quality controls (scheme 4)</i> .....                                                    | 19        |
| 397 | <i>Screening replicates</i> .....                                                                                 | 20        |
| 398 | <i>Downstream processing: sample preparation for IPR sequencing (scheme 5)</i> .....                              | 20        |
| 399 | CHROMATIN CONTEXT EFFECTS ASSESSED WITH INHIBITORS.....                                                           | 21        |
| 400 | <i>Plasmid transfection</i> .....                                                                                 | 22        |
| 401 | <i>Inhibitor treatment</i> .....                                                                                  | 22        |
| 402 | <i>Indel library preparation</i> .....                                                                            | 22        |
| 403 | <i>Data analysis</i> .....                                                                                        | 22        |
| 404 | <b>B. DATA PROCESSING AND COMPUTATIONAL ANALYSES .....</b>                                                        | <b>23</b> |
| 405 | PROCESSING AND STATISTICAL ANALYSIS OF SCREEN DATA.....                                                           | 23        |
| 406 | 1. <i>Demultiplexing and general quality control of sequencing reads</i> .....                                    | 24        |
| 407 | 2. <i>Scoring of indels in IPRs</i> .....                                                                         | 24        |
| 408 | 3. <i>Calculation of changes in MMEJ:NHEJ balance</i> .....                                                       | 24        |
| 409 | 4. <i>Identification of proteins with global effects on MMEJ:NHEJ balance</i> .....                               | 26        |
| 410 | 5. <i>Identification of proteins with CCD: three-step linear modelling</i> .....                                  | 26        |
| 411 | 6. <i>Estimation of chromatin context dependent MMEJ:NHEJ balance changes</i> .....                               | 28        |
| 412 | 7. <i>Estimation of screen KO penetrance</i> .....                                                                | 29        |
| 413 | 8. <i>Data visualization</i> .....                                                                                | 29        |
| 414 | COMPARISON TO PROTEIN-PROTEIN INTERACTION DATA.....                                                               | 29        |
| 415 | CHROMATIN CONTEXT DEPENDENT PATHWAY ACTIVITY IN TUMORS.....                                                       | 30        |
| 416 | <b>SUPPLEMENTARY TABLES .....</b>                                                                                 | <b>32</b> |
| 417 | TABLE S1: KO gRNA LIBRARY gRNA SEQUENCE LIST .....                                                                | 32        |
| 418 | TABLE S2: gRNA AND PRIMER SEQUENCES USED IN THIS MANUSCRIPT.....                                                  | 32        |
| 419 | TABLE S3: OVERVIEW OF SEQUENCING READ NUMBERS PER SAMPLE IN THE SCREEN .....                                      | 32        |
| 420 | TABLE S4: $\Delta \text{LOG}_2 \text{MMEJ:NHEJ}$ SCORES FOR 519 PROTEINS AND 19 IPRs.....                         | 32        |
| 421 | TABLE S5: EPIGENOME MAPS .....                                                                                    | 32        |
| 422 | TABLE S6: GENOMIC COORDINATES, CHROMATIN FEATURE SCORES AND BARCODES OF 19 IPRs IN K562 CLONE 5 .....             | 34        |
| 423 | TABLE S7: CHROMATIN CONTEXT DEPENDENT EFFECTS OF PROTEINS IN THE SCREEN .....                                     | 34        |
| 424 | TABLE S8: CCD SIMILARITY SCORES OF PROTEINS WITH PHYSICAL INTERACTIONS (CURATED BY BIOGRID) .....                 | 35        |
| 425 | TABLE S9: MAPPED INDELS IN BRCA2 <sup>+/+</sup> AND BRCA2 <sup>-/-</sup> TUMORS .....                             | 35        |
| 426 | TABLE S10: MAPPED STRUCTURAL VARIANTS IN BRCA2 <sup>+/+</sup> AND BRCA2 <sup>-/-</sup> TUMORS .....               | 35        |
| 427 | <b>SUPPLEMENTARY FIGURES .....</b>                                                                                | <b>36</b> |
| 428 | FIG. S1: SCREEN REPLICATE REPRODUCIBILITY AND DISTRIBUTION OF $\Delta \text{LOG}_2 \text{MMEJ:NHEJ}$ VALUES ..... | 36        |
| 429 | FIG. S2: Z-TRANSFORMATION AND COMBINING OF REPLICATE MEASUREMENTS OF $\text{LOG}_2 \text{MMEJ:NHEJ}$ VALUES ..... | 37        |
| 430 | FIG. S3: PRINCIPAL COMPONENT REGRESSION ANALYSIS .....                                                            | 39        |
| 431 | FIG. S4: EXAMPLES OF LINEAR FIT CORRELATION WITH INDIVIDUAL CHROMATIN FEATURES .....                              | 40        |
| 432 | FIG. S5: ESTIMATION OF GENOME-WIDE DYNAMIC RANGES OF CHROMATIN FEATURES .....                                     | 41        |
| 433 | FIG. S6: ATM AND DNAPK INHIBITOR EFFECTS .....                                                                    | 42        |
| 434 | FIG. S7: EDITING EFFICIENCY ESTIMATION .....                                                                      | 43        |
| 435 | FIG. S8: BRCA2 <sup>+/+</sup> AND BRCA2 <sup>-/-</sup> MUTATION ANALYSIS .....                                    | 44        |

436 **MATERIALS AND METHODS**

437 **A. EXPERIMENTAL PROCEDURES**

438 **Cell line and culture conditions**

439 We used the clonal cell line K562#17 DSB-TRIP clone 5 (6), which is a genetically modified  
440 monoclonal human K562 cell line (ATCC). This cell line stably expresses Shield1-inducible DD-  
441 Cas9 and additionally carries 19 uniquely barcoded integrated pathway reporters (IPRs) in  
442 precisely mapped genomic locations ([Table S6](#)). Cells were cultured in RPMI 1640 (GIBCO)  
443 supplemented with 10% fetal bovine serum (FBS, Capricorn Scientific) and 1%  
444 penicillin/streptomycin. Cells were regularly checked to be free of mycoplasma.

445

446 **Design of KO gRNA library**

447 We designed an arrayed CRISPR/Cas9 KO gRNA library (KO gRNA library, in short) which targeted  
448 a total of 519 genes encoding proteins previously linked to DNA repair. The list of proteins was  
449 based on the Gene Ontology term GO:0006302 (double strand break repair), supplemented with a  
450 manually curated list. The crRNA library was generated by Integrated DNA Technologies (IDT) and  
451 contained 4 gRNAs per gene ([Table S1](#)). The individual crRNAs were delivered in a lyophilized  
452 RNA form and were diluted in Duplex Buffer (DB, IDT cat. no. 11-01-03-01) to a stock concentration  
453 of 100 µM. Finally, we pooled crRNA targeting the same gene to a single well in a final concentration  
454 of 5 µM per crRNA.

455

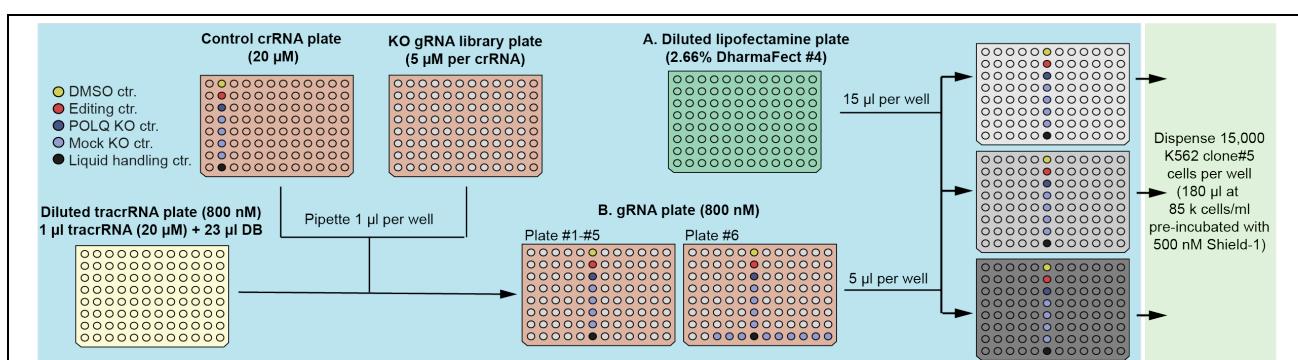
456 **Screen procedure**

457 *Overview*

458 We performed the screen in 96-well format. It consisted of the following key steps:

- 459 • Day 1: Induction of Cas9 expression and transfection with gRNAs to disrupt 519 individual genes  
([scheme 1](#))
- 460 • Day 5: Passaging of cells; quality checks of liquid handling and transfection efficiency ([scheme 2](#))
- 461 • Day 6: Second transfection: induction of DSBs in the IPRs ([scheme 3](#))
- 462 • Day 9: Lysis of cells ([scheme 4](#))
- 463 • Downstream processing: PCR amplification and sequencing of the barcoded IPRs ([scheme 5](#))

464


465 *Liquid handling*

466 Steps in the procedure were performed in a semi-automated fashion either with MicroLab STAR  
467 liquid handler (Hamilton Company, [blue in scheme 1-5](#)), Multidrop™ Combi Reagent Dispenser  
468 (ThermoFisher, [green in scheme 1-5](#)) or manually ([grey in scheme 1-5](#)).

469

472 *Day 1: Induction of Cas9 and transfection of KO gRNA library (scheme 1)*

473 Eight hours before the KO gRNA library transfection, we diluted clone 5 to a final concentration of  
474 85,000 cells/ml with medium containing 500 nM Shield-1 (Aobious cat. no. AOB1848) to stabilize  
475 DD-Cas9 protein. As first step in the KO gRNA library transfection, we diluted 20  $\mu$ M tracrRNA (IDT  
476 cat. no. 1072534) stock concentration to 800 nM in Duplex Buffer (DB, IDT cat. no. 11-01-03-01)  
477 in a final volume of 24  $\mu$ l. Next, we pipetted 1  $\mu$ l crRNA of KO gRNA library (stock at 20  $\mu$ M in DB)  
478 or controls to its appropriate position in the gRNA plate (orange, scheme 1). Plates 1 to 5 in the  
479 screen included 88 KO gRNAs and 8 controls wells: four mock KO controls (crRNA was omitted),  
480 one POLQ KO gRNA control (used as a positive control, sequences in **Table S2**), one editing  
481 control (transfected with LBR2 gRNA (43)) and one pipetting control. In the pipetting control, 1  $\mu$ l  
482 phenylarsine oxide (PAO Sigma-Aldrich, cat. no. P3075, stock concentration of 10 mM) was  
483 pipetted instead of 1  $\mu$ l crRNA. 10  $\mu$ M of PAO is enough to kill K562 cells, so we used visual  
484 inspection of cell death at day 5 to check if the KO gRNA library pipetting step was successful.  
485 Plate 6 included nine additional mock KO controls, making a total of 33 per replicate. In parallel,  
486 we diluted DharmaFect #4 (Horizon Discovery, cat. no. T-2004-03) lipofectamine to 2.66% (0.4  $\mu$ l  
487 in 15  $\mu$ l) with Optimem (Gibco, cat. no. 31985070). After 5 minutes incubation at room temperature,  
488 15  $\mu$ l of diluted DharmaFect #4 was pipetted in the three empty 96-well V-bottom plates (Thermo  
489 Fisher, cat. no. 11816003) and 5  $\mu$ l of the 800 nM coupled gRNA. This mix was incubated for 15  
490 minutes at room temperature and subsequently 15,000 clone 5 cells were dispensed per well (180  
491  $\mu$ l of clone 5 cells in 500 nM Shield-1). This procedure was repeated six times, once for each  
492 different KO gRNA library plate. We note that every new batch of DharmaFect #4 lipofectamine  
493 was tested and the cell:lipofectamine ratio was adapted for optimal transfection efficiencies. The  
494 reagent quantities described above are representative of the concentrations used in the screen.  
495




497 **Scheme 1: Day 1 procedure – KO gRNA library transfection (repeated 6 times).** 24  $\mu$ l of 800 nM  
498 tracrRNA (yellow) was pipetted to the final crRNA:tracrRNA plate (orange). Then, 1  $\mu$ l of KO gRNA library or  
499 control plate added to screening plate position. Next, Diluted DharmaFect #4 was pipetted to lipofectamine  
500 plate (green). 15  $\mu$ l of the lipofectamine was pipetted into three 96-well plates (three replicates) and 5  $\mu$ l of  
501 the crRNA:tracrRNA mix added later. With the cell dispenser, 15,000 clone5 cells per well were dispensed  
502 (green).

