

1 **Intracellular reactive oxygen species (intraROS)-aided localized cell death contributing to**
2 **immune responses against wheat powdery mildew pathogen**

3

4 **Yinghui Li^{1,2,†}, Rajib Roychowdhury^{1,2,†}, Liubov Govta^{1,2}, Samidha Jaiwar^{1,2}, Zhen-Zhen**
5 **Wei^{1,3}, Imad Shams^{1,2}, Tzion Fahima^{1,2,*}**

6

7 ¹ Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.

8 ² The Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel,
9 Haifa 3498838, Israel.

10 ³ The Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066,
11 China.

12 [†]Authors contributed equally to this work and share first authorship

13 *Corresponding author's email: tfahima@univ.haifa.ac.il

14

15 **Keywords:** cell death, hypersensitive response, powdery mildew, reactive oxygen species, wheat

16

17 **Funding:**

18 This study was supported by the Israel Science Foundation, grant numbers 1366/18, 2289/16,
19 and 2342/18.

20

21

22

23

24 **ABSTRACT**

25 Reactive oxygen species (ROS) and hypersensitive response (HR) mediated cell death have long
26 been known to play critical roles in plant immunity to pathogens. Wheat powdery mildew caused
27 by *Blumeria graminis* f. sp. *tritici* (*Bgt*) is a destructive wheat pathogen. Here, we report a
28 quantitative analysis of the proportion of infected cells with local apoplastic ROS (apoROS)
29 versus intracellular ROS (intraROS) accumulation in various wheat accessions that carry
30 different disease resistance genes (R genes), at a series of time points post-infection. The
31 proportion of apoROS accumulation was 70-80% of the infected wheat cells detected in both
32 compatible and incompatible host-pathogen interactions. However, intensive intraROS
33 accumulation followed by localized cell death responses were detected in 11-15% of the infected
34 wheat cells, mainly in wheat lines that carried nucleotide-binding leucine-rich repeat (NLR) R
35 genes (e.g. *Pm3F*, *Pm41*, *TdPm60*, *MIIW72*, *Pm69*). The lines that carry unconventional R genes,
36 *Pm24* (*Wheat Tandem Kinase 3*) and *pm42* (a recessive R gene), showed very less intraROS
37 responses, while 11% of *Pm24* line infected epidermis cells still showed HR cell death,
38 suggesting that different resistance pathways are activated there. Here, we also demonstrated that
39 ROS could not act as a strong systemic signal for inducing high resistance to *Bgt* in wheat,
40 although it induced the expression of pathogenesis-related (*PR*) genes. These results provide new
41 insights on the contribution of intraROS and localized cell death to immune responses against
42 wheat powdery mildew.

43

44 **INTRODUCTION**

45 During host-pathogen co-evolution, plants developed multifaceted innate immunity composed of
46 two interconnected layers of immune systems: the pathogen-associated molecular pattern

47 (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) (Jones and Dangl
48 2006). The PTI is activated by the recognition of plant cell surface pattern recognition receptors
49 (PRRs), conferring plants' basic resistance to pathogens (Boutrot and Zipfel 2017; Lorang 2019).
50 ETI responses are generally intracellular and triggered by the specific interaction between
51 nucleotide-binding domain leucine-rich repeat (NBS-LRR)-containing receptors (NLRs) and
52 pathogen effectors (Macho and Zipfel 2014; Zhang and Coaker 2017). Although PTI and ETI
53 responses are triggered by different pathogen-derived molecules and crosstalk in several
54 downstream signals, inducing defense mechanisms through reactive oxygen species (ROS),
55 hypersensitive response (HR), plant hormones and pathogenesis-related (PR) proteins (Ali et al.
56 2018; Ngou et al. 2022; Yuan et al. 2021). Traditionally, particular ROS, like superoxide radicals
57 (O_2^-), hydrogen peroxide (H_2O_2), and hydroxyl radicals (OH^-) are considered as inevitably
58 harmful by-products created during aerobic metabolism (Foyer and Noctor 2005). Moreover,
59 ROS accumulation is also known as one of the important cellular signaling molecules playing
60 different roles in multiple plant processes, including responses to biotic and abiotic stimuli, and
61 plant growth development (Hasanuzzaman et al. 2020).

62 Respiratory burst oxidase homolog (RBOH) proteins, which are known to generate ROS
63 in plant cells, are located on the plasma membrane (Hasanuzzaman et al. 2020; Torres et al.
64 2017). For example, during PTI, the recognition of flg22 or chitin via PRRs leads to transient but
65 robust production of ROS around the apoplast (apoROS hereafter) by the membrane-bound
66 RBOHD (Lammertz et al. 2019; Su et al. 2021; Tjamos et al. 2022). The apoROS burst around
67 the plant cell membrane can act as an antimicrobial molecule and strengthen the plant cell wall
68 through oxidative crosslinking (Dey et al. 2020; Jwa and Hwang 2017). The other major
69 generation sites of ROS inside plant cells (intracellular ROS or intraROS hereafter) are mainly

70 chloroplasts as a consequence of the disruption and imbalance of metabolic pathways, which
71 play an important role in HR during the ETI that is probably triggered by the recognition of
72 pathogen effectors by NLRs (Mittler et al. 2022; Qi et al. 2019; Xu et al. 2019). However, some
73 pathogen effectors can suppress ROS accumulation involved in plant immunity (Liu et al. 2021;
74 Ramachandran et al. 2017; Shidore et al. 2017). The production of ROS by the NADPH oxidase
75 RBOHD is a critical early signaling event connecting PRR- and NLR-mediated immunity (Yuan
76 et al. 2021).

77 HR can be morphologically defined as a type of programmed cell death (PCD), probably
78 triggered upon pathogen recognition by NLRs, and acts as a powerful response against pathogens.
79 The triggering of HR requires the integration of multiple signals employed by a complex
80 regulatory mechanism. Recent studies demonstrated that the co-activation of PTI and ETI could
81 improve NLR-mediated hypersensitive cell death response (Ngou et al. 2021). After the
82 generation of ROS, it contributes to HR by activating a signaling cascade for PCD at the
83 infection site, while inducing the expression of *PR* genes (Jones and Dangl 2006; Soliman et al.
84 2021). PCD was previously thought to be the outcome of ROS directly killing cells via oxidative
85 stress, which is now considered to be a result of ROS triggering complex physiological or
86 programmed pathways (Király et al. 2021; Mittler 2017). A recent study showed that ROS
87 homeostasis mediated by MPK4 (protein kinase) and SUMM2 (NB-LRR protein) determines
88 synergid cell death (Völz et al. 2022), suggesting that ROS plays an important role in cell death.

89 Powdery mildew (Pm) disease is caused by the biotrophic fungal pathogen *Blumeria*
90 *graminis* (DC.) E.O. Speer. f. sp. *tritici* Em. Marchal (*Bgt*), resulting in serious yield losses of
91 wheat (*Triticum* spp.) worldwide (Savary et al. 2019). Wild emmer wheat (WEW) (*Triticum*
92 *turgidum* var. *dicoccoides*), the tetraploid progenitor of cultivated bread and durum wheat, was

93 shown to harbor novel disease resistance genes (*R*-genes) that are effective against powdery
94 mildew (Ben-David et al. 2016; Huang et al., 2016; Nevo 2002). It is important to understand
95 how those *R*-genes produce ROS and HR during the PTI and ETI and of interest in studies of
96 plant immunity. Here, we conducted a quantitative analysis of apoROS, intraROS and cell death
97 responses during the *Bgt* life cycles in various wheat accessions that carry different powdery
98 mildew (*Pm*) resistance genes. The obtained results are laying the foundation for exploring the
99 molecular signaling cascade leading to ROS-mediated cell death and associated host resistance.

100

101 MATERIALS AND METHODS

102 **Plant materials and growth condition.** The following wheat accessions were used in the
103 current study. WEW accessions: G305-3M, G18-16, TD116494 (IW172), TD010009 (IW2)
104 contain powdery mildew resistance genes *PmG3M* (*Pm69*), *PmG16* (*TdPm60*), *MIIW172*, and
105 *Pm41*, respectively (Ben-David et al. 2010; Li et al. 2021; Wu et al. 2022; Li et al. 2020); G303-
106 1M contains *pm42* (Hua et al. 2009); TD104088 contains a *TdPm60* and unknown *Pm* genes (Li
107 et al. 2021); Zavitan is susceptible to *Bgt* and was used as a control. Durum wheat cultivars:
108 Langdon, Kronos and Svevo. Bread wheat varieties: Chinese spring, Morocco and Ruta.
109 Differential lines harboring known *Pm* resistance genes (*Pm3F*, *Pm13*, *Pm17*, *Pm23*, *Pm29*,
110 *Pm32*, and *Pm24*) (Ben-David et al. 2010; Li et al. 2021). The introgression lines: LDN/G18-
111 16/4*Ruta and LDN/G305-3M//Svevo/4*Ruta. Seeds of those accessions were obtained from the
112 Institute of Evolution Wild Cereals Gene Bank (ICGB), at the University of Haifa, Israel (Table
113 1). Plants were potted and maintained in a versatile environmental test chamber with 75%
114 humidity, 22/20°C day/night temperature regime, 12/12 h light/dark cycle, and light intensity of
115 approximately 150 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

116

117 **Bgt inoculation and disease assessment.** Two *Bgt* isolates (#70 and #SH) were regularly
118 maintained as pure cultures in our laboratory for phenotyping tests. *Bgt* #70 was collected from *T.*
119 *aestivum*; *Bgt* #SH was collected from *T. dicoccoides* (Ben-David et al. 2010; Li et al. 2021). of
120 Pathogen inoculation, incubation conditions, and disease assessment were performed as in our
121 previous report (Li et al. 2021). The reaction to *Bgt* inoculation was examined visually based on
122 the disease progression on the leaf surface, and infection types (ITs) were recorded based on a
123 scale of 0-4, where 0 represents no visible symptoms, 0; for necrotic flecks (HR), and values of 1,
124 2, 3 and 4 for highly resistant, resistant, susceptible and highly susceptible reactions, respectively
125 (Xie et al. 2012).

