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Abstract

Single-cell transcriptomic data measured across distinct samples has led to a
surge in computational methods for data integration. Few studies have ex-
plicitly examined the common case of cell-type imbalance between datasets to
be integrated, and none have characterized its impact on downstream analy-
ses. To address this gap, we developed the Iniquitate pipeline for assessing the
stability of single-cell RNA sequencing (scRNA-seq) integration results after
perturbing the degree of imbalance between datasets. Through benchmarking
5 state-of-the-art scRNA-seq integration techniques in 1600 perturbed integra-
tion scenarios for a multi-sample peripheral blood mononuclear cell (PBMC)
dataset, our results indicate that sample imbalance has significant impacts on
downstream analyses and the biological interpretation of integration results. We
observed significant variation in clustering, cell-type classification, marker gene-
based annotation, and query-to-reference mapping in imbalanced settings. Two
key factors were found to lead to quantitation differences after scRNA-seq inte-
gration - the cell-type imbalance within and between samples (relative cell-type
support) and the relatedness of cell-types across samples (minimum cell-type
center distance). To account for evaluation gaps in imbalanced contexts, we
developed novel clustering metrics robust to sample imbalance, including the
balanced Adjusted Rand Index (bARI) and balanced Adjusted Mutual Infor-
mation (bAMI). Our analysis quantifies biologically-relevant effects of dataset
imbalance in integration scenarios and introduces guidelines and novel metrics
for integration of disparate datasets. The Iniquitate pipeline and balanced clus-
tering metrics are available at https://github.com/hsmaan/Iniquitate and
https://github.com/hsmaan/balanced-clustering, respectively.
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Introduction

Single-cell sequencing technologies developed in the past decade have led to
breakthrough discoveries due to the high resolution that they offer in deter-
mining biological heterogeneity [1-3]. A major challenge associated with the
analysis of high throughput sequencing data is that of accounting for batch
effects, which are technical artifacts caused by factors such as differences in se-
quencing protocols, experimental reagents, and ambient conditions that lead to
quantification changes that are not biologically driven [1]. Batch effects can lead
to major discrepancies in comparisons of similar experimental groups that can
easily be misinterpreted as biological signal [5]. The amount of mRNA captured
and reads sequenced per cell in single-cell RNA sequencing (scRNA-seq) assays
is very low compared to their bulk counterparts, leading to measurements that
tend to be sparse and noisy [0, 7]. These factors, combined with measurements
often conducted across separate experimental groups without balanced designs
[7], leads to a higher susceptibility of scRNA-seq data to batch effects. Methods
for removing batch effects from bulk RNA sequencing data have demonstrated
poor performance in single-cell settings due to invalid assumptions of shared
populations and linear application of technical effects [3]. To account for this
gap in methodology, batch correction/integration techniques have been devel-
oped specifically for scRNA-seq data [3].

Current single-cell integration methods underperform in settings where datasets

are imbalanced based on cell-types [9]. More specifically, this form of imbalance
is dictated by differences in the cell-types present, number of cells per cell-type,
and cell-type proportions across samples [9, 10]. Imbalanced datasets occur
in many integration contexts, including developmental and cancer biology. In
developmental data, it is unlikely that cell populations and proportions will be
shared across samples from different developmental time-points due to factors
such as depletion of stem-like progenitors and differentiation [I1]. In tumor
samples, both clonal and subclonal heterogeneity can be present, as well as
different levels of immune and stromal cell infiltration, both within and across
samples [12]. Therefore, as imbalanced contexts can be common in single-cell
data analysis, integration methods and analysis pipelines must be able to ex-
plicitly address these imbalances or integration results may lead to inaccurate
biological conclusions.

In comprehensive single-cell integration benchmarking studies by Tran et
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77 al. and Luecken et al. [9, 13], scRNA-seq integration methods were found to
78 perform poorly in terms of both batch-correction and cell-type identity con-
79 servation metrics, particularly in large and imbalanced datasets. Ming et al.
80 [10] highlighted dataset imbalance limitations through simulation studies for
81 balanced and imbalanced cell-type compositions in scRNA-seq integration set-
82 tings, and demonstrated that cell-type proportion imbalance leads to skewed
83 distributions in standardized gene expression values between datasets. This
84 drives major changes in the dimensionality reduction step in scRNA-seq anal-
85 ysis, and subsequently leads to inaccurate integration results [10]. Currently,
86 no existing study has quantified the effects of dataset imbalance on both in-
87 tegration results and downstream biological conclusions. This aspect is highly
88 relevant, as mechanisms to account for dataset imbalance do not readily exist
89 in frequently utilized integration techniques [9, 13].
90 Here, we present an extensive analysis of the effects of dataset imbalance on
91 scRNA-seq data integration. We begin by examining two balanced scRNA-seq
92 batches of human peripheral blood mononuclear cell (PBMC) data [9, 14, 15] as
93 a controlled setting. To determine the effects of dataset imbalance on integration
94 results and downstream analyses, we perform 1600 perturbation experiments
95 using the Iniquitate pipeline that involve control, downsampling, and ablation
96 simulations in a cell-type-specific manner with replicates. Downstream analyses
97 tested include unsupervised clustering [3], differential expression to determine
98 marker genes [8], nearest-neighbor-based cell-type classification [16], and query-
99 to-reference cell-type annotation [17]. To extend the analyses to more complex
100 settings, we analyze datasets with prevalent imbalance, including imbalanced
101 PBMC datasets [18], longitudinal mouse hindbrain developmental data [19],
102 and pancreatic ductal adenocarcinoma (PDAC) samples from different patients
103 [20]. Our analyses reveals that dataset imbalance has cell-type-specific effects
104 on integration performance, as well as the downstream results, and that these
105 effects are largely method-agnostic. We further define two key aspects of multi-
106 sample single-cell data that act in concert to affect downstream results - relative
107 cell-type support and minimum cell-type center distance. To address limitations
108 with respect to dataset imbalance in benchmarking single-cell integration, we
109 reformulate current integration metrics to consider imbalance explicitly. Finally,
110 we provide a series of guidelines and recommendations to help minimize and
111 mitigate the impacts of dataset imbalance in scRNA-seq integration settings.
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112 Results

113 Development of a comprehensive perturbation pipeline to
114 determine the impacts of imbalance in scRINA-seq integra-
115 tion

116 To assess the impacts of dataset imbalance in scRNA-seq integration, we de-
117 veloped a pipeline termed Iniquitate, that quantifies imbalance prevalent in
118 datasets using global and per-cell-type statistics, determines the differences
119 in these quantities between samples/batches, and tests the effects of down-
120 sampling perturbations on integration and downstream analysis results (Figure
121 1A). Datasets utilized were annotated by experts in their respective studies,
122 with the exception of the PDAC data which was re-annotated to better identify
123 malignant cells (Online Methods). We tested five state-of-the-art scRNA-seq
124 integration methods, including BBKNN [21], Harmony [22], Scanorama [23],
125 scVI [24] and Seurat [25]. A uniform integration pipeline embedded within In-
126 1quitate was utilized to make comparisons between methods and across datasets
127 comparable, with some noted exceptions (Online Methods). We measured cell-
128 type heterogeneity conservation and batch effect correction for each technique
129 across datasets and perturbations using the Adjusted Rand Index (ARI) [20],
130 Adjusted Mutual Information (AMI) [27], Homogeneity Score [28], and Com-
131 pleteness Score [28] (Online Methods).

132 To determine the impacts of dataset imbalance on downstream analyses, we
133 analyzed post-integration impacts on unsupervised clustering [3, 29], cell-type
134 classification [10], differential gene expression [3] [30], and query-to-reference
135 annotation [17] results (Figure 1A). Clustering impacts were assessed based on
136 changes in the number of clusters post-integration using unsupervised clustering
137 (Figure 1A). To assess the impacts on cell-type classification, a nearest-neighbor
138 cell-type classifier was trained on the post-integration embeddings and tested
139 on a holdout set (Figure 1A). Differential gene expression results and varia-
140 tion was assessed using a global importance metric of the ranking changes of
141 marker genes specific to each cell-type analyzed, before and after perturbing
142 the dataset balance (Figure 1A). Query-to-reference annotation was done us-
143 ing the Seurat 4.0 method [31], which projects each batch to be integrated
144 onto a reference scRNA-seq dataset, and accuracy of annotation was utilized as
145 an endpoint (Figure 1A). The details of the evaluations utilized for all of the
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146 downstream analyses and parameters of the integration pipeline are outlined in
147 Online Methods.

148 Through perturbation and cell-type-specific analysis of both balanced and
149 complex imbalanced scRNA-seq datasets, we determined that cell-type imbal-
150 ance affects the scores of typical integration metrics in a cell-type and method-
151 specific manner. Further, we discovered that cell-type imbalance in datasets
152 to be integrated can lead to significant deviations in the results of downstream
153 analyses. After investigating factors of imbalance that can quantifiably lead to
154 distinct downstream results, we found that the distance between cell-types in the
155 embedding space (minimum cell-type center distance) and imbalance between
156 cell-types (relative cell-type support) to be the most relevant and predictive in
157 this regard (Figure 1B). Finally, we determined that typical clustering metrics
158 utilized in benchmarking single-cell integration techniques, such as ARI and
159 AMI, are inadequate in imbalanced scenarios as they weigh the more prevalent
160 cell-types disproportionality compared to rare cell-types. Therefore, we de-
161 velop and introduce novel balanced clustering metrics, including the Balanced
162 Adjusted Rand Index (bARI), Balanced Adjusted Mutual Information (bAMI),
163 Balanced Homogeneity Score, and Balanced Completeness Score (Figure 1C).
164 The balanced metrics reweigh the base scores such that each ground-truth cell-
165 type’s contribution to the score is considered equally.

166 I. Perturbation-induced imbalance in a PBMC cohort in-
167 dicates cell-type-specific effects on integration results

168 The ideal test case for assessing impacts of dataset imbalance should begin with
169 a balanced dataset as a baseline, and thus we analyzed a peripheral blood mono-
170 nuclear (PBMC) cohort of two batches/samples processed independently from
171 two different healthy donors [9, 141, 15]. We downsampled each batch to have
172 6 major cell-types and an equal number of cells within each cell-type (400 cells
173 for each cell-type) (Figure 2A) (Online Methods). The cell-types were selected
174 such that they are equivalent between the batches. Therefore, the cell-types
175 present, number of cells per cell-type, and cell-type proportions between the
176 batches are equal and the integration scenario is balanced (Figure 2A, Figure
177 2B). A batch effect is prevalent between the samples (Figure 2B), which is ex-
178 pected as they were processed at different centers using different technologies
179 (10x 3’ vs 5" protocols - Online Methods) [14, 15]. In this balanced setup, we
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Figure 1: Overview of the Iniquitate pipeline and analysis results. (a)
To determine the effects of dataset imbalance in scRNA-seq integration, 1 controlled
balanced PBMC dataset and 4 complex datasets with imbalance already present
were integrated using current state-of-the-art scRNA-seq integration techniques. A
total of 1600 perturbation experiments involving downsampling on the controlled
dataset were performed and the effects of imbalance on integration results as well
as downstream analyses (clustering, differential gene expression, cell-type classifica-
tion, query-to-reference prediction) were quantified. (b) In complex datasets, results
in the controlled setting were verified, and two key data characteristics were found
to contribute to altered downstream results in imbalanced settings - relative cell-
type support and minimum cell-type center distance. (c¢) To account for imbalanced
scRNA-seq integration scenarios in evaluation and benchmarking, typically utilized
metrics and scores were reformulated to reweigh disproportionate cell-types, which
includes the Balanced Adjusted Rand Index (bARI), Balanced Adjusted Mutual In-
formation (bAMI), Balanced Homogeneity Score, and Balanced Completeness Score.
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180 aimed to assess how the integration results of the two PBMC batches, from a
181 typical integration metric standpoint as well as their impacts on downstream
182 analyses, varied between the control balanced data and perturbation-induced
183 imbalanced data. For each perturbation, we randomly selected one of the two
184 batches and one cell-type within the selected batch to either downsample to 10%
185 of the original population or ablate/remove completely from the selected batch
186 (Figure 2C). These perturbations were repeated 400 times for both downsam-
187 pling and ablation of a random batch/cell-type. Control experiments with no
188 perturbations to the balanced data were repeated 800 times, resulting in 1600
189 integration experiments where each integration technique was tested (Online
190 Methods).

191 To determine how cell-type-specific changes in dataset balance affected typi-
192 cal integration metrics, we examined the ARL.e;—type and (1 - ARIpzcn) scores [9]
193 for each run and method independently. ARI e_¢ype represents conserved het-
194 erogeneity of annotated cell-types post-integration, and (1 - ARIpue) represents
195 the degree to which the two batches being integrated overlap post-integration
196 [9]. As variation between methods was not the main objective of the analysis,
197 the two scores were Z-score normalized for each method across the perturbation
198 experiments and the median value was utilized due to the presence of replicates
199 (Online Methods). Neither the scaled median ARI.cj—¢ype Or scaled median (1 -
200 ARIpaien) indicated distinct patterns for the perturbation experiments (Figures
201 2D, 2E). In fact, there seemed to be a high degree of method-specific variation
202 in these results, making the interpretation challenging. In terms of the median
203 (1 - ARIpasen) scores, for 4 out of 5 methods the top score occurred in the con-
204 trol setup which shows that imbalance leads to worsening performance in terms
205 of batch-mixing (Figure 2E). The results for cell-type heterogeneity were even
206 less clear and indicated differences based on both the method utilized and cell-
207 type downsampled/ablated. Overall, the results did not contain clear patterns
208 and point to the fact that global clustering metrics do not account for dataset
209 balance and may not be adequate for assessing performance in scenarios with
210 imbalanced datasets and rare cell-types.

