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Abstract17

Single-cell transcriptomic data measured across distinct samples has led to a18

surge in computational methods for data integration. Few studies have ex-19

plicitly examined the common case of cell-type imbalance between datasets to20

be integrated, and none have characterized its impact on downstream analy-21

ses. To address this gap, we developed the Iniquitate pipeline for assessing the22

stability of single-cell RNA sequencing (scRNA-seq) integration results after23

perturbing the degree of imbalance between datasets. Through benchmarking24

5 state-of-the-art scRNA-seq integration techniques in 1600 perturbed integra-25

tion scenarios for a multi-sample peripheral blood mononuclear cell (PBMC)26

dataset, our results indicate that sample imbalance has significant impacts on27

downstream analyses and the biological interpretation of integration results. We28

observed significant variation in clustering, cell-type classification, marker gene-29

based annotation, and query-to-reference mapping in imbalanced settings. Two30

key factors were found to lead to quantitation differences after scRNA-seq inte-31

gration - the cell-type imbalance within and between samples (relative cell-type32

support) and the relatedness of cell-types across samples (minimum cell-type33

center distance). To account for evaluation gaps in imbalanced contexts, we34

developed novel clustering metrics robust to sample imbalance, including the35

balanced Adjusted Rand Index (bARI) and balanced Adjusted Mutual Infor-36

mation (bAMI). Our analysis quantifies biologically-relevant effects of dataset37

imbalance in integration scenarios and introduces guidelines and novel metrics38

for integration of disparate datasets. The Iniquitate pipeline and balanced clus-39

tering metrics are available at https://github.com/hsmaan/Iniquitate and40

https://github.com/hsmaan/balanced-clustering, respectively.41
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Introduction42

Single-cell sequencing technologies developed in the past decade have led to43

breakthrough discoveries due to the high resolution that they offer in deter-44

mining biological heterogeneity [1–3]. A major challenge associated with the45

analysis of high throughput sequencing data is that of accounting for batch46

effects, which are technical artifacts caused by factors such as differences in se-47

quencing protocols, experimental reagents, and ambient conditions that lead to48

quantification changes that are not biologically driven [4]. Batch effects can lead49

to major discrepancies in comparisons of similar experimental groups that can50

easily be misinterpreted as biological signal [5]. The amount of mRNA captured51

and reads sequenced per cell in single-cell RNA sequencing (scRNA-seq) assays52

is very low compared to their bulk counterparts, leading to measurements that53

tend to be sparse and noisy [6, 7]. These factors, combined with measurements54

often conducted across separate experimental groups without balanced designs55

[7], leads to a higher susceptibility of scRNA-seq data to batch effects. Methods56

for removing batch effects from bulk RNA sequencing data have demonstrated57

poor performance in single-cell settings due to invalid assumptions of shared58

populations and linear application of technical effects [8]. To account for this59

gap in methodology, batch correction/integration techniques have been devel-60

oped specifically for scRNA-seq data [8].61

Current single-cell integration methods underperform in settings where datasets62

are imbalanced based on cell-types [9]. More specifically, this form of imbalance63

is dictated by differences in the cell-types present, number of cells per cell-type,64

and cell-type proportions across samples [9, 10]. Imbalanced datasets occur65

in many integration contexts, including developmental and cancer biology. In66

developmental data, it is unlikely that cell populations and proportions will be67

shared across samples from different developmental time-points due to factors68

such as depletion of stem-like progenitors and differentiation [11]. In tumor69

samples, both clonal and subclonal heterogeneity can be present, as well as70

different levels of immune and stromal cell infiltration, both within and across71

samples [12]. Therefore, as imbalanced contexts can be common in single-cell72

data analysis, integration methods and analysis pipelines must be able to ex-73

plicitly address these imbalances or integration results may lead to inaccurate74

biological conclusions.75

In comprehensive single-cell integration benchmarking studies by Tran et76
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al. and Luecken et al. [9, 13], scRNA-seq integration methods were found to77

perform poorly in terms of both batch-correction and cell-type identity con-78

servation metrics, particularly in large and imbalanced datasets. Ming et al.79

[10] highlighted dataset imbalance limitations through simulation studies for80

balanced and imbalanced cell-type compositions in scRNA-seq integration set-81

tings, and demonstrated that cell-type proportion imbalance leads to skewed82

distributions in standardized gene expression values between datasets. This83

drives major changes in the dimensionality reduction step in scRNA-seq anal-84

ysis, and subsequently leads to inaccurate integration results [10]. Currently,85

no existing study has quantified the effects of dataset imbalance on both in-86

tegration results and downstream biological conclusions. This aspect is highly87

relevant, as mechanisms to account for dataset imbalance do not readily exist88

in frequently utilized integration techniques [9, 13].89

Here, we present an extensive analysis of the effects of dataset imbalance on90

scRNA-seq data integration. We begin by examining two balanced scRNA-seq91

batches of human peripheral blood mononuclear cell (PBMC) data [9, 14, 15] as92

a controlled setting. To determine the effects of dataset imbalance on integration93

results and downstream analyses, we perform 1600 perturbation experiments94

using the Iniquitate pipeline that involve control, downsampling, and ablation95

simulations in a cell-type-specific manner with replicates. Downstream analyses96

tested include unsupervised clustering [8], differential expression to determine97

marker genes [8], nearest-neighbor-based cell-type classification [16], and query-98

to-reference cell-type annotation [17]. To extend the analyses to more complex99

settings, we analyze datasets with prevalent imbalance, including imbalanced100

PBMC datasets [18], longitudinal mouse hindbrain developmental data [19],101

and pancreatic ductal adenocarcinoma (PDAC) samples from different patients102

[20]. Our analyses reveals that dataset imbalance has cell-type-specific effects103

on integration performance, as well as the downstream results, and that these104

effects are largely method-agnostic. We further define two key aspects of multi-105

sample single-cell data that act in concert to affect downstream results - relative106

cell-type support and minimum cell-type center distance. To address limitations107

with respect to dataset imbalance in benchmarking single-cell integration, we108

reformulate current integration metrics to consider imbalance explicitly. Finally,109

we provide a series of guidelines and recommendations to help minimize and110

mitigate the impacts of dataset imbalance in scRNA-seq integration settings.111
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Results112

Development of a comprehensive perturbation pipeline to113

determine the impacts of imbalance in scRNA-seq integra-114

tion115

To assess the impacts of dataset imbalance in scRNA-seq integration, we de-116

veloped a pipeline termed Iniquitate, that quantifies imbalance prevalent in117

datasets using global and per-cell-type statistics, determines the differences118

in these quantities between samples/batches, and tests the effects of down-119

sampling perturbations on integration and downstream analysis results (Figure120

1A). Datasets utilized were annotated by experts in their respective studies,121

with the exception of the PDAC data which was re-annotated to better identify122

malignant cells (Online Methods). We tested five state-of-the-art scRNA-seq123

integration methods, including BBKNN [21], Harmony [22], Scanorama [23],124

scVI [24] and Seurat [25]. A uniform integration pipeline embedded within In-125

iquitate was utilized to make comparisons between methods and across datasets126

comparable, with some noted exceptions (Online Methods). We measured cell-127

type heterogeneity conservation and batch effect correction for each technique128

across datasets and perturbations using the Adjusted Rand Index (ARI) [26],129

Adjusted Mutual Information (AMI) [27], Homogeneity Score [28], and Com-130

pleteness Score [28] (Online Methods).131

To determine the impacts of dataset imbalance on downstream analyses, we132

analyzed post-integration impacts on unsupervised clustering [8, 29], cell-type133

classification [16], differential gene expression [8] [30], and query-to-reference134

annotation [17] results (Figure 1A). Clustering impacts were assessed based on135

changes in the number of clusters post-integration using unsupervised clustering136

(Figure 1A). To assess the impacts on cell-type classification, a nearest-neighbor137

cell-type classifier was trained on the post-integration embeddings and tested138

on a holdout set (Figure 1A). Differential gene expression results and varia-139

tion was assessed using a global importance metric of the ranking changes of140

marker genes specific to each cell-type analyzed, before and after perturbing141

the dataset balance (Figure 1A). Query-to-reference annotation was done us-142

ing the Seurat 4.0 method [31], which projects each batch to be integrated143

onto a reference scRNA-seq dataset, and accuracy of annotation was utilized as144

an endpoint (Figure 1A). The details of the evaluations utilized for all of the145
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downstream analyses and parameters of the integration pipeline are outlined in146

Online Methods.147

Through perturbation and cell-type-specific analysis of both balanced and148

complex imbalanced scRNA-seq datasets, we determined that cell-type imbal-149

ance affects the scores of typical integration metrics in a cell-type and method-150

specific manner. Further, we discovered that cell-type imbalance in datasets151

to be integrated can lead to significant deviations in the results of downstream152

analyses. After investigating factors of imbalance that can quantifiably lead to153

distinct downstream results, we found that the distance between cell-types in the154

embedding space (minimum cell-type center distance) and imbalance between155

cell-types (relative cell-type support) to be the most relevant and predictive in156

this regard (Figure 1B). Finally, we determined that typical clustering metrics157

utilized in benchmarking single-cell integration techniques, such as ARI and158

AMI, are inadequate in imbalanced scenarios as they weigh the more prevalent159

cell-types disproportionality compared to rare cell-types. Therefore, we de-160

velop and introduce novel balanced clustering metrics, including the Balanced161

Adjusted Rand Index (bARI), Balanced Adjusted Mutual Information (bAMI),162

Balanced Homogeneity Score, and Balanced Completeness Score (Figure 1C).163

The balanced metrics reweigh the base scores such that each ground-truth cell-164

type’s contribution to the score is considered equally.165

I. Perturbation-induced imbalance in a PBMC cohort in-166

dicates cell-type-specific effects on integration results167

The ideal test case for assessing impacts of dataset imbalance should begin with168

a balanced dataset as a baseline, and thus we analyzed a peripheral blood mono-169

nuclear (PBMC) cohort of two batches/samples processed independently from170

two different healthy donors [9, 14, 15]. We downsampled each batch to have171

6 major cell-types and an equal number of cells within each cell-type (400 cells172

for each cell-type) (Figure 2A) (Online Methods). The cell-types were selected173

such that they are equivalent between the batches. Therefore, the cell-types174

present, number of cells per cell-type, and cell-type proportions between the175

batches are equal and the integration scenario is balanced (Figure 2A, Figure176

2B). A batch effect is prevalent between the samples (Figure 2B), which is ex-177

pected as they were processed at different centers using different technologies178

(10x 3’ vs 5’ protocols - Online Methods) [14, 15]. In this balanced setup, we179
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Figure 1: Overview of the Iniquitate pipeline and analysis results. (a)
To determine the effects of dataset imbalance in scRNA-seq integration, 1 controlled
balanced PBMC dataset and 4 complex datasets with imbalance already present
were integrated using current state-of-the-art scRNA-seq integration techniques. A
total of 1600 perturbation experiments involving downsampling on the controlled
dataset were performed and the effects of imbalance on integration results as well
as downstream analyses (clustering, differential gene expression, cell-type classifica-
tion, query-to-reference prediction) were quantified. (b) In complex datasets, results
in the controlled setting were verified, and two key data characteristics were found
to contribute to altered downstream results in imbalanced settings - relative cell-
type support and minimum cell-type center distance. (c) To account for imbalanced
scRNA-seq integration scenarios in evaluation and benchmarking, typically utilized
metrics and scores were reformulated to reweigh disproportionate cell-types, which
includes the Balanced Adjusted Rand Index (bARI), Balanced Adjusted Mutual In-
formation (bAMI), Balanced Homogeneity Score, and Balanced Completeness Score.
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aimed to assess how the integration results of the two PBMC batches, from a180

typical integration metric standpoint as well as their impacts on downstream181

analyses, varied between the control balanced data and perturbation-induced182

imbalanced data. For each perturbation, we randomly selected one of the two183

batches and one cell-type within the selected batch to either downsample to 10%184

of the original population or ablate/remove completely from the selected batch185

(Figure 2C). These perturbations were repeated 400 times for both downsam-186

pling and ablation of a random batch/cell-type. Control experiments with no187

perturbations to the balanced data were repeated 800 times, resulting in 1600188

integration experiments where each integration technique was tested (Online189

Methods).190

To determine how cell-type-specific changes in dataset balance affected typi-191

cal integration metrics, we examined the ARIcell−type and (1 - ARIbatch) scores [9]192

for each run and method independently. ARIcell−type represents conserved het-193

erogeneity of annotated cell-types post-integration, and (1 - ARIbatch) represents194

the degree to which the two batches being integrated overlap post-integration195

[9]. As variation between methods was not the main objective of the analysis,196

the two scores were Z-score normalized for each method across the perturbation197

experiments and the median value was utilized due to the presence of replicates198

(Online Methods). Neither the scaled median ARIcell−type or scaled median (1 -199

ARIbatch) indicated distinct patterns for the perturbation experiments (Figures200

2D, 2E). In fact, there seemed to be a high degree of method-specific variation201

in these results, making the interpretation challenging. In terms of the median202

