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Abstract

The complete genome of Pseudomonas syringae pv. actinidifoliorum ICMP18803
(Pfm) was sequenced using the Oxford Nanopore minlON platform to an average
read depth of 123. The genome assembled into a single chromosome of 6,353,853
bp after error-correction with lllumina short reads using Pilon. The complement of
effector genes from a P. syringae pathovar plays the predominant role in defining its
pathogenicity. Automatic gene annotation pipelines often poorly identify and name
effector genes, however. Despite Pfm being a relatively weak pathogen of kiwifruit, a
set of 31 effectors, 26 of which were full length, was identified by mapping the
comprehensive effector library generated by Dillon et al. (2019). The Pfm genome
with the effector complement, correctly named and annotated was resubmitted to

Genbank (CP081457).
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Pseudomonas syringae pv. actinidifoliorum (Pfm) was first isolated and
characterised from kiwifruit orchards in New Zealand in 2010 (Chapman et al. 2012).
It was initially classified as Pseudomonas syringae pv. actinidiae (Psa) group 4 (or
LV for low virulence) due to the high degree of similarity between sequences used
for multi-locus sequence analysis (MLSA) between it and other Psa strains
(Chapman et al. 2012). Extensive pathogenicity testing of Pfm isolates using several
different assay methods determined that this collection of strains caused a distinct
and milder set of symptoms on kiwifruit compared to Psa. In contrast to the highly
aggressive isolates of Psa biovar 3 (Psa3) which cause leaf-spotting, cane dieback
and weeping trunk cankers, particularly on cultivars of Actinidia chinensis var
chinensis, Pfm symptomology is largely restricted to mild leaf spotting (Ferrante and
Scortichini 2015; Vanneste et al. 2013). Furthermore, in planta bacterial growth and
movement assays revealed that Pfm grew to a maximum of 10°-10° colony forming
units per square centimetre, as opposed to 102 for Psa3 and was capable of only
limited systemic movement (Jayaraman et al. 2020; McAtee et al. 2018; McCann et
al. 2013). For these reasons, Pfm was given its own pathovar designation (Cunty et

al. 2015).

Pfm has been found to have a widespread distribution throughout kiwifruit
growing regions in Europe, Australasia and Asia (Abelleira et al. 2015; Cunty et al.
2015; Vanneste et al. 2013). A phylogenetic tree generated from a multi-locus
sequence analysis revealed significant genetic variation between these isolates
which resolved into four lineages (Cunty et al. 2015). This suggests that there has
been a long-term association between Pfm and Actinidia spp. that precedes the

international outbreak of its more pathogenic relative Psa biovar 3.
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Several groups have released short-read assemblies of various Pfm isolates
(Butler et al. 2013; Cunty et al. 2016; McCann et al. 2013). In this paper we report
the complete sequence of Pfm ICMP 188083 isolated from Hawke’s Bay, New Zealand
in 2010 (PRJNA167409; SAMN13855180). Genomic DNA from Pfm ICMP18803
was purified using a GenePure kit from Qiagen (Hilden, Germany) as described in
McCann et al. (2013). Purified DNA was sequenced using the Oxford Nanopore
minlON platform to a read depth of 123 fold. The genome was assembled into a
single contig using Flye 2.7.1, and error-corrected with lllumina short reads using
Pilon 1.23 (Kolmogorov et al. 2020; Walker et al. 2014). All suggested short indel
corrections were accepted. The resulting single chromosome was 6,353,853 bp in
length. The genome was annotated using the PGAAP pipeline (Li et al. 2021).
Nanopore and lllumina reads were deposited to the Sequence Read Archive

(PRJNA167409).

Although isolates of Pfm presented only weak symptoms on kiwifruit, the
genome has 31 effectors, of which 26 are full-length and expected to be active, plus
secondary metabolite pathways which might contribute to pathogenicity (Tables 1
and 2). The PGAAP and other automatic annotation pipelines often annotate P.
syringae effectors incorrectly. The Pfm effector complement was manually curated
and annotated using the nomenclature used by Dillon et al. (2019). This was
achieved by mapping all effectors from P. syringae in supplementary file 3 from
Dillon et al. (2019) to the Pfm 18803 genome using the map to reference function in
Geneious 10 (Biomatters). Effector alleles with 100% homology to the Pfm
ICMP18803 genome were used to accurately annotate the start and stop sites and
assign the correct name of the effector family (Table 1). One previously

undiscovered effector that formed a new clade in the AvrPto1 phylogeny, AvrPto1r,
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was identified. This effector was co-located with HopF1b, HopAR1e, HopAF1b and
HopAB1e which may be equivalent to the Exchangeable Effector Locus (EEL) in P.
syringae pv. tomato and Psa, although the EEL is in a different location from the
Conserved Effector Locus and the Type Three Secretion System (Alfano et al. 2000;

McCann et al. 2013).

The effector complement from different isolates or lineages within a P.
syringae pathovar often varies, for example within biovars of Psa (McCann et al.
2013). This was also the case for Pfm (Figure 1). Pfm isolates from Europe and New
Zealand largely had a conserved effector complement. The more recently discovered
isolates from Japan, which form two new lineages, however were missing up to
seven of these effectors (Figure 1). Examination of the regions around these
effectors suggested that they were lost or acquired via elements associated with

horizontal gene transfer.