126

127 **Evaluation of ROS accumulation and cell death.** ROS accumulation and cell death were
128 evaluated in the *Bgt* inoculated wheat leaves at different time points using previously published
129 histochemical staining methods with minor modifications (Thordal-Christensen et al. 1997; van
130 Wees 2008). In brief, ROS was visualized using the 3,3'-diaminobenzidine (DAB) (Sigma-
131 Aldrich, USA) staining method in which the inoculated leaves were treated with 0.1% w/v DAB
132 solution (pH 3.8) followed by 15 minutes of incubation in 60 kPa vacuum pressure at room
133 temperature and 8 hours of incubation at 28° C without vacuum pressure. Then the leaf samples
134 were decolorized in 96% (v/v) ethanol for 2 days and stained with 0.6% w/v Coomassie Brilliant
135 Blue G250 (Sigma-Aldrich, Germany) for 2 minutes and then immediately washed with sterile
136 water, and stored in 50% glycerol for microscopic observation. Cellular ROS and fungal
137 structures were observed under a fluorescence microscope Leica DMi8 (Leica Microsystems,
138 Germany) by using 2',7'-dichlorofluorescein diacetate (H₂DCFDA) (Sigma-Aldrich, USA) as
139 described in Yuan et al. (2021). Cell death was assessed by 0.25% Trypan blue (Biological

140 Industries, Israel) staining in which the treated leaves were stained for 5 minutes by incubating in
141 boiling water, bleaching with 2.5 g mL⁻¹ Chloral hydrate (Sigma-Aldrich, USA) solution for 2
142 days, and then stored in 50% glycerol (Sigma-Aldrich, USA) for microscopy. ROS (reddish-
143 brown coloration) and cell death (blue coloration) were examined in the leaf tissues under a
144 stereo microscope Zeiss Axio Imager M2 (Carl Zeiss, Germany). All microscopic experiments
145 were repeated thrice, with at least three biological replicates each time. For the calculation of the
146 ratios of ROS and cell death, three leaves were collected as biological replicates and observed at
147 least 100 infected cells per leaf for identifying the ROS and cell death responses.

148

149 **Treatment with H₂O₂ as an external stimulus.** Langdon leaves of two-week-old seedling were
150 excised into three segments, sprayed by water (control) or 1% H₂O₂ solutions. Both solutions
151 were added with 0.02% Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Germany) and 0.0001%
152 Tween[®] 20 (Sigma-Aldrich, USA). After spraying, the leaf segments were cultured for 4 hours
153 on absorbent paper in square Petri dishes (12 cm X 12 cm) containing the water or 1% H₂O₂
154 solutions. Then the leaves were soaked up using absorbent paper and transferred into another
155 square Petri dish containing 8 g L⁻¹ agar with 50 mg L⁻¹ benzimidazole (Sigma-Aldrich, USA)
156 for 24 hours and finally transferred to new Petri dishes and infected with *Bgt* #70.

157

158 **RNA extraction and quantitative Reverse Transcription PCR (qRT-PCR).** Wheat leaf
159 samples of G305-3M and Langdon were inoculated with *Bgt* #70 and sampled at different time
160 points post inoculation (0, 3, 6, 9, 12, 16, 24, 36, 48, and 72 hpi). Non-inoculated wheat leaves
161 were used as control. Wheat leaf samples of G305-3M and Langdon were sampled at 24 hours
162 after treatment with 1% H₂O₂ solutions as described before, while H₂O treatment was used as a

163 control. Total RNA extraction was performed using RNeasy Plant Mini Kit (Qiagen, Germany)
164 followed by cDNA synthesis using qScriptTM cDNA Synthesis Kit (Quantabio, USA). Gene-
165 specific primers of the *PR* genes and the housekeeping gene *Actin* are listed in Table S1. The
166 qRT-PCR amplifications were performed with SYBR Green FastMix (Quantabio, USA) and
167 PCR amplification was performed with StepOne thermocycler (Applied Biosystem, USA). The
168 qRT-PCR program were as previously described (Li et al., 2021). Transcript levels are expressed
169 as linearized fold-*Actin* levels calculated by the formula $2^{(Actin\ CT-Target\ CT)}$ method \pm standard error
170 of the mean (SEM). All the reactions were performed in triplicates and each reaction represents a
171 mixed pool of three wheat leaves.

172

173 **Statistical analysis.** Statistical analysis was performed using JMP[®] version 16.0 statistical
174 packages (SAS Institute, USA). Multiple comparisons between the genotypes for apoROS,
175 intraROS and cell death were calculated by one-way analysis of variance (ANOVA) and Tukey-
176 Kramer post-hoc test (for the significant ANOVA).

177

178 RESULTS

179 Previously, we have identified and mapped two *Pm* resistance genes derived from WEW, namely
180 *PmG3M* (designated hereafter as *Pm69*) (Xie et al. 2012) and *PmG16* (designated hereafter as
181 *TdPm60*) (Li et al. 2021). The mapping populations constructed by crossing these resistant
182 WEWs with the susceptible *T. durum* cv. Langdon, segregated for a single dominant *Pm* gene,
183 each, showing that Langdon did not contain any functional *Pm* gene to *Bgt* isolate #70. The main
184 motivation for the current study was to characterize ROS accumulation and HR-mediated cell
185 death in these three lines and compare them with the response of other lines that carry different

186 *Pm* resistance genes.

187

188 **Compatible, incompatible and partially incompatible interactions in the *Bgt*-wheat**
189 **pathosystem.** The macroscopic observation of fungal colonies and symptoms developed in
190 Langdon, G305-3M and G18-16 infected with *Bgt* #70 were documented during 1-10 days post-
191 infection (dpi) (Fig. 1). Initiation of small *Bgt* colonies was observed in Langdon already at 4 dpi,
192 then they rapidly developed into massive fungal growth covering almost all leaf area (IT=4,
193 highly susceptible). On the contrary, no visible disease symptoms were detected in the G305-3M
194 (IT=0, fully resistant). In G18-16, no visible disease symptoms were detected till 6 dpi, but after
195 that, small *Bgt* colonies could be visible and slowly developed (IT=1, partial resistance).

196

197 **ROS accumulation is induced by powdery mildew in both compatible and incompatible**
198 ***Bgt*-wheat interactions.** We observed a whole asexual cycle of *Bgt* #70 developed in Langdon
199 up to 120 hours post-infection (hpi). A germinating *Bgt* conidia (Con) formed two types of germ
200 tubes - a primary germ tube (PGT) and a secondary germ tube (SGT) at 6 hpi, and the elongated
201 SGT further differentiated into swollen appressoria (App) (Fig. 2). At 12 hpi, most of the App
202 formed typical apical hooks (infection pegs) which further produced bulb-like haustorial
203 primordia (HP) inside the host epidermal cells at 16 hpi. Subsequently, typical digitate processes
204 (DP) of mature haustoria (MH) were visible at 24 hpi, and the formation of secondary hyphae
205 was observed at 36 hpi. From 72 to 96 hpi, extensive hyphal growth and repeated penetration
206 from hyphal appressoria have occurred. At 120 hpi, massive conidiophores were produced, ready
207 to start new disease cycles (Fig. 2j).

208 In Langdon, most of the infected cells were found without visible ROS accumulation (Fig.

209 S1). Nevertheless, we still found some ROS accumulation in a few epidermal cells. As shown in
210 Fig. 2, the visible ROS formation and accumulation started at 9 hpi around the PGT, and it also
211 could be identified around the infection peg between the time-points of 12-16 hpi (Fig. 2b-d). No
212 ROS accumulation was observed around the MH (Fig. 2e), but the ROS could be detected
213 around the HP during 16-72 hpi (Fig. 2d-h). Most of the ROS accumulation occurred as a halo at
214 the penetration points of PGT and infection pegs probably located at the apoplast outside of the
215 cell membrane (apoROS) (Fig. 2k-m). We also observed a small incidence of cells showing more
216 extensive ROS accumulation inside the epidermal cells (intraROS) between 24-36 hpi (Fig. 2f, n,
217 o, p).