(1 - ARIbatch) scores, for 4 out of 5 methods the top score occurred in the con-203

trol setup which shows that imbalance leads to worsening performance in terms204

of batch-mixing (Figure 2E). The results for cell-type heterogeneity were even205

less clear and indicated differences based on both the method utilized and cell-206

type downsampled/ablated. Overall, the results did not contain clear patterns207

and point to the fact that global clustering metrics do not account for dataset208

balance and may not be adequate for assessing performance in scenarios with209

imbalanced datasets and rare cell-types.210

To overcome this limitation of global metrics, we examined integration per-211

formance at a cell type-specific level through a k-nearest-neighbor (KNN) clas-212

sifier [16, 32] that was trained on 70% of the post-integration embeddings from213

each method independently and the remaining 30% was used as a test-set for214

cell-type classification. The train/test split was stratified by cell-type label,215
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Figure 2: Perturbation analysis of controlled PBMC dataset and effects on

cell-type-specific integration. (a), (b) The cell-type and batch representations of
the balanced two-batch PBMC dataset.(c) The perturbation setup for the balanced
PBMC data - in each iteration, one batch and one cell-type is randomly selected,
and the cell-type is randomly either downsampled to 10% of its original number or
ablated. Control experiments are also performed where no downsampling occurs.
(d), (e) Z-score normalized median ARIcell−type (cell-type integration accuracy) (d)
and median (1-ARIbatch) (batch mixing) (e) results across experiment type (control,
cell-type downsampling, cell-type ablation), specific-cell-type downsampled, and in-
tegration method utilized. (f) KNN-classification within the integrated embedding
space in control, downsampling and ablation replicates and across methods. The F1-
scores are indicated for the same cell-type that was downsampled. (g) Hierarchical
clustering of similar cell-types in the balanced two-batch PBMC data. (h) Cell-type-
specific integration results using a KNN-classifier after hierarchical clustering across
perturbation experiments with the same setup as (f). The cell-types here are based
on the label after hierarchical clustering from (g).
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such that an equal proportion of cell-types occurred in both subsets, allowing216

for comparison of classification at the cell-type level (Online Methods). Overall,217

the classification results provide evidence for cell-type-specific effects of dataset218

imbalance, as downsampling a specific cell-type led to a statistically significant219

decrease in the KNN classification F1-score [33] for the same cell-type post-220

integration, based on an analysis-of-variance (ANOVA) model [34] (ANOVA221

p-value << 0.05, F-statistic = 1304.96, Supplementary Figure S1) (Figure 2F).222

This result is method agnostic as the ANOVA test factored in method utilized223

and cell-type downsampled (Online Methods). The only cell-type that exhib-224

ited stability were B cells (Figure 2F - standard deviation of median F1-score225

across methods and experiment types < 0.01). Comparing the cell-type-specific226

results with the global ARI metrics, we found weak correlation across all meth-227

ods (Supplementary Figures S2, S3, Spearman’s ρ ≤ 0.4 across methods and228

metrics). The uniformly worsening F1 classification scores for the majority of229

cell-types being perturbed, when compared with the global ARI metrics, shows230

that global metrics may not adequately capture the integration performance231

in imbalanced settings. Instead, cell-type-specific metrics such as the KNN-232

classification score can capture more granular information.233

We hypothesized that the integration performance for B cells was unaffected234

in the perturbation experiments because they are highly distinct from the other235

cell-types. The two monocyte subsets (CD14+ Monocytes and FCG3RA+236

Monocytes) are transcriptionally similar, and the two T-cell subsets (CD4+237

T cells and CD8+ T cells) and NK cells are also very similar (Figure 2A, Sup-238

plementary Figure S13). As a test, we performed hierarchical clustering of239

the cell-types into three higher-level subsets - B cells, Monocytes, and NK/T240

cells (Figure 2G) (Online Methods). As expected, downsampling these sub-241

sets did not result in worsening performance to the same degree as the base242

cell-types (Figure 2F, Figure 2H) (ANOVA F-statistic = 374.46 (hierarchical)243

<< 1304.96 (base), Supplementary Figure S1) (Online Methods). This initial244

result on the balanced PBMC cohort indicates that the relative transcriptomic245

similarity of cell-types can drive cell-type-specific performance of integration246

techniques when considering differing levels of dataset imbalance.247
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II. Biological interpretation of integration results is con-248

tingent on relative cell-type proportions between batches249

To further analyze the impact of the perturbation experiments on the balanced250

PBMC cohort, we quantified the effects of imbalance on downstream analyses251

typically performed after integration, including unsupervised clustering, differ-252

ential gene expression/marker gene selection, and query-to-reference annotation253

(Figure 1A). As we observed significant impacts on KNN-based cell-type classi-254

fication in the same setting, it is likely that the impacts of imbalance on integra-255

tion may also affect other aspects of single-cell analysis. Therefore, we utilized256

the same perturbation setup and downsampling experiments in the balanced257

PBMC cohort to analyze these effects.258

Stability of unsupervised clustering of samples post-integration259

We observed a significant variation in the inferred number of clusters after260

integration across all tested methods due to perturbation of cell-type balance261

(ANOVA p << 0.05, F-statistic = 990.79) (Figure 3A). After integration in262

both balanced and perturbed simulations, clustering was performed using the263

Leiden clustering algorithm with a fixed resolution (Online Methods). Although264

all methods indicated at least some degree of variation in the number of clus-265

ters between control and downsampled/ablation experiments, there were also266

method-dependent effects present (Figure 3A). For instance, while Harmony267

exhibited variation in the number of clusters regardless of cell-type downsam-268

pled, ablation of CD14+ Monocytes specifically led to a much smaller number269

of clusters overall post-integration (Figure 3A). A similar effect was observed for270

Seurat and BBKKN, while Scanorama’s post-integration clusters diverged most271

from the control experiments when ablating CD4+ and CD8+ T cells (Figure272

3A). scVI’s post-integration clustering results were relatively more stable after273

perturbation (Figure 3A). There was variation observed for the control experi-274

ments across methods as well, but clear deviation after perturbation was present275

in all tested methods. This result indicates that differing levels of imbalance276

can cause significant deviations in cluster number, even though the number277

of clusters should be stable as the number of cell-types across all batches re-278

mains the same in both perturbed and unperturbed experiments. As cell-types279

are typically annotated using unsupervised clustering and subsequent marker280

gene analysis [8, 17], varying degrees of dataset imbalance can lead to distinct281

biological conclusions.282
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Figure 3: Quantification of the effects of perturbation-induced dataset im-
balance on downstream analyses. (a) After integration of the PBMC balanced
dataset in different perturbation scenarios (type) and based on the cell-type down-
sampled, the number of unsupervised clusters from the results of each method based
on Leiden clustering across replicates. (b) The average marker gene ranking change
in differential gene expression (average marker gene perturbation score) for cell-types
downsampled and marker gene sets of specific cell-types, across methods. The rank-
ings are averaged across replicates for the ‘downsampled’ experiment type. (c) The
average change in marker gene ranking in differential gene expression averaged across
replicates for the ‘ablation’ experiment type. (d), (e) The cell-type-specific L1 an-
notation (coarse-grained) (d) and L2 annotation (fine-grained) (e) accuracy scores
across replicates for query-to-reference results for individual batches based on exper-
iment type (control, downsampling, ablation) and cell-type downsampled. (f), (g)
The L1 predictions (f) and L2 predictions (g) by proportion across experiment types
and replicates for CD4+ T cells and CD8+ T cells.
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An important caveat to this result is that a reduced number of total cells283

(through downsampling or ablation) might lead to less clusters in general at a284

fixed resolution due to less overall heterogeneity in the data. We argue that this285

is not a major limitation due to two factors - (1) This case is still reflective of the286

effects of perturbing the cell-type balance, even if the effects are uniform across287

cell-types downsampled, (2) We did not observe a uniform reduction in cluster288

number based on the integration methods utilized. For example, scVI’s results289

for cluster number were fairly stable after downsampling or ablation, while the290

results from Scanorama indicated a drastic reduction after perturbation (Figure291

3A). Moreover, within each method, the results for reduction in cluster number292

were not uniform based on the cell-type that was downsampled (Figure 3A).293

Therefore, although we are limited in evaluation at a fixed clustering resolution,294

the results nevertheless show that the perturbation setup can lead to cell-type295

and method-specific effects that can potentially alter further analyses.296

Differential gene expression and marker gene stability297

Frequently, the next step after integration and unsupervised clustering in298

a scRNA-seq analysis workflow is differential gene expression analysis [8, 35].299

Typically, a series of one-versus-all differential expression experiments, using300

statistical tests such as the non-parametric Wilcoxon Rank-Sum Test or more301

RNA-seq specific techniques such as DESeq2, is done for each cluster to deter-302

mine the top ranking “marker genes” specific to all clusters [8, 17, 35]. These303

marker genes are indicative of cell-type identity for each cluster and are used304

to annotate clusters into putative cell-types [8, 17, 35]. One way to assess305

marker gene stability before and after perturbation is to constrain the number306

of clusters to be equivalent across simulations, but this would be unrealistic307

as variation in cluster number in both control and perturbed experiments was308

observed across methods (Figure 3A). As the ranking of marker genes is typi-309

cally utilized to annotate clusters from scRNA-seq data [8, 35], we considered310

deviation in ranking for genes with known cell-type associations to be an im-311

portant end-point. Using the unintegrated data separately for each batch, we312

determined the top 10 marker genes for each cell-type, and assessed the stability313

of their ranking before and after perturbation (Online Methods). Changes in314

ranking for marker genes across replicates for a given subset of experiments were315

defined as the marker gene perturbation score, indicating the standard deviation316

of the rank (Online Methods). In the case of examining all marker genes for a317

given cell-type, the standard deviation of ranking of all of the marker genes was318
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averaged, and this is indicated as the average marker gene perturbation score319

(Online Methods).320

For the majority of marker genes, we observed deviations in ranking after321

downsampling and ablation, with many diverging as much as 10 ranks (Sup-322

plementary Figure S4 - Marker gene perturbation score) which could lead to323

significant changes in biological interpretation of results if the top 10 marker324

genes are used as a heuristic for annotation. An ANOVA test factoring in the325

specific marker gene, method, and downsampled cell-types indicated that per-326

turbation led to statistically significant changes in ranking (ANOVA p << 0.05,327

F-statistic = 48.99 - highest of all factors) (Online Methods). There was strong328

correlation in marker gene perturbation across methods, with the exception of329

scVI, which exhibited stronger deviations in rankings for some marker genes330

(Supplementary Figure S4).331

Next, we examined whether downsampling or ablation of a specific cell-type332

will change the ranking of marker genes for the same cell-type, and we observed333

that this was the case across all methods (Figure 3B, Figure 3C). The strongest334

ranking change of marker genes occurred after downsampling or ablation of335

CD8+ T cells and CD14+ Monocytes (Figure 3B, Figure 3C). As these two336

cell-types are highly similar to CD4+ T cells and FCGR3A+ Monocytes re-337

spectively, downsampling likely induces a collapse of cells in the downsampled338

cell-types into clusters corresponding to their neighboring cell-types. This con-339

tributes to significant deviations in marker gene ranking and possible changes in340

biological interpretation in both the downsampling and ablation experiments.341

Significant changes in marker gene ranks were also observed for cell-types that342

were not downsampled or ablated, such as in NK cells, which were pronounced343

for Harmony and scVI results (Figure 3B, Figure 3C). Once again, this is likely344

due to mixing of cell-types within clusters after an imbalance is introduced,345

as NK cells are very transcriptionally similar to CD4+ and CD8+ T cell sub-346

sets. Similarity of cell-types and effects in integration are investigated further347

in Results III. and IV.348

To more definitively determine whether or not these perturbations in marker349

gene rankings could change the biological conclusions of an analysis, we per-350

formed a case-study with clusters that contained a majority of CD4+ and CD8+351

T cells after integration using Seurat (Supplementary Figure S16). Considering352

a permissive list of the top 50 marker genes and using canonical markers for353

CD4+ and CD8+ T cells, we observed that the fraction of clusters annotated354
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as either CD4+ or CD8+ T do change after downsampling/ablation induced355

imbalance is introduced (Supplementary Figure S16).356

Query-to-reference projection and cell-type annotation357

With the increasing availability of public scRNA-seq datasets with high358

quality annotations, query-to-reference annotation has become a major appli-359

cation for scRNA-seq data integration [17]. However, the accuracy of annotation360

depends on the quality of the integrated space. To examine the effects of im-361

balance in this setting, we utilized the Seurat 4.0 query-to-reference annotation362

pipeline and a large-scale multi-modal PBMC dataset of 211 000 cells as a ref-363

erence [31]. In the Seurat 4.0 pipeline, each batch (query) is projected to the364

reference dataset, such that the integration is performed individually for each365

batch [31] (Online Methods). In this setup, the effects of inter-batch imbalances366

are not relevant, but only the imbalance relative to each query batch and the367

reference dataset. In this setting, the perturbations were done for the query368

batches (balanced PBMC 2 batch data), and the reference was static (Online369

Methods). We assessed the accuracy of query-to-reference projection through a370

“fuzzy-matching” of cell-type labels between the balanced PBMC batches and371

multi-modal PBMC reference from Seurat [9, 31] (Online Methods).372

The majority of cell-types were stable across control and downsampling/ablation373

experiments with near perfect scores. However, the two T-cell subsets had vary-374

ing performance to a high degree, regardless of which cell-type was downsam-375

pled or ablated (Figure 3D, Figure 3E). This result is indicative of the fact376

that the imbalance between the projected batch (which was perturbed) and the377

reference dataset (held constant across all experiments) is driving variance in378

integration and subsequent annotation results. This highlights a similar prob-379

lem concomitant with previous results, in that perturbing the degree of balance380

for transcriptionally similar cell-types can lead to biologically distinct results381

compared to the balanced scenario. In this case, the CD4+ T cell and CD8+382

T cell populations are transcriptionally similar, and a trade-off in their anno-383

tation performance can be observed in the control unperturbed data (Figure384

3D, Figure 3E). After perturbing the degree of balance within a given batch,385

the trade-off point is moved in favor of either subset (Figure 3D, Figure 3E).386

Further, the result highlights that perturbation of dataset balance can affect387

downstream results even when there is a degree of imbalance already present388

between integrated datasets, which was the case between the query and refer-389

ence data in these experiments (Supplementary Table 3, Supplementary Table390
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9).391

Examining the cell-type annotations more closely at two levels of resolution,392

we observed that both the CD4+ and CD8+ T cells were largely mis-annotated393

as Mucosal Associated Invariant T-Cells (MAIT) (Figure 3F, Figure 3G). After394

downsampling or ablation of a given cell-type and subsequent analysis of anno-395

tation accuracy of the same cell-type, we find that CD4+ T cells were annotated396

more accurately, while CD8+ T cells were further mis-annotated, compared to397

their respective control scores (Figure 3F). The transcriptional similarity be-398

tween not just the CD4+/CD8+ subsets, but the many subsets that fall under399

“other T”, is a challenging problem for integration and subsequent label-transfer400