211 To overcome this limitation of global metrics, we examined integration per-
212 formance at a cell type-specific level through a k-nearest-neighbor (KNN) clas-
213 sifier [16, 32] that was trained on 70% of the post-integration embeddings from
214 each method independently and the remaining 30% was used as a test-set for
215 cell-type classification. The train/test split was stratified by cell-type label,
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Figure 2: Perturbation analysis of controlled PBMC dataset and effects on
cell-type-specific integration. (a), (b) The cell-type and batch representations of
the balanced two-batch PBMC dataset.(c) The perturbation setup for the balanced
PBMC data - in each iteration, one batch and one cell-type is randomly selected,
and the cell-type is randomly either downsampled to 10% of its original number or
ablated. Control experiments are also performed where no downsampling occurs.
(d), (e) Z-score normalized median ARI.cjj—type (cell-type integration accuracy) (d)
and median (1-ARIpuen) (batch mixing) (e) results across experiment type (control,
cell-type downsampling, cell-type ablation), specific-cell-type downsampled, and in-
tegration method utilized. (f) KNN-classification within the integrated embedding
space in control, downsampling and ablation replicates and across methods. The F1-
scores are indicated for the same cell-type that was downsampled. (g) Hierarchical
clustering of similar cell-types in the balanced two-batch PBMC data. (h) Cell-type-
specific integration results using a KNN-classifier after hierarchical clustering across
perturbation experiments with the same setup as (f). The cell-types here are based
on the label after hierarchical clustering from (g).
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216 such that an equal proportion of cell-types occurred in both subsets, allowing
217 for comparison of classification at the cell-type level (Online Methods). Overall,
218 the classification results provide evidence for cell-type-specific effects of dataset
219 imbalance, as downsampling a specific cell-type led to a statistically significant
220 decrease in the KNN classification Fl-score [33] for the same cell-type post-
221 integration, based on an analysis-of-variance (ANOVA) model [31] (ANOVA
222 p-value << 0.05, F-statistic = 1304.96, Supplementary Figure S1) (Figure 2F).
223 This result is method agnostic as the ANOVA test factored in method utilized
224 and cell-type downsampled (Online Methods). The only cell-type that exhib-
225 ited stability were B cells (Figure 2F - standard deviation of median F1-score
226 across methods and experiment types < 0.01). Comparing the cell-type-specific
227 results with the global ARI metrics, we found weak correlation across all meth-
228 ods (Supplementary Figures S2, S3, Spearman’s p < 0.4 across methods and
229 metrics). The uniformly worsening F1 classification scores for the majority of
230 cell-types being perturbed, when compared with the global ARI metrics, shows
231 that global metrics may not adequately capture the integration performance
232 in imbalanced settings. Instead, cell-type-specific metrics such as the KNN-
233 classification score can capture more granular information.

234 We hypothesized that the integration performance for B cells was unaffected
235 in the perturbation experiments because they are highly distinct from the other
236 cell-types. The two monocyte subsets (CD14+ Monocytes and FCG3RA+
237 Monocytes) are transcriptionally similar, and the two T-cell subsets (CD4-+
238 T cells and CD8+ T cells) and NK cells are also very similar (Figure 2A, Sup-
239 plementary Figure S13). As a test, we performed hierarchical clustering of
240 the cell-types into three higher-level subsets - B cells, Monocytes, and NK/T
241 cells (Figure 2G) (Online Methods). As expected, downsampling these sub-
242 sets did not result in worsening performance to the same degree as the base
243 cell-types (Figure 2F, Figure 2H) (ANOVA F-statistic = 374.46 (hierarchical)
244 << 1304.96 (base), Supplementary Figure S1) (Online Methods). This initial
245 result on the balanced PBMC cohort indicates that the relative transcriptomic
246 similarity of cell-types can drive cell-type-specific performance of integration
247 techniques when considering differing levels of dataset imbalance.

10


https://doi.org/10.1101/2022.10.06.511156
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.06.511156; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

248 II. Biological interpretation of integration results is con-
249 tingent on relative cell-type proportions between batches
250 To further analyze the impact of the perturbation experiments on the balanced
251 PBMC cohort, we quantified the effects of imbalance on downstream analyses
252 typically performed after integration, including unsupervised clustering, differ-
253 ential gene expression/marker gene selection, and query-to-reference annotation
254 (Figure 1A). As we observed significant impacts on KNN-based cell-type classi-
255 fication in the same setting, it is likely that the impacts of imbalance on integra-
256 tion may also affect other aspects of single-cell analysis. Therefore, we utilized
257 the same perturbation setup and downsampling experiments in the balanced
258 PBMC cohort to analyze these effects.

259 Stability of unsupervised clustering of samples post-integration

260 We observed a significant variation in the inferred number of clusters after
261 integration across all tested methods due to perturbation of cell-type balance
262 (ANOVA p << 0.05, F-statistic = 990.79) (Figure 3A). After integration in
263 both balanced and perturbed simulations, clustering was performed using the
264 Leiden clustering algorithm with a fixed resolution (Online Methods). Although
265 all methods indicated at least some degree of variation in the number of clus-
266 ters between control and downsampled/ablation experiments, there were also
267 method-dependent effects present (Figure 3A). For instance, while Harmony
268 exhibited variation in the number of clusters regardless of cell-type downsam-
269 pled, ablation of CD144+ Monocytes specifically led to a much smaller number
270 of clusters overall post-integration (Figure 3A). A similar effect was observed for
271 Seurat and BBKKN, while Scanorama’s post-integration clusters diverged most
272 from the control experiments when ablating CD4+ and CD8+ T cells (Figure
273 3A). scVI's post-integration clustering results were relatively more stable after
274 perturbation (Figure 3A). There was variation observed for the control experi-
275 ments across methods as well, but clear deviation after perturbation was present
276 in all tested methods. This result indicates that differing levels of imbalance
277 can cause significant deviations in cluster number, even though the number
278 of clusters should be stable as the number of cell-types across all batches re-
279 mains the same in both perturbed and unperturbed experiments. As cell-types
280 are typically annotated using unsupervised clustering and subsequent marker
281 gene analysis [3, 17], varying degrees of dataset imbalance can lead to distinct
282 biological conclusions.
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Figure 3: Quantification of the effects of perturbation-induced dataset im-
balance on downstream analyses. (a) After integration of the PBMC balanced
dataset in different perturbation scenarios (type) and based on the cell-type down-
sampled, the number of unsupervised clusters from the results of each method based
on Leiden clustering across replicates. (b) The average marker gene ranking change
in differential gene expression (average marker gene perturbation score) for cell-types
downsampled and marker gene sets of specific cell-types, across methods. The rank-
ings are averaged across replicates for the ‘downsampled’ experiment type. (c) The
average change in marker gene ranking in differential gene expression averaged across
replicates for the ‘ablation’ experiment type. (d), (e) The cell-type-specific L1 an-
notation (coarse-grained) (d) and L2 annotation (fine-grained) (e) accuracy scores
across replicates for query-to-reference results for individual batches based on exper-
iment type (control, downsampling, ablation) and cell-type downsampled. (f), (g)
The L1 predictions (f) and L2 predictions (g) by proportion across experiment types
and replicates for CD4+ T cells and CD8+ T cells.
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283 An important caveat to this result is that a reduced number of total cells
284 (through downsampling or ablation) might lead to less clusters in general at a
285 fixed resolution due to less overall heterogeneity in the data. We argue that this
286 is not a major limitation due to two factors - (1) This case is still reflective of the
287 effects of perturbing the cell-type balance, even if the effects are uniform across
288 cell-types downsampled, (2) We did not observe a uniform reduction in cluster
289 number based on the integration methods utilized. For example, scVI’s results
290 for cluster number were fairly stable after downsampling or ablation, while the
291 results from Scanorama indicated a drastic reduction after perturbation (Figure
292 3A). Moreover, within each method, the results for reduction in cluster number
293 were not uniform based on the cell-type that was downsampled (Figure 3A).
294 Therefore, although we are limited in evaluation at a fixed clustering resolution,
295 the results nevertheless show that the perturbation setup can lead to cell-type
296 and method-specific effects that can potentially alter further analyses.

297 Differential gene expression and marker gene stability

298 Frequently, the next step after integration and unsupervised clustering in
299 a scRNA-seq analysis workflow is differential gene expression analysis [3, 35].
300 Typically, a series of one-versus-all differential expression experiments, using
301 statistical tests such as the non-parametric Wilcoxon Rank-Sum Test or more
302 RNA-seq specific techniques such as DESeq2, is done for each cluster to deter-
303 mine the top ranking “marker genes” specific to all clusters [3, 17, 35]. These
304 marker genes are indicative of cell-type identity for each cluster and are used
305 to annotate clusters into putative cell-types [3, 17, 35]. One way to assess
306 marker gene stability before and after perturbation is to constrain the number
307 of clusters to be equivalent across simulations, but this would be unrealistic
308 as variation in cluster number in both control and perturbed experiments was
309 observed across methods (Figure 3A). As the ranking of marker genes is typi-
310 cally utilized to annotate clusters from scRNA-seq data [3, 35], we considered
311 deviation in ranking for genes with known cell-type associations to be an im-
312 portant end-point. Using the unintegrated data separately for each batch, we
313 determined the top 10 marker genes for each cell-type, and assessed the stability
314 of their ranking before and after perturbation (Online Methods). Changes in
315 ranking for marker genes across replicates for a given subset of experiments were
316 defined as the marker gene perturbation score, indicating the standard deviation
317 of the rank (Online Methods). In the case of examining all marker genes for a
318 given cell-type, the standard deviation of ranking of all of the marker genes was
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319 averaged, and this is indicated as the average marker gene perturbation score
320 (Online Methods).

321 For the majority of marker genes, we observed deviations in ranking after
322 downsampling and ablation, with many diverging as much as 10 ranks (Sup-
323 plementary Figure S4 - Marker gene perturbation score) which could lead to
324 significant changes in biological interpretation of results if the top 10 marker
325 genes are used as a heuristic for annotation. An ANOVA test factoring in the
326 specific marker gene, method, and downsampled cell-types indicated that per-
327 turbation led to statistically significant changes in ranking (ANOVA p << 0.05,
328 F-statistic = 48.99 - highest of all factors) (Online Methods). There was strong
329 correlation in marker gene perturbation across methods, with the exception of
330 scVI, which exhibited stronger deviations in rankings for some marker genes
331 (Supplementary Figure S4).

332 Next, we examined whether downsampling or ablation of a specific cell-type
333 will change the ranking of marker genes for the same cell-type, and we observed
334 that this was the case across all methods (Figure 3B, Figure 3C). The strongest
335 ranking change of marker genes occurred after downsampling or ablation of
336 CD8+ T cells and CD14+ Monocytes (Figure 3B, Figure 3C). As these two
337 cell-types are highly similar to CD4+4 T cells and FCGR3A+ Monocytes re-
338 spectively, downsampling likely induces a collapse of cells in the downsampled
339 cell-types into clusters corresponding to their neighboring cell-types. This con-
340 tributes to significant deviations in marker gene ranking and possible changes in
341 biological interpretation in both the downsampling and ablation experiments.
342 Significant changes in marker gene ranks were also observed for cell-types that
343 were not downsampled or ablated, such as in NK cells, which were pronounced
344 for Harmony and scVI results (Figure 3B, Figure 3C). Once again, this is likely
345 due to mixing of cell-types within clusters after an imbalance is introduced,
346 as NK cells are very transcriptionally similar to CD4+ and CD8+ T cell sub-
347 sets. Similarity of cell-types and effects in integration are investigated further
348 in Results III. and IV.

349 To more definitively determine whether or not these perturbations in marker
350 gene rankings could change the biological conclusions of an analysis, we per-
351 formed a case-study with clusters that contained a majority of CD4+ and CD8+
352 T cells after integration using Seurat (Supplementary Figure S16). Considering
353 a permissive list of the top 50 marker genes and using canonical markers for
354 CD4+ and CD8+ T cells, we observed that the fraction of clusters annotated
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355 as either CD4+ or CD8+ T do change after downsampling/ablation induced
356 imbalance is introduced (Supplementary Figure S16).

357 Query-to-reference projection and cell-type annotation

358 With the increasing availability of public scRNA-seq datasets with high
359 quality annotations, query-to-reference annotation has become a major appli-
360 cation for scRNA-seq data integration [17]. However, the accuracy of annotation
361 depends on the quality of the integrated space. To examine the effects of im-
362 balance in this setting, we utilized the Seurat 4.0 query-to-reference annotation
363 pipeline and a large-scale multi-modal PBMC dataset of 211 000 cells as a ref-
364 erence [31]. In the Seurat 4.0 pipeline, each batch (query) is projected to the
365 reference dataset, such that the integration is performed individually for each
366 batch [31] (Online Methods). In this setup, the effects of inter-batch imbalances
367 are not relevant, but only the imbalance relative to each query batch and the
368 reference dataset. In this setting, the perturbations were done for the query
369 batches (balanced PBMC 2 batch data), and the reference was static (Online
370 Methods). We assessed the accuracy of query-to-reference projection through a
371 “fuzzy-matching” of cell-type labels between the balanced PBMC batches and
372 multi-modal PBMC reference from Seurat [9, 31] (Online Methods).

373 The majority of cell-types were stable across control and downsampling/ablation
374 experiments with near perfect scores. However, the two T-cell subsets had vary-
375 ing performance to a high degree, regardless of which cell-type was downsam-
376 pled or ablated (Figure 3D, Figure 3E). This result is indicative of the fact
377 that the imbalance between the projected batch (which was perturbed) and the
378 reference dataset (held constant across all experiments) is driving variance in
379 integration and subsequent annotation results. This highlights a similar prob-
380 lem concomitant with previous results, in that perturbing the degree of balance
381 for transcriptionally similar cell-types can lead to biologically distinct results
382 compared to the balanced scenario. In this case, the CD4+ T cell and CD8+
383 T cell populations are transcriptionally similar, and a trade-off in their anno-
384 tation performance can be observed in the control unperturbed data (Figure
385 3D, Figure 3E). After perturbing the degree of balance within a given batch,
386 the trade-off point is moved in favor of either subset (Figure 3D, Figure 3E).
387 Further, the result highlights that perturbation of dataset balance can affect
388 downstream results even when there is a degree of imbalance already present
389 between integrated datasets, which was the case between the query and refer-
390 ence data in these experiments (Supplementary Table 3, Supplementary Table
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391 9).

