

1 **The complete genome sequence of *Pseudomonas syringae* pv.
2 *actinidifoliorum* ICMP 18803**

3

4 Matthew D. Templeton^{1,2,3*}, Saadiah Arshed¹, Mark T. Andersen¹, Jay Jayaraman¹

5

6 ¹The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand

7 ²School of Biological Sciences, University of Auckland, Auckland, New Zealand

8 ³Bioprotection Aotearoa, Lincoln University, New Zealand

9 *Corresponding author: Matt.Templeton@plantandfood.co.nz

10

11 **Abstract**

12

13 The complete genome of *Pseudomonas syringae* pv. *actinidifoliorum* ICMP18803
14 (Pfm) was sequenced using the Oxford Nanopore minION platform to an average
15 read depth of 123. The genome assembled into a single chromosome of 6,353,853
16 bp after error-correction with Illumina short reads using Pilon. The complement of
17 effector genes from a *P. syringae* pathovar plays the predominant role in defining its
18 pathogenicity. Automatic gene annotation pipelines often poorly identify and name
19 effector genes, however. Despite Pfm being a relatively weak pathogen of kiwifruit, a
20 set of 31 effectors, 26 of which were full length, was identified by mapping the
21 comprehensive effector library generated by Dillon et al. (2019). The Pfm genome
22 with the effector complement, correctly named and annotated was resubmitted to
23 Genbank (CP081457).

24

25

26 *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) was first isolated and
27 characterised from kiwifruit orchards in New Zealand in 2010 (Chapman et al. 2012).
28 It was initially classified as *Pseudomonas syringae* pv. *actinidiae* (Psa) group 4 (or
29 LV for low virulence) due to the high degree of similarity between sequences used
30 for multi-locus sequence analysis (MLSA) between it and other Psa strains
31 (Chapman et al. 2012). Extensive pathogenicity testing of Pfm isolates using several
32 different assay methods determined that this collection of strains caused a distinct
33 and milder set of symptoms on kiwifruit compared to Psa. In contrast to the highly
34 aggressive isolates of Psa biovar 3 (Psa3) which cause leaf-spotting, cane dieback
35 and weeping trunk cankers, particularly on cultivars of *Actinidia chinensis* var
36 *chinensis*, Pfm symptomology is largely restricted to mild leaf spotting (Ferrante and
37 Scorticini 2015; Vanneste et al. 2013). Furthermore, *in planta* bacterial growth and
38 movement assays revealed that Pfm grew to a maximum of 10^5 - 10^6 colony forming
39 units per square centimetre, as opposed to 10^8 for Psa3 and was capable of only
40 limited systemic movement (Jayaraman et al. 2020; McAtee et al. 2018; McCann et
41 al. 2013). For these reasons, Pfm was given its own pathovar designation (Cunty et
42 al. 2015).

43 Pfm has been found to have a widespread distribution throughout kiwifruit
44 growing regions in Europe, Australasia and Asia (Abelleira et al. 2015; Cunty et al.
45 2015; Vanneste et al. 2013). A phylogenetic tree generated from a multi-locus
46 sequence analysis revealed significant genetic variation between these isolates
47 which resolved into four lineages (Cunty et al. 2015). This suggests that there has
48 been a long-term association between Pfm and *Actinidia* spp. that precedes the
49 international outbreak of its more pathogenic relative Psa biovar 3.

50 Several groups have released short-read assemblies of various Pfm isolates
51 (Butler et al. 2013; Cunty et al. 2016; McCann et al. 2013). In this paper we report
52 the complete sequence of Pfm ICMP18803 isolated from Hawke's Bay, New Zealand
53 in 2010 (PRJNA167409; SAMN13855180). Genomic DNA from Pfm ICMP18803
54 was purified using a GenePure kit from Qiagen (Hilden, Germany) as described in
55 McCann et al. (2013). Purified DNA was sequenced using the Oxford Nanopore
56 minION platform to a read depth of 123 fold. The genome was assembled into a
57 single contig using Flye 2.7.1, and error-corrected with Illumina short reads using
58 Pilon 1.23 (Kolmogorov et al. 2020; Walker et al. 2014). All suggested short indel
59 corrections were accepted. The resulting single chromosome was 6,353,853 bp in
60 length. The genome was annotated using the PGAAP pipeline (Li et al. 2021).
61 Nanopore and Illumina reads were deposited to the Sequence Read Archive
62 (PRJNA167409).