P. syringae pathovars can produce a range of toxic compounds, some of
these, such as phaseolotoxin, coronatine and tabtoxin, have been well-characterised
(Bender et al. 1999). Different biovars of Psa have been shown to produce various
combinations of phaseolotoxin and coronatine (Fujikawa and Sawada 2019). Pfm
does not produce any of the classic P. syringae phytotoxins, however analysis using
AntiSMASH 6.0 (Blin et al. 2021) revealed nine secondary metabolite pathways
(Table 2). The only characterised compound with a potential role in pathogenicity is
mangotoxin, also known as Pseudomonas virulence factor (Carrion et al. 2012;
Morgan et al. 2019). Other metabolites that might have a role in epiphytic fithess
include various siderophores, the surfactant syringafactin and N-
acetylglutaminylglutamine, which has a role in osmotic stress (Table 2). Of interest is
the presence of the novel 3-thiaglutamate biosynthetic pathway, which uses a small
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100 peptide as a scaffold to synthesise a novel small molecule (Ting et al. 2019). This
101  pathway has a limited distribution among P. syringae pathovars, with the majority of

102  BLAST hits to actinidifoliorum and closely related thea pathovars.

103 The Pfm ICMP18803 genome was annotated using the NCBI genome

104  workbench and resubmitted to GenBank (Kuznetsov and Bollin 2021). The

105 availability of long reads greatly facilitated the correct annotation of effector genes
106  and their relative location in the genome. Although Pfm is a poor pathogen of

107  kiwifruit, a number of its reasonably extensive effector complement are present in
108 Psa (McCann et al. 2013). This makes the comparison between the effector

109 complements of Pfm and Psa a useful model for understanding how bacterial

110 pathogens cause disease.
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Table 1
Effector locus tag Old name Full CDS Chaperone Hrp boxL
HopY1ld A237_00695 HopY1 premature stop n/a yes
HopBO1c A237_00840 HopX2 yes n/a yes
HopAS1b A237_02165 HopAS1 yes n/a yes
HopW1f A237_04025 HopW1 yes n/a yes
HopR1b A237_04035 HopR1 yes n/a yes
HopAG1d A237_04175 HopAG1 yes A237_04173 yes
HopAH1k A237_04180 HopAH1 yes n/a yes (HopAG1)
HopAlle A237 04185 HopAll yes n/a yes (HopAG1)
HopF1b A237_05265 HopF1 yes A237_05260 yes
HopAR1le A237_05275 HopAR1 yes n/a yes
AvrPtolr A237_05285 N/A premature stop n/a yes
HopAF1b A237 05320 HopAF1 yes n/a yes (HopAB1)
HopABle A237_05325 HopAY1 yes n/a yes
HopN1la A237_06825 HopN1 yes A237_06820 yes
HopAA1ld A237_06835 HopAAl yes n/a yes
HopM1f A237_06850 HopM1 yes A237_06845 yes
AvrEld A237_06865 AvrEl yes A237_06855 yes
HopX1d A237 07010 HopX1 yes n/a yes (HrpK1)
HopAZla A237_09620 HopAZ1 yes n/a yes
HopAH1a A237_ 11260 HopAH2-1 yes n/a no
HopAH1i A237_11265-75  HopAH2-2 Tn inactivated n/a no
HopW1c A237_11645 HopW1 yes n/a yes
HopAB1i A237_ 12225 HopAB3 yes n/a yes
HopEla A237_18035 HopE1l yes n/a yes
HopAF1f A237_20845 HopAF1-2 yes n/a yes
HopS2c A237_23320 HopS2 yes A237_23325 yes
HopT1c A237 23330 HopT1 yes n/a yes (HopO2b)
HopO1la A237 23335 HopO1 yes n/a yes (HopO2b)
HopO2b A237_23340-50 @ HopS1 Tn inactivated A237_23355 yes
Hopllc A237_23700 Hopll premature stop n/a yes
HopAla A237_26495 HopAl yes A237_26490 yes

Table 1. The effector complement of Pseudomonas syringae pv. actinidifoliorum
ICMP18803. Effectors were identified using the comprehensive P. syringae effector
library compiled by Dillon et al. (2019). These genes were mapped to the
Pseudomonas syringae pv. actinidifoliorum genome in Geneious
(https://www.geneious.com) using the map to reference function. This was used to
determine the correct stop and start sites and to assign the correct family
designation for each effector.
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135 Table 2
136
Antismash ID Gene loci location Function/product Reference
1 A237_02300-55 512957-525196 Pyrrolo-quinoline-quinone (Schnider et al. 1995)
2 A237_13620-75 3078634-3092789 = Achromobactin (Berti and Thomas 2009)
3 A237_13780-805  3114737-3146952 Syringafactin (Berti et al. 2007)
4 A237_15210-90 3468871-3507069 @ Yersinabactin (Jones et al. 2007)
5 A237_17675-780 | 4049667-4106763 Pyoverdine (Jones et al. 2007)
6 A237_17945-90 4138999-4150353 @ 3-thiaglutamate (Ting et al. 2019)
7 A237_20270-90 4633641-4638941 N-acetylglutaminylglutamine  (Beattie et al. 2016)
8 A237_25245-340 | 5767408-5786589 = Unknown
9 A237_27070-85 6181744-6187662 Mangotoxin (Carrién et al. 2012)
137

138  Table 2. List of biosynthetic pathways identified using AntiSMASH.

139
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Figure 1. Comparison of the effector complement from different lineages of Pseudomonas syringae pv. actinidifoliorum. BLAST was
used to search representative genomes from each lineage of Pseudomonas syringae pv. actinidifoliorum (Pfm) with every effector
from Pfm ICMP18803. The first column is an MLST tree using the core genes gyrB, ropD, gapA, pgi, acnB. The percentage
homology at the nucleotide level is given for each result. Green boxes indicate a full-length coding sequence, and red boxes
indicate the presence of a premature stop codon or a transposon insertion. Orange boxes indicate that it could not be ascertained
whether the gene could produce a full-length protein, usually because the gene spanned two contigs in the short read assembly.
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