392 Examining the cell-type annotations more closely at two levels of resolution,
393 we observed that both the CD4+ and CD8+ T cells were largely mis-annotated
394 as Mucosal Associated Invariant T-Cells (MAIT) (Figure 3F, Figure 3G). After
395 downsampling or ablation of a given cell-type and subsequent analysis of anno-
396 tation accuracy of the same cell-type, we find that CD4+ T cells were annotated
397 more accurately, while CD8+ T cells were further mis-annotated, compared to
398 their respective control scores (Figure 3F). The transcriptional similarity be-
399 tween not just the CD4+4/CD8+ subsets, but the many subsets that fall under
400 “other T”, is a challenging problem for integration and subsequent label-transfer
401 [36]. This challenge is potentially exacerbated when imbalance is present, as
402 indicated by the perturbation experiments and their effects on the annotation
403 results.

404 Overall, cell-type imbalance affected all three major aspects of downstream
405 analysis that were tested, and we observed strong evidence of impact on biolog-
406 ical interpretation of the results. This observation is likely even more relevant
407 in complex datasets, as the balanced PBMC cohort is not representative of the
408 ever-increasing throughput of current scRNA-seq protocols [37]. The limita-
409 tions of the reference dataset utilized may also be a major source of variation
410 in the query-to-reference integration results. It may be the case that a more
411 suitable reference may not lead to high variance in the results of the two T-cell
412 subsets, however assessment and selection of reference datasets is outside the
413 scope of this study and the multi-modal PBMC reference used is one of the
414 most comprehensive single-cell references to date.

415 III. Analysis of imbalanced complex datasets reveals key
416 metrics for stability of integration results

417 While perturbation experiments of the balanced two batch PBMC cohort re-
418 vealed the effects of dataset imbalance on integration and downstream analyses
419 in a controlled setting, current scRNA-seq datasets typically involve a much
420 larger number of cells and cell-types captured [37]. Therefore, we examined the
421 effects of dataset imbalance when integrating complex datasets with multiple
422 samples that are not perturbed, but already have inherent cell-type imbalance
423 between samples. To this end, we analyzed an imbalanced 2 batch PBMC co-
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424 hort [1%], imbalanced 4 batch PBMC cohort [1&], imbalanced cohort of 6 batches
425 of mouse hindbrain developmental data [19], and an imbalanced heterogeneous
426 tumor cohort of 8 batches of pancreatic ductal adenocarcinoma (PDAC) data
427 [20] (Online Methods). No downsampling was done in these experiments and
428 we aimed to analyze the effects of integration on cell-types that are imbalanced
429 with respect to others, both within and across batches.

430 As determined in the analysis using the balanced PBMC data and pertur-
431 bations, transcriptomic similarity (relatedness) of cell-types and cell-type im-
432 balance are two important factors that impact downstream results. We sought
433 to observe if these properties also led to differences in integration performance
434 per-cell-type in more complex datasets without perturbations. We formalized
435 these two properties as the relative cell-type support and minimum cell-type
436 center distance, quantifying the degree of imbalance and relatedness to other
437 cell-types (Online Methods). The relative cell-type support is defined as the
438 number of cells specific to a cell-type present across all batches, and the mini-
439 mum cell-type center distance considers the average distance across all batches
440 between cell-types in a principal component analysis (PCA) dimensionality re-
441 duction representation space and selects the distance of the closest neighboring
442 cell-type for each cell-type (Online Methods).

443 To correlate these properties with integration performance, we used the same
444 KNN-classification setup as before to determine performance on a per-cell-type
445 basis (Online Methods). We started by analyzing the cell-type center distances
446 on the imbalanced PBMC 2 and 4 batch datasets. Examining the average cell-
447 type center distances - which were averaged across all batches if the cell-types
448 were present in more than one batch - there is a clear pattern evident between
449 cell-types that were observed before in the 2 batch balanced PBMC data (Fig-
450 ure 4A, Figure 4B). NK cells have small relative distance between the T cell
451 subsets, while dendritic cells share transcriptional similarity with the monocyte
452 subsets (Figure 4A, Figure 4B). B cells and megakaryocytes have the great-
453 est distance between the rest of the cell-type centers (Figure 4A, Figure 4B),
454 and thus we expect these cell-types to have strong performance in integration
455 which was previously observed for B cells. This pattern did hold when examin-
456 ing integration performance through KNN-classification for both datasets on a
457 per cell-type basis compared to their minimum cell-type center distance across
458 batches, as Megakaryocytes and B cells had strong performance regardless of
459 integration technique utilized (Figure 4C, Figure 4D).
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Figure 4: Factors in imbalanced complex datasets predictive of altered
integration and downstream results. (a) The average cell-type center distance
across cell-types in the imbalanced PBMC 2 batch dataset. For each batch, the dis-
tance from the centers of cell-type clusters in principal component analysis (PCA)
reduction space are calculated, and the relative distances between cell-types are deter-
mined and averaged across batches. (b) The average cell-type center distance across
cell-types in the imbalanced PBMC 4 batch dataset. (c), (d) Comparison of F1-
classification accuracy of each cell-type in the imbalanced PBMC 2 batch dataset (c)
and imbalanced PBMC 4 batch dataset (d), specific to method and across replicates,
compared with the minimum cell-type center distance value. (e), (f) Comparison of
F1-classification accuracy of each cell-type in the imbalanced PBMC 2 batch dataset
(e) and imbalanced PBMC 4 batch dataset (f), across methods and replicates, com-
pared with the relative cell-type support value. The relative cell-type support is based
on the number of cells in the integrated embedding space present for each cell-type.
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460 However, the results were not straightforward for other cell-types. Exam-
461 ining the plasmacytoid dendritic cells, we expected strong performance due to
462 their high relative distance between other cell-types, but this was not the case
463 for both the 2 and 4 batch datasets (Figure 4C, Figure 4D). Although these cells
464 have a large relative distance between other cell-types, they occur in a much
465 smaller number compared to others (Figure 4E, Figure 4F). We quantified rel-
466 ative cell-type support as the log-transformation of the total number of cells
467 for each cell-type across batches (Online Methods), and plasmacytoid dendritic
468 cells have the lowest value across cell-types within these two datasets (Figure
469 4E, Figure 4F). This result indicates that minimum cell-type center distance is
470 necessary but not sufficient to explain variation in integration results on a per-
471 cell-type basis. Overall, higher relative cell-type support does seem to lead to
472 higher performance in integration for some cell-types, such as the CD14+ and
473 CD16+ Monocyte subsets, but is also not sufficient for higher performance, as
474 NK cells perform poorly across integration techniques due to having a low min-
475 imum, cell-type center distance and overlap with the T-cell subsets despite not
476 having low relative cell-type support. Examining the results across both met-
477 rics and performing an ANOVA test to determine variance in scores explained
478 by the metric, we did find statistically significant associations for both mini-
479 mum cell-type center distance and relative cell-type support [ANOVA p-value
480 << 0.05 for both metrics across all datasets, with the exception of the mouse
481 hindbrain 6 batch dataset, for which relative cell-type support is non-significant
482 (Supplementary Table 1) (Online Methods)].

483 Analysis of the 6 batch mouse hindbrain developmental data and 8 batch
484 PDAC datasets indicated similar results, albeit much less easily interpretable
485 due to the presence of a very large number of cell-types and more batches (Sup-
486 plementary Figures S5-S8). Cell-types in close proximity within an embedding
487 space have an interpretable explanation for poor integration performance, as
488 they may collapse and become merged with their overlapping counterpart in
489 the integration step. This was observed in Results sections I and III. Low
490 cell-type support leads to less data for a given cell-type that an integration
491 method/model can utilize, and therefore models may not be able to learn the
492 correct embedding for these cell-types.
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493 IV. Perturbation analysis in PDAC samples reveals tumor
494 compartment-specific effects of dataset imbalance

495 To further analyze the effects of dataset imbalance in realistic scenarios, we
496 considered the pancreatic ductal adenocarcinoma (PDAC) dataset of 8 batches
497 comprising tumor samples across 8 different biopsies [20]. One major challenge
498 in the analysis of PDAC data is accurate annotation of tumor cells, and be-
499 ing able to separate these from normal non-cancerous epithelial cells [38; 39].
500 As both acinar and ductal epithelial cells have been proposed as cell of origin
501 candidates in PDAC across numerous studies [10, 41], reliably classifying tu-
502 mor cells from these normal epithelial cell-types in scRNA-seq data remains a
503 major computational challenge. Given this difficulty, we sought to determine
504 if different levels of imbalance between epithelial normal and epithelial tumor
505 compartments can influence the accuracy of PDAC tumor tissue integration
506 and subsequent classification of tumor cells. As scRNA-seq data from tumor
507 tissue is often integrated across multiple biopsy sites, patients, and cohorts [12],
508 the ability to reliably quantify tumor cells is imperative to the biological valid-
509 ity of subsequent downstream analyses. We preprocessed and annotated tumor
510 cells in the PDAC samples through integration, unsupervised clustering, and
511 marker gene-based annotation (Online Methods). In setting up the perturba-
512 tion experiments, we grouped epithelial normal cells (acinar and ductal) into an
513 “epithelial normal” compartment, tumor cells into “epithelial tumor” compart-
514 ment and the remaining microenvironment cells into the “microenvironment”
515 compartment (Figure 5A) (Online Methods). Overall, the microenvironment
516 heavily outnumbered the epithelial tumor and epithelial normal populations
517 (Figure 5B), which is reflective of the low tumor purity typical of PDAC biopsy
518 samples [20]. Perturbation experiments included downsampling or ablation of
519 a randomly selected compartment within 4 randomly selected batches out of
520 8 (Figure 5A, Figure 5B). We also performed replicates for control, downsam-
521 pling, and ablation, for a total of 200 simulations for integration of all 8 batches
522 (Online Methods).

523 Examining the KNN-classification scores on a per-compartment assessed,
524 per-compartment downsampled basis indicated that downsampling or ablating
525 the microenvironment compartment leads to stable compartment classification
526 across all methods, with a slight decrease in performance observed for Seu-
527 rat in the epithelial normal and tumor compartments (Figure 5C). This result
528 is concordant with previous analysis indicating that proximity is a key factor
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Figure 5: Compartment-wise perturbation experiments for 8 batches of
PDAC samples. (a) Overview of the experimental setup. To determine the effects
of dataset imbalance across tumor compartments, various microenvironment tumor
were collapsed into the ‘microenvironment’ compartment, normal ductal and acinar
cells into the ‘epithelial normal’ compartment, and malignant ductal and acinar cells
into the ‘epithelial tumor’ compartment. The perturbation experiments involved the
sample downsampling (10% of a compartment) and ablation (complete removal of

a compartment) setup for 4/8 randomly selected batches.

Note that all batches

are integrated at once using each method. (b) Number of cells in each compart-
ment after cell-type collapse, across batches/biopsy samples in the PDAC data. (c)
F1-classification score for KNN classification post-integration, specific to each com-
partment when compared with the compartment that was downsampled or ablated,
across replicates and methods utilized for integration.
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529 that dictates the degree to which perturbations in cell-type balance can af-
530 fect integration results. The minimum cell-type center distance in the PDAC
531 data shows that acinar and ductal cells, which comprise the epithelial normal
532 and epithelial tumor populations, are two of the most distant cell-types from
533 others in the data (Supplementary Figure S8, Supplementary Figure S15)).
534 Similar to the discrepancy between ARI ey—type and (1 - ARIputen) observed in
535 the integration of the balanced and imbalanced PBMC datasets, we observed
536 that higher ARIL.ompartment based on downsampling of the microenvironment
537 did not lead to higher batch mixing scores (Supplementary Figure S9, Supple-
538 mentary Figure S10). In fact, we observed the opposite effect almost uniformly
539 across all methods, as downsampling the epithelial compartments decreased the
540 ARIompartment and increased (1 - ARIpen) (Supplementary Figure S9, Supple-
541 mentary Figure S10). Downsampling the microenvironment had the opposite
542 effect. As the microenvironment is quite large, downsampling likely leads to
543 decreases in batch mixing scores because these metrics are driven by more
544 prevalent compartments/cell-types. Epithelial cells and their tumor/normal
545 dichotomy is of strong interest in analyzing PDAC data, and therefore batch
546 mixing is likely a poor quantifier of integration performance and the biological
547 validity and utility of the results. This result also reiterates the limitation of
548 global clustering metrics that do not take into account less prevalent cell-types
549 and their overall difficulty in interpretation, as the increased performance in
550 ARL.ompartment after downsampling the microenvironment was not concordant
551 with the KNN-classification results (Supplementary Figure S9, Figure 5C).
552 Tumor and normal epithelial compartment KNN-classification scores wors-
553 ened as either compartment was downsampled (Figure 5C). More specifically,
554 downsampling either the epithelial normal or epithelial tumor compartments led
555 to the greatest decrease in the integration performance of the same compartment
556 through the KNN-classification setup (Figure 5C) (ANOVA F-statistic yormal epithetials
557 F-statisticrumor epithetiat > F-statisticasicroenvironment - Supplementary Figure S11)
558 (Online Methods). This indicates that relative proportions of tumor to normal
559 cells can lead to differing results in integration performance in this setting,
560 which is reflective of the earlier observations in the balanced PBMC dataset
561 with highly similar populations, such as the NK and T cell subsets. Overall,
562 these results demonstrate that the degree of imbalance between the similar com-
563 partments across tumor tissue cohorts can significantly affect the downstream
564 results and possibly subsequent analyses. This result is not specific to PDAC
565 data, as tumor samples across cancer types share typical characteristics, but
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566 may not have the same compartments or compartment proportions [13]. We
567 formalize recommendations for the integration of highly imbalanced datasets in
568 Section VI.

569 V. Balanced clustering metrics accurately benchmark im-
570 balanced integration

571 Through extensive analysis of both simulated balanced and real-world imbal-
572 anced scRNA-seq datasets, we have shown that clustering metrics commonly
573 used in quantifying scRNA-seq integration may be insufficient in imbalanced
574 contexts. Metrics such as the AMI and ARI are agnostic to information on
575 label proportions [26, 27] and are thus inadequate for assessing integration per-
576 formance in imbalanced datasets, which is a common case in single-cell integra-
577 tion. To overcome limitations of routinely used metrics, we developed balanced
578 versions of these scores, including the Balanced Adjusted Rand Index (bARI),
579 Balanced Adjusted Mutual Information (bAMI), Balanced Homogeneity, and
580 Balanced Completeness. Combining Balanced Homogeneity and Balanced Com-
581 pleteness also allows us to attain the Balanced V-measure [28]. These metrics
582 are robust to dataset imbalance and allow for more nuanced comparisons of
583 integration results in the aforementioned cases, as they weigh each cell-type
584 present equally and are not driven by cell-types present in high proportions
585 (Online Methods).