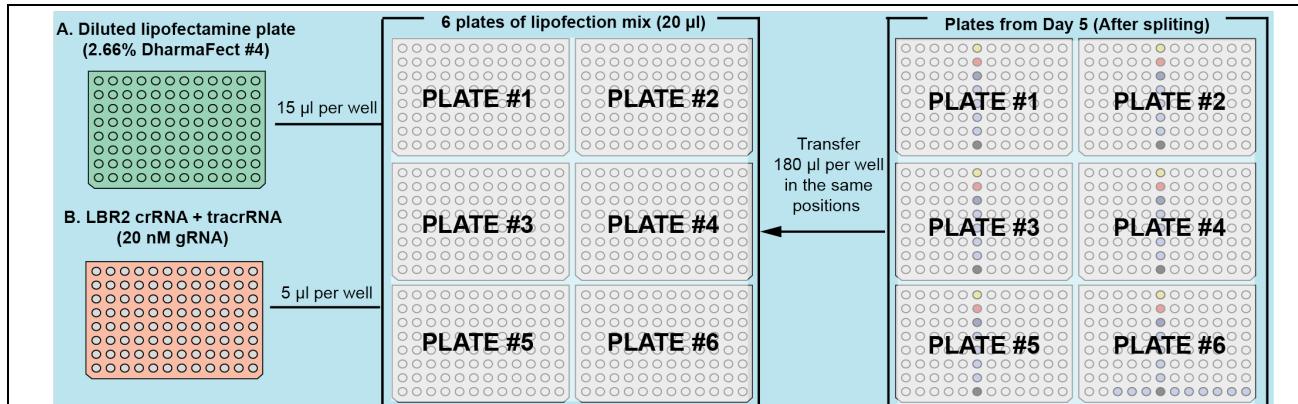
503

504 *Day 5: passaging of cells and quality checks (scheme 2)*

505 Four days after KO gRNA library transfection, we split transfected cells 1:10 with fresh medium  
506 supplemented with 500 nM Shield-1. At this step, we harvested editing control wells for TIDE  
507 analysis and we visually inspected cell death in the pipetting control wells. We used these two  
508 quality controls to assess if specific plates should be discarded or kept for the following steps. We  
509 repeated this process for every plate in the screening.

510 TIDE (44) was used to monitor the editing efficiency prior to high-throughput sequencing,  
511 as follows. Editing control wells were harvested and cells were lysed with 30  $\mu$ l DirectPCR lysis  
512 buffer (Viagen cat. no. 301-C) supplemented with 1 mg/ml proteinase K (Bioline, cat. no. BIO-  
513 37084) by incubating them at 55 °C for at least 2 hours up to overnight, followed by heat inactivation  
514 for 45 min at 85 °C. To monitor the CRISPR editing frequency, we used primers spanning the  
515 endogenous LBR2 target site as previously reported (43). PCR was performed using 10  $\mu$ l MyTaq  
516 Red mix (Bioline, cat. no. BIO-25044), 1  $\mu$ M of each TAC0017 and TAC0018 primers, 2  $\mu$ l of cell  
517 lysate and up to 20  $\mu$ l of water. PCR conditions for TIDE analysis are the following ones: 1 min at  
518 95 °C followed by 28 cycles of 15 s at 95 °C, 15 s at 58 °C and 30 s at 72 °C and a final extension  
519 of 1min at 72 °C. The excess of PCR primers was degraded by EXOSAP treatment as follows. For  
520 each 10  $\mu$ l of PCR reaction, 0.125  $\mu$ l of Shrimp Alkaline Phosphatase (1 U/ml; New England  
521 Biolabs, cat. no. M0371S), 0.0125  $\mu$ l Exonuclease I (20 U/ml; New England Biolabs, cat. no.  
522 M0293S) and 2.36  $\mu$ l of water were added. Samples were incubated at 37 °C for 30 min and heat  
523 inactivated for 10 min at 95 °C. Next, 5  $\mu$ l of EXOSAP-treated PCR mix was Sanger sequenced  
524 with 5  $\mu$ l of TAC0017 primer at 5  $\mu$ M concentration by Macrogen (EZ-seq). The resulting Sanger  
525 sequence traces were analyzed using the TIDE algorithm (44) to determine the editing efficiency.  
526




527  
528 **Scheme 2: Day 5 procedure - Passaging of cells and harvesting of control samples (repeated 18**  
529 **times).** Screening plates were split 1:10 with fresh medium. Editing control was harvested for TIDE analysis  
530 and the pipetting control was checked visually.

531

532 Day 6: induction of DSBs in IPRs by transfection with LBR2 gRNA (**scheme 3**)

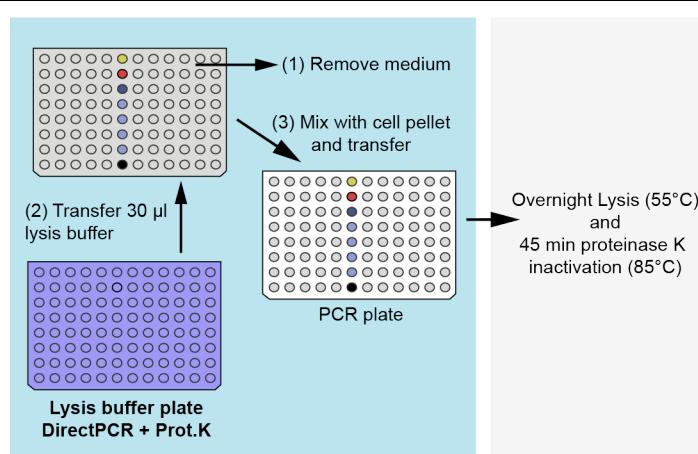
533 We manually mixed LBR2 crRNA (crRNA targeting DSB-TRIP reporters) with tracrRNA at a final  
534 concentration of 800 nM in DB and diluted DharmaFect in Optimem (2.66% concentration). Then,  
535 we pipetted 15  $\mu$ l of diluted lipofectamine into six empty 96-well plates and added 5  $\mu$ l of LBR2  
536 crRNA:tracrRNA. After incubating this mix for 15 min at room temperature, we added 180  $\mu$ l KO  
537 cells in arrayed format. We repeated this procedure for each replicate independently with freshly  
538 prepared LBR2 gRNA and DharmaFect #4 mixes.

539



540  
541 **Scheme 3: Day 6 procedure - LBR2 gRNA transfection (repeated 3 times).** DharmaFect #4 and LBR2  
542 crRNA:tracrRNA were manually diluted. Then, 15  $\mu$ l DharmaFect #4 and 5  $\mu$ l LBR2 crRNA:tracrRNA (B on  
543 A) was combined into each well of 6 empty 96-well plates. 15 minutes after mixing, 180  $\mu$ l of cells, split on  
544 day 5, were transferred into the transfection mix plate.

545


546 Day 9: cell lysis and quality controls (**scheme 4**)

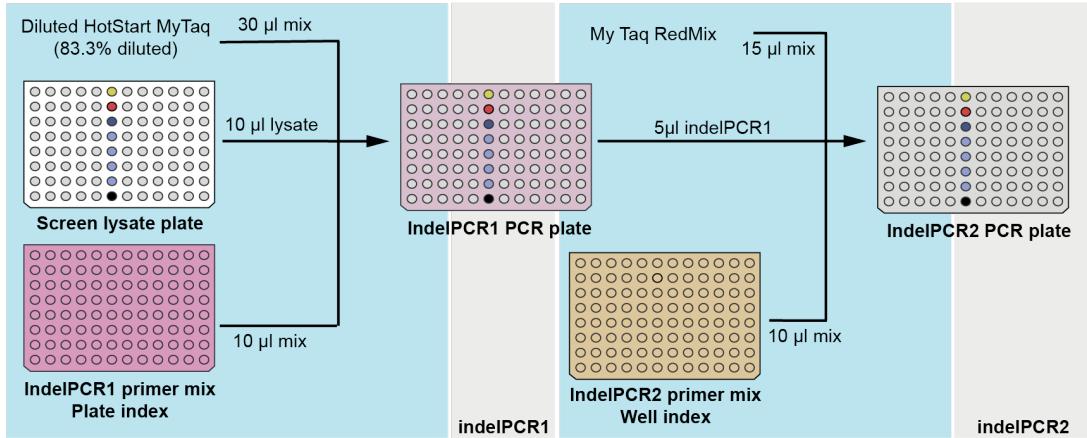
547 Three days after LBR2 gRNA transfection we harvested the screening plates. To do so, we  
548 centrifuged 96-well plates to pellet the cells (1500 rpm for 5 min). Then, we removed the  
549 supernatant and pipetted 30  $\mu$ l of DirectPCR lysis buffer supplemented with 1 mg/ml proteinase K  
550 on the cell pellets. After a couple of pipetting cycles to mix cells with lysis buffer, we transferred the  
551 cell lysate to an empty 96-well PCR plate (ThermoFisher, cat. no. AB0900). Cells were lysed  
552 overnight at 55°C in a thermocycler, and proteinase K was subsequently inactivated for 45 minutes  
553 at 85°C.

554 To monitor CRISPR editing efficiency of the second transfection, we performed TIDE  
555 analysis with cell lysate from a random well from each plate, as described above (Day 5).

556

557




558  
559 **Scheme 4: Day 9 procedure - Screening plate harvesting (repeated 18 times).** Harvesting was performed  
560 in three steps. After cells were pelleted by centrifugation, 170  $\mu$ l supernatant was removed (grey, 1); lysis  
561 buffer was added (purple) and mixed with cell pellets (grey, 2); and the cell lysate was transferred to empty  
562 PCR plates (white, 3). Cells were lysed overnight at 55°C and proteinase K was subsequently heat  
563 inactivated for 45 min at 85 °C.

564  
565 *Screening replicates*  
566 The screening was performed twice, more than a month apart. Each time the screening was  
567 performed in three replicates with independent transfection mixes. Three out of six replicates were  
568 discarded because of technical reasons such as wrong liquid handling, unsuccessful transfection  
569 (at least ~50% editing in the editing efficiency control) or problems during sample processing. One  
570 replicate from the first screen and two replicates from the second screen passed the quality  
571 controls. We refer to these replicates as replicate 1 (R1), replicate 2 (R2) and replicate 3 (R3).  
572

573 *Downstream processing: sample preparation for IPR sequencing (scheme 5)*  
574 For the sequencing of the IPRs (to identify indels and their linked IPR barcodes) in all screen  
575 samples, we employed a two-step PCR indexing and pooling strategy as previously described (6),  
576 with some adaptations. We performed the first PCR reaction (indelPCR1) with TAC0007 (indexed)  
577 and TAC0012 (non-indexed) primers with a unique TAC0007 indexed primer for each 96-well plate,  
578 and the second PCR reaction (indelPCR2) with TAC009 (non-indexed) and TAC0159 (indexed)  
579 primers with 96 different TAC0159 primers (one for each well in a 96-well plate). Pipetting was  
580 performed using the MicroLab STAR liquid handler (Hamilton Company).