[36]. This challenge is potentially exacerbated when imbalance is present, as401

indicated by the perturbation experiments and their effects on the annotation402

results.403

Overall, cell-type imbalance affected all three major aspects of downstream404

analysis that were tested, and we observed strong evidence of impact on biolog-405

ical interpretation of the results. This observation is likely even more relevant406

in complex datasets, as the balanced PBMC cohort is not representative of the407

ever-increasing throughput of current scRNA-seq protocols [37]. The limita-408

tions of the reference dataset utilized may also be a major source of variation409

in the query-to-reference integration results. It may be the case that a more410

suitable reference may not lead to high variance in the results of the two T-cell411

subsets, however assessment and selection of reference datasets is outside the412

scope of this study and the multi-modal PBMC reference used is one of the413

most comprehensive single-cell references to date.414

III. Analysis of imbalanced complex datasets reveals key415

metrics for stability of integration results416

While perturbation experiments of the balanced two batch PBMC cohort re-417

vealed the effects of dataset imbalance on integration and downstream analyses418

in a controlled setting, current scRNA-seq datasets typically involve a much419

larger number of cells and cell-types captured [37]. Therefore, we examined the420

effects of dataset imbalance when integrating complex datasets with multiple421

samples that are not perturbed, but already have inherent cell-type imbalance422

between samples. To this end, we analyzed an imbalanced 2 batch PBMC co-423
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hort [18], imbalanced 4 batch PBMC cohort [18], imbalanced cohort of 6 batches424

of mouse hindbrain developmental data [19], and an imbalanced heterogeneous425

tumor cohort of 8 batches of pancreatic ductal adenocarcinoma (PDAC) data426

[20] (Online Methods). No downsampling was done in these experiments and427

we aimed to analyze the effects of integration on cell-types that are imbalanced428

with respect to others, both within and across batches.429

As determined in the analysis using the balanced PBMC data and pertur-430

bations, transcriptomic similarity (relatedness) of cell-types and cell-type im-431

balance are two important factors that impact downstream results. We sought432

to observe if these properties also led to differences in integration performance433

per-cell-type in more complex datasets without perturbations. We formalized434

these two properties as the relative cell-type support and minimum cell-type435

center distance, quantifying the degree of imbalance and relatedness to other436

cell-types (Online Methods). The relative cell-type support is defined as the437

number of cells specific to a cell-type present across all batches, and the mini-438

mum cell-type center distance considers the average distance across all batches439

between cell-types in a principal component analysis (PCA) dimensionality re-440

duction representation space and selects the distance of the closest neighboring441

cell-type for each cell-type (Online Methods).442

To correlate these properties with integration performance, we used the same443

KNN-classification setup as before to determine performance on a per-cell-type444

basis (Online Methods). We started by analyzing the cell-type center distances445

on the imbalanced PBMC 2 and 4 batch datasets. Examining the average cell-446

type center distances - which were averaged across all batches if the cell-types447

were present in more than one batch - there is a clear pattern evident between448

cell-types that were observed before in the 2 batch balanced PBMC data (Fig-449

ure 4A, Figure 4B). NK cells have small relative distance between the T cell450

subsets, while dendritic cells share transcriptional similarity with the monocyte451

subsets (Figure 4A, Figure 4B). B cells and megakaryocytes have the great-452

est distance between the rest of the cell-type centers (Figure 4A, Figure 4B),453

and thus we expect these cell-types to have strong performance in integration454

which was previously observed for B cells. This pattern did hold when examin-455

ing integration performance through KNN-classification for both datasets on a456

per cell-type basis compared to their minimum cell-type center distance across457

batches, as Megakaryocytes and B cells had strong performance regardless of458

integration technique utilized (Figure 4C, Figure 4D).459
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f

e

Figure 4: Factors in imbalanced complex datasets predictive of altered
integration and downstream results. (a) The average cell-type center distance
across cell-types in the imbalanced PBMC 2 batch dataset. For each batch, the dis-
tance from the centers of cell-type clusters in principal component analysis (PCA)
reduction space are calculated, and the relative distances between cell-types are deter-
mined and averaged across batches. (b) The average cell-type center distance across
cell-types in the imbalanced PBMC 4 batch dataset. (c), (d) Comparison of F1-
classification accuracy of each cell-type in the imbalanced PBMC 2 batch dataset (c)
and imbalanced PBMC 4 batch dataset (d), specific to method and across replicates,
compared with the minimum cell-type center distance value. (e), (f) Comparison of
F1-classification accuracy of each cell-type in the imbalanced PBMC 2 batch dataset
(e) and imbalanced PBMC 4 batch dataset (f), across methods and replicates, com-
pared with the relative cell-type support value. The relative cell-type support is based
on the number of cells in the integrated embedding space present for each cell-type.
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However, the results were not straightforward for other cell-types. Exam-460

ining the plasmacytoid dendritic cells, we expected strong performance due to461

their high relative distance between other cell-types, but this was not the case462

for both the 2 and 4 batch datasets (Figure 4C, Figure 4D). Although these cells463

have a large relative distance between other cell-types, they occur in a much464

smaller number compared to others (Figure 4E, Figure 4F). We quantified rel-465

ative cell-type support as the log-transformation of the total number of cells466

for each cell-type across batches (Online Methods), and plasmacytoid dendritic467

cells have the lowest value across cell-types within these two datasets (Figure468

4E, Figure 4F). This result indicates that minimum cell-type center distance is469

necessary but not sufficient to explain variation in integration results on a per-470

cell-type basis. Overall, higher relative cell-type support does seem to lead to471

higher performance in integration for some cell-types, such as the CD14+ and472

CD16+ Monocyte subsets, but is also not sufficient for higher performance, as473

NK cells perform poorly across integration techniques due to having a low min-474

imum cell-type center distance and overlap with the T-cell subsets despite not475

having low relative cell-type support. Examining the results across both met-476

rics and performing an ANOVA test to determine variance in scores explained477

by the metric, we did find statistically significant associations for both mini-478

mum cell-type center distance and relative cell-type support [ANOVA p-value479

<< 0.05 for both metrics across all datasets, with the exception of the mouse480

hindbrain 6 batch dataset, for which relative cell-type support is non-significant481

(Supplementary Table 1) (Online Methods)].482

Analysis of the 6 batch mouse hindbrain developmental data and 8 batch483

PDAC datasets indicated similar results, albeit much less easily interpretable484

due to the presence of a very large number of cell-types and more batches (Sup-485

plementary Figures S5-S8). Cell-types in close proximity within an embedding486

space have an interpretable explanation for poor integration performance, as487

they may collapse and become merged with their overlapping counterpart in488

the integration step. This was observed in Results sections I and III. Low489

cell-type support leads to less data for a given cell-type that an integration490

method/model can utilize, and therefore models may not be able to learn the491

correct embedding for these cell-types.492
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IV. Perturbation analysis in PDAC samples reveals tumor493

compartment-specific effects of dataset imbalance494

To further analyze the effects of dataset imbalance in realistic scenarios, we495

considered the pancreatic ductal adenocarcinoma (PDAC) dataset of 8 batches496

comprising tumor samples across 8 different biopsies [20]. One major challenge497

in the analysis of PDAC data is accurate annotation of tumor cells, and be-498

ing able to separate these from normal non-cancerous epithelial cells [38, 39].499

As both acinar and ductal epithelial cells have been proposed as cell of origin500

candidates in PDAC across numerous studies [40, 41], reliably classifying tu-501

mor cells from these normal epithelial cell-types in scRNA-seq data remains a502

major computational challenge. Given this difficulty, we sought to determine503

if different levels of imbalance between epithelial normal and epithelial tumor504

compartments can influence the accuracy of PDAC tumor tissue integration505

and subsequent classification of tumor cells. As scRNA-seq data from tumor506

tissue is often integrated across multiple biopsy sites, patients, and cohorts [42],507

the ability to reliably quantify tumor cells is imperative to the biological valid-508

ity of subsequent downstream analyses. We preprocessed and annotated tumor509

cells in the PDAC samples through integration, unsupervised clustering, and510

marker gene-based annotation (Online Methods). In setting up the perturba-511

tion experiments, we grouped epithelial normal cells (acinar and ductal) into an512

“epithelial normal” compartment, tumor cells into “epithelial tumor” compart-513

ment and the remaining microenvironment cells into the “microenvironment”514

compartment (Figure 5A) (Online Methods). Overall, the microenvironment515

heavily outnumbered the epithelial tumor and epithelial normal populations516

(Figure 5B), which is reflective of the low tumor purity typical of PDAC biopsy517

samples [20]. Perturbation experiments included downsampling or ablation of518

a randomly selected compartment within 4 randomly selected batches out of519

8 (Figure 5A, Figure 5B). We also performed replicates for control, downsam-520

pling, and ablation, for a total of 200 simulations for integration of all 8 batches521

(Online Methods).522

Examining the KNN-classification scores on a per-compartment assessed,523

per-compartment downsampled basis indicated that downsampling or ablating524

the microenvironment compartment leads to stable compartment classification525

across all methods, with a slight decrease in performance observed for Seu-526

rat in the epithelial normal and tumor compartments (Figure 5C). This result527

is concordant with previous analysis indicating that proximity is a key factor528

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.06.511156doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511156
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

c

b

Figure 5: Compartment-wise perturbation experiments for 8 batches of
PDAC samples. (a) Overview of the experimental setup. To determine the effects
of dataset imbalance across tumor compartments, various microenvironment tumor
were collapsed into the ‘microenvironment’ compartment, normal ductal and acinar
cells into the ‘epithelial normal’ compartment, and malignant ductal and acinar cells
into the ‘epithelial tumor’ compartment. The perturbation experiments involved the
sample downsampling (10% of a compartment) and ablation (complete removal of
a compartment) setup for 4/8 randomly selected batches. Note that all batches
are integrated at once using each method. (b) Number of cells in each compart-
ment after cell-type collapse, across batches/biopsy samples in the PDAC data. (c)
F1-classification score for KNN classification post-integration, specific to each com-
partment when compared with the compartment that was downsampled or ablated,
across replicates and methods utilized for integration.
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that dictates the degree to which perturbations in cell-type balance can af-529

fect integration results. The minimum cell-type center distance in the PDAC530

data shows that acinar and ductal cells, which comprise the epithelial normal531

and epithelial tumor populations, are two of the most distant cell-types from532

others in the data (Supplementary Figure S8, Supplementary Figure S15)).533

Similar to the discrepancy between ARIcell−type and (1 - ARIbatch) observed in534

the integration of the balanced and imbalanced PBMC datasets, we observed535

that higher ARIcompartment based on downsampling of the microenvironment536

did not lead to higher batch mixing scores (Supplementary Figure S9, Supple-537

mentary Figure S10). In fact, we observed the opposite effect almost uniformly538

across all methods, as downsampling the epithelial compartments decreased the539

ARIcompartment and increased (1 - ARIbatch) (Supplementary Figure S9, Supple-540

mentary Figure S10). Downsampling the microenvironment had the opposite541

effect. As the microenvironment is quite large, downsampling likely leads to542

decreases in batch mixing scores because these metrics are driven by more543

prevalent compartments/cell-types. Epithelial cells and their tumor/normal544

dichotomy is of strong interest in analyzing PDAC data, and therefore batch545

mixing is likely a poor quantifier of integration performance and the biological546

validity and utility of the results. This result also reiterates the limitation of547

global clustering metrics that do not take into account less prevalent cell-types548

and their overall difficulty in interpretation, as the increased performance in549

ARIcompartment after downsampling the microenvironment was not concordant550

with the KNN-classification results (Supplementary Figure S9, Figure 5C).551

Tumor and normal epithelial compartment KNN-classification scores wors-552

ened as either compartment was downsampled (Figure 5C). More specifically,553

downsampling either the epithelial normal or epithelial tumor compartments led554

to the greatest decrease in the integration performance of the same compartment555

through the KNN-classification setup (Figure 5C) (ANOVA F-statisticNormal epithelial,556

F-statisticTumor epithelial > F-statisticMicroenvironment - Supplementary Figure S11)557

(Online Methods). This indicates that relative proportions of tumor to normal558

cells can lead to differing results in integration performance in this setting,559

which is reflective of the earlier observations in the balanced PBMC dataset560

with highly similar populations, such as the NK and T cell subsets. Overall,561

these results demonstrate that the degree of imbalance between the similar com-562

partments across tumor tissue cohorts can significantly affect the downstream563

results and possibly subsequent analyses. This result is not specific to PDAC564

data, as tumor samples across cancer types share typical characteristics, but565
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may not have the same compartments or compartment proportions [43]. We566

formalize recommendations for the integration of highly imbalanced datasets in567