586 We first demonstrated the utility of the proposed balanced clustering metrics
587 on simulated data. In the first scenario, we examined a dataset with 3 classes
588 that are incorrectly clustered into 2 instances using K-means clustering [32]
589 (Figure 6A) (Online Methods). This scenario can occur in single-cell settings
590 when a cell-type is highly related to a neighboring cell-type and unsupervised
591 clustering leads to a collapse of both into the same cluster. As expected, the
592 base/imbalanced metrics all overestimated the clustering accuracy as they do
593 not weigh the smaller class (B) as much as the larger classes when assessing the
594 incorrect assignment (Figure 6A). However, the balanced metrics account for
595 the incorrect clustering of class B, and indicated worse performance with the
596 exception of the Balanced Completeness measure. This is an expected result as
597 Completeness only measures whether all members of a given class are members
598 of the same cluster [28].
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599 In a second scenario, we sought to check whether the balanced metrics can
600 return higher performance than their base counterparts in the appropriate sce-
601 nario, and to do so we simulated a dataset where a larger class (A) partially
602 overlaps two smaller classes (B, C) (Figure 6B) (Online Methods). K-means
603 clustering with a preset cluster number of 3 slices the larger class in a manner
604 that the two smaller classes are mostly assigned to the correct cluster/label while
605 the larger class is split between the 3 clusters (Figure 6B) (Online Methods). In
606 this setting, the base metrics penalized the results based on the prevalence of
607 the larger class (A) and the associated mis-clustering, but the balanced metrics
608 took into account the strong performance on the smaller classes (B, C) and
609 returned higher scores.

610 These two simulated scenarios demonstrate that balanced metrics can reveal
611 information not present in typical global clustering scores and benchmark results
612 in a manner that takes into account class imbalance.

613 We further assessed the applicability of the balanced metrics in single-cell
614 data by considering the balanced PBMC cohort of two batches (Results I.).
615 The first test assessed whether or not the first simulated case holds in single-
616 cell data, as we downsampled CD4+ T cells in one batch in a manner where they
617 overlapped with CD8+ T cells after clustering (Figure 6C) (Online Methods).
618 Comparing the balanced and base ARI and Homogeneity scores, we found that
619 the balanced scores did in fact decrease by a significant margin (Figure 6C).
620 This is because the balanced metrics are considering the mis-clustering of the
621 CD4+ T cells in a manner that is weighted equally to the correct clustering
622 of the other cell-types, even though these cells are present in a much smaller
623 number overall. To determine if the balanced metrics can change the results
624 of a benchmarking analysis, we downsampled CD4+ T cells and FCGR3A+
625 monocytes from one batch in the balanced 2 batch PBMC dataset and per-
626 formed integration using BBKNN, Harmony, Scanorama, and scVI (Figure TA,
627 Figure 7B) (Online Methods). After integration, Leiden graph-based unsuper-
628 vised clustering [29] was performed and the results of clustering were compared
629 with ground-truth labels using the base and balanced metrics by considering
630 an average of their scores across ARI, AMI, Homogeneity, Completeness, and
631 V-measure values (Figure 7C) (Online Methods). Examining the integration
632 results, most methods mixed the CD4+ T cells with the CD8+ T Cells and the
633 FCGR3A+ Monocytes with the CD14+ Monocytes to differing extents, while
634 also having varying success in integrating the two batches overall (Figure 7A,
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Figure 6: Demonstration of balanced clustering metrics on simulated data
and scenarios. (a) Simulated data of 3 well separated imbalanced isotropic Gaussian
classes with imbalance that are incorrectly clustered into two clusters that collapses
the smaller class (B) with another. The concordance of the class labels with the
clustering result for the base (imbalanced) and balanced ARI, AMI, Homogeneity,
Completeness and V-measure for this result are indicated. (b) Simulated data of
3 imbalanced and overlapping isotropic Gaussian classes that are clustered into 3
clusters that mix the larger class (middle - A) with the smaller classes (B, C) and
concordance of the class labels with the clustering result for the base (imbalanced) and
balanced metrics. (c) Constructed scenario with balanced two batch PBMC single-cell
data where a very small subset of CD4+ T cells (10% of original proportion) present
in only one batch are incorrectly clustered with CD8+ T cells after integration. In
this scenario, the concordance of the unsupervised clustering labels and the ground-
truth cell-type labels are indicated for both the base (imbalanced) and balanced ARI
and Homogeneity scores.
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635 Figure 7C). When using the base metrics and their averaged scores, scVI ranked
636 the highest and BBKNN ranked the worst. Surprisingly, the base metric scores
637 for Scanorama and BBKNN, which ranked the worst in this subset, were al-
638 most the same as using the unintegrated embedding (Figure 7D). Scanorama
639 and BBKNN have shown strong performance with low variance results for all
640 of our previous analyses and performed well in comprehensive benchmarking
641 studies [9, 13], which is not in concordance with this result. When analyz-
642 ing the result with the balanced metrics, the rankings changed significantly, as
643 Harmony became the top performer (switched with scVI) and BBKNN now
644 performed better than Scanorama (Figure 7E). Of particular note is the fact
645 that there is a larger separation in scores between the unintegrated embedding
646 and the results of BBKNN and Scanorama using the balanced metrics, and this
647 result is more valid as we expect the integration methods to perform signifi-
648 cantly better than an unintegrated baseline. This ranking shift occurred while
649 the magnitude of the overall scores did not diverge significantly.

650 Lastly, we reexamined the initial uninformative results obtained using the
651 base ARIceii—type scores for the perturbation experiments on the balanced 2 batch
652 PBMC dataset (Figure 2D). Utilizing the balanced ARI (bARI) instead of the
653 base metric for calculating ARI.c;i—ype, the results indicated more clear/distinct
654 patterns that reflected both the relative cell-type support and minimum cell-type
655 center distance properties (Supplementary Figure S12). Specifically, downsam-
656 pling/ablating B cells did not lead to decreases in the balanced ARI.e;—type
657 across all methods, which is in line with the cell-type center distance property
658 as the B cells are distant from all other cell-types in this dataset (Supplementary
659 Figure S13). Further, there is a clear pattern of worsening performance in the
660 balanced ARIce—type scores when the CD4+ or CD8+ T cells are downsampled
661 or ablated, which is concordance with both the expected results in terms of
662 minimum cell-type center distance (Supplementary Figure S13) and the KNN-
663 classification results (Figure 2F). Similar results hold for downsampling or abla-
664 tion of the monocyte subsets, although the scores are more method-specific and
665 performance decreases are less pronounced (Supplementary Figure S12). Over-
666 all, the balanced clustering metrics can capture nuances in the data related to
667 cell-type imbalance in a manner that the base metrics cannot. The balanced
668 metrics are also more concordant with cell-type specific results, such as the
669 KNN F1-score, as they weigh classes equally when considering performance.
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Figure 7: Benchmarking single-cell data integration using balanced clus-
tering metrics. (a) Cell-type values for the balanced two batch PBMC data with
FCG3RA+ Monocytes and CD4+ T cells downsampled to 10% of their original
proportion in one batch, after integration with the tested methods as well as an
unintegrated representation. (b) Batch values for the integrated and unintegrated
downsampled two batch PBMC data. (c¢) Unsupervised clustering results for Lei-
den clustering in the embedding space of the integrated and unintegrated results for
the downsampled two batch PBMC data. (d), (e) Scoring and ranking of integra-
tion results, when considering concordance of the unsupervised clustering labels and
ground-truth cell-type labels for each integration method and the unintegrated sub-
set, using the average results of the base (imbalanced) clustering metrics (d) (ARI,
AMI, Completeness, Homogeneity) and average of the balanced clustering metrics (e)
(bARI, bAMI, Balanced Completeness, Balanced Homogeneity).
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670 VI. Guidelines for imbalanced single-cell data integration
671 To aid in the integration of imbalanced datasets, we introduce general guide-
672 lines for users of integration techniques (Figure 8, Supplementary Table 2). We
673 note that these guidelines are not meant to be strict rules, but rather sugges-
674 tive in nature, as scRNA-seq and multi-modal single-cell data from different
675 samples can have very different properties even after taking imbalance into ac-
676 count [4]. The guidelines are method agnostic, as our analysis revealed that
677 all frequently utilized techniques in scRNA-seq integration are susceptible to
678 the outlined effects of dataset imbalance (Results sections I-IV). An important
679 aspect to consider when utilizing these guidelines is prior knowledge on poten-
680 tial disparity in the datasets can help guide the degree of desired batch mixing.
681 For instance, in analyzing heterogeneous tumor samples from distinct patients
682 with disparate cell-types and proportions, biological heterogeneity conservation
683 is likely to be poor if batch-mixing is prioritized in integration [$]. However,
684 this may be a desired result if the end analysis goal is only to assess common
685 variation between the tumor samples and perform downstream analyses such
686 as differential abundance of shared cell-types [8]. Judging the degree of desired
687 batch mixing is often very difficult in practice [3]. As such, we emphasize an
688 iterative process where imbalance, degree of batch-correction, and conserva-
689 tion of biological heterogeneity are assessed at multiple steps in the scRNA-seq
690 integration pipeline (Figure 8).

691 Overall, potential imbalance within datasets to be integrated can be assessed
692 based on pre-integration tests using unsupervised clustering and/or query-to-
693 reference annotation (Figure 8, Supplementary Table 2). The latter would yield
694 a more accurate representation of potential imbalance, but can only be used
695 when a reference dataset is available for the given tissue samples. Unsupervised
696 clustering can be used in any situation as it does not require cell-type labels
697 but can be a noisy readout as clustering is highly sensitive to the technique,
698 parameters, and the underlying data distribution [44]. If either of these out-
699 lined pre-integration tests reveals disparity in the datasets, the integration step
700 itself can be altered by: (i) picking an integration method that is suitable for
701 preserving biological heterogeneity - Luecken et al. [13] provide an extensive
702 overview of scRNA-seq and multi-modal integration techniques in this respect
703 and provide selection criteria, (ii) tuning the integration method itself to bet-
704 ter preserve biological heterogeneity across datasets - the availability of such
705 parameters will vary based on method [13], and (iii) performing sequential in-
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Figure 8: Guidelines for single-cell integration in imbalanced settings. A
stepwise procedure is outlined, starting with diagnostic tests in the pre-integration
stage that dictate whether or not to tune integration methods at the integration
stage or perform further steps in the pre-integration stage. After integration, the
trade off between batch-mixing and conservation of biological heterogeneity can also
be diagnosed, and if determined inadequate, further tuning at the pre-integration and
integration stages can be done. Complete details as well as examples of implementa-
tions for each recommendation are given in Supplementary Table 2.
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706 tegration if the datasets are known or suspected to have temporal structure
707 [15] (e.g. developmental data) (Figure 8). There is also the possibility of inte-
708 grating only shared putative cell-types between batches if a reference dataset
709 is available, as this would better ensure imbalance is minimized in the integra-
710 tion step (Supplementary Table 2). After the integration step, post-integration
711 techniques to assess preservation of biological heterogeneity and degree of batch
712 mixing can be used to determine the current balance between the two desired
713 outcomes [3], and integration and pre-integration steps can be further tuned
714 to strike the desired balance (Figure 8). A complete description with specifics
715 and code implementations, in the R and python programming languages, of the
716 outlined recommendations are indicated in Supplementary Table 2.

717 Discussion

718 In this work, we thoroughly analyzed the effects of dataset imbalance in sScRNA-
719 seq integration scenarios, and its impacts on downstream analyses and over-
720 all biological conclusions. When the level of imbalance between batches was
721 perturbed, we observed varying degrees of effects on unsupervised clustering,
722 neighbor-based cell-type annotation, differential gene expression analysis, and
723 query-to-reference annotation. More importantly, these effects were not method-
724 specific, and thus have implications for single-cell data integration overall, where
725 biological conclusions plausible under one scenario may not be concordant if the
726 pre-integration data distribution is different due to many possible underlying
727 factors of variation. These results have significant ramifications for single-cell
728 data integration, as most datasets being integrated will likely not have a high
729 degree of shared variation with the increasing complexity of the tissues be-
730 ing analyzed and higher throughput of current scRNA-seq and multi-modal se-
731 quencing protocols [37, 416]. We further examined these results on more complex
732 data and concluded that the potential of dataset imbalance to affect integra-
733 tion results can be summarized by two key metrics - relative cell-type support
734 and minimum cell-type center distance. To aid the integration and subsequent
735 downstream analyses in scenarios with imbalanced datasets, we introduce sev-
736 eral guidelines pre-integration, at the integration step, and post-integration, as
737 well as balanced clustering metrics for more accurate assessment and bench-
738 marking in such cases.
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739 Although single-cell data integration is ubiquitous in current computational
740 analysis pipelines for both scRNA-seq and multi-modal single-cell sequencing
741 data, analyzing the nuanced properties and behavior of integration techniques
742 on different datasets has lagged in lieu of performance-based studies. Extensive
743 benchmarking studies have been performed for scRNA-seq integration, but these
744 analyses have largely focused on performance in specific settings, as determined
745 by batch-mixing and conservation of biological heterogeneity [9, 17]. Some
746 studies have raised specific concerns towards the impacts dataset imbalance
747 can have on integration and a few methods have been developed specifically to
748 address this challenge [10, 36, 418-50], but an extensive analysis on downstream
749 effects had yet to be performed. Further understanding of the properties of both
750 the pre-integration and post-integration representation spaces will likely shed
751 light on gaps in performance between different techniques and the situational
752 trade offs between batch mixing and conservation of biological heterogeneity.
753 For example, although anchor-based techniques are used to link both scRNA-seq
754 and multi-modal datasets in integration [15], the conditions that lead to false-
755 positive and false-negative (missing) anchors between batches and multi-modal
756 samples have not been extensively characterized. Such analyses will further the
757 understanding of the limiting conditions of single-cell data integration, and lead
758 to better tools, guidelines, and a sounder foundation for downstream analyses
759 and inference of biological phenomena.