581 IndelPCR1 and indelPCR2 were performed under similar PCR conditions with the only  
582 difference being the number of cycles. In both reactions, a denaturing step was performed for 1  
583 min at 95 °C, low annealing temperature amplification cycles (cold cycles) for 15 s at 95 °C, 15 s  
584 at 55 °C and 15 s at 72 °C, high annealing temperature amplification cycles (hot cycles) for 15 s at  
585 95 °C, 15 s at 70 °C and 15 s at 72 °C and a final extension of 2 min at 72 °C.

586



587  
588 **Scheme 5: Screening sample preparation for sequencing.** PCR amplification of indel and barcode of  
589 each IPR in all screening samples was performed in two steps: indelPCR1 and indelPCR2. Pipetting was  
590 performed with the liquid handler (blue) and PCRs with a ThermoCycler (grey). IndelPCR1 was pipetted from  
591 three source plates: Diluted HotStart MyTaq Red Mix (5 parts of mix with 1 part of H<sub>2</sub>O), screening cell  
592 lysates (white) and indelPCR1 primer mix (purple). A different indexed primer was used per plate. IndelPCR2  
593 was also pipetted from three source plates: MyTaq Red mix, indelPCR1 PCR plate (light purple) and  
594 indelPCR2 primer mix (gold). A different indexed primer was used for each well.

595  
596 We performed indelPCR1 with 10 µl of cell lysate from the screening plates, 30 µl of 86.6%  
597 (5:1) diluted MyTaq HotStart Red Mix in water (Bioline, cat. no. BIO-25048) and 10 µl of 1 µM of  
598 each primer (TAC0007 and TAC0012 final concentration of 200 nM) for 4 cold cycles and 9 hot  
599 cycles. Then, we performed indelPCR2 with 5 µl of indelPCR1 product, 15 µl of MyTaq Red mix  
600 (Bioline, cat. no. BIO-25044) and 10 µl of 500 nM of each primer (TAC0009 and TAC0159, final  
601 concentration of 166 nM) for 3 cold cycles and 8 hot cycles.

602 Next, we pooled indelPCR2 products per plate in equal volumes and DNA was purified with  
603 cleanPCR (CleanNA cat. no. CPCR-0050) beads at a 0.8:1 beads:sample ratio. Ten µl of each pool  
604 was run on a 2% agarose gel for visual inspection, and DNA concentration was quantified by Qubit  
605 DNA dsHS Assay Kit (Invitrogen, cat. no. Q32851). Equimolar concentrations of DNA per plate  
606 were pooled and the resulting product run on a 2% agarose gel. The PCR amplicon band was cut  
607 from the gel and isolated by PCR Isolate II PCR and Gel Kit (Bioline, cat. no. BIO-52060) and lastly  
608 bead-purified. Resulting preparations were sequenced on a NextSeq MID with single-ended 150  
609 bp reads with ~25 % of PhiX spike-in.

610  
611 **Chromatin context effects assessed with inhibitors**  
612 For DNAPK and ATM we also determined CCDs by using specific small-molecule inhibitors. The  
613 experimental design was similar to the KO screen setup, with the following modifications:

614 *Plasmid transfection.*

615 To induce DSBs, we introduced LBR2 gRNA into the cells by plasmid nucleofection instead of RNA  
616 transfection. For this purpose, we resuspended one million K562 clone 5 cells in 100  $\mu$ l transfection  
617 buffer (100 mM KH2PO4, 15 mM NaHCO3, 12 mM MgCl2, 8 mM ATP, 2 mM glucose (pH 7.4))  
618 (45). Then, we added 12  $\mu$ g of either gRNA-containing LBR2 plasmid or GFP-expressing control  
619 plasmid. Cells were electroporated in an Amaxa 2D Nucleofector (T-016 program). 24 hours post-  
620 nucleofection, we assessed transfection efficiency by visual observation of GFP-positive cells. This  
621 GFP sample was later used as non-targeted control.

622

623 *Inhibitor treatment.*

624 Eight hours after nucleofection, we added 500 nM Shield-1 (Aobious) to stabilize DD-Cas9 protein.  
625 Together with Shield-1, we added inhibitors of either DNAPK (M3814, final concentration 1  $\mu$ M from  
626 a 1 mM stock in DMSO, MCE cat. no. HY-101570), ATM (KU5593, final concentration 10  $\mu$ M from  
627 a 10 mM stock in DMSO, Calbiochem cat. no. #118500), and DMSO-only vehicle controls (1:1000,  
628 Sigma cat no. D4540).

629

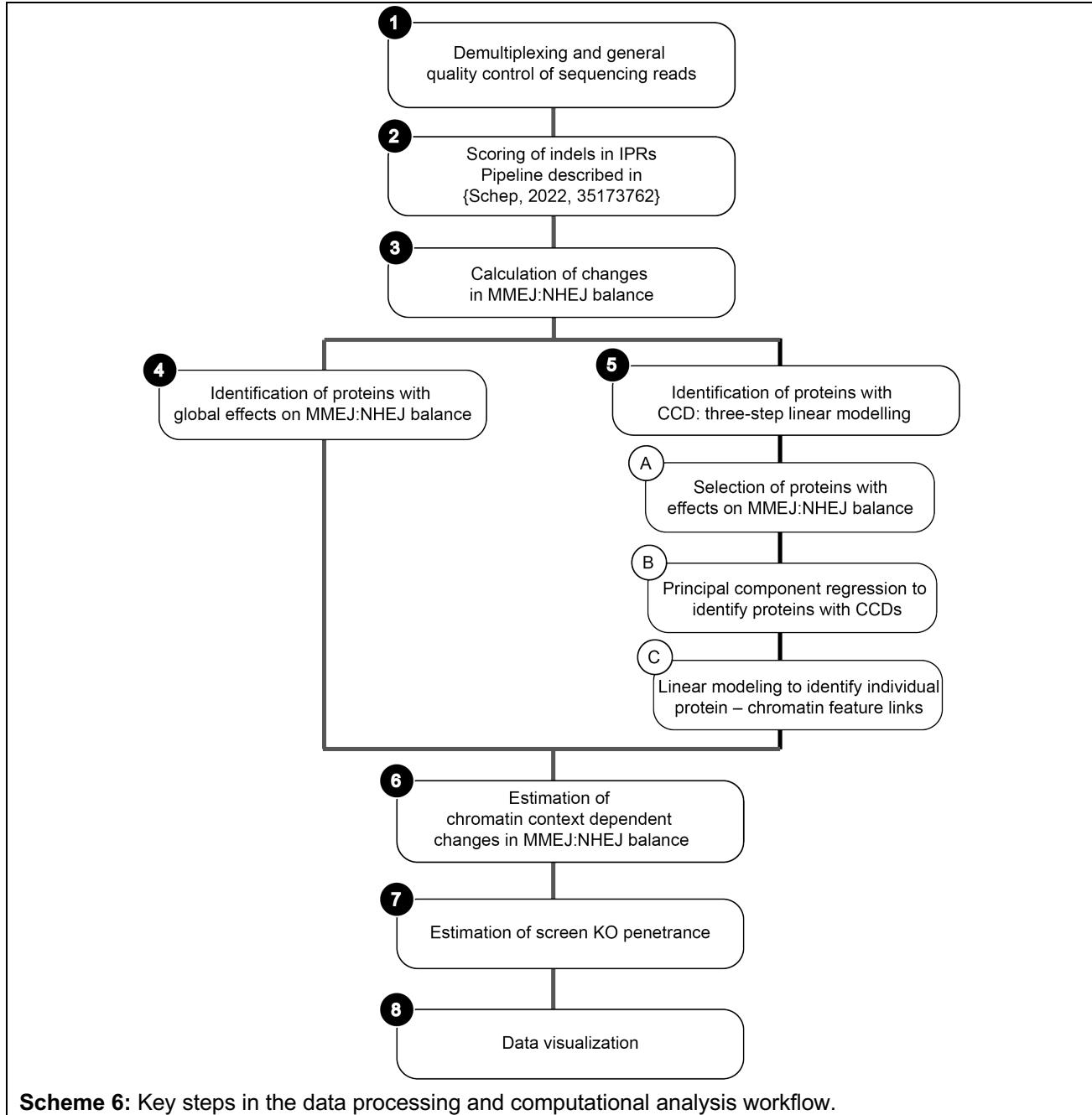
630 *Indel library preparation.*

631 72 hours after DD-Cas9 stabilization, we harvested the cells, performed genomic DNA (gDNA)  
632 extraction with the ISOLATE II genomic DNA kit (Bioline, BIO-52067) and diluted DNA to 50 ng/ $\mu$ l.  
633 Indel sequencing libraries were prepared as described for the screen but with minor changes as  
634 follows. We performed indelPCR1 with 200 ng of gDNA as input (4  $\mu$ l of 50 ng/ $\mu$ l concentrated  
635 sample) and 200 nM of each primer for 4 cold cycles and 8 hot cycles. Then, we performed  
636 indelPCR2 with 5  $\mu$ l indelPCR1 product and 166.6 nM of each primer for 1 cold cycle and 13 hot  
637 cycles. We pipetted both PCR reactions manually. We pooled samples in equimolar ratios and  
638 prepared them for sequencing as described for the screen. Samples were sequenced in a MiSeq  
639 Nano (Illumina) with 10 % of PhiX spike-in. We performed this experiment in three independent  
640 biological replicates.

641

642 *Data analysis.*

643 We analyzed the CCDs of inhibitors as performed for the screen data (see data processing section  
644 below), with slight modifications. We tested the significance of the perturbation by means of a  
645 Student's t-test instead of a z-test. We used this test because here each replicate includes only a  
646 single control sample. Everything else was performed as described for the screen data.


647

648 **B. DATA PROCESSING AND COMPUTATIONAL ANALYSES**

649 **Processing and statistical analysis of screen data.**

650

651



652

653 **Scheme 6:** Key steps in the data processing and computational analysis workflow.

654

655 1. *Demultiplexing and general quality control of sequencing reads.*  
656 Demultiplexing of the sequencing reads was done based on indices added in the IndelPCR1 (plate  
657 index) and IndelPCR2 steps (well index) and each file contains the reads from a single well in the  
658 screen. We refer to these as sample throughout this section. Demultiplexed sequencing data is  
659 available in the Sequence Read Archive (<https://www.ncbi.nlm.nih.gov/sra>; BioProject no.  
660 PRJNA882344). An overview of obtained read numbers is provided in Table S3.

661

662 2. *Scoring of indels in IPRs.*

663 Scoring of indels and linking to their IPR barcodes in the sequence reads was done using a  
664 previously reported computational pipeline (46). In short, for each sequence the barcode was  
665 extracted and the indel state was classified. As documented previously (6, 43), a single-nucleotide  
666 insertion was assumed to be created by NHEJ repair (NHEJ<sub>ins</sub>), a seven-nucleotide deletion was  
667 assumed to be created by MMEJ repair (MMEJ<sub>del</sub>), and the absence of indel was assumed to be  
668 intact DNA (uncut or perfectly repaired). In the downstream analysis, we use the number of NHEJ<sub>ins</sub>  
669 reads, MMEJ<sub>del</sub> reads and intact reads. The median and 95% CI number of reads per replicate are  
670 summarised in Table 5.