Section VI.568

V. Balanced clustering metrics accurately benchmark im-569

balanced integration570

Through extensive analysis of both simulated balanced and real-world imbal-571

anced scRNA-seq datasets, we have shown that clustering metrics commonly572

used in quantifying scRNA-seq integration may be insufficient in imbalanced573

contexts. Metrics such as the AMI and ARI are agnostic to information on574

label proportions [26, 27] and are thus inadequate for assessing integration per-575

formance in imbalanced datasets, which is a common case in single-cell integra-576

tion. To overcome limitations of routinely used metrics, we developed balanced577

versions of these scores, including the Balanced Adjusted Rand Index (bARI),578

Balanced Adjusted Mutual Information (bAMI), Balanced Homogeneity, and579

Balanced Completeness. Combining Balanced Homogeneity and Balanced Com-580

pleteness also allows us to attain the Balanced V-measure [28]. These metrics581

are robust to dataset imbalance and allow for more nuanced comparisons of582

integration results in the aforementioned cases, as they weigh each cell-type583

present equally and are not driven by cell-types present in high proportions584

(Online Methods).585

We first demonstrated the utility of the proposed balanced clustering metrics586

on simulated data. In the first scenario, we examined a dataset with 3 classes587

that are incorrectly clustered into 2 instances using K-means clustering [32]588

(Figure 6A) (Online Methods). This scenario can occur in single-cell settings589

when a cell-type is highly related to a neighboring cell-type and unsupervised590

clustering leads to a collapse of both into the same cluster. As expected, the591

base/imbalanced metrics all overestimated the clustering accuracy as they do592

not weigh the smaller class (B) as much as the larger classes when assessing the593

incorrect assignment (Figure 6A). However, the balanced metrics account for594

the incorrect clustering of class B, and indicated worse performance with the595

exception of the Balanced Completeness measure. This is an expected result as596

Completeness only measures whether all members of a given class are members597

of the same cluster [28].598
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In a second scenario, we sought to check whether the balanced metrics can599

return higher performance than their base counterparts in the appropriate sce-600

nario, and to do so we simulated a dataset where a larger class (A) partially601

overlaps two smaller classes (B, C) (Figure 6B) (Online Methods). K-means602

clustering with a preset cluster number of 3 slices the larger class in a manner603

that the two smaller classes are mostly assigned to the correct cluster/label while604

the larger class is split between the 3 clusters (Figure 6B) (Online Methods). In605

this setting, the base metrics penalized the results based on the prevalence of606

the larger class (A) and the associated mis-clustering, but the balanced metrics607

took into account the strong performance on the smaller classes (B, C) and608

returned higher scores.609

These two simulated scenarios demonstrate that balanced metrics can reveal610

information not present in typical global clustering scores and benchmark results611

in a manner that takes into account class imbalance.612

We further assessed the applicability of the balanced metrics in single-cell613

data by considering the balanced PBMC cohort of two batches (Results I.).614

The first test assessed whether or not the first simulated case holds in single-615

cell data, as we downsampled CD4+ T cells in one batch in a manner where they616

overlapped with CD8+ T cells after clustering (Figure 6C) (Online Methods).617

Comparing the balanced and base ARI and Homogeneity scores, we found that618

the balanced scores did in fact decrease by a significant margin (Figure 6C).619

This is because the balanced metrics are considering the mis-clustering of the620

CD4+ T cells in a manner that is weighted equally to the correct clustering621

of the other cell-types, even though these cells are present in a much smaller622

number overall. To determine if the balanced metrics can change the results623

of a benchmarking analysis, we downsampled CD4+ T cells and FCGR3A+624

monocytes from one batch in the balanced 2 batch PBMC dataset and per-625

formed integration using BBKNN, Harmony, Scanorama, and scVI (Figure 7A,626

Figure 7B) (Online Methods). After integration, Leiden graph-based unsuper-627

vised clustering [29] was performed and the results of clustering were compared628

with ground-truth labels using the base and balanced metrics by considering629

an average of their scores across ARI, AMI, Homogeneity, Completeness, and630

V-measure values (Figure 7C) (Online Methods). Examining the integration631

results, most methods mixed the CD4+ T cells with the CD8+ T Cells and the632

FCGR3A+ Monocytes with the CD14+ Monocytes to differing extents, while633

also having varying success in integrating the two batches overall (Figure 7A,634
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a b

c

Figure 6: Demonstration of balanced clustering metrics on simulated data
and scenarios. (a) Simulated data of 3 well separated imbalanced isotropic Gaussian
classes with imbalance that are incorrectly clustered into two clusters that collapses
the smaller class (B) with another. The concordance of the class labels with the
clustering result for the base (imbalanced) and balanced ARI, AMI, Homogeneity,
Completeness and V-measure for this result are indicated. (b) Simulated data of
3 imbalanced and overlapping isotropic Gaussian classes that are clustered into 3
clusters that mix the larger class (middle - A) with the smaller classes (B, C) and
concordance of the class labels with the clustering result for the base (imbalanced) and
balanced metrics. (c) Constructed scenario with balanced two batch PBMC single-cell
data where a very small subset of CD4+ T cells (10% of original proportion) present
in only one batch are incorrectly clustered with CD8+ T cells after integration. In
this scenario, the concordance of the unsupervised clustering labels and the ground-
truth cell-type labels are indicated for both the base (imbalanced) and balanced ARI
and Homogeneity scores.
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Figure 7C). When using the base metrics and their averaged scores, scVI ranked635

the highest and BBKNN ranked the worst. Surprisingly, the base metric scores636

for Scanorama and BBKNN, which ranked the worst in this subset, were al-637

most the same as using the unintegrated embedding (Figure 7D). Scanorama638

and BBKNN have shown strong performance with low variance results for all639

of our previous analyses and performed well in comprehensive benchmarking640

studies [9, 13], which is not in concordance with this result. When analyz-641

ing the result with the balanced metrics, the rankings changed significantly, as642

Harmony became the top performer (switched with scVI) and BBKNN now643

performed better than Scanorama (Figure 7E). Of particular note is the fact644

that there is a larger separation in scores between the unintegrated embedding645

and the results of BBKNN and Scanorama using the balanced metrics, and this646

result is more valid as we expect the integration methods to perform signifi-647

cantly better than an unintegrated baseline. This ranking shift occurred while648

the magnitude of the overall scores did not diverge significantly.649

Lastly, we reexamined the initial uninformative results obtained using the650

base ARIcell−type scores for the perturbation experiments on the balanced 2 batch651

PBMC dataset (Figure 2D). Utilizing the balanced ARI (bARI) instead of the652

base metric for calculating ARIcell−type, the results indicated more clear/distinct653

patterns that reflected both the relative cell-type support and minimum cell-type654

center distance properties (Supplementary Figure S12). Specifically, downsam-655

pling/ablating B cells did not lead to decreases in the balanced ARIcell−type656

across all methods, which is in line with the cell-type center distance property657

as the B cells are distant from all other cell-types in this dataset (Supplementary658

Figure S13). Further, there is a clear pattern of worsening performance in the659

balanced ARIcell−type scores when the CD4+ or CD8+ T cells are downsampled660

or ablated, which is concordance with both the expected results in terms of661

minimum cell-type center distance (Supplementary Figure S13) and the KNN-662

classification results (Figure 2F). Similar results hold for downsampling or abla-663

tion of the monocyte subsets, although the scores are more method-specific and664

performance decreases are less pronounced (Supplementary Figure S12). Over-665

all, the balanced clustering metrics can capture nuances in the data related to666

cell-type imbalance in a manner that the base metrics cannot. The balanced667

metrics are also more concordant with cell-type specific results, such as the668

KNN F1-score, as they weigh classes equally when considering performance.669
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c

d e

Figure 7: Benchmarking single-cell data integration using balanced clus-
tering metrics. (a) Cell-type values for the balanced two batch PBMC data with
FCG3RA+ Monocytes and CD4+ T cells downsampled to 10% of their original
proportion in one batch, after integration with the tested methods as well as an
unintegrated representation. (b) Batch values for the integrated and unintegrated
downsampled two batch PBMC data. (c) Unsupervised clustering results for Lei-
den clustering in the embedding space of the integrated and unintegrated results for
the downsampled two batch PBMC data. (d), (e) Scoring and ranking of integra-
tion results, when considering concordance of the unsupervised clustering labels and
ground-truth cell-type labels for each integration method and the unintegrated sub-
set, using the average results of the base (imbalanced) clustering metrics (d) (ARI,
AMI, Completeness, Homogeneity) and average of the balanced clustering metrics (e)
(bARI, bAMI, Balanced Completeness, Balanced Homogeneity).
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VI. Guidelines for imbalanced single-cell data integration670

To aid in the integration of imbalanced datasets, we introduce general guide-671

lines for users of integration techniques (Figure 8, Supplementary Table 2). We672

note that these guidelines are not meant to be strict rules, but rather sugges-673

tive in nature, as scRNA-seq and multi-modal single-cell data from different674

samples can have very different properties even after taking imbalance into ac-675

count [4]. The guidelines are method agnostic, as our analysis revealed that676

all frequently utilized techniques in scRNA-seq integration are susceptible to677

the outlined effects of dataset imbalance (Results sections I-IV). An important678

aspect to consider when utilizing these guidelines is prior knowledge on poten-679

tial disparity in the datasets can help guide the degree of desired batch mixing.680

For instance, in analyzing heterogeneous tumor samples from distinct patients681

with disparate cell-types and proportions, biological heterogeneity conservation682

is likely to be poor if batch-mixing is prioritized in integration [8]. However,683

this may be a desired result if the end analysis goal is only to assess common684

variation between the tumor samples and perform downstream analyses such685

as differential abundance of shared cell-types [8]. Judging the degree of desired686

batch mixing is often very difficult in practice [8]. As such, we emphasize an687

iterative process where imbalance, degree of batch-correction, and conserva-688

tion of biological heterogeneity are assessed at multiple steps in the scRNA-seq689

integration pipeline (Figure 8).690

Overall, potential imbalance within datasets to be integrated can be assessed691

based on pre-integration tests using unsupervised clustering and/or query-to-692

reference annotation (Figure 8, Supplementary Table 2). The latter would yield693

a more accurate representation of potential imbalance, but can only be used694

when a reference dataset is available for the given tissue samples. Unsupervised695

clustering can be used in any situation as it does not require cell-type labels696

but can be a noisy readout as clustering is highly sensitive to the technique,697

parameters, and the underlying data distribution [44]. If either of these out-698

lined pre-integration tests reveals disparity in the datasets, the integration step699

itself can be altered by: (i) picking an integration method that is suitable for700

preserving biological heterogeneity - Luecken et al. [13] provide an extensive701

overview of scRNA-seq and multi-modal integration techniques in this respect702

and provide selection criteria, (ii) tuning the integration method itself to bet-703

ter preserve biological heterogeneity across datasets - the availability of such704

parameters will vary based on method [13], and (iii) performing sequential in-705

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.06.511156doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511156
http://creativecommons.org/licenses/by-nc-nd/4.0/


PRE-INTEGRATION 
STAGE

Unsupervised 
clustering 

within each 
batch

Start here

INTEGRATION 
STAGE

POST-INTEGRATION 
STAGE

Number of 
clusters/

proportions 
vary 

signifcantly?

Integration

Annotate each 
batch 

individually 
using reference

Number of 
cell-types/

proportions 
vary 

signifcantly?

Method selection

Method tuning 

Batch mixing

Preserving 
heterogeneity

Batch mixing

Preserving 
heterogeneity

Preserving 
heterogeneity

Sequential integration

Compare pre 
and post-

integration 
clusters

Measure 
degree of 

batch mixing 
post-integration

Tradeoff 
between 

batch mixing 
and 

preserving 
heterogeneity 

adequate?

No

Yes

Reference 
available?

YesNo

Tune 
heterogeneity 
preservation 

and batch 
mixing 

tradeoff 

No

Yes

Yes

No

Tune 
heterogeneity 
preservation 

and batch 
mixing 

tradeoff 

Downstream 
analysis

Figure 8: Guidelines for single-cell integration in imbalanced settings. A
stepwise procedure is outlined, starting with diagnostic tests in the pre-integration
stage that dictate whether or not to tune integration methods at the integration
stage or perform further steps in the pre-integration stage. After integration, the
trade off between batch-mixing and conservation of biological heterogeneity can also
be diagnosed, and if determined inadequate, further tuning at the pre-integration and
integration stages can be done. Complete details as well as examples of implementa-
tions for each recommendation are given in Supplementary Table 2.
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tegration if the datasets are known or suspected to have temporal structure706

[45] (e.g. developmental data) (Figure 8). There is also the possibility of inte-707

grating only shared putative cell-types between batches if a reference dataset708

is available, as this would better ensure imbalance is minimized in the integra-709

tion step (Supplementary Table 2). After the integration step, post-integration710

techniques to assess preservation of biological heterogeneity and degree of batch711

mixing can be used to determine the current balance between the two desired712

outcomes [8], and integration and pre-integration steps can be further tuned713

to strike the desired balance (Figure 8). A complete description with specifics714

and code implementations, in the R and python programming languages, of the715

outlined recommendations are indicated in Supplementary Table 2.716

Discussion717

In this work, we thoroughly analyzed the effects of dataset imbalance in scRNA-718

seq integration scenarios, and its impacts on downstream analyses and over-719

all biological conclusions. When the level of imbalance between batches was720

perturbed, we observed varying degrees of effects on unsupervised clustering,721

neighbor-based cell-type annotation, differential gene expression analysis, and722

query-to-reference annotation. More importantly, these effects were not method-723

specific, and thus have implications for single-cell data integration overall, where724

biological conclusions plausible under one scenario may not be concordant if the725

pre-integration data distribution is different due to many possible underlying726

factors of variation. These results have significant ramifications for single-cell727

data integration, as most datasets being integrated will likely not have a high728

degree of shared variation with the increasing complexity of the tissues be-729

ing analyzed and higher throughput of current scRNA-seq and multi-modal se-730

quencing protocols [37, 46]. We further examined these results on more complex731

data and concluded that the potential of dataset imbalance to affect integra-732

tion results can be summarized by two key metrics - relative cell-type support733

and minimum cell-type center distance. To aid the integration and subsequent734

downstream analyses in scenarios with imbalanced datasets, we introduce sev-735

eral guidelines pre-integration, at the integration step, and post-integration, as736

well as balanced clustering metrics for more accurate assessment and bench-737

marking in such cases.738
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Although single-cell data integration is ubiquitous in current computational739

analysis pipelines for both scRNA-seq and multi-modal single-cell sequencing740

data, analyzing the nuanced properties and behavior of integration techniques741

on different datasets has lagged in lieu of performance-based studies. Extensive742

benchmarking studies have been performed for scRNA-seq integration, but these743

analyses have largely focused on performance in specific settings, as determined744

by batch-mixing and conservation of biological heterogeneity [9, 47]. Some745

studies have raised specific concerns towards the impacts dataset imbalance746

can have on integration and a few methods have been developed specifically to747

address this challenge [10, 36, 48–50], but an extensive analysis on downstream748

effects had yet to be performed. Further understanding of the properties of both749

the pre-integration and post-integration representation spaces will likely shed750

light on gaps in performance between different techniques and the situational751

trade offs between batch mixing and conservation of biological heterogeneity.752

For example, although anchor-based techniques are used to link both scRNA-seq753

and multi-modal datasets in integration [45], the conditions that lead to false-754

positive and false-negative (missing) anchors between batches and multi-modal755

samples have not been extensively characterized. Such analyses will further the756

understanding of the limiting conditions of single-cell data integration, and lead757

to better tools, guidelines, and a sounder foundation for downstream analyses758

and inference of biological phenomena.759

In benchmarking single-cell integration techniques, often standardized datasets760