760 In benchmarking single-cell integration techniques, often standardized datasets
761 do not contain high degrees of cell-type imbalance across batches that may be
762 encountered in common real-world scenarios such as temporal integration [9,
763 , 15]. Therefore, a more principled approach to benchmarking may involve
764 a stronger focus on these cases and non-trivial datasets such as tumor samples
765 from multiple-patients and cohorts. The trade-off between batch mixing and
766 biological heterogeneity conservation is an important research direction, as con-
767 serving biological signal can be much more complex than what is indicated by
768 clustering metrics post-integration, particularly if integration is being done on
769 the entire count matrix and not within an embedding space [13]. In our anal-
770 ysis, we introduced four novel balanced clustering metrics that can be utilized
771 to better benchmark integration techniques in imbalanced scenarios. These
772 metrics are used to analyze clustering results post-integration, but more salient
773 scores for preserving biological signal such as the conservation of highly-variable
774 genes introduced by Lueken et al. [13] will also allow for a complete picture
775 of the potential downstream impacts of integration. As our understanding of
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776 the limitations of current integration methods evolves, we envision more com-
7 prehensive guidelines that incorporate our analysis on situational integration
778 setups and utilization of different methods in the correct contexts, as opposed
779 to a single method for every integration scenario. Our findings and guidelines
780 can be extended to multi-modal analysis of disjoint samples (e.g. scRNA-seq
781 and scATAC-seq of similar but distinct tissue samples), but the finer details
782 of the impacts of imbalance on both joint and separately profiled multi-modal
783 integration and subsequent analysis remains unknown. An important future
784 research direction in multi-modal integration is better understanding of integra-
785 tion results at both the technique and data level, as comprehensive benchmarks
786 specifically focused on multi-modal data have yet to be completed.

787 Our analysis is limited by the extent of datasets analyzed and methods
788 tested. We sought to identify the effects of downsampling in a highly controlled
789 scenario where imbalance was not already present, which was the balanced
790 PBMC 2 batch dataset, but extrapolating the results of the downsampling
791 experiments to more complex cases was not straightforward. Thus, only the
792 cell-type-specific effects in already imbalanced datasets with no perturbations
793 were examined for complex cases, although we did analyze perturbation of com-
794 plex and imbalanced PDAC samples. Further, although we included frequently
795 utilized and best performing scRNA-seq integration techniques based on pre-
796 vious benchmarking studies [9, 13], we did not include recent methods that
797 focus specifically on preserving biological heterogeneity when differing cell pop-
798 ulations are present between samples, such as CIDER [19]. There have also
799 been strides in this direction in the multi-omic integration space, with tech-
800 niques such as SCOTv2 [50]. As the aim of this analysis was not to determine
801 the best performing method, but to analyze the impacts of imbalance on in-
802 tegration results with frequently utilized methods, we deemed this omission
803 to be acceptable. However, future method-based benchmarking studies should
804 feature techniques that have sought to explicitly address the issue of dataset
805 imbalance and several datasets with a high degree of imbalance present. Lastly,
806 this analysis focused on scRNA-seq integration and did not incorporate multi-
807 modal datasets and techniques, and although extrapolation may be possible,
808 this must be confirmed by future work addressing integration when imbalance
809 across jointly and separately profiled multi-modal datasets is present.
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810 Online Methods

811 1 Dataset preprocessing

812 1.1 Preprocessing and normalization

813 All datasets utilized in the study were preprocessed using a uniform pipeline.
814 Datasets were only further processed if it was clear that no filtering was done
815 on the raw scRNA-seq data, such as removal of low quality cells and genes [3].
816 If it was indicated that no filtering was done, quality-control (QC) metrics were
817 calculated using the Scuttle R package (version 1.4.0) [51], including cells with
818 the most genes having low counts, cells with a high percentage of mitochondrial
819 genome content, and cells with a low library size (total number of reads overall).
820 An approach recommended by Amezquita et al. [¢] was taken, and the cells and
821 features with values more than 3 median absolute deviations (MADs) for two
822 out of three criteria were filtered out. As normalization and log-transformation
823 need to be tuned specific to the method being utilized and are done in the
824 integration pipeline where necessary, these were not done in the preprocessing
825 steps.

826 Datasets were split and saved as individual batches in h5ad format, and the
827 scanpy library (version 1.8.2) [52] was used for all further downstream processing
828 within the integration pipeline, including total-count per cell normalization,
829 loglp transformation, and highly variable gene selection [52]. These steps were
830 carried out uniformly for each method tested, with the exception of scVI, as the
831 technique must utilize the raw counts [21]. Therefore, total-count normalization
832 and loglp transformation were not done for scVI.

833 All scRNA-seq datasets utilized were preprocessed in this manner, including
834 the balanced 2 batch PBMC dataset [15][14][9], imbalanced 2 batch PBMC
835 dataset [18], 4 batch PBMC dataset [18], 6 batch mouse hindbrain development
836 dataset [19] and 8 batch pancreatic ductal adenocarcinoma (PDAC) dataset
837 [20].
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838 The ground-truth annotations for cell-types in each dataset across
839 batches were determined specific to the annotation protocol followed by each
840 original study, with the exception of the 8 batch PDAC data, which was re-
841 annotated (see 1.3).

842 1.2 Setting up the PBMC control dataset

843 For testing in a scenario where the cell-types and cell-type proportions are
844 perfectly balanced between batches, and subsequent perturbation experiments,
845 a dataset that was preprocessed by Tran et al.[9] comprising of two batches
846 of peripheral blood mononuclear cells (PBMCs) sequenced using two variants
847 of 10x genomics protocols - 5 versus 3’ end. As these technologies capture
848 different regions of mRNA, there is an expected batch effect present. To create
849 a balanced dataset, the two batches were downsampled for cell-types that had at
850 least 200 cells in each batch - leaving B cells, CD14+ Monocytes, CD4+ T cells,
851 CD8+ T cells, FCGR3A+ Monocytes, and Natural Killer (NK) cells. Within
852 each batch, these remaining cell-types were randomly downsampled to 200 cells,
853 leading to a perfectly balanced control setup for perturbation experiments.
854 1.3 Setting up the pancreatic ductal adenocarcinoma (PDAC)
855 dataset

856 The pancreatic ductal adenocarcinoma dataset was taken from the Peng et al.
857 [20] multi-patient study, which comprised of 23 samples. For this data, custom
858 annotations of tumor cells were done in the following manner:

859 Cells from different samples were integrated with Harmony [22] and clustered
860 with Seurat [25]. A cell type label was then assigned to each Seurat cluster,
861 based on the expression of specific marker genes for each cell type (Supplemen-
862 tary Table 8). To identify tumour cells, all epithelial cells including those from
863 normal tissue were clustered again using Seurat. All cells that clustered with
864 the normal samples were assigned as ’Epithelial normal’; while all others were
865 assigned as 'Epithelial tumor’.

866 After annotation of the epithelial normal and tumor cells, the rest of the cells

34


https://doi.org/10.1101/2022.10.06.511156
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.06.511156; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

867 were collapsed into the ’Microenvironment’ compartment. Ductal and acinar
868 cells that did not fall into the epithelial normal or epithelial tumor popula-
869 tions were removed, as these were likely mis-annotated. Batches/samples were
870 filtered based on the presence of at least 50 cells in each of the three com-
871 partments (Epithelial normal, Epithelial tumor, Microenvironment). This left
872 8 batches/samples, which were utilized in subsequent experiments.

873 2 scRNA-seq integration methods and
874 parameters

875 Five state of the art scRNA-seq methods were utilized, based on their perfor-
876 mance in previous benchmarking papers [9] [13], including BBKNN (version
877 1.5.1) [21], Harmony (python implementation - version 0.0.5) [22], scVI (scvi-
878 tools version 0.14.4) [21], Scanorama (version 1.7.1) [23], and Seurat (version
879 4.0.6) [25]. LIGER (version 0.5.0) [53] was also originally tested, but did not in-
880 dicate strong performance and resulted in a high degree of variability due to the
881 removal of seeding in different steps. Therefore, the results from LIGER were
882 omitted from the main findings, as the high variance of results even within the
883 control experiments did not allow for a statistically sound comparison between
884 control and perturbation groups.

885 Because the perturbation experiments were carried out in replicates, to get a
886 more clear sense of variability within replicates, seeding mechanisms within each
887 method were removed. This included removing any calls in the method source-
888 code to R-based seeding for Seurat, and any calls to seeding from the following
889 libraries for BBKNN, Harmony, Scanorama, and scVI: random, numpy, torch.
890 This led to a more true estimation of the variability in performance of each
891 method, as well as a more reliable estimation of the effects of perturbation
892 because the variability can no longer be simply attributed to variability in the
893 method which has been accounted for.

894 With the exception of scVI, each method utilized the same processing pipeline
895 for the data, where scanpy’s functions [52] were utilized in the following manner:
896 1. Count normalization for each cell to total value of 1 * 10*
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897 2. Transformation of counts using the log(1 + x) function

898 3. Highly variable gene selection using the ’seurat’” method for 2500 genes
899 4. Integration at this step for Seurat - returns corrected HVG
900 counts

901 5. Principal component analysis (PCA) reduction to top 50 principal com-
902 ponents that explain the highest variance (PCs) for HVG counts

903 6. Integration at this step for Harmony, Scanorama - return cor-
904 rected PCs

905 7. Creating neighborhood graph using the embedding with 20 dimensions
906 (highest explained variance) and 15 nearest-neighbors - integration at
907 this step for BBKNN (replaces neighborhood graph step in scanpy
908 pipeline)

909 8. Leiden clustering on the neighborhood graph using scanpy’s default pa-
910 rameters

911 9. Uniform Manifold Approximation and Projection (UMAP) on the neigh-
912 borhood graph using scanpy’s default parameters

913 The only exception to this setup was scVI, which requires raw scRNA-seq
914 expression counts [24], and utilized the entire set of genes for each dataset
915 and the raw counts. For scVI, steps 1-6 outlined are omitted, and it simply
916 integrates the raw data and returns a 10 dimensional embedding, which replaces
917 the reduced dimensions of the other methods (input embedding for step 7).
918 10 dimensions were utilized in this case instead of 20, as this was the indicated
919 default setting for scVI. The rest of the steps (7-9) are the same.

920 BBKNN performs integration on the embedding neighborhood representa-
921 tion [21], and as a result, many of the downstream analyses that required embed-
922 dings did not have data for BBKNN as it was untestable. Default parameters
923 were utilized for all methods to ensure fairness in across-method comparisons,
924 as well as comparisons before and after perturbations.
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925 3 Perturbation experiments

926 Perturbation experiments were carried out in two settings - the balanced 2
927 batch PBMC data, and the pancreatic ductal adenocarcinoma data. In both
928 instances, batches are randomly selected to be perturbed, as well as given
929 cell-types/compartments. There are three types of perturbation experiments
930 performed - control, downsampling, and ablation. Control experiments don’t
931 downsample any data but allow for replicates of integration runs across meth-
932 ods to get a sense of intra and inter-method variance on the data without
933 perturbation. Downsampling experiments involve randomly selecting cells of
934 a selected cell-type across the indicated number of batches, and downsam-
935 pling to 10% of the original cell-type population. Ablation experiments in-
936 volve completely removing selected cell-types from the indicated number of
937 batches. Randomness of selection for the batches, cell-types, and cells within
938 indicated cell-type are ensured through randomly generated numbers for each
939 perturbation simulation/run. To determine the effects of perturbation, results
940 from the control experiments are compared with results from downsampling
941 and ablation experiments, across all methods and selected datasets. The code
942 for the experimental setup, as well as the Iniquitate pipeline, are available at
943 https://github.com/hsmaan/Iniquitate.

944 3.1 Balanced 2 batch PBMC data

945 Within the balanced 2 batch PBMC dataset, perturbation experiments were
946 performed for one of two batches (randomly selected) at a time, and for one
947 cell-type at a time. 400 replicates were done for the control experiments, and
948 200 replicates were done for the downsampling and ablation experiments, ensur-
949 ing that both batches (n=2) and each cell-type (n=6) is sampled repeatedly and
950 method performance variance within control experiments is taken into account
951 adequately. Within the hierarchical setup, where similar cell-types were hi-
952 erarchically clustered into 3 groups (B cell, Monocyte, NK/T cell), the same
953 number of replicates were done for for the control, downsampling and ablation
954 experiments.
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955 3.2 8 batch PDAC data

956 For the 8 batch pancreatic ductal adenocarcinoma dataset, where cells were
957 grouped into three major compartments, 4 batches were randomly selected for
958 downsampling or ablation, and one compartment was downsampled or ablated
959 within one replicate. In total, 100 control replicates were performed, and 50
960 downsampling and ablation replicates, as the number of compartments is small
961 (n=3) and there will be adequate sampling and repetition within 50 runs.

962 4 Benchmarking integration performance - PBMC
963 2 batch control dataset

964 Performance in integration and downstream tasks was assessed using the in-
965 tegrated embeddings and Leiden clustering [29] results from each integration
966 technique. After integration at either the embedding or neighborhood calcu-
967 lation stage through the scanpy library, Leiden clustering was used. Default
968 values were used for the embedding and clustering steps in the scanpy library
969 [52]. Only BBKNN did not result in embeddings to be utilized as it performs in-
970 tegration at the neighborhood, and therefore was not included in the K-nearest
971 neighbors classification experiments as these relied on integrated embeddings.
972 4.1 Quantifying cell-type conservation and batch-mixing
973 with clustering metrics

974 Four metrics were calculated for all integration experiments, including pertur-
975 bations and replicates, - Adjusted Rand Index (ARI) [20], Adjusted Mutual
976 Information (AMI) [27], Completeness [25], and Homogeneity [28]. The sklearn
977 (version > 1.0.1) implementation of these metrics was utilized. Details of these
978 metrics can be found in the scikit learn documentation [32]. These values were
979 calculated by comparing the known annotated labels with the cluster labels
980 obtained after integration for each technique. Both cell-type and (1 - batch)
981 values were calculated for each metric, where cell-type metrics compared the
982 known cell-type annotations with the cluster labels to determine how well the
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983 integrated embeddings corresponded to known cell-type labels, and the (1 -
984 batch) values used the batch annotations and the cluster labels to determine
985 how well the different batches co-aggregate in the embeddings. The assumption
986 of the latter is that integration should lead to strong batch mixing, and the
987 shadow of the value is used (1 - batch) to reflect this desired property. The
988 median value across all replicates for a given combination of {method, exper-
989 iment type, downsampled cell-type} was determined. For the main analysis,
990 the cell-type and (1 - ARlpuen) was utilized, but values for all metrics were
991 calculated (Supplementary table 9).