671

|                           | Median |       |       | 95% CI        |               |                |
|---------------------------|--------|-------|-------|---------------|---------------|----------------|
|                           | R1     | R2    | R3    | R1            | R2            | R3             |
| Total (sample)            | 60408  | 53966 | 65220 | [19366,96424] | [8611,194257] | [17047,171887] |
| Processed (sample)        | 49494  | 39226 | 46809 | [15945,79317] | [6066,139428] | [12418,125270] |
| Processed (IPR)           | 2586   | 1920  | 2405  | [850,4379]    | [320,7700]    | [560,7136]     |
| Intact (IPR)              | 1436   | 728   | 969   | [428,2697]    | [103,3352]    | [191,3251]     |
| NHEJ <sub>ins</sub> (IPR) | 516    | 563   | 725   | [65,1278]     | [48,2524]     | [127,2468]     |
| MMEJ <sub>del</sub> (IPR) | 242    | 223   | 279   | [39,2697]     | [21,959]      | [48,889]       |

672 **Table S3:** Overview of sequencing read numbers per sample in the screen

673

674 3. *Calculation of changes in MMEJ:NHEJ balance*

675 After indel scoring, we calculated the editing efficiency (Formula 1) and  $\log_2$  MMEJ:NHEJ balance  
676 (Formula 2) for each individual IPR in every sample. Next, we filtered out data based on two  
677 parameters: low read numbers and low editing frequency. First, we discarded IPRs which had less  
678 than 30 reads with either NHEJ<sub>ins</sub> or MMEJ<sub>del</sub> per sample. Second, we discarded samples with an  
679 average editing efficiency lower than 25% per sample. After these filtering steps, 531 samples from  
680 R1, 541 samples from R2 and 555 samples from R3 were retained, with an average of 2.92  
681 replicates and 18.98 IPRs per well.

$$f_{\text{Editing}} = 1 - f_{\text{Intact}} \quad (1)$$

Where  $f$  is the relative frequency, and  $\text{intact}$  is the number of reads without any indel.

$$\log_2 \text{MMEJ:NHEJ} = \log_2 \frac{\text{MMEJ}_{\text{del}}}{\text{NHEJ}_{\text{ins}}} \quad (2)$$

Where  $\text{MMEJ}_{\text{del}}$  is the number of 7 nt deletion reads, and  $\text{NHEJ}_{\text{ins}}$  is the number of 1 nt insertion reads.

682  
683        Then, we divided samples into three categories depending on the gRNA they received in  
684        the first transfection (Day 1): mock KO controls, POLQ KO controls and KO gRNA library samples.  
685        We checked the reproducibility of the  $\log_2$ MMEJ:NHEJ balance between replicates ([Fig. S1A-C](#)).  
686        Next, we computed for each IPR the  $\log_2$  fold change in MMEJ:NHEJ balance ( $\Delta\log_2$ MMEJ:NHEJ)  
687        as a consequence of each KO (Formula 3) and averaged three replicates.

688        A negative  $\Delta\log_2$ MMEJ:NHEJ score implies either reduced MMEJ or increased NHEJ  
689        activity (at the tested IPR) due to the KO of the tested protein. Our assay cannot discriminate  
690        between these two possibilities, as we cannot measure the individual pathway activities – only the  
691        balance (6, 43). Likewise, a positive  $\Delta\log_2$ MMEJ:NHEJ score implies either increased MMEJ or  
692        decreased NHEJ activity (at the tested IPR). For simplicity, we refer to a negative  $\Delta\log_2$ MMEJ:NHEJ  
693        score as: the tested protein (when present) *favors MMEJ*; and we refer to a positive  
694         $\Delta\log_2$ MMEJ:NHEJ score as: the tested protein (when present) *favors NHEJ*.

695        The POLQ KO samples provide an indication of the dynamic range of  $\Delta\log_2$ MMEJ:NHEJ  
696        scores that may be expected ([Fig. S1D](#)), because POLQ is essential for MMEJ (47, 48). On  
697        average, POLQ KO samples showed a  $\Delta\log_2$ MMEJ:NHEJ score of -1.58  $\log_2$  units across all IPRs,  
698        i.e., a ~3.0-fold reduction in MMEJ:NHEJ balance. As most proteins are not absolutely essential for  
699        either MMEJ or NHEJ, the dynamic range of the  $\Delta\log_2$ MMEJ:NHEJ scores may be expected to be  
700        less than the score observed for POLQ. Indeed, this is the case ([Fig. S1D](#)).

$$\Delta \log_2 \text{MMEJ:NHEJ} = \log_2 \text{MMEJ:NHEJ} - \bar{X}_{\text{MMEJ:NHEJ}} \quad (3)$$

Where  $\bar{X}_{\text{MMEJ:NHEJ}}$  is the mean  $\log_2 \text{MMEJ:NHEJ}$  of mock KO samples (n = 33).

701

$$\Delta \log_2 \text{MMEJ:NHEJ} = \log_2 \text{MMEJ:NHEJ} - \bar{X}_{\text{MMEJ:NHEJ}} \quad (3)$$

Where  $\bar{X}_{\text{MMEJ:NHEJ}}$  is the mean  $\log_2 \text{MMEJ:NHEJ}$  of mock KO samples (n = 33).

702

703 We used the  $\Delta \log_2 \text{MMEJ:NHEJ}$  scores throughout this work as a metric of the contribution  
704 of each protein to the MMEJ:NHEJ balance. For global MMEJ:NHEJ contribution of proteins, we  
705 computed the average  $\Delta \log_2 \text{MMEJ:NHEJ}$  over all 19 pathway reporters ([Section 4 in data  
706 analysis workflow](#)). When calculating chromatin context dependencies (CCDs), the  
707  $\Delta \log_2 \text{MMEJ:NHEJ}$  of each IPR-KO combination was used ([Section 5 in data analysis workflow](#)).  
708

709 *4. Identification of proteins with global effects on MMEJ:NHEJ balance.*

710 To assess the global effect of proteins on MMEJ:NHEJ balance ([Fig. 1B & Fig. 2](#)), we computed  
711 for each KO the mean  $\Delta \log_2 \text{MMEJ:NHEJ}$  over all 19 IPRs. Next, to identify proteins that significantly  
712 favor MMEJ or favor NHEJ independently of the chromatin state, we tested whether the mean  
713  $\Delta \log_2 \text{MMEJ:NHEJ}$  was different than zero by a Student's t-test followed by Benjamini-Hochberg  
714 multiple-testing correction of p-values. We called proteins to globally favor MMEJ (mean  
715  $\Delta \log_2 \text{MMEJ:NHEJ} < 0$ ) or globally favor NHEJ (mean  $\Delta \log_2 \text{MMEJ:NHEJ} > 0$ ) with an estimated  
716 false-discovery rate (FDR) < 0.001.

717

718 *5. Identification of proteins with CCD: three-step linear modelling*

719 *a. Initial selection of proteins with any effect on MMEJ:NHEJ balance.*

720 To filter for proteins with any effect on MMEJ:NHEJ balance, we calculated the z-score  
721  $\log_2 \text{MMEJ:NHEJ}$  for each 19 IPR in 519 KO gRNA samples (total of 9861) using the 33 mock KO  
722 gRNA samples (total of 627) to empirically estimate null-distributions. First, we fitted a normal  
723 distribution through the mock KO  $\log_2 \text{MMEJ:NHEJ}$  scores (n = 33) for each IPR and replicate  
724 separately (example IPR in [Fig. S2A](#)). Next, we standardized  $\log_2 \text{MMEJ:NHEJ}$  scores of each  
725 sample using the mean and standard deviation of the fitted distributions (Formula 4) (example IPR  
726 in [Fig. S2B](#)). Finally, we combined the z-scores of the three independent replicates by Stouffer's  
727 method (Formula 5) ([Fig. S2C](#)). After this transformation, 24.5% KO - IPR combinations (n = 2420)  
728 had an absolute z-score >1.96, compared to only a 4.3% of mock KO - IPR combinations (n = 27).

729 We retained a KO if the absolute z-score was >1.96 in at least 2 out of 19 IPRs. A total of 352 KOs  
730 passed this filter. Of the 33 mock KO samples four passed the same criteria, suggesting an  
731 empirical FDR of 12%. Note that further filters are applied below for additional stringency. From the  
732 352 proteins that passed this filter, 296 *favor MMEJ*, 47 *favor NHEJ* and 9 had mixed effects, i.e.  
733 they *favor MMEJ* in some IPRs and *favor NHEJ* in others.

734

$$Z_{\text{MMEJ:NHEJ}} = \frac{\log_2 \text{MMEJ:NHEJ} - \mu_{N_{\text{null}}}}{\sigma_{N_{\text{null}}}} \quad (4)$$

Where  $N_{\text{null}}$  is a normal distribution fitted with mock KO samples ( $n = 33$ ).

$$Z\text{-score} = \frac{\sum_{i=1}^n Z_{\text{MMEJ:NHEJ}}}{\sqrt{n}} \quad (5)$$

Where  $n$  is the number of replicates.

735  
736 *b. Principal component regression.*  
737 Next, among the remaining 352 proteins, we identified proteins with significant chromatin context  
738 dependencies (CCDs) across the entire set of 25 chromatin features. Because of the strong  
739 covariation among most chromatin features, we did this by principal component (PC) regression.  
740 This consists of dimension reduction using standard principal component analysis, followed by  
741 linear regression on the main PCs (Figure S3A). This approach provides substantial robustness  
742 and avoids identification of fortuitous correlations with single chromatin features.

743 The sources of all chromatin feature tracks are summarized in Table S2. Each of these 25  
744 tracks was z-normalized. Z-scores were calculated as the  $\log_2$  fold-difference of the signal over  
745 control (matching controls as provided by the respective studies) in 2kb bins centered around each  
746 IPR insertion site. These values were subsequently converted into z-scores using the mean and  
747 standard deviation of the chromatin feature signal in the TRIP pools, as previously done (6).

748 We then first assessed the number of PCs needed to explain most of the variance in the  
749 chromatin data of the 19 IPRs. For this we used *p/s* package (version 2.8-1) in *R*. We selected the  
750 first three PCs, which together account for 76% of the variance. Adding a fourth PC to the model  
751 would only increase the explained variance by 6% (Fig. S3B). Closer inspection of the first three  
752 PCs revealed that each PC explained biologically relevant differences in chromatin contexts: PC1  
753 mainly explained the difference between euchromatin and heterochromatin, PC2 mainly explained  
754 differences between heterochromatin types (Triple heterochromatin vs. H3K27me3) and PC3  
755 mainly explained differences between euchromatin types (Enhancer/promoters vs. transcription)  
756 together with replication timing (Fig. S3C). Then, for each of the 354 KO and 4 mock samples, we  
757 constructed a linear model based on three PCs to predict the  $\Delta \log_2 \text{MMEJ:NHEJ}$  scores. To assess

758 the accuracy of this fit, we computed the p-value of the correlation between predicted  
759  $\Delta\log_2\text{MMEJ:NHEJ}$  scores and measured  $\Delta\log_2\text{MMEJ:NHEJ}$  scores for each of the samples. After  
760 Benjamini-Hochberg correction of these p-values for multiple testing, 89 protein KOs and 1 mock  
761 KO passed the significance threshold at FDR cutoff 0.05.

762 *c. Linear modeling to identify individual protein – chromatin feature links.*

763 Finally, to identify the individual chromatin features that contribute to the CCDs, we fitted linear  
764 correlations between  $\Delta\log_2\text{MMEJ:NHEJ}$  of 89 proteins with significant CCDs and each of the 25  
765 individual chromatin features (total of 2225). Based on this calculation, we identified individual  
766 protein – chromatin feature pairs with N-synergies, M-synergies or no synergies as follows:

767 A protein – chromatin feature pair is defined to have N-synergy when the protein *favors*  
768 *NHEJ* according to section 5a in the data analysis workflow, and the linear fit has a positive slope  
769 (**Fig. S4A**). This positive slope implies that the ability of the protein to shift the balance towards  
770 *NHEJ* increases with increasing levels of the chromatin feature. It is also possible that a protein  
771 that *favors NHEJ* according to step 5a shows a negative slope (**Fig. S4B**). However, such a  
772 negative correlation is likely to reflect an indirect effect. For example, IPRs with high H3K4me3  
773 signals often exhibit low H3K9me3 signals and vice versa. Because the vast majority of molecular  
774 interactions in chromatin have so far been explained by the presence of a chromatin feature (e.g.,  
775 a certain histone modification) rather than the absence of a chromatin feature, we focus on positive  
776 slopes for N-synergy and reject negative slopes as likely reflecting indirect correlations.