218 In both G305-3M and G18-16, the *Bgt* spores germinated and developed normally from 6
219 to 12 hpi without any histochemical difference compared to Langdon (Fig. 3a-c, k-m). At 16 hpi,
220 the *Bgt* gradually started to invade the epidermis host cell (Fig. 3d), however, not a single MH
221 was detected in G305-3M, though some HP were visualized (Fig. 3e, f). In G18-16, a few *Bgt*
222 small colonies were detected with developed hyphae (Hy) and MH during 48-120 hpi, but the
223 disease progression was very slow (Fig. 1, 3q-t, Table 1). From 16 hpi, higher numbers of plant
224 cells were detected with intraROS accumulation in both G305-3M and G18-16 (Fig. 3d-j, n-t),
225 than in Langdon (Fig. 2d-j, Table 1).

226

227 **The cell death response following intraROS accumulation.** In Langdon, no obvious cell death
228 was found (Fig. 4a-e). In G305-3M and G18-16, some necrosis sites were noticed already at 16
229 hpi and continued to spread at 24 hpi (Fig. 4g-m and Fig. 3b, c, l, m) and 36 hpi (Fig. 4i, n),
230 while fully developed cell death responses can be clearly seen at 48 hpi (Fig. 4j, o), and
231 coincided with the intraROS accumulation (Fig. 3).

232 Quantitative assessment of ROS accumulation revealed that at 9 hpi ~20% of the *Bgt*-
233 infected cells showed apoROS accumulation, then increased to 80% at 36-72 hpi (Fig. 4p).
234 ANOVA analysis showed no significant difference ($p \leq 0.05$) between the three genotypes
235 (Langdon, G305-3M and G18-16) at all time points tested (6-72 hpi). In contrast, the intraROS
236 accumulation was detected mainly in the resistant lines (Fig. 4q). IntraROS accumulation began
237 mostly at 16 hpi in G305-3M (~12%) and G18-16 (~5%), then it increased to about 11-15% of
238 *Bgt*-infected cells from 24 to 72 hpi duration (Fig. 4q). While in the susceptible Langdon, only 1-
239 4% of the infected cells were detected with intraROS accumulation at 24-72 hpi (Fig. 4q). The
240 cell death response started at 24 hpi in ~2% of *Bgt*-infected cells and increased to 10-15% after
241 36 hpi (Fig. 4r), but only in the two resistant WEW lines. The differences in the proportion of
242 infected epidermis cells with intraROS accumulation and cell death response between the
243 resistant and susceptible accessions were highly significant at $p \leq 0.0001$ (Fig. 4q, r). In order to
244 validate that the resistance responses were conferred by the *TdPm60* and *Pm69* resistance genes,
245 we have introgressed them into hexaploid common wheat Ruta to obtain BC4F₂ near-isogenic
246 lines (NILs) that harbor these *Pm* resistant genes. These NILs have shown ROS accumulation
247 and cell death resistance responses similar to the *TdPm60* and *Pm69* donor WEW lines, while in
248 Ruta, no intraROS and no cell death were observed (Fig. S2). These results indicate that
249 intraROS-associated HR plays an important role in the *Pm69* and *TdPm60* mediated resistance.

250

251 **ROS and cell death in various *Pm* differential lines and among diverse wheat species.** To
252 check whether intraROS-associated HR is a common response in resistance to *Bgt*, we
253 characterized these two events in diverse wheat lines that carry various *Pm* genes, and compared
254 them with the response of *Pm69* and *TdPm60* donor lines and NILs (Table 1). We also included

255 in the analysis of six highly susceptible (IT=4) wheat accessions (WEW Zavitan, durum wheat
256 Svevo and Kronos, and bread wheat Morocco Chinese Spring and Ruta). The susceptible lines
257 showed a very low proportion of ROS-mediated cell death response in 0.7-2.3% of the *Bgt*-
258 infected cells, especially in Zavitan and Morocco, while the *Pm* differential lines showed
259 different types/levels of ROS and cell death responses (Table 1, Figs. S3 and S4). *Pm17*, *Pm41*,
260 and *MIIW72* lines, which are known to carry NLRs, showed strong intraROS and cell death
261 responses, with IT=0-1, that restricted the development of mature *Bgt* haustoria (Fig. S4). The
262 quantitative resistance responses of *MIIW72* were very similar to *TdPm60* (Table 1). *Pm13* and
263 *Pm29* lines induced strong intraROS and cell death, sometimes of 2-3 neighboring cells (Fig. S4).
264 However, while the IT of the *Pm13* line was 1 with only 1.3% developed *Bgt* colonies, the IT of
265 *Pm29* line was 3 (partial susceptibility) with 18.7% developed *Bgt* colonies. For the *pm42*
266 recessive gene line, the ROS and cell death were relatively very low, yet none of the *Bgt* spores
267 developed into a colony, resulting in IT=0. *Pm24* (Wheat Tandem Kinase 3, WTK3) and *Pm32*
268 lines showed partial resistance responses (IT=1-2) with intraROS in 1.6% and 3.3% of *Bgt*-
269 infected cells, respectively. However, the *Pm24* (IT=1) line tended to induce more apoROS
270 accumulation around the penetration peg, with a relatively low percentage of intraROS. *Pm3F*
271 (NLR) line showed very little intraROS and cell death (1-2%) and 52-67.33% of spores that
272 developed *Bgt* colonies, resulting in IT=3-4, suggesting that *Bgt* #70 is virulent on *Pm3F* (Fig.
273 S4). The WEW TD104088 was highly resistant (IT=0) and showed strong ROS and cell death
274 response similar to G305-3M with 15% and 12.3% of *Bgt*-infected cells that showed intraROS
275 accumulation and cell death, respectively (Table 1, Fig. S3). Altogether, intraROS (%) in the *Bgt*-
276 infected cells was positively ($r=0.82$) and significantly ($p\leq 0.0001$) correlated with the cell death
277 response (%) among the different wheat lines (Fig. S5).

278 An attempt to use H₂DCFDA for detecting ROS accumulation instead of DAB failed
279 since *Bgt* hyphae also showed fluorescence after the staining with H₂DCFDA, therefore
280 prohibiting clear detection of apoROS around the penetration peg (Fig. S6).

281

282 **Different epidermal cells showed similar ROS and cell death responses.** The *Bgt*-mediated
283 ROS and cell death responses were observed all kinds of epidermal cells, including the stomatal
284 guard cells (Fig. S7e, g, k, m), trichomes (Fig. S7i), sister cells (Fig. S7d, f, n, j) and elongated
285 cells (Fig. S7a, b, h, o). These observations suggest that all of these wheat epidermal cells
286 participate in the immune responses activated against *Bgt* which involve apo- and intraROS
287 accumulation and cell death responses.

288

289 **Pathogenesis-related gene expression patterns in resistant and susceptible wheat.** The
290 temporal *PR* gene expression patterns were studied at different time points during powdery
291 mildew infection in G305-3M and Langdon (Fig. S8). The most common patterns were obtained
292 for *PR1* (antifungal), *PR5* (thaumatin-like protein), *PR10* (RNase) and *NPR1* (salicylic acid
293 pathway) genes that showed a peak of expression at 36 hpi in G305-3M, with higher expression
294 levels than in Langdon. The *PR9* (peroxidase) showed higher expression at 48 and 72 hpi in
295 G305-3M than in Langdon, while Langdon showed a peak at 36 hpi. *PR4* (chitinase) and *TaHRI1*
296 (hypersensitive-induced reaction gene) showed a peak of expression at 36 hpi, but the expression
297 levels in Langdon were higher than in G305-3M (Fig. S8). The expressions of *oxacate* gene
298 showed two peaks at 3 and 24 hpi in Langdon, and 9 and 36 hpi in G305-3M, but showing higher
299 expression level in Langdon. Interestingly, *PR14* (lipid-transfer protein) showed a higher
300 expression level in G305-3M before 24 hpi, but lower expression level after 24 hpi relative to

301 Langdon. The expression of *RBOHD* was very low relative to the *PR* genes and the differences
302 between the resistant and susceptible accessions were very small in most of the tested time points
303 (Fig. S8).

304

305 **Can ROS accumulation induced by an avirulent *Bgt* isolate provide resistance against a**
306 **virulent pathogen isolate?** To answer this question, we inoculated wheat cultivar Morocco with
307 a mixture of an avirulent isolate *Bgt* #SH that induces ROS accumulation and a virulent isolate
308 *Bgt*#70 that can cause disease (Fig. 5a-b). However, although ROS was successfully induced by
309 the avirulent isolate, it did not prevent the development of *Bgt* colonies (Fig. 5c). In a second
310 trial, we inoculated Morocco first with the avirulent *Bgt* #SH, and after 16 hpi (intraROS burst
311 time) with the virulent isolate *Bgt* #70. However, Morocco still showed a highly susceptible
312 phenotype (IT=4), as in single inoculation with *Bgt* #70 (Fig. 5d), suggesting the intraROS
313 induced by the avirulent *Bgt* isolate #SH did not induce effective resistance against a virulent *Bgt*
314 isolate.

315 Moreover, 1% H₂O₂ treatment was not able to induce resistance to *Bgt* #70 in Langdon
316 (Fig. 5e), although it significantly upregulated the expressions of some important *PR* genes (*PR1*,
317 *PR4*, *PR5* and *PR9*) (Fig. 5f-g). Altogether, these results were suggesting that ROS could not act
318 as a strong systemic signal for inducing high resistance to *Bgt* in wheat.