992 4.1.1 Z-score normalization of ARI metrics

993 As the focus of the analysis was not to assess inter-method variation, but de-
994 termine intra-method variation based on the properties of perturbations versus
995 the control experiments, the median values for cell-type and (1 - ARIpyep), for
996 all combinations of {method, experiment type, downsampled cell-type}, were
997 Z-score normalized. E.g. for cell-type ARI values for a specific subset:

Median ARIgethod, type, ceti—type,} — #(Median ARI (metho d;,type:,cellftypez}> O
U(Median ARI{method;,type;,cell—type:})

998 The exact same procedure is followed for the (1 - ARIpu ) values.

999 4.2 Downstream analysis - unsupervised clustering
1000 In this downstream analysis test post-integration, the number of unsupervised
1001 Leiden clusters are determined and compared between the different perturba-
1002 tion experiments and control groups. The same indicated setup is used, and the
1003 number of clusters are determined using the default parameters for Leiden clus-
1004 tering in the scanpy library [52]. As each method resulted in different Leiden
1005 clusters, these were analyzed independently and intra-method and experiment-
1006 type comparisons were performed.
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1007 4.3 Downstream analysis - k-nearest neighbor (KNN)
1008 classification
1009 The goal of this downstream analysis test was to determine the performance
1010 of integration techniques at a per-cell-type level before and after perturbation.
1011 After obtaining the integrated embeddings for all methods, with the exception
1012 of BBKNN, a KNN classifier is trained on a 70/30 training/test split of the
1013 integrated embeddings to predict the cell-type labels of the test data. Strati-
1014 fied sampling was used for the split to ensure that all classes were represented
1015 in the same proportions between train and test sets. The sklearn (version >
1016 1.0.1) library was used for the data preparation, test/train split, stratified sam-
1017 pling, KNN-classifier training and prediction [32]. The explicit formulation for
1018 prediction of a class on a test data point x; is:
k
class z; = ma o(y;, 2
7 = max %\; (vi,v) (2)
YiclNz,;

0, otherwise

5(yiry) = {1’ =y (3)

1019 Where k indicates the number of neighbors used in the classifier, which was
1020 set to 15 for all runs. As different runs could possible lead to different test/train
1021 splits of the integrated embedding, a seed was used to ensure that the same split
1022 occurs across all experiments. This also ensured that each method was tested
1023 on the same split of the data. Using the results of the predictions, the cell-
1024 type-specific precision, recall, and F1 scores were determined, and the F1-score
1025 specific to each cell-type was used as key metric. These metrics was calculated
1026 Primarily, cases were examined where a specific cell-type was downsampled or
1027 ablated, and the effects of performance on the same cell-type based on the
1028 KNN-classification Fl-score was analyzed. The form of the score is given by
1029 [33]:
precision x recall TP

F1 ll-type = 2 - 1
SeOTe Per cetybe ’ precision +recall TP+ $(FP + FN) W
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1030 Where T'P is the number of true positive calls, F'P is the number of false
1031 positive calls, and F'N is the number of false negative calls, all on a per-cell-type
1032 basis.

1033 4.4 Downstream analysis - marker gene ranking

1034 Differential gene expression (DGE) analysis is typically performed after clus-
1035 tering (or clustering an integrated representation of many batches/samples) to
1036 determine marker genes specific to each cluster that are then used to annotate
1037 cells within those clusters [8]. The goal of this analysis was to determine to
1038 what extent can the results of DGE be altered after perturbation of balanced
1039 data.

1040 First, the top 10 marker genes corresponding to each cell-type were de-
1041 termined in each batch for each dataset (e.g. 2 batch PBMC dataset) using
1042 the Wilcoxon Rank-Sum Test and the scanpy package (sc.tl.rank_genes_groups)
1043 [52]. To ensure selection of relevant markers, ribosomal and mitochondrial genes
1044 were removed from the pool of tested genes. After this, to obtain a consensus on
1045 the marker genes across batches, the union of markers for each cell-type across
1046 batches was determined and duplicate gene calls across batches were dropped.
1047 This will lead to an uneven number of markers for some cell-types if completely
1048 distinct sets are called from different batches, but leads to a more complete set
1049 as the integrated space across batches is being analyzed. This set of markers
1050 for each cell-type in a dataset was deemed the master marker list.

1051 From here, after each the integration step using each method in each control
1052 or perturbation simulation for a given dataset, unsupervised clustering using the
1053 Leiden clustering algorithm with the scanpy default parameters was done for
1054 the integrated embedding and DGE using the Wilcoxon Rank-Sum Test was
1055 performed for each of the obtained unsupervised clusters [52]. A challenge here
1056 is that there is no correspondence between the unsupervised clusters obtained
1057 in this integrated embedding and the cell-types used for determining the master
1058 marker list. However, a way to get around this is to do DGE for each cluster
1059 and check the maximum ranking of a given marker gene across all clusters.
1060 Ranking is defined by how significant the DGE p-value is for a given gene, where
1061 the highest rank is the most statistically significant differentially expressed gene
1062 for a given cluster. If a cluster still corresponds to a given cell-type (which is
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1063 the central assumption in unsupervised integration), then that cluster should
1064 return a high ranking for a given marker gene corresponding to that cell-type
1065 in DGE. Therefore, for the markers in the master marker list, we can analyze
1066 their maximum ranking across unsupervised clusters in the integrated space
1067 - to see if biological information specific to that cell-type and its markers is still
1068 being retained after integration.
1069 This is precisely the operation carried out, and the change in ranking for all
1070 of the marker genes corresponding to the different known cell-types in datasets
1071 quantified by their standard deviation in a given subset of experiments (control,
1072 downsampling, or ablation) change in maximum ranking. This change in
1073 maximum ranking within an experiment group (e.g. the control group) was
1074 indicated as the marker gene perturbation score:
Marker gene perturbation score = o(max marker gene ranking) (5)
1075 If this value is being averaged over many genes (e.g. for a cell-type), this is
1076 indicated as the average marker gene perturbation score. If there are m
1077 marker genes for a given cell-type:
m
Avg. marker perturbation score = - Z Marker ¢ perturbation score  (6)
i=1

1078 4.4.1 Case study - CD4/CD8 T cell assignment based on marker
1079 genes
1080 To determine if the changes in marker gene ranking that were observed could
1081 realistically influence the results of a single-cell analysis, the same marker gene
1082 perturbation set-up was utilized. In this case however, each of the unsupervised
1083 clusters after integration were annotated as specific cell-types based on a major-
1084 ity of their cells present (e.g. Cluster 1 -; Majority CD4+ T cells -;, CD4+ T).
1085 In this setup, only clusters that contained a majority of either CD44 or CD8+
1086 T cells were kept. For simplifying the case study, only integration results from
1087 the Seurat method were utilized.
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1088 After integration and selection of clusters with a majority of CD4+ and
1089 CD8+ T cells, differential expression analysis was performed as previously indi-
1090 cated, and a permissive threshold of the top 50 marker genes was used to select
1091 markers for the CD4+ and CD8+ majority clusters. From here, each of the
1092 CD4+ and CD8+ T cell majority clusters were predicted to be either CD4+
1093 or CD8+ based on the presence of canonical marker genes: IL7R for CD4+ T
1094 cells and CD8A for CD8+ T cells [25].

1095 Examining the top 50 marker genes for each cluster, the rules for predicting
1096 the cell-types each of the CD4+ and CD8+ T majority clusters comprised of
1097 were the following:

1098 if IL7TR and CDS8A present then

1099 if Rank(IL7R) > Rank (CD8A) then

1100 Annotate as CD4+ T

1101 else if Rank(CD8A) > Rank (IL7R) then

1102 Annotate as CD8+ T

1103 end if

1104 else if IL7R present then

1105 Annotate as CD4+ T

1106 else if CD8A present then

1107 Annotate as CD8+ T

1108 else

1109 Annotate as Undefined

1110 end if

1111 From here, the fraction of unsupervised clusters that contained a majority
1112 of CD4+ and CD8+ T cells were predicted for their cell-types based on differen-
1113 tial expression in control and perturbation (downsampling and ablation) experi-
1114 ments, including replicates. Only downsampling and ablation experiments that
1115 affected CD44 and CD8+ T cells were analyzed, as downsampling/ablating
1116 these were found to most likely affect the marker gene rankings of either cell-
1117 type.
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1118 4.5 Downstream analysis - query-to-reference annota-
1119 tion

1120 To test the robustness of query-to-reference annotation techniques across vary-
1121 ing degrees of unshared variation, the Seurat 4.0 multi-modal projection tech-
1122 nique was utilized [31]. Although the control PBMC 2 batch dataset has only
1123 scRNA-seq information, a multi-modal reference can still be utilized as is, as
1124 only the RNA-seq modality will be integrated. The reference dataset utilized is
1125 from Hao et al., and the same parameters indicated in the vignette were utilized
1126 [31].

1127 [t’s important to note that integration was not performed before pro-
1128 jection using the Seurat 4.0 method. Instead, each batch/sample is indi-
1129 vidually projected/integrated to the reference dataset and annotated,
1130 as per the guidelines for Seurat 4.0 [31]. Therefore, there are no method-specific
1131 comparisons to be made in this analysis.

1132 As the annotations in the reference will not exactly match the annotations
1133 from the PBMC 2 batch data (mostly due to a higher degree of granularity
1134 and different naming conventions) [9] [31], a scoring guide was created to de-
1135 termine if the annotation correctly matches the ground-truth cell-type label
1136 by using ”fuzzy-matching” of ground-truth cell-type labels from the PBMC 2
1137 batch dataset and the labels in the reference data. The following table summa-
1138 rizes the guide for the PBMC 2 batch data, and acceptable annotations for L1
1139 (coarse-grained label from Hao et al. [31]) and L2 (fine-grained label from Hao
1140 et al. [31]):

’ Ground-truth label \ Acceptable L1 reference \ Acceptable L2 reference
CD4 TCM, CD4 Naive,

CD4 T cell Cbh4 T CD4 CTL, CD4 Proliferating,
CD4 TEM
CD8 Naive, CD8 TEM,
CD8 T cell Ch8 T CD8 TCM, CDS8 Proliferating
Monocyte_CD14 Mono CD14 Mono
Monocyte FCGR3A Mono CD16 Mono
NK cell NK NK, NK Proliferating,

NK_CD56bright
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1141 Using this annotation guide, the annotation accuracy as determined by the
1142 F1 score (4.3) was determined for each experiment and experiment type (control,
1143 downsampling, ablation). This value was calculated using both the L1 and L2
1144 annotations, and the annotations for each cell in each experiment were saved.
1145 5 Complex imbalanced dataset analysis

1146 After quantifying the effects of unshared variation in the control 2 batch PBMC
1147 dataset through perturbation experiments, complex datasets that are multi-
1148 batch and already imbalanced were analyzed, including: imbalanced 2 batch
1149 PBMC dataset, batch PBMC dataset, 6 batch mouse hindbrain development
1150 dataset, and 8 batch pancreatic ductal adenocarcinoma dataset.

1151 5.1 Cell-type center distance

1152 To determine the distance between cell-types in the embedding space utilized
1153 for integration, across all batches to be integrated, the following preprocessing
1154 steps were performed on the raw data for each batch in a dataset:

1155 1. Count normalization for each cell to total value of 1 x 10*

1156 2. Transformation of counts using the log(1 + x) function

1157 3. Highly variable gene selection using the ’seurat’ method for 2500 genes
1158 4. PCA to top 20 (PCs) for on the counts data

1159 After obtaining the PCs for a given dataset, the ground-truth cell-type labels
1160 are used to determine the cell-type center distance between all cell-types in
1161 the data in a pairwise manner. The cell-type center distance is defined as the
1162 weighted cosine distance between the center (average) of the PCA representation
1163 for each cell-type in a given batch.

1164 For each batch b, and cell-type a with n cells and a PCA reduction of the
1165 data:
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PC,, € R (7)
1 n
-t ter = — Y PC,,; € R 8
cell-type a;, center n; ) (8)
1166 Then for quantifying the distance between cell-types a and ¢ in batch b:

Let v € R be the variance explained by each of the top 20 PCs
Let CC,, be the cell-type center for cell-type @ in batch b
Let CC,, be the cell-type center for cell-type c in batch b

(Ccab o U) : (OCCb o U)
[(CCy 00 CC o] )

Cell-type center distance ac, =1 —

1167 Where CC,, o v is the element-wise rescaling of the cell-type center of a
1168 based on the variance explained by the PCs.

1169 The rationale behind a reweighted cosine distance is that the distance itself
1170 between cell-types should be scaled according to the variance explained by each
1171 PC because the distance is being calculated in the joint PCA reduction of
1172 all cells, and not every PC axis will have equal contribution for the variance
1173 explained.