777 Conversely, we define a protein – chromatin feature pair as having M-synergy when the  
778 protein *favors MMEJ* (according to step 5a) and the linear fit has a negative slope (**Fig. S4C**). Here,  
779 the negative slope implies that the ability of the protein to shift the balance towards MMEJ increases  
780 with increasing levels of the chromatin feature. Again, weaker effects with increasing levels of the  
781 chromatin feature (in this case a positive slope; **Fig. S4D**) are most likely due to indirect  
782 correlations, and thus not considered to be M-synergy.

783 By these criteria, a few proteins showed both M- and N-synergy, with different chromatin  
784 features (**Fig. S4E-F**). We used the slope of the linear fits of M- or N- synergistic pairs as a measure  
785 of the synergy (synergy score). This score is set to 0 for protein – feature pairs without synergistic  
786 interactions as defined above. Of the 89 proteins with significant CCDs, 73 have M-synergies, 14  
787 have N-synergies and 2 have mixed synergies.

788 Additionally, we fitted similar linear models for protein – chromatin feature combinations for  
789 the remaining 263 proteins that modulate the MMEJ:NHEJ balance (step 5a) but did not pass the  
790 CCD significance threshold (step 5b). We highlight some of these proteins in the main text, but  
791 always in connection with proteins with significant CCDs (**Fig. 4B-D**).

792

793 *6. Estimation of chromatin context dependent MMEJ:NHEJ balance changes.*

794 As stated above, the synergy score is the slope of the linear fit between  $\Delta\log_2\text{MMEJ:NHEJ}$  and a  
795 chromatin feature. The predicted effect size of a chromatin feature on the MMEJ:NHEJ balance  
796 (i.e., the dynamic range of  $\Delta\log_2\text{MMEJ:NHEJ}$  values across the entire genome, from the lowest to  
797 the highest level of the chromatin feature) not only depends on this slope, but also on the dynamic

798 range of levels of this chromatin feature. To estimate this effect size, we first approximated this  
799 genome-wide dynamic range of each chromatin feature from the chromatin scores of 2,150  
800 previously characterized randomly integrated IPRs (6) (**grey distributions in Fig. S5A**) as the  
801 difference between the bottom 0.5% and top 0.5% (**Fig. S5A**). We then multiplied this difference  
802 with the synergy score, resulting in a rough estimate of the genome-wide CCD  $\Delta \log_2 \text{MMEJ:NHEJ}$ .  
803 For global and CCD  $\Delta \log_2 \text{MMEJ:NHEJ}$  comparisons of each proteins (**Fig. 2F**), we selected the  
804 maximum estimated CCD  $\Delta \log_2 \text{MMEJ:NHEJ}$  of each protein. For this figure we classified proteins  
805 with CCDs into proteins with only CCDs effects ( $\text{FDR}_{\text{CCD}} < 0.05$  &  $\text{FDR}_{\text{global}} \geq 0.001$ ) and proteins  
806 with both CCDs and global effects ( $\text{FDR}_{\text{CCD}} < 0.05$  &  $\text{FDR}_{\text{global}} < 0.001$ ).  
807

#### 808 7. *Estimation of screen KO penetrance*

809 The effect sizes calculated above are likely to be underestimates, because the KO efficiencies after  
810 transfection of the gRNAs (Day 1) are expected to be less than 100%. Because we could not  
811 measure these efficiencies for all KOs directly (which would require gene-specific PCR for each  
812 KO), we obtained an approximate estimate as follows. We assumed that Day 1 transfections were  
813 equally efficient as the Day 6 transfections. From the latter, we calculated the mean editing  
814 efficiency (Formula 1) of IPRs in transcriptionally active chromatin ( $n = 8$ ). We focused on IPRs in  
815 transcriptionally active chromatin because they are more representative of the chromatin type that  
816 most gRNAs in the KO library target. We considered that a reporter is embedded in transcriptionally  
817 active chromatin when at least one of the transcription-related features TTseq, H3K36me3,  
818 POL2AS2 or POL2 had a chromatin z-score higher than 0.5 (8 pathway reporters marked by black  
819 bar in **Fig. S7A**). Then, we calculated the average editing frequency of the mock transfected  
820 samples ( $n = 33$ ) for each IPR and replicate (**Fig. S7B**). The results suggest that the editing  
821 efficiency was in the range of 40-80%. This estimate is consistent with the efficiency of editing of  
822 the LBR gene with gRNA LBR2 after the first transfection, as measured on Day 5 (see above),  
823 which was in the range 47.5%-70% for the three screen replicates. However, we note that this  
824 estimation does not take into account the percentage of in-frame indels created by CRISPR/Cas9  
825 or other gene editing products that do not lead to a protein KO.  
826

#### 827 8. *Data visualization*

828 We visualized CCDs of proteins as a heatmap (**Fig. 2D**) and as a Uniform Manifold Approximation  
829 and Projection (UMAP) plot (**Fig. 3C**). In the heatmap, we hierarchically clustered the synergy  
830 scores of every protein – chromatin feature pair using the “ward.D” algorithm in the *pheatmap*  
831 package in R (version 1.0.12). The hierarchically clustered dendrogram (**Fig. 2D**) was divided into  
832 four groups to highlight the main clusters observed in the heatmap. The UMAP was calculated with  
833 the *umap* package (version 0.2.8.0) and two UMAP dimensions plotted as a scatterplot.  
834

#### 835 **Comparison to protein-protein interaction data**

836 To assess if physically interacting proteins tend to have similar CCDs, we computed cosine  
837 similarities of synergy scores (Formula 6) between physically interacting protein pairs and

838 compared them to the synergy scores expected by random chance. First, we computed the cosine  
839 similarity matrix for all proteins with significant CCDs with the *lsa* package (version 0.73.3). For this  
840 we compared the 25 synergy scores for each protein. We decided to use the cosine distance as a  
841 similarity score over other metrics, because it deals best with data containing zero values. Second,  
842 we selected protein pairs that physically interact in living cells according to the BioGrid database  
843 (release version 4.4.209) (26). A total of 118 physical interactions were reported between proteins  
844 in our dataset. These interactions were detected with one of the following methods as reported by  
845 BioGrid database: Affinity Capture-MS, Affinity Capture-Western, Co-localization, Co-crystal  
846 structure, Co-purification, Co-fractionation, FRET, PCA, proximity label-MS and Two-hybrid. To  
847 determine whether the average cosine distance of the 118 interacting protein pairs was significantly  
848 different from that of random pairs of proteins, we compared it to the distribution of mean cosine  
849 distances obtained from 1000 randomly selected sets of 118 protein pairs.

850

$$\cos(\mathbf{A}, \mathbf{B}) = \frac{\mathbf{A}\mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|} = \frac{\sum_{i=1}^n \mathbf{A}_i \mathbf{B}_i}{\sqrt{\sum_{i=1}^n (\mathbf{A}_i)^2} \sqrt{\sum_{i=1}^n (\mathbf{B}_i)^2}} \quad (6)$$

Where  $\mathbf{A}$  and  $\mathbf{B}$  each are a vector of 25 synergy scores for a protein.

851  
852 We also explored if proteins forming interaction cliques tend to have similar CCDs. To do  
853 so, we built an interaction network of physical interactions using the *igraph* package (version 1.3.4)  
854 and identified highest order cliques. We found three cliques with four elements each and displayed  
855 them on the UMAP plot ([Fig. 3C](#)).  
856

### 857 Chromatin context dependent pathway activity in tumors

858 The hypothesis that we aimed to test, based on the observed CCD pattern of BRCA2 ([Fig. 2D](#)), is  
859 that loss of BRCA2 in human tumors should cause a shift of the MMEJ:NHEJ balance towards  
860 MMEJ specifically in a broad diversity of euchromatic regions and not in triple heterochromatin. For  
861 this we chose a recent whole-genome sequencing dataset derived from BRCA2-negative tumors  
862 from diverse tissue origins ( $n = 41$ ) and HPV negative head and neck squamous cell carcinoma  
863 (HNSCC) samples ( $n = 22$ ) (41). In the genomes of both tumor types we called small insertions and  
864 deletions (indels) and structural variants (SVs). We chose HPV-negative HNSCC as controls  
865 because they have a sufficiently high rate of indels and SVs to provide the required statistical  
866 power.

867 Indels were obtained from the final pan-cancer analysis of whole genomes (PCAWG)  
868 consortium somatic mutation list for the PCAWG-HNSCC ( $BRCA2^{+/+}$ ) and PCAWG- $BRCA2^{\text{mut}}$   
869 ( $BRCA2^{-/-}$ ) cohorts. The methods and post-calling filtering strategies were previously described in  
870 detail (49). Indels were subsequently classified using *indelsClassification*  
871 (<https://github.com/ferrannadeu/indelsClassification>) to identify deletions generated by error-prone  
872 NHEJ (>5 bp deletions without micro-homology), MMEJ repair (>5 bp deletions with  $\geq 2$  bp micro-

873 homology sequence), polymerase slippage (1 bp deletions in  $\geq 3$  bp homopolymers) and indels in  
874 repeats ( $>1$  bp deletions at  $\geq 3$  bp repeats) (**Table S9**).

875 Additionally, we called structural variants (SVs) with BRASS (50) and annotated by  
876 AnnotateBRASS (<https://github.com/MathijsSanders/AnnotateBRASS>). We determined the  
877 following statistics per SV: the number of supporting read-pairs, the alignment position variance of  
878 supporting read-pairs, the frequency of read clipping, the frequency of reads with an excess of  
879 variants ( $\geq 2$ ) absent from dbSNP, the proportion of read-pairs correctly oriented based on the SV  
880 detection and the number of SV-supporting read-pairs proximal to the SV breakpoints with  
881 alternative alignments (high genome homology). The post-annotation filtering strategy was  
882 previously described in detail (<https://github.com/cancerit/BRASS>). We analyzed the PCAWG-  
883 HNSCC (BRCA2<sup>+/+</sup>) and PCAWG-BRCA2<sup>mut</sup> (BRCA2<sup>-/-</sup>) utilizing the same methodology (**Table**  
884 **S10**).

885 Next, we counted the total number of NHEJ or MMEJ small deletions in cLADs and ciLADs  
886 and calculated the  $\log_2(\text{cLAD}/\text{ciLAD})$  ratio in each cohort. This ratio is a metric for the chromatin  
887 bias in the accumulation of NHEJ or MMEJ mutations in the different cohorts. We tested if the total  
888 number of NHEJ and MMEJ deletions were equally distributed between cLADs and ciLADs in each  
889 cohort with a two-sided Fisher's exact test.

890 Additionally, we counted the total number of long MH deletions (size range 1.4 kb - 272.9  
891 kb, 95% interval) contained within either a cLAD or ciLAD. We tested if the number of MH deletions  
892 were differently distributed between cLADs and ciLADs between cohorts by a two-sided Fisher's  
893 exact test.