do not contain high degrees of cell-type imbalance across batches that may be761

encountered in common real-world scenarios such as temporal integration [9,762

13, 45]. Therefore, a more principled approach to benchmarking may involve763

a stronger focus on these cases and non-trivial datasets such as tumor samples764

from multiple-patients and cohorts. The trade-off between batch mixing and765

biological heterogeneity conservation is an important research direction, as con-766

serving biological signal can be much more complex than what is indicated by767

clustering metrics post-integration, particularly if integration is being done on768

the entire count matrix and not within an embedding space [13]. In our anal-769

ysis, we introduced four novel balanced clustering metrics that can be utilized770

to better benchmark integration techniques in imbalanced scenarios. These771

metrics are used to analyze clustering results post-integration, but more salient772

scores for preserving biological signal such as the conservation of highly-variable773

genes introduced by Lueken et al. [13] will also allow for a complete picture774

of the potential downstream impacts of integration. As our understanding of775
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the limitations of current integration methods evolves, we envision more com-776

prehensive guidelines that incorporate our analysis on situational integration777

setups and utilization of different methods in the correct contexts, as opposed778

to a single method for every integration scenario. Our findings and guidelines779

can be extended to multi-modal analysis of disjoint samples (e.g. scRNA-seq780

and scATAC-seq of similar but distinct tissue samples), but the finer details781

of the impacts of imbalance on both joint and separately profiled multi-modal782

integration and subsequent analysis remains unknown. An important future783

research direction in multi-modal integration is better understanding of integra-784

tion results at both the technique and data level, as comprehensive benchmarks785

specifically focused on multi-modal data have yet to be completed.786

Our analysis is limited by the extent of datasets analyzed and methods787

tested. We sought to identify the effects of downsampling in a highly controlled788

scenario where imbalance was not already present, which was the balanced789

PBMC 2 batch dataset, but extrapolating the results of the downsampling790

experiments to more complex cases was not straightforward. Thus, only the791

cell-type-specific effects in already imbalanced datasets with no perturbations792

were examined for complex cases, although we did analyze perturbation of com-793

plex and imbalanced PDAC samples. Further, although we included frequently794

utilized and best performing scRNA-seq integration techniques based on pre-795

vious benchmarking studies [9, 13], we did not include recent methods that796

focus specifically on preserving biological heterogeneity when differing cell pop-797

ulations are present between samples, such as CIDER [49]. There have also798

been strides in this direction in the multi-omic integration space, with tech-799

niques such as SCOTv2 [50]. As the aim of this analysis was not to determine800

the best performing method, but to analyze the impacts of imbalance on in-801

tegration results with frequently utilized methods, we deemed this omission802

to be acceptable. However, future method-based benchmarking studies should803

feature techniques that have sought to explicitly address the issue of dataset804

imbalance and several datasets with a high degree of imbalance present. Lastly,805

this analysis focused on scRNA-seq integration and did not incorporate multi-806

modal datasets and techniques, and although extrapolation may be possible,807

this must be confirmed by future work addressing integration when imbalance808

across jointly and separately profiled multi-modal datasets is present.809
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Online Methods810

1 Dataset preprocessing811

1.1 Preprocessing and normalization812

All datasets utilized in the study were preprocessed using a uniform pipeline.813

Datasets were only further processed if it was clear that no filtering was done814

on the raw scRNA-seq data, such as removal of low quality cells and genes [8].815

If it was indicated that no filtering was done, quality-control (QC) metrics were816

calculated using the Scuttle R package (version 1.4.0) [51], including cells with817

the most genes having low counts, cells with a high percentage of mitochondrial818

genome content, and cells with a low library size (total number of reads overall).819

An approach recommended by Amezquita et al. [8] was taken, and the cells and820

features with values more than 3 median absolute deviations (MADs) for two821

out of three criteria were filtered out. As normalization and log-transformation822

need to be tuned specific to the method being utilized and are done in the823

integration pipeline where necessary, these were not done in the preprocessing824

steps.825

Datasets were split and saved as individual batches in h5ad format, and the826

scanpy library (version 1.8.2) [52] was used for all further downstream processing827

within the integration pipeline, including total-count per cell normalization,828

log1p transformation, and highly variable gene selection [52]. These steps were829

carried out uniformly for each method tested, with the exception of scVI, as the830

technique must utilize the raw counts [24]. Therefore, total-count normalization831

and log1p transformation were not done for scVI.832

All scRNA-seq datasets utilized were preprocessed in this manner, including833

the balanced 2 batch PBMC dataset [15][14][9], imbalanced 2 batch PBMC834

dataset [18], 4 batch PBMC dataset [18], 6 batch mouse hindbrain development835

dataset [19] and 8 batch pancreatic ductal adenocarcinoma (PDAC) dataset836

[20].837
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The ground-truth annotations for cell-types in each dataset across838

batches were determined specific to the annotation protocol followed by each839

original study, with the exception of the 8 batch PDAC data, which was re-840

annotated (see 1.3).841

1.2 Setting up the PBMC control dataset842

For testing in a scenario where the cell-types and cell-type proportions are843

perfectly balanced between batches, and subsequent perturbation experiments,844

a dataset that was preprocessed by Tran et al.[9] comprising of two batches845

of peripheral blood mononuclear cells (PBMCs) sequenced using two variants846

of 10x genomics protocols - 5’ versus 3’ end. As these technologies capture847

different regions of mRNA, there is an expected batch effect present. To create848

a balanced dataset, the two batches were downsampled for cell-types that had at849

least 200 cells in each batch - leaving B cells, CD14+ Monocytes, CD4+ T cells,850

CD8+ T cells, FCGR3A+ Monocytes, and Natural Killer (NK) cells. Within851

each batch, these remaining cell-types were randomly downsampled to 200 cells,852

leading to a perfectly balanced control setup for perturbation experiments.853

1.3 Setting up the pancreatic ductal adenocarcinoma (PDAC)854

dataset855

The pancreatic ductal adenocarcinoma dataset was taken from the Peng et al.856

[20] multi-patient study, which comprised of 23 samples. For this data, custom857

annotations of tumor cells were done in the following manner:858

Cells from different samples were integrated with Harmony [22] and clustered859

with Seurat [25]. A cell type label was then assigned to each Seurat cluster,860

based on the expression of specific marker genes for each cell type (Supplemen-861

tary Table 8). To identify tumour cells, all epithelial cells including those from862

normal tissue were clustered again using Seurat. All cells that clustered with863

the normal samples were assigned as ’Epithelial normal’, while all others were864

assigned as ’Epithelial tumor’.865

After annotation of the epithelial normal and tumor cells, the rest of the cells866
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were collapsed into the ’Microenvironment’ compartment. Ductal and acinar867

cells that did not fall into the epithelial normal or epithelial tumor popula-868

tions were removed, as these were likely mis-annotated. Batches/samples were869

filtered based on the presence of at least 50 cells in each of the three com-870

partments (Epithelial normal, Epithelial tumor, Microenvironment). This left871

8 batches/samples, which were utilized in subsequent experiments.872

2 scRNA-seq integration methods and873

parameters874

Five state of the art scRNA-seq methods were utilized, based on their perfor-875

mance in previous benchmarking papers [9] [13], including BBKNN (version876

1.5.1) [21], Harmony (python implementation - version 0.0.5) [22], scVI (scvi-877

tools version 0.14.4) [24], Scanorama (version 1.7.1) [23], and Seurat (version878

4.0.6) [25]. LIGER (version 0.5.0) [53] was also originally tested, but did not in-879

dicate strong performance and resulted in a high degree of variability due to the880

removal of seeding in different steps. Therefore, the results from LIGER were881

omitted from the main findings, as the high variance of results even within the882

control experiments did not allow for a statistically sound comparison between883

control and perturbation groups.884

Because the perturbation experiments were carried out in replicates, to get a885

more clear sense of variability within replicates, seeding mechanisms within each886

method were removed. This included removing any calls in the method source-887

code to R-based seeding for Seurat, and any calls to seeding from the following888

libraries for BBKNN, Harmony, Scanorama, and scVI: random, numpy, torch.889

This led to a more true estimation of the variability in performance of each890

method, as well as a more reliable estimation of the effects of perturbation891

because the variability can no longer be simply attributed to variability in the892

method which has been accounted for.893

With the exception of scVI, each method utilized the same processing pipeline894

for the data, where scanpy’s functions [52] were utilized in the following manner:895

1. Count normalization for each cell to total value of 1 ∗ 104896
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2. Transformation of counts using the log(1 + x) function897

3. Highly variable gene selection using the ’seurat’ method for 2500 genes898

4. Integration at this step for Seurat - returns corrected HVG899

counts900

5. Principal component analysis (PCA) reduction to top 50 principal com-901

ponents that explain the highest variance (PCs) for HVG counts902

6. Integration at this step for Harmony, Scanorama - return cor-903

rected PCs904

7. Creating neighborhood graph using the embedding with 20 dimensions905

(highest explained variance) and 15 nearest-neighbors - integration at906

this step for BBKNN (replaces neighborhood graph step in scanpy907

pipeline)908

8. Leiden clustering on the neighborhood graph using scanpy’s default pa-909

rameters910

9. Uniform Manifold Approximation and Projection (UMAP) on the neigh-911

borhood graph using scanpy’s default parameters912

The only exception to this setup was scVI, which requires raw scRNA-seq913

expression counts [24], and utilized the entire set of genes for each dataset914

and the raw counts. For scVI, steps 1-6 outlined are omitted, and it simply915

integrates the raw data and returns a 10 dimensional embedding, which replaces916

the reduced dimensions of the other methods (input embedding for step 7).917

10 dimensions were utilized in this case instead of 20, as this was the indicated918

default setting for scVI. The rest of the steps (7-9) are the same.919

BBKNN performs integration on the embedding neighborhood representa-920

tion [21], and as a result, many of the downstream analyses that required embed-921

dings did not have data for BBKNN as it was untestable. Default parameters922

were utilized for all methods to ensure fairness in across-method comparisons,923

as well as comparisons before and after perturbations.924
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3 Perturbation experiments925

Perturbation experiments were carried out in two settings - the balanced 2926

batch PBMC data, and the pancreatic ductal adenocarcinoma data. In both927

instances, batches are randomly selected to be perturbed, as well as given928

cell-types/compartments. There are three types of perturbation experiments929

performed - control, downsampling, and ablation. Control experiments don’t930

downsample any data but allow for replicates of integration runs across meth-931

ods to get a sense of intra and inter-method variance on the data without932

perturbation. Downsampling experiments involve randomly selecting cells of933

a selected cell-type across the indicated number of batches, and downsam-934

pling to 10% of the original cell-type population. Ablation experiments in-935

volve completely removing selected cell-types from the indicated number of936

batches. Randomness of selection for the batches, cell-types, and cells within937

indicated cell-type are ensured through randomly generated numbers for each938

perturbation simulation/run. To determine the effects of perturbation, results939

from the control experiments are compared with results from downsampling940

and ablation experiments, across all methods and selected datasets. The code941

for the experimental setup, as well as the Iniquitate pipeline, are available at942

https://github.com/hsmaan/Iniquitate.943

3.1 Balanced 2 batch PBMC data944

Within the balanced 2 batch PBMC dataset, perturbation experiments were945

performed for one of two batches (randomly selected) at a time, and for one946

cell-type at a time. 400 replicates were done for the control experiments, and947

200 replicates were done for the downsampling and ablation experiments, ensur-948

ing that both batches (n=2) and each cell-type (n=6) is sampled repeatedly and949

method performance variance within control experiments is taken into account950

adequately. Within the hierarchical setup, where similar cell-types were hi-951

erarchically clustered into 3 groups (B cell, Monocyte, NK/T cell), the same952

number of replicates were done for for the control, downsampling and ablation953

experiments.954
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3.2 8 batch PDAC data955

For the 8 batch pancreatic ductal adenocarcinoma dataset, where cells were956

grouped into three major compartments, 4 batches were randomly selected for957

downsampling or ablation, and one compartment was downsampled or ablated958

within one replicate. In total, 100 control replicates were performed, and 50959

downsampling and ablation replicates, as the number of compartments is small960

(n=3) and there will be adequate sampling and repetition within 50 runs.961

4 Benchmarking integration performance - PBMC962

2 batch control dataset963

Performance in integration and downstream tasks was assessed using the in-964

tegrated embeddings and Leiden clustering [29] results from each integration965

technique. After integration at either the embedding or neighborhood calcu-966

lation stage through the scanpy library, Leiden clustering was used. Default967

values were used for the embedding and clustering steps in the scanpy library968

[52]. Only BBKNN did not result in embeddings to be utilized as it performs in-969

tegration at the neighborhood, and therefore was not included in the K-nearest970

neighbors classification experiments as these relied on integrated embeddings.971

4.1 Quantifying cell-type conservation and batch-mixing972

with clustering metrics973

Four metrics were calculated for all integration experiments, including pertur-974

bations and replicates, - Adjusted Rand Index (ARI) [26], Adjusted Mutual975

Information (AMI) [27], Completeness [28], and Homogeneity [28]. The sklearn976

(version g 1.0.1) implementation of these metrics was utilized. Details of these977

metrics can be found in the scikit learn documentation [32]. These values were978

calculated by comparing the known annotated labels with the cluster labels979

obtained after integration for each technique. Both cell-type and (1 - batch)980

values were calculated for each metric, where cell-type metrics compared the981

known cell-type annotations with the cluster labels to determine how well the982
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integrated embeddings corresponded to known cell-type labels, and the (1 -983

batch) values used the batch annotations and the cluster labels to determine984

how well the different batches co-aggregate in the embeddings. The assumption985

of the latter is that integration should lead to strong batch mixing, and the986

shadow of the value is used (1 - batch) to reflect this desired property. The987

median value across all replicates for a given combination of {method, exper-988

iment type, downsampled cell-type} was determined. For the main analysis,989

the cell-type and (1 - ARIbatch) was utilized, but values for all metrics were990

calculated (Supplementary table 9).991

4.1.1 Z-score normalization of ARI metrics992

As the focus of the analysis was not to assess inter-method variation, but de-993

termine intra-method variation based on the properties of perturbations versus994

the control experiments, the median values for cell-type and (1 - ARIbatch), for995

all combinations of {method, experiment type, downsampled cell-type}, were996

Z-score normalized. E.g. for cell-type ARI values for a specific subset:997

Median ARI{methodx,typey ,cell−typez} − µ(Median ARI{method:,type:,cell−type
:
})