319

320 **DISCUSSION**

321 In this study, the contribution of ROS (intraROS and apoROS) and localized cell death to the
322 immune responses were investigated quantitatively in the wheat-powdery mildew pathosystem,
323 in the presence of various *Pm* genes. In most cases, hypersensitive cell death response followed

324 intraROS accumulation as part of the resistance mechanism activated by NLR genes, while in
325 some unconventional *Pm* genes, different immune responses were observed. Furthermore, we
326 demonstrated that the ROS accumulation activated by an avirulent isolate did not induce
327 resistance against a virulent isolate.

328

329 **ROS accumulation in response to powdery mildew infection.** ROS accumulation is necessary
330 for the activation of plant immunity and the regulation of resistance mechanisms (Hu et al. 2021;
331 Mittler 2017). In the current study, we were able to quantitatively differentiate between two types
332 of spatial ROS accumulation in response to *Bgt* infection, the apoROS and the intraROS, which
333 are probably activated by PTI and ETI, respectively (Halliwell 2006; Hückelhoven 2007; Marti
334 et al. 2021). The apoROS is known to be secreted by the membrane-bound RBOHD activated by
335 receptor-like kinases in response to the detection of chitin (a component of the fungal cell wall)
336 or plant cell wall degradation products upon the pathogen infection (Lee et al. 2020). In the
337 current study, we detected apoROS around the PGTs in about 70-80% of the infected cells, both
338 in the resistant and the susceptible genotypes, already at 16 hpi, with no significant difference
339 between them (($p \leq 0.05$, Fig. 4p). Yamaoka et al. (2007) have shown that the primary germ tubes
340 of *Blumeria graminis* are involved in the suppression of resistance induction of host plant cells.
341 Therefore, it seems that apoROS by itself is not sufficient to prevent disease development caused
342 by *Bgt*. Although some ROS could be observed around the haustorium primordia (HP) of *Bgt* in
343 the compatible interactions during the early infection stages (16-72 hpi) (Fig. 2d, e, g, k, l), no
344 intraROS accumulation was found at later stages around the mature haustoria (MH) (Fig. 2e, i).
345 These results may indicate that MH are able to suppress intraROS accumulation probably by
346 secretion of effectors into the host cytoplasm (Jwa and Hwang 2017; Liu et al. 2021). Previously,

347 it was shown that apoROS might enter the cytoplasm through endocytosis or membrane-bound
348 aquaporin channels (Mittler et al. 2022; Rodrigues et al. 2017). These findings may explain our
349 results showing that some intraROS may appear when extensive apoROS accumulation occurs in
350 the compatible interaction (Fig. 2e, n and p). A high proportion of *Bgt*-infected cells with
351 intraROS (~15%) was observed only in the resistant genotypes (Fig. 3d-g, 3n-q), but not in the
352 susceptible genotypes. These results probably represent intraROS accumulation induced by ETI
353 as a result of the recognition of *Bgt* effectors by host specific genes (Dalio et al. 2021). The main
354 producers of intraROS are probably the chloroplast, mitochondria, and/or peroxisome as a
355 consequence of the imbalance and disruption of metabolic pathways during plant-pathogen
356 interactions (Camejo et al. 2016; Littlejohn et al. 2021; Mittler et al. 2022; Su et al. 2018). An
357 example of such immune response was demonstrated for the Wheat Kinase Start1 (*WKS1*) stripe
358 rust resistance gene (*Yr36*) which was shown to increase chloroplast H₂O₂ accumulation by
359 phosphorylation of the thylakoid-associated ascorbate peroxidase causing accumulation of ROS
360 and cell death (Gou et al. 2015).

361
362 **The resistance cell death response.** HR mediated cell death has been known to block
363 (hemi)biotrophic pathogen colonization through the signaling pathways triggered by host plant's
364 NLRs mediated recognition of pathogen effectors (Pitsili et al. 2020). The PRRs signaling of PTI
365 may be monitored by NLRs, with PRR signaling disturbance leading to hypersensitive cell death
366 response (Pitsili et al. 2020). PTI is required for full induction of ETI and in turn that ETI
367 induces and stabilizes key PTI signaling components (Bjornson and Zipfel 2021). In our study,
368 the cell death response was mainly recorded in the resistant genotypes following intraROS
369 accumulation at a delay of ~20 hours. However, in the susceptible wheat genotypes, the apoROS

370 triggered by PTI did not lead to cell death responses (e.g. Fig. 2 and 4). The spatial distribution
371 of intraROS and cell death responses were observed in all types of epidermal cells (Fig. S7),
372 including stomatal guard cells, trichomes, sister cells, and elongated cells. Therefore, our results
373 support previous reports showing that intraROS accumulation plays an important role in NLR-
374 mediated cell death (Bjornson and Zipfel 2021; Dalio et al. 2021). Interestingly, around 80% of
375 *Bgt*-infected cells in the resistant genotypes showed obvious accumulation of apoROS, while no
376 intraROS accumulation was observed (Table 1). These results may indicate that *Bgt* infection
377 was probably restricted already in the PTI stage., thus supporting previous results indicating the
378 crosstalk between PTI and ETI immune receptors is involved in the plant immune responses
379 (Bjornson and Zipfel 2021). Moreover, recent studies show that pathogen infection can trigger
380 NLR receptors to form a macromolecular porous structure called resistosome participating in the
381 cell death signaling hubs. The cell death is preceded by a perturbation of organelle hemostasis
382 and channel-dependent ROS production, followed by a loss of plasma membrane integrity (Bi et
383 al. 2021; Wang et al. 2019). Therefore, our results are in agreement with previous studies and
384 confirm that intraROS production plays important role in NLR-mediated cell death, also in the
385 *Bgt*-wheat pathosystem.

386

387 **Differential *Pm* genes conferred different resistance responses.** ROS accumulation and HR
388 cell death immune responses of differential wheat lines that harbor various *Pm* resistance genes
389 were compared in the current study. Based on the host plant's immune responses, the *Pm* genes
390 harbored by these lines can be classified into three different categories: (A) Typical NLR
391 responses which include *Pm69* (Li et al. 2022), *TdPm60*, *MliW72*, *Pm3F* and *Pm41* with IT=1-3.
392 These different levels of defense responses might be due to the different interactions of the *Bgt*

393 #70 effectors with the specific NLRs (Dalio et al. 2021). The resistance levels provided by these
394 NLRs were strongly associated with intraROS and cell death levels (Table 1, Fig. S5), supporting
395 previous studies showing that the intraROS and cell death play an important role in NLR-
396 mediated resistance (Bjornson and Zipfel 2021; Dalio et al. 2021). (B) The *pm42* is a recessive
397 resistance gene (Hua et al. 2009), which did not induce a strong intraROS burst nor cell death
398 response (Table 1), suggesting a different resistance mechanism compared with the typical NLRs.
399 A resistance response conferred by a recessive gene may indicate the lack of a cell component
400 necessary for the pathogen to proliferate or the lack of a negative regulator of plant immunity
401 pathways (Deslandes et al. 2002). (C) *Pm24* is encoding for a Wheat Tandem Kinase protein
402 (WTK3) that belongs to a newly discovered family of intracellular disease resistance proteins,
403 which also activate cell death responses (Klymiuk et al. 2021). *Pm24* governs only partial
404 resistance (IT=1) to *Bgt* (Table 1, Fig. S4). In accordance with Lu et al. (2020), our results
405 demonstrate that only ~3.3 % of *Pm24* cells infected with *Bgt* showed intraROS accumulation,
406 while ~10% of *Bgt*-infected cells presented cell death response, which suggests that a new
407 disease resistance mechanism is involved here, which is probably different from that of NLRs.
408 Klymiuk et al (2021) proposed that tandem kinases are new players in the plant immune system
409 serving as decoys for pathogen effectors and activating PCD.

410

411 **ROS-induced *PR* gene expression and is not a strong SAR signal.** Several important signals
412 have been reported to be involved in plant defense responses, especially in systemic acquired
413 resistance (SAR) that induces systemic production of antimicrobial proteins known as PR
414 proteins after pathogen infection (Fu and Dong 2013; Li et al. 2020; Phuong et al. 2020). In the
415 current study, *Bgt* infection induced a temporal expression pattern of *PR* genes (*PR1*, *PR4*, *PR5*,

416 *PR9*, *PR10* and *PR14*) (Fig. S8), suggesting that those *PR* genes are involved in wheat immune
417 responses. We also showed that external ROS application could upregulate *pathogenesis-related*
418 (*PR*) genes, but not induced high resistance for the whole wheat leaf (Fig. 5e). IntraROS induced
419 by an avirulent *Bgt* isolate did not contribute to an induced resistance against a virulent isolate in
420 the same wheat leaf (Fig. 5). This study is paving the way for future studies aiming to dissect the
421 disease resistance mechanism of diverse wheat genetic resources against *Bgt* at the molecular
422 level.