894 **SUPPLEMENTARY TABLES**

895 **Table S1: KO gRNA library gRNA sequence list.**

Separate Excel file (AGM20191020\_Table\_1\_DDR\_library\_IDT\_SO#3121893.xlsx)

896 **Table S2: gRNA and primer sequences used in this manuscript.**

| Type       | Name         | Sequence                                                      |
|------------|--------------|---------------------------------------------------------------|
| gRNA       | LBR2         | GCCGATGGTGAAGTGGTAAG                                          |
| gRNA       | POLQ_1       | CGGACCCGGAGAGGAACTGG                                          |
| gRNA       | POLQ_2       | TGCGTCGGAGTGGAAACGG                                           |
| gRNA       | POLQ_3       | AAGCTACTATTGGCAAACGT                                          |
| gRNA       | POLQ_4       | TCTTTTTACACCAAAACTG                                           |
| DNA Primer | TAC0017      | GTAGCCTTCTGGCCCTAAAAT                                         |
| DNA Primer | TAC0018      | AAATGGCTGTCTTCCCAGTAA                                         |
| DNA Primer | TAC0007.1-24 | ACACTCTTCCCTACACGACGCTTCCGATCT(N)10GTCACAAGGGCCGGCCACA        |
| DNA Primer | TAC0012      | GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT                             |
| DNA Primer | TAC0009      | AATGATAACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTCTCCGATCT     |
| DNA Primer | TAC0159.1-96 | CAAGCAGAAGACGGCATACGAGAT(N)6GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT |

897 **Table S3: Overview of sequencing read numbers per sample in the screen**

|                           | Median |       |       | 95% CI        |               |                |
|---------------------------|--------|-------|-------|---------------|---------------|----------------|
|                           | R1     | R2    | R3    | R1            | R2            | R3             |
| Total (sample)            | 60408  | 53966 | 65220 | [19366,96424] | [8611,194257] | [17047,171887] |
| Processed (sample)        | 49494  | 39226 | 46809 | [15945,79317] | [6066,139428] | [12418,125270] |
| Processed (IPR)           | 2586   | 1920  | 2405  | [850,4379]    | [320,7700]    | [560,7136]     |
| Intact (IPR)              | 1436   | 728   | 969   | [428,2697]    | [103,3352]    | [191,3251]     |
| NHEJ <sub>ins</sub> (IPR) | 516    | 563   | 725   | [65,1278]     | [48,2524]     | [127,2468]     |
| MMEJ <sub>del</sub> (IPR) | 242    | 223   | 279   | [39,2697]     | [21,959]      | [48,889]       |

898 **Table S4:  $\Delta \log_2 \text{MMEJ:NHEJ}$  scores for 519 proteins and 19 IPRs.**

Separate excel file (xv20220819\_Table\_S4\_delta\_log2\_MMEJ\_NHEJ.xlsx)

899 **Table S5: Epigenome maps**

Data table adapted from (6). These are the epigenome Chromatin Immunoprecipitation (ChIP) datasets used in this study.

| Label      | description                                                  | chip_id                                  | sra_chip                                 | sra_input                                                              | reference |
|------------|--------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------------------------|-----------|
| H2AFZ      | Histone H2A.Z                                                | GSM733786                                | SRR227661,<br>SRR227662                  | SRR227650,<br>SRR5331211,<br>SRR5331212,<br>SRR5331213                 | (51)      |
| EZH2       | EZH2 (H3K27 methyltransferase)                               | GSM1003576                               | SRR568431,<br>SRR568432                  | SRR227650,<br>SRR5331211,<br>SRR5331212,<br>SRR5331213                 | (51)      |
| H3K79me2   | Histone modification, mostly on active chromatin             | GSM733653                                | SRR227378,<br>SRR227379                  | SRR227650,<br>SRR5331211,<br>SRR5331212,<br>SRR5331213                 | (51)      |
| H4K5acK8ac | Histone modification, mostly on active chromatin             | GSE113635                                | SRR7070730,<br>SRR7070731                | SRR7070732                                                             | (52)      |
| H3K9me2    | Histone modification, specific type of heterochromatin       | GSM1846169,<br>GSM2152591                | SRR2148301,<br>SRR3503783                | SRR2148307                                                             | (53)      |
| H3K9me3    | <b>Histone modification specific type of heterochromatin</b> | <b>GSM733776</b>                         | <b>SRR227643,<br/>SRR227644</b>          | <b>SRR227650,<br/>SRR5331211,<br/>SRR5331212,<br/>SRR5331213</b>       | (51)      |
| CTCF       | Insulator and looping factor                                 | GSM1782717,<br>GSM1782718                | SRR2085871,<br>SRR2085872                | SRR2085882,<br>SRR2085883,<br>SRR2085884,<br>SRR2085885,<br>SRR2085886 | (54)      |
| H3K27ac    | Histone modification, mostly on active chromatin             | GSM1782721,<br>GSM1782722                | SRR2085875,<br>SRR2085876                | SRR2085882,<br>SRR2085883,<br>SRR2085884,<br>SRR2085885,<br>SRR2085886 | (54)      |
| H3K27me3   | Histone modification, specific type of heterochromatin       | GSM1782749,<br>GSM1782750                | SRR2085903,<br>SRR2085904                | SRR2085882,<br>SRR2085883,<br>SRR2085884,<br>SRR2085885,<br>SRR2085886 | (54)      |
| H3K36me3   | Histone modification, mostly on active transcription units   | GSM1782723,<br>GSM1782724                | SRR2085877,<br>SRR2085878                | SRR2085882,<br>SRR2085883,<br>SRR2085884,<br>SRR2085885,<br>SRR2085886 | (54)      |
| H3K4me1    | Histone modification, mostly on active chromatin             | GSM2773392,<br>GSM2773394,<br>GSM2773396 | SRR6010166,<br>SRR6010168,<br>SRR6010170 | SRR6010181                                                             | (55)      |

|         |                                                                                            |                                                |                                                |                        |      |
|---------|--------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------|------|
| H3K4me2 | Histone modification, mostly on active chromatin                                           | GSM2773399, GSM2773400                         | SRR6010173, SRR6010174                         | SRR6010181             | (55) |
| H3K4me3 | Histone modification, mostly on active chromatin                                           | GSM2773401, GSM2773403, GSM2773404, GSM2773406 | SRR6010175, SRR6010177, SRR6010178, SRR6010180 | SRR6010181             | (55) |
| POL2AS2 | RNA Polymerase II, phosphorylated at serine 2 of heptad repeat. Marks transcribed regions. | GSM935402                                      | SRR502194, SRR502195                           | SRR502641              | (51) |
| SMC3    | Subunit of cohesin                                                                         | GSM935310                                      | SRR502001, SRR502002                           | SRR502641              | (51) |
| POL2    | RNA Polymerase II. Marks transcribed regions.                                              | GSE91721                                       | SRR5111542, SRR5111543                         | SRR5111209, SRR5111210 | (51) |
| HDAC1   | Histone deacetylase                                                                        | GSE105837                                      | SRR6213961, SRR6213962                         | SRR5111209, SRR5111210 | (51) |
| HDAC2   | Histone deacetylase                                                                        | GSE91451                                       | SRR5111049, SRR5111050                         | SRR5111209, SRR5111210 | (51) |
| HDAC3   | Histone deacetylase                                                                        | GSE127356                                      | SRR8659957, SRR8659958                         | SRR5111896, SRR5111897 | (51) |

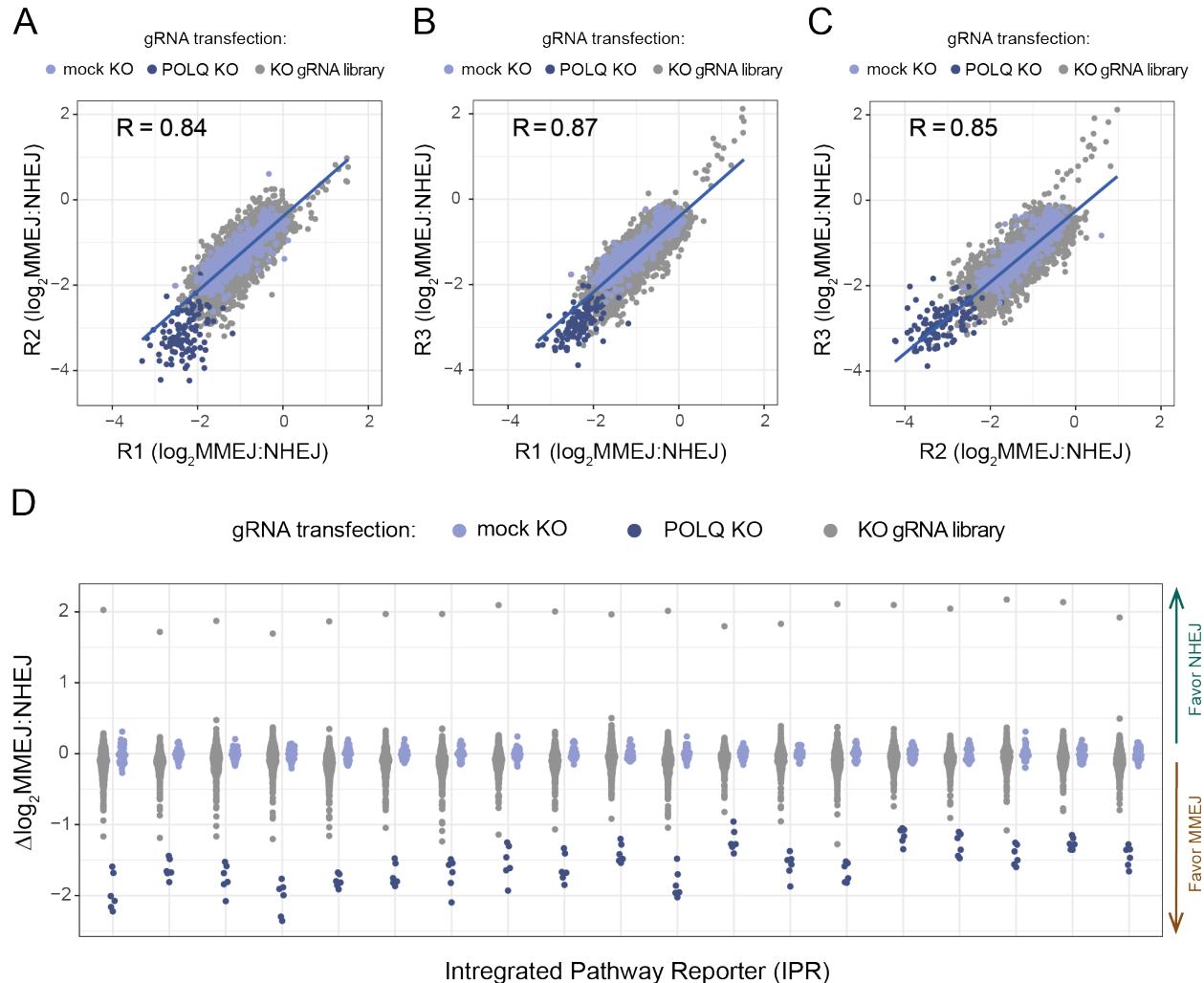
Table containing chromatin feature datasets other than ChIP

| Label       | description                                    | Source ID                                              | Reference |
|-------------|------------------------------------------------|--------------------------------------------------------|-----------|
| DNase       | DNase I accessibility                          | ENCFF413AHU, ENCFF936BDN                               | (51)      |
| Dam         | Dam methylase accessibility                    | 4DNESTAJJM3X                                           | (21)      |
| LMNB1       | DamID of Lamin B1; nuclear lamina interactions | 4DNESTAJJM3X                                           | (21)      |
| Late repli. | Late replicating DNA regions                   | 4DNFIBIZK6EY, 4DNFIRKOXCUW, 4DNFI5TMO13R, 4DNFIUCL6QG2 | (56)      |
| TTseq       | TT-seq; transcribed regions                    | <i>Bigwig tracks provided by authors</i>               | (57)      |
| 5mC         | 5-methyl-cytosine                              | ENCFF872YSC, ENCFF669KCI                               | (51)      |

900 **Table S6: Genomic coordinates, chromatin feature scores and barcodes of 19 IPRs in K562**  
901 **clone 5**  
Separate excel file (xv20220819\_Table\_S6\_clone\_5\_chromatin\_features.xlsx)

902 **Table S7: Chromatin context dependent effects of proteins in the screen.**  
903 Separate excel file (xv20220929\_Table\_S7\_global\_CCD\_MMEJ\_NHEJ\_results.xlsx)