σ(Median ARI{method:,type:,cell−type
:
})

(1)

The exact same procedure is followed for the (1 - ARIbatch) values.998

4.2 Downstream analysis - unsupervised clustering999

In this downstream analysis test post-integration, the number of unsupervised1000

Leiden clusters are determined and compared between the different perturba-1001

tion experiments and control groups. The same indicated setup is used, and the1002

number of clusters are determined using the default parameters for Leiden clus-1003

tering in the scanpy library [52]. As each method resulted in different Leiden1004

clusters, these were analyzed independently and intra-method and experiment-1005

type comparisons were performed.1006
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4.3 Downstream analysis - k-nearest neighbor (KNN)1007

classification1008

The goal of this downstream analysis test was to determine the performance1009

of integration techniques at a per-cell-type level before and after perturbation.1010

After obtaining the integrated embeddings for all methods, with the exception1011

of BBKNN, a KNN classifier is trained on a 70/30 training/test split of the1012

integrated embeddings to predict the cell-type labels of the test data. Strati-1013

fied sampling was used for the split to ensure that all classes were represented1014

in the same proportions between train and test sets. The sklearn (version g1015

1.0.1) library was used for the data preparation, test/train split, stratified sam-1016

pling, KNN-classifier training and prediction [32]. The explicit formulation for1017

prediction of a class on a test data point xi is:1018

class xi = max
y∈Y

k
∑

yi∈Nxi

δ(yi, y) (2)

δ(yi, y) =

{

1, if yi = y

0, otherwise
(3)

Where k indicates the number of neighbors used in the classifier, which was1019

set to 15 for all runs. As different runs could possible lead to different test/train1020

splits of the integrated embedding, a seed was used to ensure that the same split1021

occurs across all experiments. This also ensured that each method was tested1022

on the same split of the data. Using the results of the predictions, the cell-1023

type-specific precision, recall, and F1 scores were determined, and the F1-score1024

specific to each cell-type was used as key metric. These metrics was calculated1025

Primarily, cases were examined where a specific cell-type was downsampled or1026

ablated, and the effects of performance on the same cell-type based on the1027

KNN-classification F1-score was analyzed. The form of the score is given by1028

[33]:1029

F1 score per cell-type = 2 ∗
precision ∗ recall

precision+ recall
=

TP

TP + 1

2
(FP + FN)

(4)
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Where TP is the number of true positive calls, FP is the number of false1030

positive calls, and FN is the number of false negative calls, all on a per-cell-type1031

basis.1032

4.4 Downstream analysis - marker gene ranking1033

Differential gene expression (DGE) analysis is typically performed after clus-1034

tering (or clustering an integrated representation of many batches/samples) to1035

determine marker genes specific to each cluster that are then used to annotate1036

cells within those clusters [8]. The goal of this analysis was to determine to1037

what extent can the results of DGE be altered after perturbation of balanced1038

data.1039

First, the top 10 marker genes corresponding to each cell-type were de-1040

termined in each batch for each dataset (e.g. 2 batch PBMC dataset) using1041

the Wilcoxon Rank-Sum Test and the scanpy package (sc.tl.rank genes groups)1042

[52]. To ensure selection of relevant markers, ribosomal and mitochondrial genes1043

were removed from the pool of tested genes. After this, to obtain a consensus on1044

the marker genes across batches, the union of markers for each cell-type across1045

batches was determined and duplicate gene calls across batches were dropped.1046

This will lead to an uneven number of markers for some cell-types if completely1047

distinct sets are called from different batches, but leads to a more complete set1048

as the integrated space across batches is being analyzed. This set of markers1049

for each cell-type in a dataset was deemed the master marker list.1050

From here, after each the integration step using each method in each control1051

or perturbation simulation for a given dataset, unsupervised clustering using the1052

Leiden clustering algorithm with the scanpy default parameters was done for1053

the integrated embedding and DGE using the Wilcoxon Rank-Sum Test was1054

performed for each of the obtained unsupervised clusters [52]. A challenge here1055

is that there is no correspondence between the unsupervised clusters obtained1056

in this integrated embedding and the cell-types used for determining the master1057

marker list. However, a way to get around this is to do DGE for each cluster1058

and check the maximum ranking of a given marker gene across all clusters.1059

Ranking is defined by how significant the DGE p-value is for a given gene, where1060

the highest rank is the most statistically significant differentially expressed gene1061

for a given cluster. If a cluster still corresponds to a given cell-type (which is1062
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the central assumption in unsupervised integration), then that cluster should1063

return a high ranking for a given marker gene corresponding to that cell-type1064

in DGE. Therefore, for the markers in the master marker list, we can analyze1065

their maximum ranking across unsupervised clusters in the integrated space1066

- to see if biological information specific to that cell-type and its markers is still1067

being retained after integration.1068

This is precisely the operation carried out, and the change in ranking for all1069

of the marker genes corresponding to the different known cell-types in datasets1070

quantified by their standard deviation in a given subset of experiments (control,1071

downsampling, or ablation) change in maximum ranking. This change in1072

maximum ranking within an experiment group (e.g. the control group) was1073

indicated as the marker gene perturbation score:1074

Marker gene perturbation score = σ(max marker gene ranking) (5)

If this value is being averaged over many genes (e.g. for a cell-type), this is1075

indicated as the average marker gene perturbation score. If there are m1076

marker genes for a given cell-type:1077

Avg. marker perturbation score =
1

m

m
∑

i=1

Marker i perturbation score (6)

4.4.1 Case study - CD4/CD8 T cell assignment based on marker1078

genes1079

To determine if the changes in marker gene ranking that were observed could1080

realistically influence the results of a single-cell analysis, the same marker gene1081

perturbation set-up was utilized. In this case however, each of the unsupervised1082

clusters after integration were annotated as specific cell-types based on a major-1083

ity of their cells present (e.g. Cluster 1 -¿ Majority CD4+ T cells -¿ CD4+ T).1084

In this setup, only clusters that contained a majority of either CD4+ or CD8+1085

T cells were kept. For simplifying the case study, only integration results from1086

the Seurat method were utilized.1087
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After integration and selection of clusters with a majority of CD4+ and1088

CD8+ T cells, differential expression analysis was performed as previously indi-1089

cated, and a permissive threshold of the top 50 marker genes was used to select1090

markers for the CD4+ and CD8+ majority clusters. From here, each of the1091

CD4+ and CD8+ T cell majority clusters were predicted to be either CD4+1092

or CD8+ based on the presence of canonical marker genes: IL7R for CD4+ T1093

cells and CD8A for CD8+ T cells [25].1094

Examining the top 50 marker genes for each cluster, the rules for predicting1095

the cell-types each of the CD4+ and CD8+ T majority clusters comprised of1096

were the following:1097

if IL7R and CD8A present then1098

if Rank(IL7R) > Rank (CD8A) then1099

Annotate as CD4+ T1100

else if Rank(CD8A) > Rank (IL7R) then1101

Annotate as CD8+ T1102

end if1103

else if IL7R present then1104

Annotate as CD4+ T1105

else if CD8A present then1106

Annotate as CD8+ T1107

else1108

Annotate as Undefined1109

end if1110

From here, the fraction of unsupervised clusters that contained a majority1111

of CD4+ and CD8+ T cells were predicted for their cell-types based on differen-1112

tial expression in control and perturbation (downsampling and ablation) experi-1113

ments, including replicates. Only downsampling and ablation experiments that1114

affected CD4+ and CD8+ T cells were analyzed, as downsampling/ablating1115

these were found to most likely affect the marker gene rankings of either cell-1116

type.1117
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4.5 Downstream analysis - query-to-reference annota-1118

tion1119

To test the robustness of query-to-reference annotation techniques across vary-1120

ing degrees of unshared variation, the Seurat 4.0 multi-modal projection tech-1121

nique was utilized [31]. Although the control PBMC 2 batch dataset has only1122

scRNA-seq information, a multi-modal reference can still be utilized as is, as1123

only the RNA-seq modality will be integrated. The reference dataset utilized is1124

from Hao et al., and the same parameters indicated in the vignette were utilized1125

[31].1126

It’s important to note that integration was not performed before pro-1127

jection using the Seurat 4.0 method. Instead, each batch/sample is indi-1128

vidually projected/integrated to the reference dataset and annotated,1129

as per the guidelines for Seurat 4.0 [31]. Therefore, there are no method-specific1130

comparisons to be made in this analysis.1131

As the annotations in the reference will not exactly match the annotations1132

from the PBMC 2 batch data (mostly due to a higher degree of granularity1133

and different naming conventions) [9] [31], a scoring guide was created to de-1134

termine if the annotation correctly matches the ground-truth cell-type label1135

by using ”fuzzy-matching” of ground-truth cell-type labels from the PBMC 21136

batch dataset and the labels in the reference data. The following table summa-1137

rizes the guide for the PBMC 2 batch data, and acceptable annotations for L11138

(coarse-grained label from Hao et al. [31]) and L2 (fine-grained label from Hao1139

et al. [31]):1140

Ground-truth label Acceptable L1 reference Acceptable L2 reference

CD4 T cell CD4 T
CD4 TCM, CD4 Naive,

CD4 CTL, CD4 Proliferating,
CD4 TEM

CD8 T cell CD8 T
CD8 Naive, CD8 TEM,

CD8 TCM, CD8 Proliferating
Monocyte CD14 Mono CD14 Mono

Monocyte FCGR3A Mono CD16 Mono

NK cell NK
NK, NK Proliferating,

NK CD56bright
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Using this annotation guide, the annotation accuracy as determined by the1141

F1 score (4.3) was determined for each experiment and experiment type (control,1142

downsampling, ablation). This value was calculated using both the L1 and L21143

annotations, and the annotations for each cell in each experiment were saved.1144

5 Complex imbalanced dataset analysis1145

After quantifying the effects of unshared variation in the control 2 batch PBMC1146

dataset through perturbation experiments, complex datasets that are multi-1147

batch and already imbalanced were analyzed, including: imbalanced 2 batch1148

PBMC dataset, batch PBMC dataset, 6 batch mouse hindbrain development1149

dataset, and 8 batch pancreatic ductal adenocarcinoma dataset.1150

5.1 Cell-type center distance1151

To determine the distance between cell-types in the embedding space utilized1152

for integration, across all batches to be integrated, the following preprocessing1153

steps were performed on the raw data for each batch in a dataset:1154

1. Count normalization for each cell to total value of 1× 1041155

2. Transformation of counts using the log(1 + x) function1156

3. Highly variable gene selection using the ’seurat’ method for 2500 genes1157

4. PCA to top 20 (PCs) for on the counts data1158

After obtaining the PCs for a given dataset, the ground-truth cell-type labels1159

are used to determine the cell-type center distance between all cell-types in1160

the data in a pairwise manner. The cell-type center distance is defined as the1161

weighted cosine distance between the center (average) of the PCA representation1162

for each cell-type in a given batch.1163

For each batch b, and cell-type a with n cells and a PCA reduction of the1164

data:1165
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PCab ∈ R
n×20 (7)

cell-type ab center =
1

n

n
∑

i=1

PCab i ∈ R
1×20 (8)

Then for quantifying the distance between cell-types a and c in batch b:1166

Let v ∈ R
1×20 be the variance explained by each of the top 20 PCs

Let CCab be the cell-type center for cell-type a in batch b

Let CCcb be the cell-type center for cell-type c in batch b

Cell-type center distance acb = 1−
(CCab ◦ v) · (CCcb ◦ v)

||(CCab ◦ v)||||(CCcb ◦ v)||
(9)

Where CCab ◦ v is the element-wise rescaling of the cell-type center of a1167

based on the variance explained by the PCs.1168

The rationale behind a reweighted cosine distance is that the distance itself1169

between cell-types should be scaled according to the variance explained by each1170

PC because the distance is being calculated in the joint PCA reduction of1171

all cells, and not every PC axis will have equal contribution for the variance1172

explained.1173

We can take the average of this cell-type center distance across p batches:1174

Avg. cell-type center distance =
1

p

p
∑

b=1

Cell-type center distance acb (10)

From here, the minimum cell-type center distance, or the distance corre-1175

sponding to the cell-type closest to cell-type a is simply the minimum value1176
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across all batches (p total). Assume there are k total cell-types across all batches1177

and missing cell-type pairs (e.g. cell-type present in batch 1 and not batch 2)1178

have an imputed maximum cosine distance of 1. Values between the same cell-1179

types are also imputed as 1. Then using the tensor of cell-type center distances1180

across batches D:1181

D ∈ R
k×k×b (11)

Minimum cell-type center distance a = min(Da,:,:) (12)

Where Da is the subset of the first axis for cell-type a. The cell-type and1182

batch corresponding to this value can also be found through the argmin.1183

The minimum distance in any batch is taken instead of averaging distances1184

across all batches because this minimum distance will correspond to the most1185

’haphazard’ scenario for a given batch being integrated. There are two scenarios1186

possible here:1187

1. The similarity between cell-types is largely similar across batches, and the1188

minimum value will correspond roughly to the average1189

2. The similarity between cell-types can be very different across batches, due1190

to scenarios/factors such as developmental data or treatment-effects1191

The first case is most readily applicable to the PBMC datasets, but the1192

second scenario may be more applicable to the PDAC and hindbrain develop-1193

mental data. However, even in these cases, taking the minimum may lead to a1194

better approximation of proximity affecting integration results because it will1195

factor in the worst possible scenario (across batches) for a given cell-type.1196

5.2 Cell-type support1197

The cell-type support (or relative cell-type support) was simply the log2-transformation1198

of the number of cells for each cell-type a across all batches b:1199
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Relative cell-type support a = log2(

p
∑

b=1

Cell-type abatch b) (13)