423

424 **ACKNOWLEDGEMENTS**

425 Yinghui Li is thankful for the postdoctoral fellowship (2018-21) provided by the Planning and
426 Budgeting Committee (PBC) of the Israel Council for Higher Education (ICHE) for Outstanding
427 Postdoctoral Fellows from China and India. Rajib Roychowdhury is thankful for the combined
428 Post-Doctoral Fellowship during 2020-21 provided by the Graduate School of the University of
429 Haifa, Israel. The authors are thankful to Dr. Tamar Lotan laboratory at the University of Haifa
430 for assistance in microscopy work, and to Dr. Tamar Kis-Papo and Dr. Olga Borzov for technical
431 assistance. This study was supported by the Israel Science Foundation, grant numbers 1366/18,
432 2289/16 and 2342/18.

433

434 **LITERATURE CITED**

435 Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., et al. 2018. Pathogenesis-
436 related proteins and peptides as promising tools for engineering plants with multiple stress
437 tolerance. *Microbiol. Res.* 212–213:29–37.
438 Ben-David, R., Parks, R., Dinoor, A., Kosman, E., Wicker, T., Keller, B., et al. 2016.

439 Differentiation among *Blumeria graminis* f. sp. *tritici* isolates originating from wild versus
440 domesticated *Triticum* species in Israel. *Phytopathol.* 106:861–870.

441 Ben-David, R., Xie, W., Peleg, Z., Saranga, Y., Dinoor, A., and Fahima, T. 2010. Identification
442 and mapping of *PmG16*, a powdery mildew resistance gene derived from wild emmer wheat.
443 *Theor. Appl. Genet.* 121:499–510.

444 Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., et al. 2021. The ZAR1 resistosome is a
445 calcium-permeable channel triggering plant immune signaling. *Cell.* 184:3528-3541.

446 Bjornson, M., and Zipfel, C. 2021. Plant immunity: crosstalk between plant immune receptors.
447 *Curr. Biol.* 31:R796–R798.

448 Boutrot, F., and Zipfel, C. 2017. Function, discovery, and exploitation of plant pattern
449 recognition receptors for broad-spectrum disease resistance. *Ann. Rev. Phytopathol.* 55:257–
450 286.

451 Camejo, D., Guzmán-Cedeño, Á., and Moreno, A. 2016. Reactive oxygen species, essential
452 molecules, during plant–pathogen interactions. *Plant Physiol. Biochem.* 103:10–23.

453 Dalio, R. J. D., Paschoal, D., Arena, G. D., Magalhães, D. M., Oliveira, T. S., Merfa, M. v., et al.
454 2021. Hypersensitive response: From NLR pathogen recognition to cell death response. *Ann.*
455 *Appl. Biol.* 178:268–280.

456 Deslandes, L., Olivier, J., Theulière, F., Hirsch, J., Feng, D. X., Bittner-Eddy, P., et al. 2002.
457 Resistance to *Ralstonia solanacearum* in *Arabidopsis thaliana* is conferred by the recessive
458 *RRS1-R* gene, a member of a novel family of resistance genes. *P. N. A. S.* 99:2404–2409.

459 Dey, N., Roy, U. K., Aditya, M., and Bhattacharjee, S. 2020. Defensive strategies of ROS in
460 Programmed Cell Death associated with hypertensive response in plant pathogenesis. *Ann.*
461 *Sys. Biol.* 3:1–9.

462 Dubiella, U., Seybold, H., Durian, G., Komander, E., Lassig, R., Witte, C. P., et al. 2013.

463 Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid

464 defense signal propagation. P. N. A. S. 110:8744–8749.

465 Foyer, C. H., and Noctor, G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation

466 of the concept of oxidative stress in a physiological context. Plant Cell Env. 28:1056–1071.

467 Fu, Z. Q., and Dong, X. 2013. Systemic acquired resistance: turning local infection into global

468 defense. Ann. Rev. Plant Biol. 64:839-863.

469 Ge, X., Deng, W., Lee, Z. Z., Lopez-Ruiz, F. J., Schweizer, P., and Ellwood, S. R. 2016.

470 Tempered *mlo* broad-spectrum resistance to barley powdery mildew in an Ethiopian

471 landrace. Sci. Rep. 6:1–10.

472 Gou, J. Y., Li, K., Wu, K., Wang, X., Lin, H., Cantu, D., et al. 2015. Wheat stripe rust resistance

473 protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to

474 detoxify reactive oxygen species. The Plant Cell. 27:1755–1770.

475 Halliwell, B. 2006. Reactive species and antioxidants. redox biology is a fundamental theme of

476 aerobic life. Plant Physiol. 141:312.

477 Hasanuzzaman, M., Bhuyan, M. H. M. B., Parvin, K., Bhuiyan, T. F., Anee, T. I., Nahar, K., et al.

478 2020. Regulation of ROS metabolism in plants under environmental stress: a review of

479 recent experimental evidence. Int. J. Mol. Sci. 21:1–44.

480 Hu, Y., Tao, F., Su, C., Zhang, Y., Li, J., Wang, J., et al. 2021. NBS-LRR gene *TaRPS2* is

481 positively associated with the high-temperature seedling plant resistance of wheat against

482 *Puccinia striiformis* f. sp. *tritici*. Phytopathol. 111:1449–1458.

483 Hua, W., Liu, Z., Zhu, J., Xie, C., Yang, T., Zhou, Y., et al. 2009. Identification and genetic

484 mapping of *pm42*, a new recessive wheat powdery mildew resistance gene derived from

485 wild emmer (*Triticum turgidum* var. *dicoccoides*). *Theor. Appl. Genet.* 119:223–230.

486 Hückelhoven, R. 2007. Cell wall-associated mechanisms of disease resistance and susceptibility.

487 *Ann. Rev. Phytopathol.* 45:101–127.

488 Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. *Nature* 444:323–329.

489 Jwa, N. S., and Hwang, B. K. 2017. Convergent evolution of pathogen effectors toward reactive

490 oxygen species signaling networks in plants. *Front. Plant Sci.* 8:1687.

491 Király, L., Albert, R., Zsemberi, O., Schwarczinger, I., Hafez, Y. M., and Künstler, A. 2021.

492 Reactive oxygen species contribute to symptomless, extreme resistance to Potato virus X in

493 *Tobacco*. *Phytopathol.* 111:1870–1884.

494 Klymiuk, V., Coaker, G., Fahima, T., and Pozniak, C. J. 2021. Tandem protein kinases emerge as

495 new regulators of plant immunity. *Mol. Plant-Micro. Interac.* 34:1094–1102.

496 Lammertz, M., Kuhn, H., Pfeilmeier, S., Malone, J., Zipfel, C., Kwaaitaal, M., et al. 2019.

497 Widely conserved attenuation of plant MAMP-induced calcium influx by bacteria depends

498 on multiple virulence factors and may involve desensitization of host pattern recognition

499 receptors. *Mol. Plant-Micro. Interac.* 32:608–621.

500 Lee, D. H., Lal, N. K., Lin, Z. J. D., Ma, S., Liu, J., Castro, B., et al. 2020. Regulation of reactive

501 oxygen species during plant immunity through phosphorylation and ubiquitination of

502 RBOHD. *Nat. Comm.* 11:1838.

503 Li, Y., Qiu, L., Liu, X., Zhang, Q., Zhuansun, X., Fahima, T., et al. 2020. Glycerol-induced

504 powdery mildew resistance in wheat by regulating plant fatty acid metabolism, plant

505 hormones cross-talk, and pathogenesis-related genes. *Int. J. Mol. Sci.* 21:673.

506 Li, Y., Wei, Z. Z., Fatiukha, A., Jaiwar, S., Wang, H., Hasan, S., et al. 2021. *TdPm60* identified in

507 wild emmer wheat is an ortholog of *Pm60* and constitutes a strong candidate for *PmG16*

508 powdery mildew resistance. *Theor. Appl. Genet.* 134:2777–2793.

509 Li, Y., Wei, Z. Z., Sela, H., Govta., Fahima, T., et al. 2022. Long-read genome sequencing
510 accelerated the dissection of a rapidly evolving resistance gene cluster and the cloning of
511 *Pm69*. 2nd International Wheat Conference.
512 <https://onlinesys02.hoochui.cn/electronPoster/#/infoList/0/bc2b6730-5fc5-44a6-867b-e6e35fde9944/2/0>.

513

514 Littlejohn, G. R., Breen, S., Smirnoff, N., and Grant, M. 2021. Chloroplast immunity illuminated.
515 *New Phytol.* 229:3088–3107.

516 Liu, R., Chen, T., Yin, X., Xiang, G., Peng, J., Fu, Q., et al. 2021. A *Plasmopara viticola* RXLR
517 effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. *The
518 Plant J.* 106:1557–1570.

519 Lorang, J. 2019. Necrotrophic exploitation and subversion of plant defense: A lifestyle or just a
520 phase, and implications in breeding resistance. *Phytopathol.* 109:332–346.

521 Lu, P., Guo, L., Wang, Z., Li, B., Li, J., Li, Y., et al. 2020. A rare gain of function mutation in a
522 wheat tandem kinase confers resistance to powdery mildew. *Nat. Comm.* 11:1–11.