904 **Table S8: CCD similarity scores of proteins with physical interactions (curated by BioGrid)**  
905 Separate excel file (xv20220913\_Table\_S8\_BioGRID\_interaction\_CCD.xlsx)

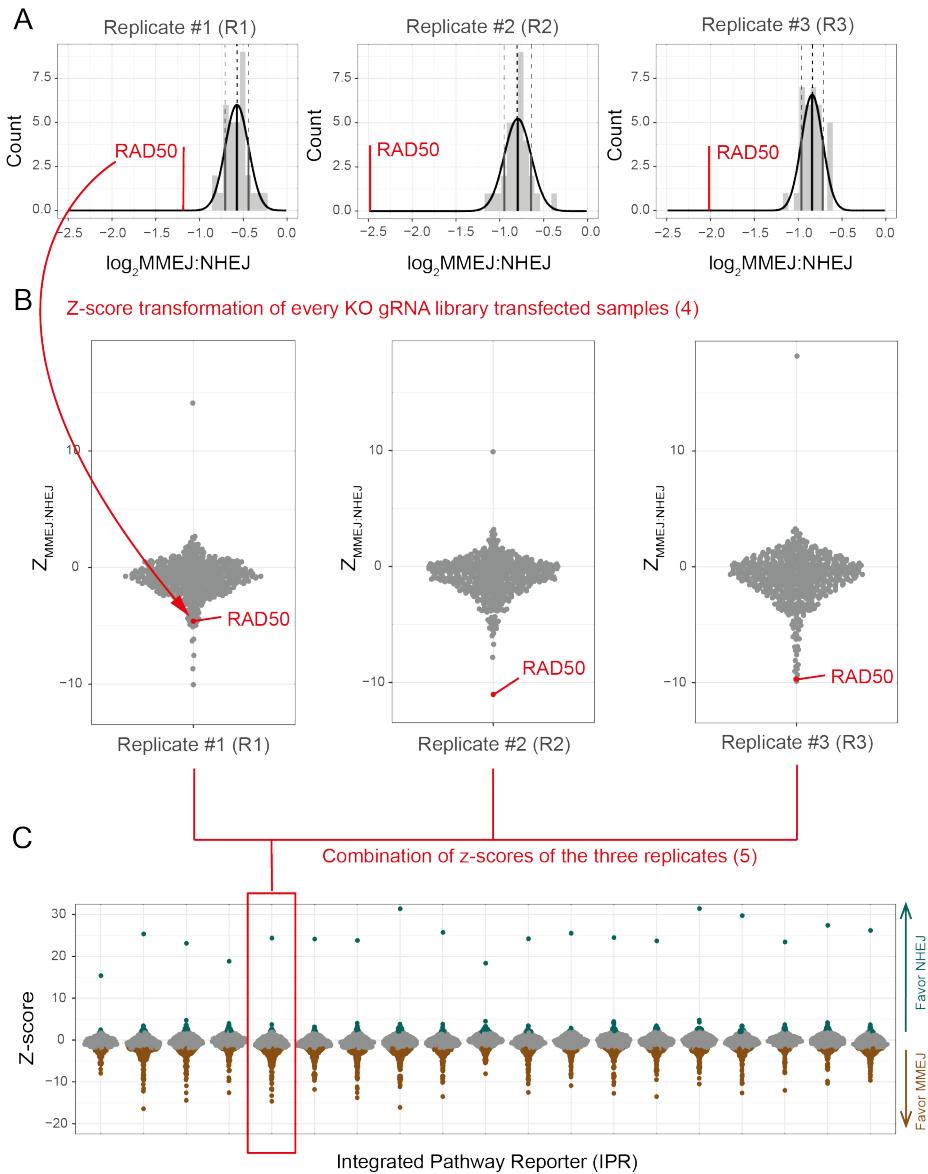

906 **Table S9: Mapped indels in BRCA2<sup>+/+</sup> and BRCA2<sup>-/-</sup> tumors.**  
Separate excel file (xv20220922\_Table\_S9\_indel\_mutations\_tumors\_COSMIC.xlsx)

907 **Table S10: Mapped structural variants in BRCA2<sup>+/+</sup> and BRCA2<sup>-/-</sup> tumors.**  
Separate excel file (xv20220922\_Table\_S10\_SV\_mutations\_tumors\_BRASS.xlsx)

908 **SUPPLEMENTARY FIGURES**

909 **Fig. S1: Screen replicate reproducibility and distribution of  $\Delta\log_2\text{MMEJ:NHEJ}$  values.**

**SUPPLEMENTARY FIGURE 1**



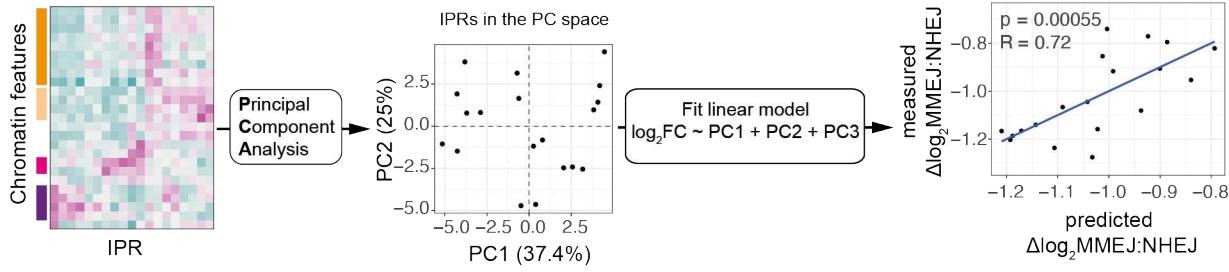

910  
911

912 **Fig. S1: Screen replicate reproducibility and distribution of  $\Delta\log_2\text{MMEJ:NHEJ}$  values.** A-C) Pairwise  
913 correlations of  $\log_2\text{MMEJ:NHEJ}$  values of individual IPRs between replicate experiments R1, R2 and R3,  
914 after application of quality filters as described in step 3 of the data processing. R denotes Pearson correlation  
915 coefficient. D) Dynamic range of  $\Delta\log_2\text{MMEJ:NHEJ}$  balances after averaging of replicates.

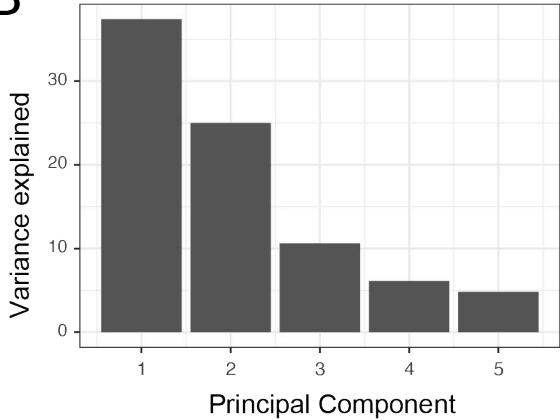
916 **Fig. S2: z-transformation and combining of replicate measurements of  $\log_2$ MMEJ:NHEJ  
917 values.**

SUPPLEMENTARY FIGURE 2

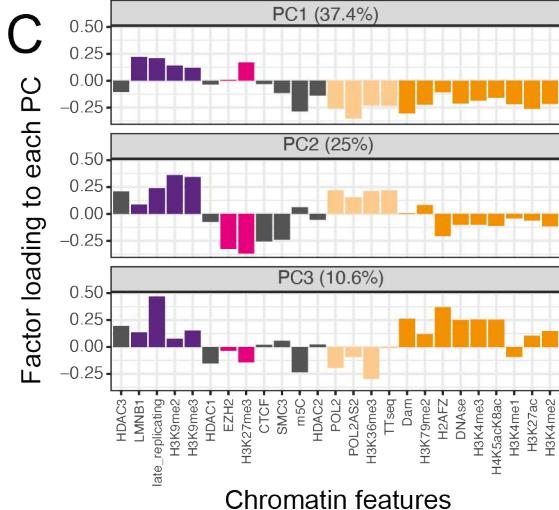



918  
919 **Fig. S2: z-transformation and combining of replicate measurements of  $\log_2$ MMEJ:NHEJ values. A)**  
920 Histogram of  $\log_2$ MMEJ:NHEJ balance of mock KO transfected samples of a single IPR (IPR\_barcode:  
921 CATTCTGATCAATAA). The fitted normal distribution is depicted in black. Mean (black) and mean  $\pm$  one  
922 standard deviation (grey) highlighted with vertical dotted lines. In red,  $\log_2$ MMEJ:NHEJ balance of RAD50  
923 KO is plotted as an example to illustrate the z-score transformation for a single protein. A red arrow is  
924 displayed connecting RAD50 KO data point in replicate #1 panel A and B. Each panel represents a different  
925 replicate and a similar arrow could be drawn for the other replicates as well. B) Beeswarm plot of the z-score  
926 transformed  $\log_2$ MMEJ:NHEJ balance of KO samples for a single reporter (CATTCTGATCAATAA)  
927 (Formula 4). C) z-score transformed  $\log_2$ MMEJ:NHEJ balance perturbations after combining three replicates  
928 for every MMEJ:NHEJ pathway reporters by the Stouffer's method (Formula 5). A value outside the [-  
929 1.96, 1.96] range is considered to be significant with a significance level of >95%. Positive values represent

930 proteins that *favor NHEJ* (green dots and arrow) and negative values proteins that *favor MMEJ* (brown dots  
931 and arrow).