63 Although isolates of Pfm presented only weak symptoms on kiwifruit, the
64 genome has 31 effectors, of which 26 are full-length and expected to be active, plus
65 secondary metabolite pathways which might contribute to pathogenicity (Tables 1
66 and 2). The PGAAP and other automatic annotation pipelines often annotate *P.*
67 *syringae* effectors incorrectly. The Pfm effector complement was manually curated
68 and annotated using the nomenclature used by Dillon et al. (2019). This was
69 achieved by mapping all effectors from *P. syringae* in supplementary file 3 from
70 Dillon et al. (2019) to the Pfm 18803 genome using the map to reference function in
71 Geneious 10 (Biomatters). Effector alleles with 100% homology to the Pfm
72 ICMP18803 genome were used to accurately annotate the start and stop sites and
73 assign the correct name of the effector family (Table 1). One previously
74 undiscovered effector that formed a new clade in the AvrPto1 phylogeny, AvrPto1r,

75 was identified. This effector was co-located with HopF1b, HopAR1e, HopAF1b and
76 HopAB1e which may be equivalent to the Exchangeable Effector Locus (EEL) in *P.*
77 *syringae* pv. *tomato* and Psa, although the EEL is in a different location from the
78 Conserved Effector Locus and the Type Three Secretion System (Alfano et al. 2000;
79 McCann et al. 2013).

80 The effector complement from different isolates or lineages within a *P.*
81 *syringae* pathovar often varies, for example within biovars of Psa (McCann et al.
82 2013). This was also the case for Pfm (Figure 1). Pfm isolates from Europe and New
83 Zealand largely had a conserved effector complement. The more recently discovered
84 isolates from Japan, which form two new lineages, however were missing up to
85 seven of these effectors (Figure 1). Examination of the regions around these
86 effectors suggested that they were lost or acquired via elements associated with
87 horizontal gene transfer.

88 *P. syringae* pathovars can produce a range of toxic compounds, some of
89 these, such as phaseolotoxin, coronatine and tabtoxin, have been well-characterised
90 (Bender et al. 1999). Different biovars of Psa have been shown to produce various
91 combinations of phaseolotoxin and coronatine (Fujikawa and Sawada 2019). Pfm
92 does not produce any of the classic *P. syringae* phytotoxins, however analysis using
93 AntiSMASH 6.0 (Blin et al. 2021) revealed nine secondary metabolite pathways
94 (Table 2). The only characterised compound with a potential role in pathogenicity is
95 mangotoxin, also known as Pseudomonas virulence factor (Carrión et al. 2012;
96 Morgan et al. 2019). Other metabolites that might have a role in epiphytic fitness
97 include various siderophores, the surfactant syringafactin and *N*-
98 acetylglutaminylglutamine, which has a role in osmotic stress (Table 2). Of interest is
99 the presence of the novel 3-thiaglutamate biosynthetic pathway, which uses a small

100 peptide as a scaffold to synthesise a novel small molecule (Ting et al. 2019). This
101 pathway has a limited distribution among *P. syringae* pathovars, with the majority of
102 BLAST hits to *actinidifoliorum* and closely related *thea* pathovars.

103 The Pfm ICMP18803 genome was annotated using the NCBI genome
104 workbench and resubmitted to GenBank (Kuznetsov and Bollin 2021). The
105 availability of long reads greatly facilitated the correct annotation of effector genes
106 and their relative location in the genome. Although Pfm is a poor pathogen of
107 kiwifruit, a number of its reasonably extensive effector complement are present in
108 Psa (McCann et al. 2013). This makes the comparison between the effector
109 complements of Pfm and Psa a useful model for understanding how bacterial
110 pathogens cause disease.