523 Macho, A. P., and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling.
524 *Mol. Cell.* 54:263–272.

525 Marti, L., Savatin, D. V., Gigli-Bisceglia, N., de Turris, V., Cervone, F., and de Lorenzo, G. 2021.
526 The intracellular ROS accumulation in elicitor-induced immunity requires the multiple
527 organelle-targeted *Arabidopsis* NPK1-related protein kinases. *Plant. Cell. Env.* 44:931–947.

528 Mittler, R. 2017. ROS are good. *Trends Plant Sci.* 22:11–19.

529 Mittler, R., Zandalinas, S. I., Fichman, Y., and van Breusegem, F. 2022. Reactive oxygen species
530 signalling in plant stress responses. *Nat. Rev. Mol. Cell Biol.* 1–17.

531 Nevo, E., Korol, A. B., Beiles, A., and Fahima, T. 2002. Evolution of wild emmer and wheat
532 improvement: Population genetics, genetic resources, and genome organization of wheat's
533 progenitor, *Triticum dicoccoides*. Springer Science & Business Media, pp. 364.

534 Ngou, B. P. M., Ahn, H. K., Ding, P., and Jones, J. D. G. 2021. Mutual potentiation of plant
535 immunity by cell-surface and intracellular receptors. *Nature*. 592:110–115.

536 Ngou, B. P. M., Jones, J. D. G., and Ding, P. 2022. Plant immune networks. *Trends Plant Sci.*
537 27:255–273.

538 Phuong, L. T., Zhao, L., Fitrianti, A. N., Matsui, H., Noutoshi, Y., Yamamoto, M., et al. 2020.
539 The plant activator saccharin induces resistance to wheat powdery mildew by activating
540 multiple defense-related genes. *J. Gen. Plant Pathol.* 86:107–113.

541 Pitsili, E., Phukan, U. J., and Coll, N. S. 2020. Cell death in plant immunity. *Cold Spr. Har.*
542 *Perspect Biol.* 12:a036483.

543 Qi, T., Guo, J., Liu, P., He, F., Wan, C., Islam, M. A., et al. 2019. Stripe rust effector *PstGSRE1*
544 disrupts nuclear localization of ROS-promoting transcription factor *TaLOL2* to defeat ROS-
545 induced defense in Wheat. *Mol. Plant.* 12:1624–1638.

546 Ramachandran, S. R., Yin, C., Kud, J., Tanaka, K., Mahoney, A. K., Xiao, F., et al. 2017.
547 Effectors from wheat rust fungi suppress multiple plant defense responses. *Phytopathol.*
548 107:75–83.

549 Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., Maurel, C., et al. 2017.
550 Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and
551 pathogen-triggered stomatal closure. *P. N. A. S.* 114:9200–9205.

552 Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., and Nelson, A. 2019. The
553 global burden of pathogens and pests on major food crops. *Nat. Ecol. Evo.* 3(3): 430–439.

554 Shidore, T., Broeckling, C. D., Kirkwood, J. S., Long, J. J., Miao, J., Zhao, B., et al. 2017. The
555 effector *AvrRxo1* phosphorylates NAD in planta. PLOS Path. 13:e1006442.

556 Soliman, A., Adam, L. R., Rehal, P. K., and Daayf, F. 2021. Overexpression of *Solanum*
557 *tuberosum* respiratory burst oxidase homolog A (*StRbohA*) promotes Potato tolerance to
558 *Phytophthora infestans*. Phytopathol. 111:1410–1419.

559 Su, Y., Chen, Y., Chen, J., Zhang, Z., Guo, J., Cai, Y., et al. 2021. Effectors of *Puccinia*
560 *striiformis* F. Sp. *tritici* suppressing the pathogenic-associated molecular pattern-triggered
561 immune response were screened by transient expression of wheat protoplasts. Int. J. Mol.
562 Sci. 22:4985.

563 Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. 1997. Subcellular localization
564 of H₂O₂ in plants. H₂O₂ accumulation in papillae and hypersensitive response during the
565 barley-powdery mildew interaction. Plant J. 11:1187–1194.

566 Tjamos, S., Loewen, M. C., Hao, G., Tiley, H., and McCormick, S. 2022. Chitin triggers tissue-
567 specific immunity in wheat associated with *Fusarium* head blight. Front. Plant Sci.
568 13:832502.

569 Torres, D. P., Proels, R. K., Schempp, H., and Hückelhoven, R. 2017. Silencing of *RBOHF2*
570 causes leaf age-dependent accelerated senescence, salicylic acid accumulation, and powdery
571 mildew resistance in barley. Mol. Plant-Micro. Interac. 30:906–918.

572 Völz, R., Harris, W., Hirt, H., and Lee, Y. H. 2022. ROS homeostasis mediated by MPK4 and
573 SUMM2 determines synergid cell death. Nat. Comm. 13:1–12.

574 Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., et al. 2019. Reconstitution and structure of
575 a plant NLR resistosome conferring immunity. Science. 364: eaav5870.

576 van Wees, S. 2008. Phenotypic analysis of *Arabidopsis* mutants: trypan blue stain for fungi,

577 oomycetes, and dead plant cells. *Cold Spring Harbor Protocols*.

578 Xie, W., Ben-David, R., Zeng, B., Distelfeld, A., Röder, M. S., Dinoor, A., et al. 2012.

579 Identification and characterization of a novel powdery mildew resistance gene *PmG3M*

580 derived from wild emmer wheat, *Triticum dicoccoides*. *Theor. Appl. Genet.* 124:911–922.

581 Xu, Q., Tang, C., Wang, X., Sun, S., Zhao, J., Kang, Z., et al. 2019. An effector protein of the

582 wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. *Nat.*

583 *Comm.* 10:5571.

584 Yamaoka, N., Ohta, T., Danno, N., Taniguchi, S., Matsumoto, I., Nishiguchi, M. 2007. The role

585 of primary germ tubes in the life cycle of *Blumeria graminis*: The primary germ tube is

586 responsible for the suppression of resistance induction of a host plant cell. *Physiological Mol.*

587 *Plant Path.* 71:184–191.

588 Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., et al. 2021. Pattern-recognition

589 receptors are required for NLR-mediated plant immunity. *Nature*. 592:105–109.

590 Zhang, M., and Coaker, G. 2017. Harnessing effector-triggered immunity for durable disease

591 resistance. *Phytopathol.* 107:912–919.

592

593 **The authorship contribution statement**

594 **TF, YL and RR** conceived and designed this research; **YL** and **RR** performed the experiments

595 and data analysis; **YL, RR** and **TF** wrote the manuscript; **LG** and **SJ** assisted in laboratory

596 experiments; **ZW, IS** and **TF** proof-read, reviewed and edited the manuscript and improved it

597 with additional suggestions; **TF** was responsible for coordination and funding acquisition. All the

598 authors approved the final version of the manuscript for submission for publication.

600 **Conflict of interest**

601 The authors declare no conflict of interest for the works in this manuscript.

602

603 **TABLE 1.** ROS and cell death response to *Bgt* #70 in different wheat species at 48 hpi.