932 **Fig. S3: Principal component regression analysis.**

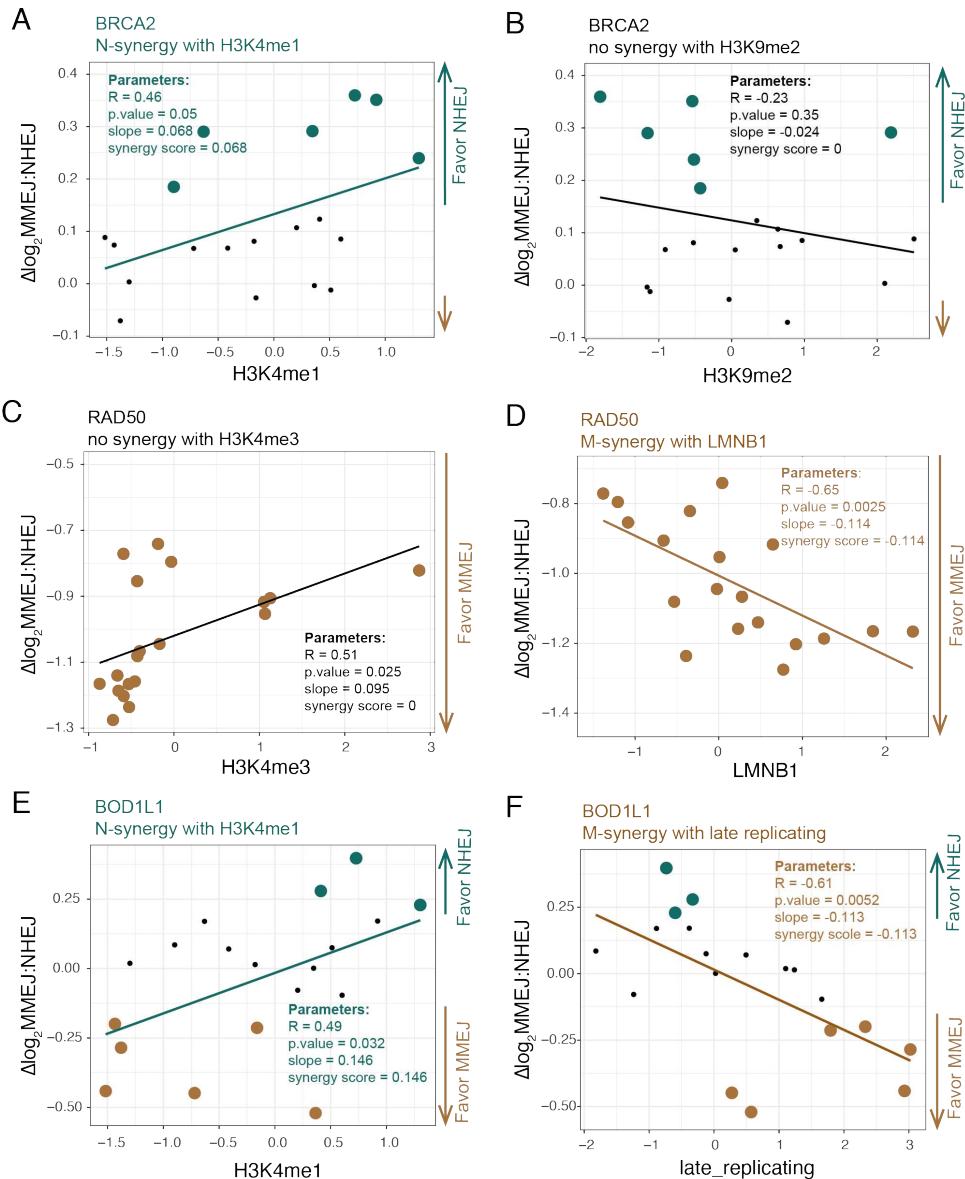
## SUPPLEMENTARY FIGURE 3


**A**



**B**



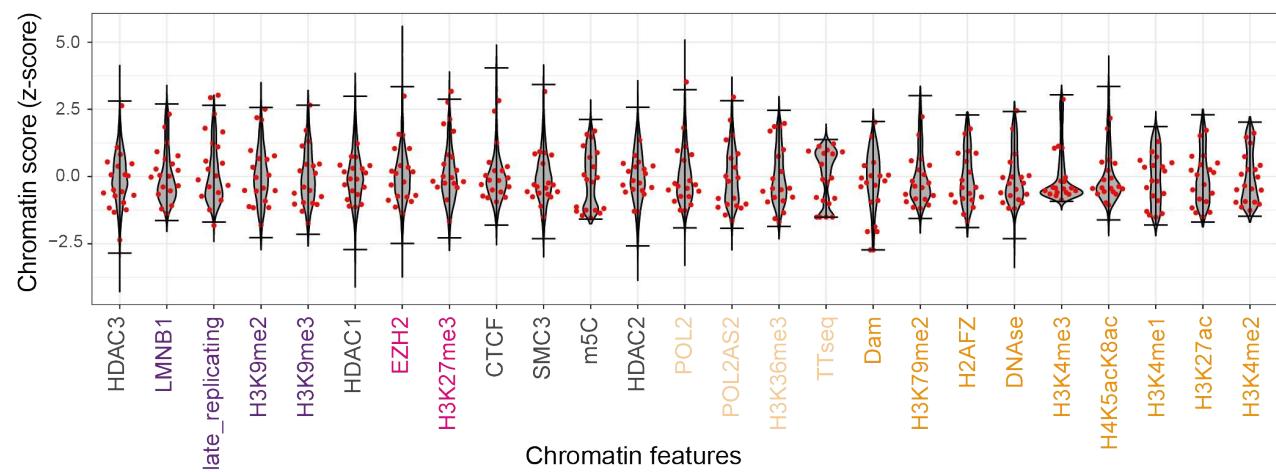

**C**



933

934 **Fig. S3: Principal component regression analysis.** A) Principal Component Regression workflow. First,  
935 a principal component analysis (PCA) was run with 25 chromatin feature values for each IPR. Second,  
936 exploration of the PCA revealed that the first three PCs recapitulate most of the chromatin feature variance.  
937 Third, a linear model with three principal components was ran for each protein and the performance was  
938 assessed by predicted vs. measured comparison. B) Percentage of variance explained by the first five PCs.  
939 C) Bar graph showing the weight of each chromatin feature for PC1, PC2 and PC3. Bars are coloured  
940 according to the chromatin context they represent: Triple heterochromatin (purple), H3K27me3  
941 heterochromatin (pink), transcription (light orange) and enhancers/promoters (orange).

942 **Fig. S4: Examples of linear fit correlation with individual chromatin features.**  
 SUPPLEMENTARY FIGURE 4

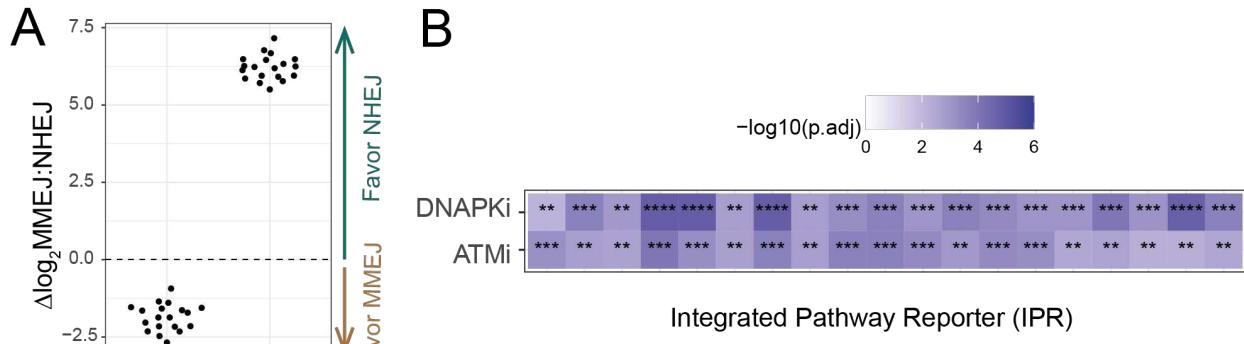



943  
 944 **Fig. S4: Examples of linear fit correlation with individual chromatin features.** Examples of three  
 945 proteins with significant CCDs on individual chromatin features. All correlation plots show data of the 19 IPRs,  
 946 the linear regression fit, and regression analysis parameters that are relevant for the *synergy score*. (R =  
 947 Pearson correlation coefficient, p.value = p value of the correlation coefficient, slope = slope of the linear fit,  
 948 synergy score = final value of CCD interaction between protein and chromatin feature after corrections). Color  
 949 scheme of the figure shows if the protein - chromatin feature has an M-synergy (brown), N-synergy (green)  
 950 or no synergy (black). A) N-synergy between BRCA2 and H3K4me1. B) No synergy between BRCA2 and  
 951 H3K9me2. This interaction is explained by the absence of the chromatin feature and therefore is discarded  
 952 (*favor NHEJ* and slope < 0). C) No synergy between RAD50 and H3K4me3. Same as for B applies here  
 953 (*favor MMEJ* and slope > 0). D) M-synergy between RAD50 and interactions with the nuclear lamina  
 954 (LMNB1). E) N-synergy between BOD1L and H3K4me1. F) M-synergy between BOD1L and late replicating  
 955 chromatin.

956 **Fig. S5: Estimation of genome-wide dynamic ranges of chromatin features.**

SUPPLEMENTARY FIGURE 5

A




957

958 **Fig. S5: Estimation of genome-wide dynamic ranges of chromatin features.** In grey, distribution of  
959 genome-wide chromatin scores, with the 99% confidence interval (99CI) marked by the horizontal black lines  
960 (top 0.5% and bottom 0.5%). In red, chromatin scores of all 19 IPRs in clone 5 for which MMEJ:NHEJ balance  
961 was measured in the screen.

962 **Fig. S6: ATM and DNAPK inhibitor effects.**

SUPPLEMENTARY FIGURE 6



963  
964 **Fig. S6: ATM and DNAPK inhibitor effects.** A)  $\Delta\log_2\text{MMEJ:NHEJ}$  of ATM and DNAPKcs inhibitor of each  
965 IPR. B) Adjusted p-values of Student's t-test comparing  $\Delta\log_2\text{MMEJ:NHEJ}$  scores in ATM and DNAPKcs  
966 inhibited compared to the vehicle control ( $n = 3$ ) for each reporter. This test was used to confirm significance  
967 of the changes in the  $\log_2\text{MMEJ:NHEJ}$ .


968

969

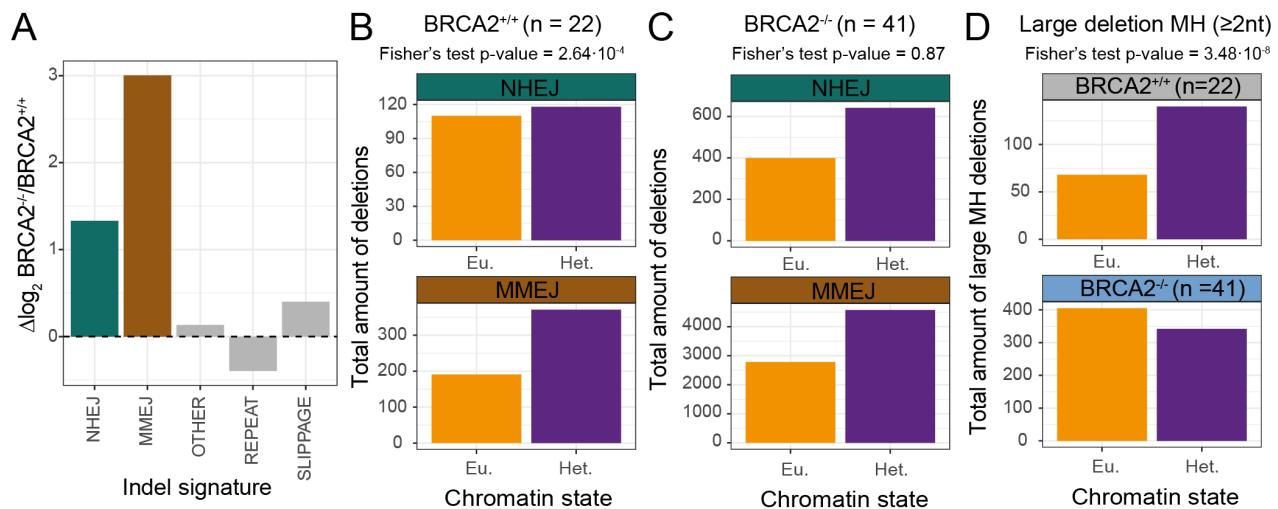
970

971 **Fig. S7: Editing efficiency estimation.**

## SUPPLEMENTARY FIGURE 7



972


973 **Fig. S7: Editing efficiency estimation.** A) Transcribed (n = 8) and non-transcribed (n = 11) IPRs in clone  
974 5. We classified IPRs based on the transcription-related feature signals (light orange). B) Editing efficiencies  
975 in transcribed IPRs for each replicate in mock transfected samples (n = 33). Error bars show mean  $\pm$  sd.

976

977

978 **Fig. S8: BRCA2<sup>+/+</sup> and BRCA2<sup>-/-</sup> mutation analysis.**

SUPPLEMENTARY FIGURE 8



979  
980 **Fig. S8: BRCA2<sup>+/+</sup> and BRCA2<sup>-/-</sup> mutation analysis.** (A)  $\log_2$  fold change of average frequencies of the five  
981 short indel signatures (see Methods) called per tumor in BRCA2<sup>-/-</sup> compared to BRCA2<sup>+/+</sup>. (B-C) Distribution  
982 of NHEJ and MMEJ counts over euchromatin (Eu.) and constitutive lamina-associated heterochromatin (Het.)  
983 in BRCA2<sup>+/+</sup> tumors (B) and BRCA2<sup>-/-</sup> tumors (C). For each tumor type a Fisher's exact test was applied to  
984 test for differential distribution of NHEJ and MMEJ counts between Het and Eu. (D) Similar analysis as in B-  
985 C bottom rows, showing total number of large deletions with MH at break sites in euchromatin (Eu.) and  
986 constitutive lamina-associated heterochromatin (Het.) in BRCA2<sup>+/+</sup> and BRCA2<sup>-/-</sup> tumors.