1174 We can take the average of this cell-type center distance across p batches:

1 p
Avg. cell-type center distance = — Z Cell-type center distance ac, (10)
Py

1175 From here, the minimum cell-type center distance, or the distance corre-
1176 sponding to the cell-type closest to cell-type a is simply the minimum value
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1177 across all batches (p total). Assume there are k total cell-types across all batches
1178 and missing cell-type pairs (e.g. cell-type present in batch 1 and not batch 2)
1179 have an imputed maximum cosine distance of 1. Values between the same cell-
1180 types are also imputed as 1. Then using the tensor of cell-type center distances
1181 across batches D:
D e RM*® (11)

Minimum cell-type center distance a = min(D, . .) (12)
1182 Where D, is the subset of the first axis for cell-type a. The cell-type and
1183 batch corresponding to this value can also be found through the argmin.
1184 The minimum distance in any batch is taken instead of averaging distances
1185 across all batches because this minimum distance will correspond to the most
1186 ’haphazard’ scenario for a given batch being integrated. There are two scenarios
1187 possible here:
1188 1. The similarity between cell-types is largely similar across batches, and the
1189 minimum value will correspond roughly to the average
1190 2. The similarity between cell-types can be very different across batches, due
1191 to scenarios/factors such as developmental data or treatment-effects
1192 The first case is most readily applicable to the PBMC datasets, but the
1193 second scenario may be more applicable to the PDAC and hindbrain develop-
1194 mental data. However, even in these cases, taking the minimum may lead to a
1195 better approximation of proximity affecting integration results because it will
1196 factor in the worst possible scenario (across batches) for a given cell-type.
1197 5.2 Cell-type support
1198 The cell-type support (or relative cell-type support) was simply the log2-transformation
1199 of the number of cells for each cell-type a across all batches b:
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P
Relative cell-type support a = logQ(Z Cell-type aparcnn) (13)

b=1
1200 6 Statistical testing
1201 6.1 One-way ANOVA tests
1202 To determine statistical significance for the effects of perturbations, the follow-
1203 ing generic one-way analysis-of-variance (ANOVA) setup was utilized [31]:
response ~ To+ xr1 + Ty + ... + T, + type (14)
Ho : response = xg + x1 + X9+ ... + Ty (15)
1204 Where H, is the null hypothesis, response can be an endpoint of interest in
1205 the analysis (e.g. number of clusters post integration), xo is a constant (inter-
1206 cept/bias), x1, ..., x,, are factors we’d like to control before testing significant
1207 with respect to perturbations (e.g. method, cell-type that was downsampled),
1208 and type is a binary covariate indicating the experiment type that was done:
1, if y; = downsampling, ablation
type =3V e (16)
0, if y; = control
1209 After accounting for the various factors we’d like to control (x1,...,x,,),
1210 we can assess the statistical significance of perturbation of unshared variation
1211 (type) with respect to the response covariate through the ANOVA F-statistic
1212 and p-value associated with the type covariate.
1213 In situations where significance is achieved across various groups due to fac-
1214 tors such as intra- and inter-method variance, the magnitude of the F-statistic
1215 is compared.
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1216 6.2 Control PBMC 2 batch dataset

1217 6.2.1 KNN classification per cell-type

1218 For assessing the effects of perturbation on the F1 classification scores post-
1219 integration on a per-cell-type level, the following ANOVA (6.1) setup was uti-
1220 lized:

F1 classification score ~ xo + method + downsampled cell-type + type  (17)
Ho : F1 classification score = xg + method + downsampled cell-type — (18)

1221 The Fl-classification scores here are across all cell-types in the integrated
1222 dataset. The cell-type being analyzed (for the F1 classification score
1223 in each instance) is equivalent to the downsampled cell-type in each
1224 sample included in the test.
1225 6.2.2 Unsupervised clustering
1226 For comparing the significance of perturbation on the number of unsuper-
1227 vised clusters obtained post-integration using Leiden clustering, the following
1228 ANOVA (6.1) setup was utilized:
n clusters ~ xg + method + downsampled cell-type 4 type (19)
Ho : n clusters = x¢ + method + downsampled cell-type (20)
1229 6.2.3 marker gene ranking
1230 To test the statistical significance of perturbations for each marker gene ana-
1231 lyzed (4.4), the following ANOVA setup was used for each marker gene g:
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Marker g max rank ~ x¢ + method + downsampled cell-type + type (21)
Ho : Marker g max rank = x¢ + method + downsampled cell-type (22)

1232 Then, to test the overall effects on marker gene ranking, considering all
1233 marker genes at once, the following test was done:

Marker maz rank ~ xo + gene + method + downsampled cell-type + type (23)
Ho : Marker mazx rank = o + gene + method + downsampled cell-type (24)

1234 6.3 Complex imbalanced datasets

1235 6.3.1 Cell-type support and cell-type center distance

1236 To determine if the two key metrics that were determined in the complex dataset
1237 analysis - relative cell-type support (5.2) and cell-type center distance
1238 (5.1) - are in fact predictive of integration performance, the following ANOVA
1239 setups were used where the Fl-classification score for each experiment, cell and
1240 associated ground-truth cell-type was tested:

F1 classification score ~ xg 4+ method + minimum cell-type center distance
(25)
Ho : F1 classification score = x¢ + method (26)

F1 classification score ~ x¢ + method + relative cell-type support (27)
Ho : F1 classification score = x¢ + method (28)

1241 Where:
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minimum cell-type center distance € Ry, (29)
relative cell-type support € N (30)
1242 The cell-type analyzed was not included as a factor to control, because the
1243 manimum cell-type center distance and relative cell-type support metrics were
1244 calculated on a per cell-type basis. Therefore, these metrics are perfectly
1245 collinear with cell-type, and this would absorb the residuals that would be
1246 picked up by the key metrics.
1247 6.3.2 PDAC perturbation analysis
1248 Perturbations were performed for the compartmentalized PDAC data (1.3 and
1249 3.2) to determine the effects of downsampling/ablation on the classification
1250 scores of all compartments. Here, the following ANOVA setup was used to
1251 determine the effects on Fl-scores for a specific compartment based on
1252 downsampling of the same compartment for each compartment c:
F1 classification score ¢ ~ x¢ + method + type (31)
Ho : F1 classification score ¢ = xg + method (32)
1253 These results were analyzed independently and jointly for all compartments
1254 downsampled, where joint-comparison included comparison of F-values for per-
1255 turbation in each setup.
1256 7 Balanced clustering scores
1257 None of the utilized clustering metrics, which in this analysis and other inte-
1258 gration benchmarking/methods papers are used to compare the concordance
1259 of ground-truth cell-type labels and unsupervised clusters attained in an em-
1260 bedding, factor in class balance. The metrics utilized include: the Adjusted
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1261 Rand Index (ARI), Adjusted Mutual Information (AMI), Homogeneity Score,
1262 and Completeness Score. The implementation details of these metrics can be
1263 found in the scikit learn documentation [32].

1264 Strictly speaking, the Homogeneity Score and Completeness Scores
1265 are not metrics, because they are not symmetric. However, this sym-
1266 metry is not necessary in the case of single-cell benchmarking, and the general
1267 case of comparing clustering labels with ground-truth annotations, because one
1268 set of labels is known to be ground-truth. In fact, balancing the ARI and AMI
1269 will break their symmetry as well.

1270 To introduce the procedure behind reweighing these metrics, we’ll begin with
1271 the balanced ARI. Then we’ll extrapolate this procedure to the entropy-based
1272 metrics/scores (AMI, Homogeneity, and Completeness), as this extrapolation
1273 only involves a slight modification to the ARI procedure for these scores.

1274 Code notebooks on implementing the balanced clustering scores with usage
1275 demonstrations and relevant examples are available at https://github.com/
1276 hsmaan/balanced-clustering/tree/main/notebooks.

1277 7.1 The Balanced Adjusted Rand Index

1278 7.1.1 The Rand Index and Adjusted Rand Index

1279 For a set of n objects, S = {01,02,0s3,...,0,}, the goal of clustering is to
1280 partition these objects into meaningful subsets, which we can call partitioning
1281 V. Assuming we have access to either ground-truth labels or clusters from
1282 another technique, which we can denote partitioning U. Both U and V' contain
1283 subsets, which we call either classes or clusters: U = {uy,us, ...,ug} and V =
1284 {v1, v, ...,vc}. These clustering results are subject to the following constraints
1285 to be valid for calculating the Rand Index:

1286 1. All n objects within the set S must be within sets U and V:

2. No element from set S can belong in to more than one subset in either U
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or V
1<i#i <R (34)
1<j#j<C (35)
w Nuy =0 =v; Ny (36)
1287 To quantify the overlap between the partitions U and V' (e.g. in determining
1288 overlap between a set of ground-truth labels and the results of clustering), we
1289 can start by creating a contingency table which indicates the overlap:
(2 Vo V3 . Ve
uy |ty |tz | tiz | ... | tic | .
Uz | ta1 | t22
us | l31
Ur tRl tRC tR_
ti ... . Ttelt
1290 Each element of this table indicates overlapping elements. E.g. ¢;; indicates
1291 the number of samples that have the label v; in V and u; in U. The total
1292 number of values in the matrix is (g) if n objects/samples are present. As we
1293 now have a table/matrix that represents the overlap of assignments to subsets
1294 in U and V for n objects, we can determine the concordance of partitions U
1295 and V for these objects using the Rand Index:
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c=1
d:(Z)—a—b—c (40)
Rand Index (RI) atd (41)
and Index =
a+b+c+d
1296 Intuitively, the Rand Index aims to calculate how many pairs are concor-
1297 dantly in the same subsets in V and U (a), how many pairs are concordantly in
1298 different subsets in V' and U, and how many are discordant (in the same group
1299 in one partition and otherwise in the other). It’s important to note that pairs
1300 here refer to all combinations of two different objects, not the same
1301 object being considered in the two partitions.
1302 Although the Rand Index is normalized (lower bound = 0, upper bound =
1303 1), it is not adjusted for chance clustering. A correction can be made [20] to the
1304 RI formula that takes into account the expected value of the RI for two
1305 partitions of the objects U and V', denoted by the Adjusted Rand Index
1306 (ARI) [206]:
Na+d)—[(a+b)a+c)+ (c+d)(b+d
arp - B @ 0ata) + et b+ d) o
(5)" = [(a+b)(a+c)+ (c+d)(b+d)
1307 With this correction, the ARI is a metric (symmetric, positive-definite, and
1308 the triangle inequality) [27] that has the properties of normalization and
1309 expectation [20].
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1310 7.1.2 Balancing the ARI
1311 Rebalancing the ARI (as well as the other entropy-based scores/metrics) will
1312 amount to rescaling the total number of values in the subsets of the
1313 partition we consider ground-truth. In this case, assume U is the par-
1314 tition with the ground-truth information. We want each subset from U
1315 to have an equal contribution to the ARI value - this is concomitant with each
1316 class from the ground-truth data (which we have assumed to be U) having an
1317 equal weighing in the calculating of the score. This can be done in the following
1318 step-wise manner:
1319 1. Determine contribution of each subset of U (¢, s, . .., tg) to score through
1320 mean of marginals from contingency table:
(t1.7 t2.7 t3.7 s 7tR‘) (43)

1321 2. Get the mean contributions of all subsets:

|-

- ; . (44)

3. For each subset (t;) of U, normalize the contribution to be equal to the
mean using a scaling factor:

C

Vi, (tiv, tiz, - tic) = Si * (tir, tiz, - tic) (46)

1322 After these steps, we’ve essentially rescaled the contingency table such that

1323 the contribution from each subset in U will be considered equally in calculations

1324 using the table results. To calculated the Balanced Adjusted Rand Indez, we

1325 can apply the 7.1.2 normalization procedure and use the same ARI formula as
1326 before (42):

y)a+d)—[(a+b)(a+c)+(c+d)(b+d
Balanced ARI = G)(a+d) —[(a+h)(ate)+(c+d) ) (47)

()" = [(a+b)(a+c) + (c+d)(b+d)]
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1327 Examining the values needed to calculate the RI and ARI (37), we can see
1328 that this normalization procedure will effectively rescale the calculations for a,
1329 b, and c¢. This procedure does this while still retaining the total counts (n),
1330 such that the calculation for d will be unaffected. Because the RI and ARI
1331 calculations simply depend on these values in the contingency table that can
1332 be calculated independently, the application of this normalization procedure is
1333 straightforward and does not require any further steps.

1334 7.2 Balancing entropy-based scores

1335 7.2.1 Mutual information

1336 Central to the Adjusted Mutual Information (AMI), Homogeneity, and Com-
1337 pleteness scores is the calculation of mutual information between partitions U
1338 and V' [27] [28]. For the contingency table previously defined in 47, the mutual
1339 information between these two partitions is equal to the following [27]:

V=33 e (1)

r=1 c=1

1340 We'll follow the same normalization procedure that we did in 7.1.2, as we
1341 are starting from the same contingency table of overlapping objects in subsets
1342 of partitions U and V. From here, we can calculate the mutual information
1343 value and proceed with the rest of the calculations for the entropy-based scores.
1344 7.2.2 Entropy

1345 Aside from mutual information, the other important factor that is used by all
1346 of the entropy-based scores is the calculation of the entropy of the labelling -
1347 i.e. how ordered/disordered are the objects in partitions U and V. This can
1348 also be calculated from the contingency table from 47 in the following manner
1349 [27]:
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tr tr
HU)= - — log — 49
W)==3 s (19)
Tt
HV)= - Z1pe =€
(V)==>_~log (50)
c=1
1350 The Homogeneity and Completeness scores also require the conditional en-
1351 tropy formulation [28] [27]:
R C
trc trc/n
HU|V)=— — log —— 51
) ==3 3 S ! 51)
R C
trc trc/n
HWVI|U)=— — log —— 52
Vo) = =323 o 7 (52)
1352 7.2.3 Balanced entropy-based scores
1353 The calculation of the entropy and mutual information can proceed as-is after
1354 the normalization procedure from 7.1.2; and this will balance the contributions
1355 from a presumed ground-truth partition U in calculating the entropy and mutual
1356 information. From here the Balanced Adjusted Mutual Information, Balanced
1357 Homogeneity, and Balanced Completeness scores can be calculated using these
1358 two values, the rescaled contingency matrix after 7.1.2, and the base formulas
1359 for these scores [27] [28]:

I(U,V)—-E[I(U,V)]

Balanced AMI = (53)
SHU) + H(V)] = E[I(U, V)]
H
Balanced Homogeneity = 1 — % (54)
H
Balanced Completeness = 1 — }(I‘(/—"/U)> (55)
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1360 The V-measure and Balanced V-measure are simply the harmonic mean of
1361 the Completeness and Homogeneity scores [25]:

(2 x Bal. Homog. x Bal. Compl.)