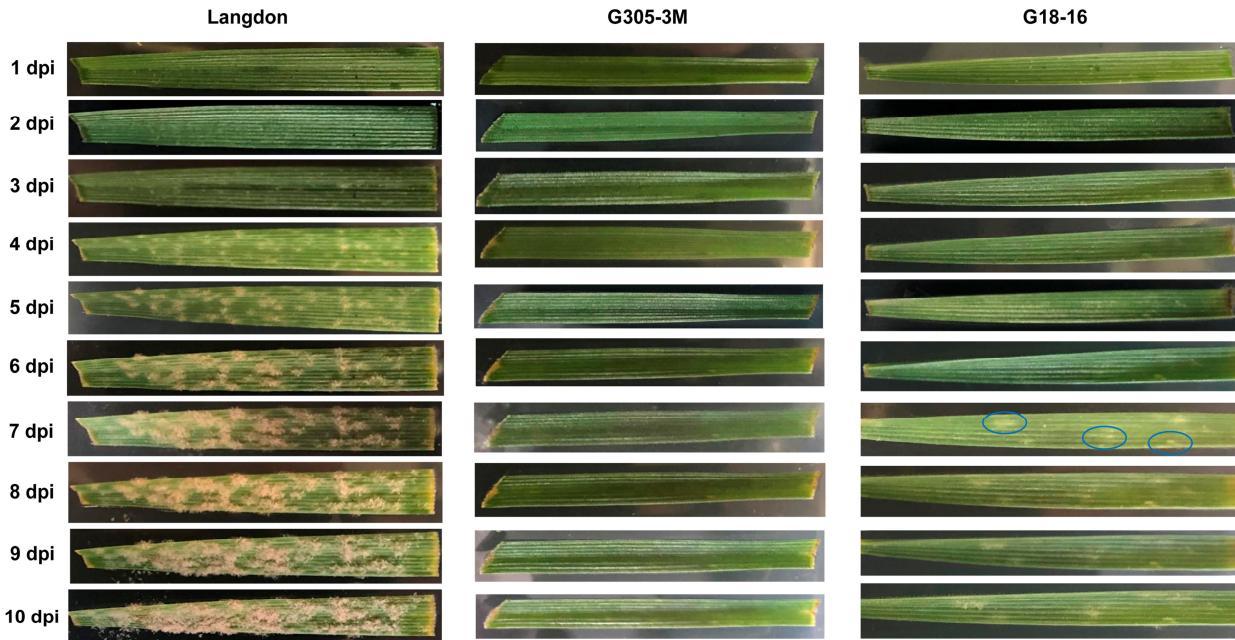
Wheat Species	Accessions	Pm gene	Bgt #70			
			IT	Infected cells with intraROS (%)	Infected cells with cell death (%)	Bgt colonies (%)
WEW	G305-3M	<i>Pm69</i>	0	14.7 ± 2 ^a	14.3 ± 1.61 ^a	0 ^e
	TD010009	<i>Pm41</i>	0	14 ± 1.04 ^a	12.33 ± 1.92 ^a	0 ^e
	TD104088	unknownn	0	15 ± 2.15 ^a	12.3 ± 0.9 ^a	0 ^e
	G303-1M	<i>pm42</i>	0	4.3 ± 0.7 ^{bc}	5.3 ± 0.7 ^{bc}	0 ^e
	G18-16	<i>TdPm60</i>	1	13 ± 4 ^a	11.7 ± 3.2 ^{ab}	1.3 ± 0.5 ^e
	TD116494	<i>MliWI72</i>	1	10.67 ± 0.48 ^{ab}	11.33 ± 1.03 ^{ab}	1 ± 0.5 ^e
	Zavitan	NA	4	1 ± 0.8 ^c	0.7 ± 0.5 ^c	71.3 ± 2.9 ^b
Durum wheat	Langdon	NA	4	2.7 ± 2.1 ^c	0 ^c	69.3 ± 3.7 ^b
	Svevo	NA	4	2.3 ± 1.2 ^c	1.7 ± 1.24 ^c	67.3 ± 2.2 ^b
	Kronos	NA	4	1.3 ± 0.5 ^c	1 ± 0.8 ^c	78.3 ± 2.5 ^{ab}
Bread wheat	Pm17 Amigo	<i>Pm17</i>	0	13.7 ± 1.82 ^a	14 ± 2.52 ^a	0 ^e
	Pm13 Entry 21	<i>Pm13</i>	1	12 ± 1.67 ^a	12 ± 2.15 ^{ab}	1.3 ± 0.3 ^e
	Chiyacao	<i>Pm24</i>	1	3.33 ± 0.52 ^{bc}	10.67 ± 1.04 ^{ab}	14.3 ± 1 ^{de}
	Pm32 Entry 80	<i>Pm32</i>	2	3.67 ± 1.61 ^{bc}	9.33 ± 1.70 ^{ab}	9 ± 1.4 ^{de}
	Michigan Entry	<i>Pm3F</i>	3	1.67 ± 1.05 ^c	2 ± 0.49 ^c	52 ± 4.5 ^c
	Pm 29 Entry 79	<i>Pm29</i>	3	13.67 ± 1.74 ^a	11.67 ± 1.01 ^{ab}	18.7 ± 2.1 ^d
	Morocco	NA	4	0.7 ± 0.5 ^c	0.3 ± 0.5 ^c	84.6 ± 4.2 ^a
	Chinese Spring	NA	4	2 ± 0.8 ^c	1.7 ± 0.5 ^c	63.3 ± 8.8 ^{bc}
Back-cross lines	Ruta BC ₄ F ₂	<i>TdPm60</i>	0	14.67 ± 0.88 ^a	12.33 ± 0.88 ^{ab}	1 ± 0.5 ^e
		<i>Pm69</i>	0	15.66 ± 1.45 ^a	14 ± 1.15 ^{ab}	0 ^e

604 Note: Cells with intraROS (%) = The number of cells with intraROS/the number of infected cells;

605 Cells with cell death (%) = The number of cells with cell death/the number of infected cells. *Bgt*

606 colonies (%) = The number of the well-developed *Bgt* colony/the total number of *Bgt* spores on

607 the wheat leaf. NA: not reported as containing *Pm* genes. unknown: no clear information or
608 proof about functional *Pm* genes. Different letters denote significant differences ($p \leq 0.05$) of the
609 mean values by one-way ANOVA analysis to differentiate the accessions in response to the
610 studied parameters.

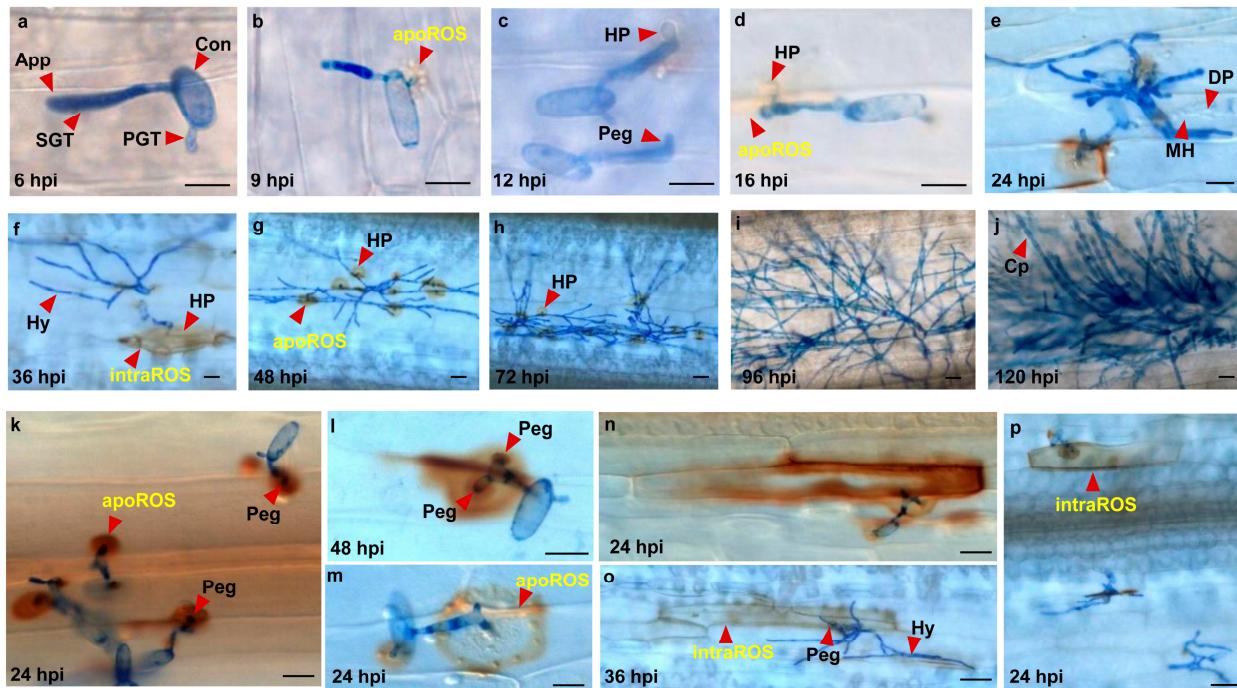

611

612 **Supplementary Information**

613 Figures S1-S8 and Table S1. See the attached Supplementary file.

614

615 **Figures and Figure Legends**

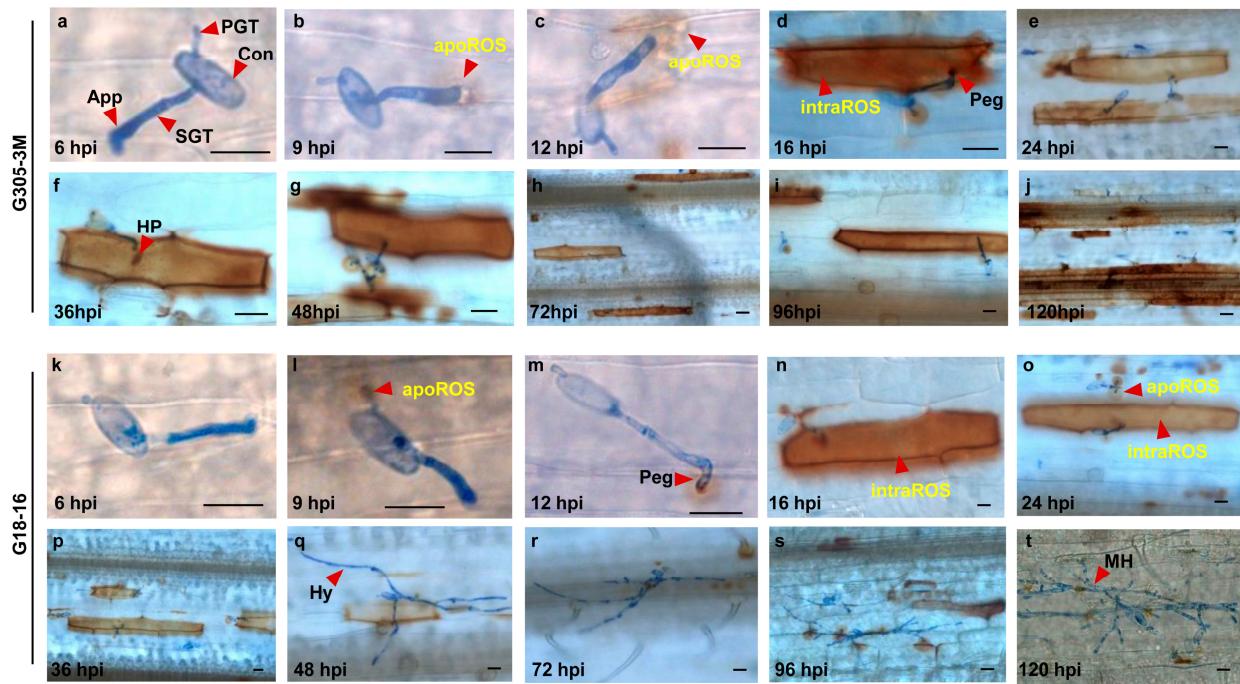


616

617 **Fig. 1.** Macroscopic observation of *Bgt* #70 symptoms on young leaves of susceptible *T. durum*
618 Langdon and two resistant WEW lines (G305-3M G18-16). The same leaves were photographed
619 from 1 to 10 days post *Bgt* #70 infection (dpi). The blue ellipses indicate the small *Bgt* colonies
620 on the partial resistant WEW G18-16 leaves.