6 Statistical testing1200

6.1 One-way ANOVA tests1201

To determine statistical significance for the effects of perturbations, the follow-1202

ing generic one-way analysis-of-variance (ANOVA) setup was utilized [34]:1203

response ∼ x0 + x1 + x2 + ...+ xm + type (14)

H0 : response = x0 + x1 + x2 + ...+ xm (15)

Where H0 is the null hypothesis, response can be an endpoint of interest in1204

the analysis (e.g. number of clusters post integration), x0 is a constant (inter-1205

cept/bias), x1, ..., xm are factors we’d like to control before testing significant1206

with respect to perturbations (e.g. method, cell-type that was downsampled),1207

and type is a binary covariate indicating the experiment type that was done:1208

type =

{

1, if yi = downsampling, ablation

0, if yi = control
(16)

After accounting for the various factors we’d like to control (x1, ..., xm),1209

we can assess the statistical significance of perturbation of unshared variation1210

(type) with respect to the response covariate through theANOVA F-statistic1211

and p-value associated with the type covariate.1212

In situations where significance is achieved across various groups due to fac-1213

tors such as intra- and inter-method variance, the magnitude of the F-statistic1214

is compared.1215
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6.2 Control PBMC 2 batch dataset1216

6.2.1 KNN classification per cell-type1217

For assessing the effects of perturbation on the F1 classification scores post-1218

integration on a per-cell-type level, the following ANOVA (6.1) setup was uti-1219

lized:1220

F1 classification score ∼ x0 +method+ downsampled cell-type+ type (17)

H0 : F1 classification score = x0 +method+ downsampled cell-type (18)

The F1-classification scores here are across all cell-types in the integrated1221

dataset. The cell-type being analyzed (for the F1 classification score1222

in each instance) is equivalent to the downsampled cell-type in each1223

sample included in the test.1224

6.2.2 Unsupervised clustering1225

For comparing the significance of perturbation on the number of unsuper-1226

vised clusters obtained post-integration using Leiden clustering, the following1227

ANOVA (6.1) setup was utilized:1228

n clusters ∼ x0 +method+ downsampled cell-type+ type (19)

H0 : n clusters = x0 +method+ downsampled cell-type (20)

6.2.3 marker gene ranking1229

To test the statistical significance of perturbations for each marker gene ana-1230

lyzed (4.4), the following ANOVA setup was used for each marker gene g:1231
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Marker g max rank ∼ x0 +method+ downsampled cell-type+ type (21)

H0 : Marker g max rank = x0 +method+ downsampled cell-type (22)

Then, to test the overall effects on marker gene ranking, considering all1232

marker genes at once, the following test was done:1233

Marker max rank ∼ x0 + gene+method+ downsampled cell-type+ type (23)

H0 : Marker max rank = x0 + gene+method+ downsampled cell-type (24)

6.3 Complex imbalanced datasets1234

6.3.1 Cell-type support and cell-type center distance1235

To determine if the two key metrics that were determined in the complex dataset1236

analysis - relative cell-type support (5.2) and cell-type center distance1237

(5.1) - are in fact predictive of integration performance, the following ANOVA1238

setups were used where the F1-classification score for each experiment, cell and1239

associated ground-truth cell-type was tested:1240

F1 classification score ∼ x0 +method+minimum cell-type center distance

(25)

H0 : F1 classification score = x0 +method (26)

F1 classification score ∼ x0 +method+ relative cell-type support (27)

H0 : F1 classification score = x0 +method (28)

Where:1241
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minimum cell-type center distance ∈ R
+

0,1 (29)

relative cell-type support ∈ N (30)

The cell-type analyzed was not included as a factor to control, because the1242

minimum cell-type center distance and relative cell-type support metrics were1243

calculated on a per cell-type basis. Therefore, these metrics are perfectly1244

collinear with cell-type, and this would absorb the residuals that would be1245

picked up by the key metrics.1246

6.3.2 PDAC perturbation analysis1247

Perturbations were performed for the compartmentalized PDAC data (1.3 and1248

3.2) to determine the effects of downsampling/ablation on the classification1249

scores of all compartments. Here, the following ANOVA setup was used to1250

determine the effects on F1-scores for a specific compartment based on1251

downsampling of the same compartment for each compartment c:1252

F1 classification score c ∼ x0 +method+ type (31)

H0 : F1 classification score c = x0 +method (32)

These results were analyzed independently and jointly for all compartments1253

downsampled, where joint-comparison included comparison of F-values for per-1254

turbation in each setup.1255

7 Balanced clustering scores1256

None of the utilized clustering metrics, which in this analysis and other inte-1257

gration benchmarking/methods papers are used to compare the concordance1258

of ground-truth cell-type labels and unsupervised clusters attained in an em-1259

bedding, factor in class balance. The metrics utilized include: the Adjusted1260
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Rand Index (ARI), Adjusted Mutual Information (AMI), Homogeneity Score,1261

and Completeness Score. The implementation details of these metrics can be1262

found in the scikit learn documentation [32].1263

Strictly speaking, the Homogeneity Score and Completeness Scores1264

are not metrics, because they are not symmetric. However, this sym-1265

metry is not necessary in the case of single-cell benchmarking, and the general1266

case of comparing clustering labels with ground-truth annotations, because one1267

set of labels is known to be ground-truth. In fact, balancing the ARI and AMI1268

will break their symmetry as well.1269

To introduce the procedure behind reweighing these metrics, we’ll begin with1270

the balanced ARI. Then we’ll extrapolate this procedure to the entropy-based1271

metrics/scores (AMI, Homogeneity, and Completeness), as this extrapolation1272

only involves a slight modification to the ARI procedure for these scores.1273

Code notebooks on implementing the balanced clustering scores with usage1274

demonstrations and relevant examples are available at https://github.com/1275

hsmaan/balanced-clustering/tree/main/notebooks.1276

7.1 The Balanced Adjusted Rand Index1277

7.1.1 The Rand Index and Adjusted Rand Index1278

For a set of n objects, S = {O1, O2, O3, ..., On}, the goal of clustering is to1279

partition these objects into meaningful subsets, which we can call partitioning1280

V . Assuming we have access to either ground-truth labels or clusters from1281

another technique, which we can denote partitioning U . Both U and V contain1282

subsets, which we call either classes or clusters: U = {u1, u2, ..., uR} and V =1283

{v1, v2, ..., vC}. These clustering results are subject to the following constraints1284

to be valid for calculating the Rand Index:1285

1. All n objects within the set S must be within sets U and V :1286

UR
i=1ui = UC

j=1vj = S (33)

2. No element from set S can belong in to more than one subset in either U
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or V

1 f i ̸= i
′

f R (34)

1 f j ̸= j
′

f C (35)

ui ∩ ui
′ = ∅ = vj ∩ vj′ (36)

To quantify the overlap between the partitions U and V (e.g. in determining1287

overlap between a set of ground-truth labels and the results of clustering), we1288

can start by creating a contingency table which indicates the overlap:1289

v1 v2 v3 . . . vc
u1 t11 t12 t13 . . . t1C t1.

u2 t21 t22 . . . . . . . . . . . .
u3 t31 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
uR tR1 . . . . . . . . . tRC tR.

t.1 . . . . . . . . . t.C t..

Each element of this table indicates overlapping elements. E.g. t11 indicates1290

the number of samples that have the label v1 in V and u1 in U . The total1291

number of values in the matrix is
(

n

2

)

if n objects/samples are present. As we1292

now have a table/matrix that represents the overlap of assignments to subsets1293

in U and V for n objects, we can determine the concordance of partitions U1294

and V for these objects using the Rand Index:1295
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a =
R
∑

r=1

C
∑

c=1

(

trc
2

)

,

(

x

2

)

= 0 if x = 0 (37)

b =
[

R
∑

r=1

(

tr.
2

)

]

− a (38)

c =
[

C
∑

c=1

(

t.c
2

)

]

− a (39)

d =

(

n

2

)

− a− b− c (40)

Rand Index (RI) =
a+ d

a+ b+ c+ d
(41)

Intuitively, the Rand Index aims to calculate how many pairs are concor-1296

dantly in the same subsets in V and U (a), how many pairs are concordantly in1297

different subsets in V and U , and how many are discordant (in the same group1298

in one partition and otherwise in the other). It’s important to note that pairs1299

here refer to all combinations of two different objects, not the same1300

object being considered in the two partitions.1301

Although the Rand Index is normalized (lower bound = 0, upper bound =1302

1), it is not adjusted for chance clustering. A correction can be made [26] to the1303

RI formula that takes into account the expected value of the RI for two1304

partitions of the objects U and V , denoted by the Adjusted Rand Index1305

(ARI) [26]:1306

ARI =

(

n

2

)

(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)]
(

n

2

)2
− [(a+ b)(a+ c) + (c+ d)(b+ d)]

(42)

With this correction, the ARI is a metric (symmetric, positive-definite, and1307

the triangle inequality) [27] that has the properties of normalization and1308

expectation [26].1309
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7.1.2 Balancing the ARI1310

Rebalancing the ARI (as well as the other entropy-based scores/metrics) will1311

amount to rescaling the total number of values in the subsets of the1312

partition we consider ground-truth. In this case, assume U is the par-1313

tition with the ground-truth information. We want each subset from U1314

to have an equal contribution to the ARI value - this is concomitant with each1315

class from the ground-truth data (which we have assumed to be U) having an1316

equal weighing in the calculating of the score. This can be done in the following1317

step-wise manner:1318

1. Determine contribution of each subset of U (t1, t2, . . . , tR) to score through1319

mean of marginals from contingency table:1320

(t1., t2., t3., . . . , tR.) (43)

2. Get the mean contributions of all subsets:1321

C =
1

R

R
∑

i=1

ti. (44)

3. For each subset (ti) of U , normalize the contribution to be equal to the
mean using a scaling factor:

Si =
C

ti.
(45)

∀ti, (ti1, ti2, ..., tiC) = Si ∗ (ti1, ti2, ..., tiC) (46)

After these steps, we’ve essentially rescaled the contingency table such that1322

the contribution from each subset in U will be considered equally in calculations1323

using the table results. To calculated the Balanced Adjusted Rand Index, we1324

can apply the 7.1.2 normalization procedure and use the same ARI formula as1325

before (42):1326

Balanced ARI =

(

n

2

)

(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)]
(

n

2

)2
− [(a+ b)(a+ c) + (c+ d)(b+ d)]

(47)
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Examining the values needed to calculate the RI and ARI (37), we can see1327

that this normalization procedure will effectively rescale the calculations for a,1328

b, and c. This procedure does this while still retaining the total counts (n),1329

such that the calculation for d will be unaffected. Because the RI and ARI1330

calculations simply depend on these values in the contingency table that can1331

be calculated independently, the application of this normalization procedure is1332

straightforward and does not require any further steps.1333

7.2 Balancing entropy-based scores1334

7.2.1 Mutual information1335

Central to the Adjusted Mutual Information (AMI), Homogeneity, and Com-1336

pleteness scores is the calculation of mutual information between partitions U1337

and V [27] [28]. For the contingency table previously defined in 47, the mutual1338

information between these two partitions is equal to the following [27]:1339

I(U, V ) =
R
∑

r=1

C
∑

c=1

trc
n

log
trc/n

tr.t.c/n2
(48)

We’ll follow the same normalization procedure that we did in 7.1.2, as we1340

are starting from the same contingency table of overlapping objects in subsets1341

of partitions U and V . From here, we can calculate the mutual information1342

value and proceed with the rest of the calculations for the entropy-based scores.1343

7.2.2 Entropy1344

Aside from mutual information, the other important factor that is used by all1345

of the entropy-based scores is the calculation of the entropy of the labelling -1346

i.e. how ordered/disordered are the objects in partitions U and V . This can1347

also be calculated from the contingency table from 47 in the following manner1348

[27]:1349
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H(U) = −
R
∑

r=1

tr.
n

log
tr.
n

(49)

H(V ) = −
C
∑

c=1

t.c
n

log
t.c
n

(50)

The Homogeneity and Completeness scores also require the conditional en-1350

tropy formulation [28] [27]:1351

H(U |V ) = −
R
∑

r=1

C
∑

c=1

trc
n

log
trc/n

t.c/n
(51)

H(V |U) = −
R
∑

r=1

C
∑

c=1

trc
n

log
trc/n

tr./n
(52)

7.2.3 Balanced entropy-based scores1352

The calculation of the entropy and mutual information can proceed as-is after1353

the normalization procedure from 7.1.2, and this will balance the contributions1354

from a presumed ground-truth partition U in calculating the entropy and mutual1355

information. From here the Balanced Adjusted Mutual Information, Balanced1356

Homogeneity, and Balanced Completeness scores can be calculated using these1357

two values, the rescaled contingency matrix after 7.1.2, and the base formulas1358

for these scores [27] [28]:1359

Balanced AMI =
I(U, V )− E[I(U, V )]

1

2
[H(U) +H(V )]− E[I(U, V )]

(53)

Balanced Homogeneity = 1−
H(U |V )

H(U)
(54)

Balanced Completeness = 1−
H(V |U)

H(V )
(55)
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The V-measure and Balanced V-measure are simply the harmonic mean of1360

the Completeness and Homogeneity scores [28]:1361

Balanced V-measure =
(2×Bal. Homog.×Bal. Compl.)