Bal d V- = 56
atance rieasure (Bal. Homog. + Bal. Compl.) (56)

1362 7.3 Balanced clustering evaluations
1363 The following section details the evaluations that were utilized for the balanced
1364 clustering metric analysis. Seeding was set for all of these cases to ensure repro-
1365 ducibility of the simulations, downsampling, and integration methods (where
1366 possible).
1367 7.3.1 3 imbalanced well-separated classes, 2 clusters
1368 In this scenario, 3 well separated but imbalanced classes were utilized and a
1369 mis-clustering of the smaller class was done with k-means clustering with k=2.
1370 This data was simulated using 2D Gaussian densities with the following values
1371 for each class:
1372 e Class A ~ N(0,0.5) - 500 samples
1373 e Class B ~ N(—2,0.1) - 20 samples
1374 e Class C ~ N(3,1) - 500 samples
1375 K-means clustering with k=2 led to class B overlapping with class A in the
1376 clustering result.
1377 The balanced and imbalanced metrics were compared when calculating the
1378 concordance of the ground-truth labels (class labels) and k-means clustering
1379 labels.
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1380 7.3.2 3 imbalanced overlapping classes, 3 clusters

1381 In this case, 3 classes that are overlapping and imbalanced (2 smaller classes on
1382 edges of larger class) were analyzed, and k-means clustering with k=3 was done
1383 and the result correctly clustered most of the samples from the smaller classes,
1384 but due to slicing of the larger class present because of overlap, mis-clustered a
1385 large number of majority class samples.

1386 This data was simulated using 2D Gaussian densities with the following
1387 values for each class:

1388 e Class A ~ N(0,0.5) - 1500 samples (larger class)

1389 e Class B ~ N(1,1) - 200 samples

1390 e Class C ~ N(—1,1) - 200 samples

1391 7.3.3 Balanced 2 batch PBMC - co-clustered CD4+ T cells and
1392 CD8+ T cells

1393 The balanced 2 batch PBMC dataset was utilized here (1.2). Batch 1 was kept
1394 as is, and batch 2 had all of the cells ablated except for CD4+ T cells, which
1395 were downsampled to 10% of their original proportion.

1396 The default Leiden clustering resolution of 1 in the scanpy implementation
1397 was changed to 0.1, as this value perfectly clusters all of the cell-types with the
1398 exception of the CD4+ T cells, which get collapsed into a cluster with CD8+
1399 T cells, simulating a case where a smaller cell-type is co-clustered with a larger
1400 cell-type.

1401 The resultant embedding with no integration was utilized, and the ground-
1402 truth cell-type labels and unsupervised clustering labels were used to compare
1403 the balanced and imbalanced /vanilla scores - where the ARI and Homogeneity
1404 scores were shown.
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7.3.4 Balanced 2 batch PBMC data - downsampled CD4+ T cells
and FCGR3A+ monocytes

In this evaluation, the 2 batch balanced PBMC dataset was once again utilized.
For the two batches, each one had either the CD4+ T cells or FCGR3A+ mono-
cytes downsampled to 10% of their original population, creating an imbalanced
scenario specific to these two cell-types.

After this, integration was done using BBKNN, Harmony, Scanorama, and
scVI. The same integration pipeline from 2 was utilized. An 'unintegrated’ con-
trol subset was used, where the pipeline from 2 was followed without integration
with any method.

From here, the average value of the balanced and imbalanced metrics was
used for comparison. e.g.:

Avg imbalanced = % Y (ARI, AM1I, Homog., Complet., V. — measure).

8 Code and data availability

The python package for implementing the balanced clustering metrics can be
found here:

https://github.com/hsmaan/balanced-clustering

All of the code necessary to reproduce the results of the Iniquitate pipeline
are available at:

https://github.com/hsmaan/Iniquitate

The datasets utilized in this study, which are associated with the various
configurations used in the Iniquitate GitHub repository, can be all found here:

https://drive.google.com/file/d/102ntQuclUzQILRxMVXo1-yQR43t97Q3r/
view?7usp=sharing

This directory is in the exact necessary structure needed to run the Iniqui-
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1430 tate pipeline, and can be copied into the cloned GitHub repository for Iniqui-
1431 tate under Iniquitate/resources. Instructions are also given in the Iniquitate
1432 GitHub link.
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1564 9 Appendix A: Python and R library/package
1565 version numbers

1566 The following two environments (9.1, 9.2) were used in the benchmarking and
1567 analysis phases, where all integration experiments and downstream analysis
1568 tests were done with the pipeline environment (9.1), and all results analysis
1569 and plotting was done with the analysis environment (9.2). The only exception
1570 were the balanced metric analyses and tests (7), which utilized the analysis
1571 environment (9.2) for generation and testing of the various scenarios outlined.
1572 Configurations for these environments are also available at https://github.
1573 com/hsmaan/Iniquitate/tree/main/workflow/envs.

1574 The library for the balanced metrics (7) was developed independently, and
1575 all of the information on dependency versions is available at https://github.
1576 com/hsmaan/balanced-clustering.

1577 9.1 Iniquitate pipeline environment

1578 e python>=3.7,<=3.10

1579 e numpy>=1.19.0

1580 e pandas>=1.2.0

1581 e scipy>=1.5.0

1582 e leidenalg>=0.8.0

1583 e umap-learn>=0.5.0

1584 e mnnpy>=0.1.9

1585 e scikit-learn>=1.0.1

1586 e scanpy=1.8.2

1587 e anndata=0.8.0
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1588 e faiss-cpu>=1.7.0
1589 e pytorch=1.10.1

1590 e torchmetrics<=0.6.0
1591 e cudatoolkit=10.2
1592 e scvi-tools=0.14.4
1593 e bbknn=1.5.1

1594 e harmonypy=0.0.5
1595 e scanorama=1.7.1
1596 e r-base>=4.0.0

1597 e r-liger=0.5.0

1598 o r-seurat=4.0.6

1599 e r-seuratdisk>=0.0.9
1600 e r-data.table>=1.14.0
1601 e r-reticulate=1.24
1602 e cython>=0.29.25
1603 e r-rann=2.6.1

1604 9.2 Analysis scripts environment
1605 e python>=3.7,<=3.10
1606 e numpy>=1.19.0
1607 e pandas>=1.2.0

1608 e scipy>=1.5.0

1609 e seaborn>=0.11.2
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1610 e plotnine>=0.8.0
1611 e leidenalg>=0.8.0
1612 e umap-learn>=0.5.0
1613 e scikit-learn>=1.0.1
1614 e scanpy=1.8.2

1615 e anndata>=0.7.5
1616 e ipykernel>=6.4.0
1617 e jupyterlab>=3.2.9
1618 e notebook>=6.4.2
1619 e scvi-tools=0.14.4
1620 e pytorch=1.10.1

1621 e torchmetrics<=0.6.0
1622 e cudatoolkit=10.2
1623 e bbknn=1.5.1

1624 e harmonypy=0.0.5
1625 e scanorama=1.7.1
1626 e r-base>=4.0.5

1627 e r-seurat>=4.0.5
1628 e r-data.table>=1.14.0
1629 e r-ggplot2>=3.3.0
1630 o r-tidyverse>=1.2.1
1631 e r-reshape2>=1.4.3
1632 e r-data.table>=1.14.0
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1633 e r-ggthemes>=4.2.0

1634 o r-ggextra>=0.8.0

1635 o r-dotwhisker>=(0.7.4
1636 e r-seuratdisk>=0.0.9019
1637 e r-deldir>=1.0.2

1638 e r-ggpubr>=0.4.0

1639 e r-cowplot>=1.1.1

1640 e r-ggrepel>=0.9.1

1641 e r-rcolorbrewer>=1.1

1642 e r-ggbump>=0.1.0

1643 e bioconductor-complexheatmap<=2.9.0
1644 e r-venndiagram>=1.7.1
1645 e r-multipanelfigure>=2.1.2
1646 o r-gridextra>=2.3

1647 e r-cairo>=1.5

1648 e r-lemon>=0.4.5

1649 e r-networkd3>=0.4

1650 o r-emt>=1.2

1651 e cython>=0.29.25
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1652 Supplementary Figures

Integration method

© Subset
8 Baseline balanced
8 Celltype downsampled PBMC d‘f"ta
8 Hierarchically clustered
PBMC data
Balanced vs perturbed
0 500 1000 1500 2000 2500

ANOVA F-statistic

Figure S1: ANOVA F-statistic values for cell-type specific KNN classifi-
cation in the baseline and hierarchical 2 batch balanced PBMC data. The
ANOVA F-statistic values, indicating the ratio of variation between between sample
means and variation within the samples themselves, for the covariates used in the
KNN-classification task ANOVA for the 2 batch PBMC balanced dataset (Online
Methods). F-statistics are shown for integration method (first covariate in model),
cell-type that was downsampled (second covariate in model), and which type of ex-
periment was performed (control balanced vs. perturbed - last covariate in model).
The F-statistics are compared between the baseline setup (6 cell-types initially uti-
lized) and the hierarchical setup after merging closely related cell-types.
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Figure S2: Correlation between cell-type-specific F1l-classification scores
and cell-type ARI..;_;yp. in balanced 2 batch PBMC data. All experiments
(control, downsampling, and ablation) are indicated for the baseline 2 batch PBMC
data. For perturbation experiments, values are subset for only where the cell-type
being classified (F1-classification score) is equivalent to the cell-type that was down-
sampled. The median cell-type classification F1-score across all cell-types is shown,
grouped by method and experiment type, for direct comparison with the ARI val-
ues which are calculated per replicate. The Spearman correlation value between the
scores is indicated.
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Figure S3: Correlation between cell-type-specific F1l-classification scores
and (1 - ARI,) values in balanced 2 batch PBMC data. All experiments
(control, downsampling, and ablation) are indicated for the baseline 2 batch PBMC
data. For perturbation experiments, values are subset for only where the cell-type
being classified (F1-classification score) is equivalent to the cell-type that was down-
sampled. The median cell-type classification F1l-score across all cell-types is shown,
grouped by method and experiment type, for direct comparison with the ARI val-
ues which are calculated per replicate. The Spearman correlation value between the
scores is indicated.
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Figure S4: marker gene perturbation scores across all marker genes for
the cell-types in the balanced 2 batch PBMC dataset. Marker genes were
determined through differential gene expression analysis within each batch (Online
Methods), and their perturbation score, indicating change in maximum ranking across
unsupervised clusters post-integration are shown across control, downsampling, and
ablation experiments (Online Methods). Note that downsampling and ablation (per-
turbation) experiments are not subset here for the marker gene being analyzed and
its associated cell-type (e.g. maximum-rank change for B-cell markers in only runs
where B-cells are downsampled).
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Figure S5: Comparison of Fl-classification accuracy and relative cell-type
support of each cell-type in the imbalanced 6 batch mouse hindbrain de-
velopment dataset. The relative cell-type support is based on the number of cells
in the integrated embedding space present for each cell-type (Online Methods).
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hindbrain development dataset. The minimum cell-type center distance value
indicates how close is the closest other cell-type across batches in PCA space (Online
Methods). 76
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Figure S10: Comparison of batch-mixing ARI results across PDAC data
perturbation experiments. Z-score normalized median (1-ARIpup) (batch mix-
ing) results across experiment type, compartment downsampled, and integration
method.
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Figure S11: ANOVA F-statistic values for compartment specific KINN-
classification in the 8 batch compartmentalized PDAC data. The ANOVA
F-statistic values, indicating the ratio of variation between sample means and vari-
ation within the samples themselves, for KNN-classification of individual compart-
ments before and after perturbation (Online Methods). F-statistics are shown for
integration method (first covariate in model), and which type of experiment was per-
formed (control vs. perturbed - last covariate in model). The ANOVA tests were per-
formed individually for each compartment, and the compartment-specific F-statistics
are shown. Note that the perturbations here are specific to the compartment being
analyzed (e.g. microenvironment subset will only contain perturbations that targeted
the microenvironment) (Online Methods).
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Figure S12: Comparison of cell-type heterogeneity conservation ARI re-
sults across the PBMC 2 batch perturbation experiments, using the bal-
anced ARI (bARI) score. Z-score normalized median ARl.c;j—type (cell-type
integration accuracy) results across experiment type (control, compartment down-
sampling, compartment ablation), specific-cell-type downsampled, and integration
method utilized, using the bARI instead of the base ARI metric.
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Figure S13: Average cell-type center distance between cell-types in the
balanced PBMC 2 batch dataset. For each batch, the distance from the centers
of cell-type clusters in principal component analysis (PCA) reduction space are cal-

culated, and the relative distances between cell-types are determined and averaged
across batches (Online Methods).
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Figure S14: Average cell-type center distance between cell-types in the
6 batch mouse hindbrain development dataset. For each batch, the distance
from the centers of cell-type clusters in principal component analysis (PCA) reduction
space are calculated, and the relative distances between cell-types are determined and
averaged across batches (Online Methods).
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Figure S15: Average cell-type center distance between cell-types in the 8
batch pancreatic ductal adenocarcinoma (PDAC) dataset. For each batch,
the distance from the centers of cell-type clusters in principal component analysis
(PCA) reduction space are calculated, and the relative distances between cell-types
are determined and averaged across batches (Online Methods).
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Figure S16: Predicted cell-types for CD4/CD8 T-cell majority clusters
in the balanced PBMC 2 batch data, based on marker gene differential
expression. In this setup, the top 50 marker genes were analyzed based on differen-
tial expression for unsupervised clusters from the Seurat integration method across
experimental subsets (Control, Downsampling, Ablation). The Downsampling and
Ablation subsets here contain only instances where CD4+ and CD8+ T cells were
affected. Only clusters that contained a majority of cells (based on ground-truth
annotations) of CD4+ or CD8+ T were kept. The canonical marker genes for CD4-+
T cells (IL7R) and CD8+ T cells (CD8A) were used to predict the cell-type for each
cluster based on their relative ranking in the top 50 marker genes for the given clus-
ters (Details in Online Methods: Downstream analysis - marker gene ranking - Case
study - CD4/CD8 T cell assignment based on marker genes). The fraction of clusters
that contain a majority of CD4+ or CD8+ T cells, and their predicted cell-type based
on the aforementioned marker gene setup are indicated, across experimental subsets.
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