621

622

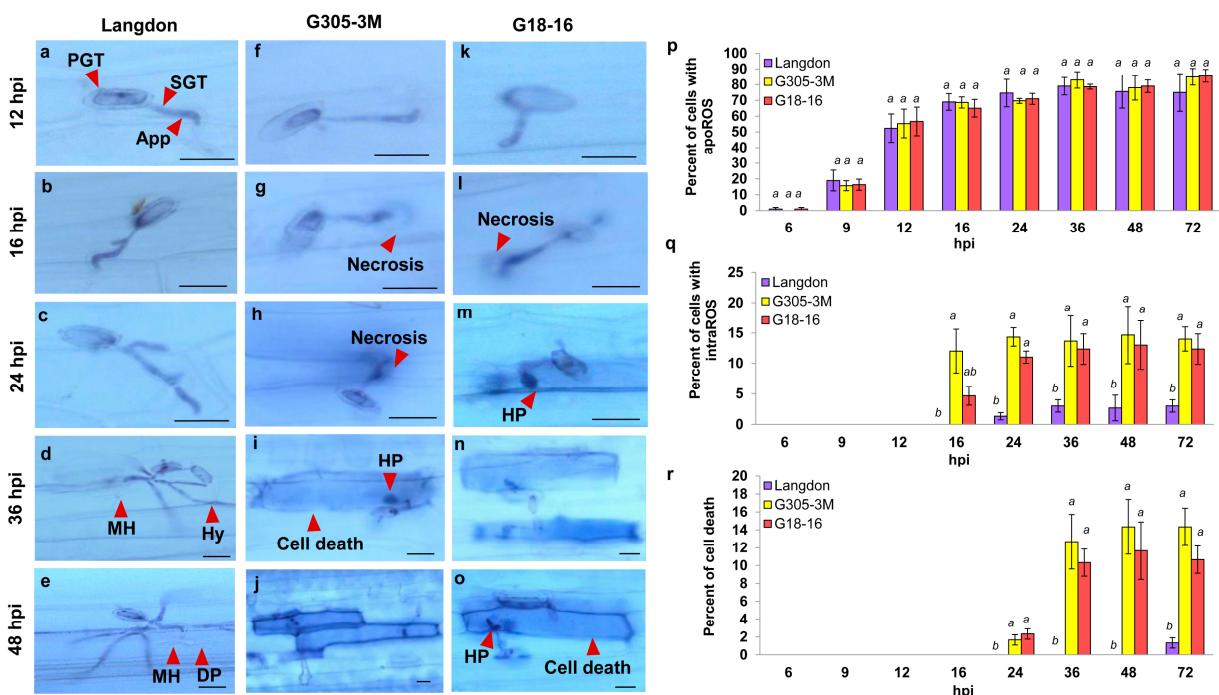


623

624 **Fig. 2.** Representative micrograph of ROS accumulation during the asexual disease cycle of *Bgt*
625 #70 in the susceptible Langdon. (a-j) The process of *Bgt* development and ROS accumulation
626 from 6 to 120 hpi. (k-p) The different types of ROS accumulation in Langdon. App,
627 appressorium; Con, conidium; Cp, conidiophores; DP, digitate processes (finger-like projections);
628 MH, mature haustorium; HP, haustorial primordium; Hy, hyphae; PGT, primary germ tube; SGT,
629 secondary germ tube. Scale bars = 20 μ m.

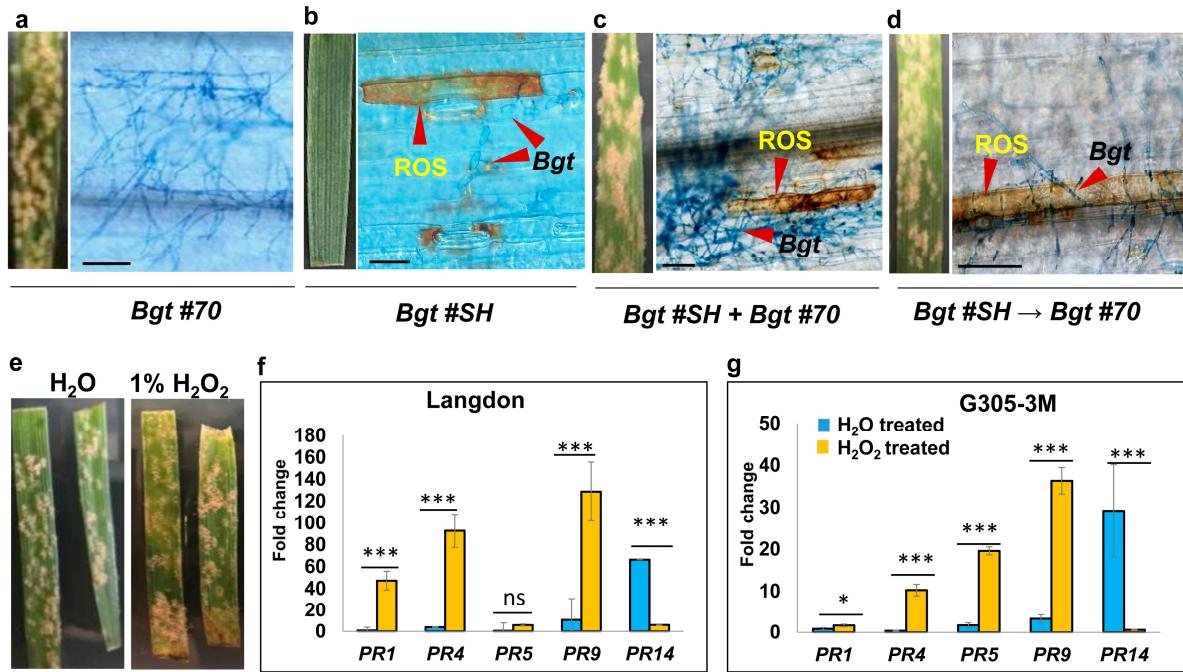
630

631



632

633 **Fig. 3.** Representative micrograph of ROS accumulation during the asexual disease cycle of *Bgt*
634 #70 in the resistant WEW lines G305-3M (**a-j**) and G18-16 (**k-t**). The process of *Bgt*
635 development was followed from 6 to 120 hpi. App: appressorium; Con: conidium; MH, mature
636 haustorium; PGT, primary germ tube; SGT, secondary germ tube. Scale bars = 20 μm.


637

638

639

640 **Fig. 4.** Micrographs of cell death (a-o) and quantitative analysis (p-r) of the proportion of
641 infected cells with ROS and cell death responses during *Bgt* development in Langdon, G305-3M,
642 and G18-16. App: appressorium; DP, digitate processes; MH, mature haustorium; HP, haustorial
643 primordium; Hy, hyphae; PGT, primary germ tube; SGT, secondary germ tube. Scale bars = 20
644 μ m. (p) Percent cells with apoROS of *Bgt*-inoculated cells. (q) Percent cells with intraROS of
645 *Bgt*-inoculated cells. (r) Percent of cell death of the *Bgt*-inoculated cells. Different letters denote
646 significant differences ($p \leq 0.05$) of the mean values by one-way ANOVA analysis to
647 differentiate the accessions at each time point.

648

649 **Fig. 5.** ROS accumulation is not a strong SAR signal. **(a)** The phenotypes (at 7 hpi) and
650 representative micrograph (at 48 hpi) of Morocco to inoculation of single *Bgt* #70 (IT=4), **(b)**
651 single *Bgt* #SH (IT=0), **(c)** both isolates (*Bgt* #70 + *Bgt* #SH) (IT=4), and **(d)** first *Bgt* #SH then
652 *Bgt* #70 after 16 hours (*Bgt* #SH → *Bgt* #70). Scale bars = 100 μm. **(e)** The phenotypes of
653 Langdon to *Bgt* #70 (both IT = 4) with pretreatments of H₂O or 1% H₂O₂ before *Bgt* infection.
654 The expression levels of *PR* gene in water (H₂O) and H₂O₂-treated (24 hours after treatment)
655 leaves of Langdon **(f)** and G305-3M **(g)**. Asterisks indicate the level of significance by *t*-test, p ≤
656 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), non-significant (ns) to differentiate the *PR* genes in
657 response to treatments (H₂O and H₂O₂).

658

659