(Bal. Homog.+Bal. Compl.)
(56)

7.3 Balanced clustering evaluations1362

The following section details the evaluations that were utilized for the balanced1363

clustering metric analysis. Seeding was set for all of these cases to ensure repro-1364

ducibility of the simulations, downsampling, and integration methods (where1365

possible).1366

7.3.1 3 imbalanced well-separated classes, 2 clusters1367

In this scenario, 3 well separated but imbalanced classes were utilized and a1368

mis-clustering of the smaller class was done with k-means clustering with k=2.1369

This data was simulated using 2D Gaussian densities with the following values1370

for each class:1371

• Class A ∼ N(0, 0.5) - 500 samples1372

• Class B ∼ N(−2, 0.1) - 20 samples1373

• Class C ∼ N(3, 1) - 500 samples1374

K-means clustering with k=2 led to class B overlapping with class A in the1375

clustering result.1376

The balanced and imbalanced metrics were compared when calculating the1377

concordance of the ground-truth labels (class labels) and k-means clustering1378

labels.1379
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7.3.2 3 imbalanced overlapping classes, 3 clusters1380

In this case, 3 classes that are overlapping and imbalanced (2 smaller classes on1381

edges of larger class) were analyzed, and k-means clustering with k=3 was done1382

and the result correctly clustered most of the samples from the smaller classes,1383

but due to slicing of the larger class present because of overlap, mis-clustered a1384

large number of majority class samples.1385

This data was simulated using 2D Gaussian densities with the following1386

values for each class:1387

• Class A ∼ N(0, 0.5) - 1500 samples (larger class)1388

• Class B ∼ N(1, 1) - 200 samples1389

• Class C ∼ N(−1, 1) - 200 samples1390

7.3.3 Balanced 2 batch PBMC - co-clustered CD4+ T cells and1391

CD8+ T cells1392

The balanced 2 batch PBMC dataset was utilized here (1.2). Batch 1 was kept1393

as is, and batch 2 had all of the cells ablated except for CD4+ T cells, which1394

were downsampled to 10% of their original proportion.1395

The default Leiden clustering resolution of 1 in the scanpy implementation1396

was changed to 0.1, as this value perfectly clusters all of the cell-types with the1397

exception of the CD4+ T cells, which get collapsed into a cluster with CD8+1398

T cells, simulating a case where a smaller cell-type is co-clustered with a larger1399

cell-type.1400

The resultant embedding with no integration was utilized, and the ground-1401

truth cell-type labels and unsupervised clustering labels were used to compare1402

the balanced and imbalanced/vanilla scores - where the ARI and Homogeneity1403

scores were shown.1404
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7.3.4 Balanced 2 batch PBMC data - downsampled CD4+ T cells1405

and FCGR3A+ monocytes1406

In this evaluation, the 2 batch balanced PBMC dataset was once again utilized.1407

For the two batches, each one had either the CD4+ T cells or FCGR3A+ mono-1408

cytes downsampled to 10% of their original population, creating an imbalanced1409

scenario specific to these two cell-types.1410

After this, integration was done using BBKNN, Harmony, Scanorama, and1411

scVI. The same integration pipeline from 2 was utilized. An ’unintegrated’ con-1412

trol subset was used, where the pipeline from 2 was followed without integration1413

with any method.1414

From here, the average value of the balanced and imbalanced metrics was1415

used for comparison. e.g.:1416

Avg imbalanced = 1

5

∑

(ARI,AMI,Homog., Complet., V −measure).1417

8 Code and data availability1418

The python package for implementing the balanced clustering metrics can be1419

found here:1420

https://github.com/hsmaan/balanced-clustering1421

All of the code necessary to reproduce the results of the Iniquitate pipeline1422

are available at:1423

https://github.com/hsmaan/Iniquitate1424

The datasets utilized in this study, which are associated with the various1425

configurations used in the Iniquitate GitHub repository, can be all found here:1426

https://drive.google.com/file/d/102ntQuclUzQILRxMVXo1-yQR43t97Q3r/1427

view?usp=sharing1428

This directory is in the exact necessary structure needed to run the Iniqui-1429
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tate pipeline, and can be copied into the cloned GitHub repository for Iniqui-1430

tate under Iniquitate/resources. Instructions are also given in the Iniquitate1431

GitHub link.1432
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9 Appendix A: Python and R library/package1564

version numbers1565

The following two environments (9.1, 9.2) were used in the benchmarking and1566

analysis phases, where all integration experiments and downstream analysis1567

tests were done with the pipeline environment (9.1), and all results analysis1568

and plotting was done with the analysis environment (9.2). The only exception1569

were the balanced metric analyses and tests (7), which utilized the analysis1570

environment (9.2) for generation and testing of the various scenarios outlined.1571

Configurations for these environments are also available at https://github.1572

com/hsmaan/Iniquitate/tree/main/workflow/envs.1573

The library for the balanced metrics (7) was developed independently, and1574

all of the information on dependency versions is available at https://github.1575

com/hsmaan/balanced-clustering.1576

9.1 Iniquitate pipeline environment1577

• python>=3.7,<=3.101578

• numpy>=1.19.01579

• pandas>=1.2.01580

• scipy>=1.5.01581

• leidenalg>=0.8.01582

• umap-learn>=0.5.01583

• mnnpy>=0.1.91584

• scikit-learn>=1.0.11585

• scanpy=1.8.21586

• anndata=0.8.01587

66

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.06.511156doi: bioRxiv preprint 

https://github.com/hsmaan/Iniquitate/tree/main/workflow/envs
https://github.com/hsmaan/Iniquitate/tree/main/workflow/envs
https://github.com/hsmaan/Iniquitate/tree/main/workflow/envs
https://github.com/hsmaan/balanced-clustering
https://github.com/hsmaan/balanced-clustering
https://github.com/hsmaan/balanced-clustering
https://doi.org/10.1101/2022.10.06.511156
http://creativecommons.org/licenses/by-nc-nd/4.0/


• faiss-cpu>=1.7.01588

• pytorch=1.10.11589

• torchmetrics<=0.6.01590

• cudatoolkit=10.21591

• scvi-tools=0.14.41592

• bbknn=1.5.11593

• harmonypy=0.0.51594

• scanorama=1.7.11595

• r-base>=4.0.01596

• r-liger=0.5.01597

• r-seurat=4.0.61598

• r-seuratdisk>=0.0.91599

• r-data.table>=1.14.01600

• r-reticulate=1.241601

• cython>=0.29.251602

• r-rann=2.6.11603

9.2 Analysis scripts environment1604

• python>=3.7,<=3.101605

• numpy>=1.19.01606

• pandas>=1.2.01607

• scipy>=1.5.01608

• seaborn>=0.11.21609
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• plotnine>=0.8.01610

• leidenalg>=0.8.01611

• umap-learn>=0.5.01612

• scikit-learn>=1.0.11613

• scanpy=1.8.21614

• anndata>=0.7.51615

• ipykernel>=6.4.01616

• jupyterlab>=3.2.91617

• notebook>=6.4.21618

• scvi-tools=0.14.41619

• pytorch=1.10.11620

• torchmetrics<=0.6.01621

• cudatoolkit=10.21622

• bbknn=1.5.11623

• harmonypy=0.0.51624

• scanorama=1.7.11625

• r-base>=4.0.51626

• r-seurat>=4.0.51627

• r-data.table>=1.14.01628

• r-ggplot2>=3.3.01629

• r-tidyverse>=1.2.11630

• r-reshape2>=1.4.31631

• r-data.table>=1.14.01632
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• r-ggthemes>=4.2.01633

• r-ggextra>=0.8.01634

• r-dotwhisker>=0.7.41635

• r-seuratdisk>=0.0.90191636

• r-deldir>=1.0.21637

• r-ggpubr>=0.4.01638

• r-cowplot>=1.1.11639

• r-ggrepel>=0.9.11640

• r-rcolorbrewer>=1.11641

• r-ggbump>=0.1.01642

• bioconductor-complexheatmap<=2.9.01643

• r-venndiagram>=1.7.11644

• r-multipanelfigure>=2.1.21645

• r-gridextra>=2.31646

• r-cairo>=1.51647

• r-lemon>=0.4.51648

• r-networkd3>=0.41649

• r-emt>=1.21650

• cython>=0.29.251651
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Supplementary Figures1652
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Figure S1: ANOVA F-statistic values for cell-type specific KNN classifi-
cation in the baseline and hierarchical 2 batch balanced PBMC data. The
ANOVA F-statistic values, indicating the ratio of variation between between sample
means and variation within the samples themselves, for the covariates used in the
KNN-classification task ANOVA for the 2 batch PBMC balanced dataset (Online
Methods). F-statistics are shown for integration method (first covariate in model),
cell-type that was downsampled (second covariate in model), and which type of ex-
periment was performed (control balanced vs. perturbed - last covariate in model).
The F-statistics are compared between the baseline setup (6 cell-types initially uti-
lized) and the hierarchical setup after merging closely related cell-types.
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Figure S2: Correlation between cell-type-specific F1-classification scores
and cell-type ARIcell−type in balanced 2 batch PBMC data. All experiments
(control, downsampling, and ablation) are indicated for the baseline 2 batch PBMC
data. For perturbation experiments, values are subset for only where the cell-type
being classified (F1-classification score) is equivalent to the cell-type that was down-
sampled. The median cell-type classification F1-score across all cell-types is shown,
grouped by method and experiment type, for direct comparison with the ARI val-
ues which are calculated per replicate. The Spearman correlation value between the
scores is indicated.
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Figure S3: Correlation between cell-type-specific F1-classification scores
and (1 - ARIbatch) values in balanced 2 batch PBMC data. All experiments
(control, downsampling, and ablation) are indicated for the baseline 2 batch PBMC
data. For perturbation experiments, values are subset for only where the cell-type
being classified (F1-classification score) is equivalent to the cell-type that was down-
sampled. The median cell-type classification F1-score across all cell-types is shown,
grouped by method and experiment type, for direct comparison with the ARI val-
ues which are calculated per replicate. The Spearman correlation value between the
scores is indicated.
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Figure S4: marker gene perturbation scores across all marker genes for
the cell-types in the balanced 2 batch PBMC dataset. Marker genes were
determined through differential gene expression analysis within each batch (Online
Methods), and their perturbation score, indicating change in maximum ranking across
unsupervised clusters post-integration are shown across control, downsampling, and
ablation experiments (Online Methods). Note that downsampling and ablation (per-
turbation) experiments are not subset here for the marker gene being analyzed and
its associated cell-type (e.g. maximum-rank change for B-cell markers in only runs
where B-cells are downsampled).
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Figure S5: Comparison of F1-classification accuracy and relative cell-type
support of each cell-type in the imbalanced 6 batch mouse hindbrain de-
velopment dataset. The relative cell-type support is based on the number of cells
in the integrated embedding space present for each cell-type (Online Methods).
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Figure S6: Comparison of F1-classification accuracy and relative cell-type
support of each cell-type in the imbalanced 8 batch PDAC dataset. The
relative cell-type support is based on the number of cells in the integrated embedding
space present for each cell-type (Online Methods).
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Figure S7: Comparison of F1-classification accuracy and minimum cell-
type center distance of each cell-type in the imbalanced 6 batch mouse
hindbrain development dataset. The minimum cell-type center distance value
indicates how close is the closest other cell-type across batches in PCA space (Online
Methods).
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Figure S8: Comparison of F1-classification accuracy and minimum cell-
type center distance of each cell-type in the imbalanced 8 batch PDAC
dataset. The minimum cell-type center distance value indicates how close is the
closest other cell-type across batches in PCA space (Online Methods).
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Figure S9: Comparison of compartment heterogeneity conservation ARI
results across PDAC data perturbation experiments. Z-score normalized
median ARIcompartment (compartment integration accuracy) results across experi-
ment type (control, compartment downsampling, compartment ablation), specific-
compartment downsampled, and integration method utilized.
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Figure S10: Comparison of batch-mixing ARI results across PDAC data
perturbation experiments. Z-score normalized median (1-ARIbatch) (batch mix-
ing) results across experiment type, compartment downsampled, and integration
method.
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Figure S11: ANOVA F-statistic values for compartment specific KNN-
classification in the 8 batch compartmentalized PDAC data. The ANOVA
F-statistic values, indicating the ratio of variation between sample means and vari-
ation within the samples themselves, for KNN-classification of individual compart-
ments before and after perturbation (Online Methods). F-statistics are shown for
integration method (first covariate in model), and which type of experiment was per-
formed (control vs. perturbed - last covariate in model). The ANOVA tests were per-
formed individually for each compartment, and the compartment-specific F-statistics
are shown. Note that the perturbations here are specific to the compartment being
analyzed (e.g. microenvironment subset will only contain perturbations that targeted
the microenvironment) (Online Methods).
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Figure S12: Comparison of cell-type heterogeneity conservation ARI re-
sults across the PBMC 2 batch perturbation experiments, using the bal-
anced ARI (bARI) score. Z-score normalized median ARIcell−type (cell-type
integration accuracy) results across experiment type (control, compartment down-
sampling, compartment ablation), specific-cell-type downsampled, and integration
method utilized, using the bARI instead of the base ARI metric.
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Figure S13: Average cell-type center distance between cell-types in the
balanced PBMC 2 batch dataset. For each batch, the distance from the centers
of cell-type clusters in principal component analysis (PCA) reduction space are cal-
culated, and the relative distances between cell-types are determined and averaged
across batches (Online Methods).
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Figure S14: Average cell-type center distance between cell-types in the
6 batch mouse hindbrain development dataset. For each batch, the distance
from the centers of cell-type clusters in principal component analysis (PCA) reduction
space are calculated, and the relative distances between cell-types are determined and
averaged across batches (Online Methods).
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Figure S15: Average cell-type center distance between cell-types in the 8
batch pancreatic ductal adenocarcinoma (PDAC) dataset. For each batch,
the distance from the centers of cell-type clusters in principal component analysis
(PCA) reduction space are calculated, and the relative distances between cell-types
are determined and averaged across batches (Online Methods).
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Figure S16: Predicted cell-types for CD4/CD8 T-cell majority clusters
in the balanced PBMC 2 batch data, based on marker gene differential
expression. In this setup, the top 50 marker genes were analyzed based on differen-
tial expression for unsupervised clusters from the Seurat integration method across
experimental subsets (Control, Downsampling, Ablation). The Downsampling and
Ablation subsets here contain only instances where CD4+ and CD8+ T cells were
affected. Only clusters that contained a majority of cells (based on ground-truth
annotations) of CD4+ or CD8+ T were kept. The canonical marker genes for CD4+
T cells (IL7R) and CD8+ T cells (CD8A) were used to predict the cell-type for each
cluster based on their relative ranking in the top 50 marker genes for the given clus-
ters (Details in Online Methods: Downstream analysis - marker gene ranking - Case
study - CD4/CD8 T cell assignment based on marker genes). The fraction of clusters
that contain a majority of CD4+ or CD8+ T cells, and their predicted cell-type based
on the aforementioned marker gene setup are indicated, across experimental subsets.
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