111

112 **Acknowledgments**

113 We would like to thank Dr Nikki Freed and Annabel Whibley at Auckland Genomics
114 (University of Auckland) for DNA sequencing using the MinION platform. We would
115 also like to thank Drs Joanna Bowen and Erik Rikkerink (PFR) for reading this
116 manuscript prior to publication.

117

118 **Author-Recommended Internet Resources**

119 Oxford Nanopore Technologies: <https://nanoporetech.com/>

120 Geneious (Biomatters): <https://www.geneious.com/>

121 Flye: <https://github.com/fenderglass/Flye>

122 Pilon: <https://github.com/broadinstitute/pilon>

123 AntiSMASH: <https://antismash.secondarymetabolites.org>

124

125 Table 1

Effector	locus tag	Old name	Full CDS	Chaperone	Hrp boxL
HopY1d	A237_00695	HopY1	premature stop	n/a	yes
HopBO1c	A237_00840	HopX2	yes	n/a	yes
HopAS1b	A237_02165	HopAS1	yes	n/a	yes
HopW1f	A237_04025	HopW1	yes	n/a	yes
HopR1b	A237_04035	HopR1	yes	n/a	yes
HopAG1d	A237_04175	HopAG1	yes	A237_04173	yes
HopAH1k	A237_04180	HopAH1	yes	n/a	yes (HopAG1)
HopAI1e	A237_04185	HopAI1	yes	n/a	yes (HopAG1)
HopF1b	A237_05265	HopF1	yes	A237_05260	yes
HopAR1e	A237_05275	HopAR1	yes	n/a	yes
AvrPto1r	A237_05285	N/A	premature stop	n/a	yes
HopAF1b	A237_05320	HopAF1	yes	n/a	yes (HopAB1)
HopAB1e	A237_05325	HopAY1	yes	n/a	yes
HopN1a	A237_06825	HopN1	yes	A237_06820	yes
HopAA1d	A237_06835	HopAA1	yes	n/a	yes
HopM1f	A237_06850	HopM1	yes	A237_06845	yes
AvrE1d	A237_06865	AvrE1	yes	A237_06855	yes
HopX1d	A237_07010	HopX1	yes	n/a	yes (HrpK1)
HopAZ1a	A237_09620	HopAZ1	yes	n/a	yes
HopAH1a	A237_11260	HopAH2-1	yes	n/a	no
HopAH1i	A237_11265-75	HopAH2-2	Tn inactivated	n/a	no
HopW1c	A237_11645	HopW1	yes	n/a	yes
HopAB1i	A237_12225	HopAB3	yes	n/a	yes
HopE1a	A237_18035	HopE1	yes	n/a	yes
HopAF1f	A237_20845	HopAF1-2	yes	n/a	yes
HopS2c	A237_23320	HopS2	yes	A237_23325	yes
HopT1c	A237_23330	HopT1	yes	n/a	yes (HopO2b)
HopO1a	A237_23335	HopO1	yes	n/a	yes (HopO2b)
HopO2b	A237_23340-50	HopS1	Tn inactivated	A237_23355	yes
HopI1c	A237_23700	HopI1	premature stop	n/a	yes
HopA1a	A237_26495	HopA1	yes	A237_26490	yes

126

127 Table 1. The effector complement of *Pseudomonas syringae* pv. *actinidifoliorum*
128 ICMP18803. Effectors were identified using the comprehensive *P. syringae* effector
129 library compiled by Dillon et al. (2019). These genes were mapped to the
130 *Pseudomonas syringae* pv. *actinidifoliorum* genome in Geneious
131 (<https://www.geneious.com>) using the map to reference function. This was used to
132 determine the correct stop and start sites and to assign the correct family
133 designation for each effector.

134

135 Table 2

136

Antismash ID	Gene loci	location	Function/product	Reference
1	A237_02300-55	512957-525196	Pyrrolo-quinoline-quinone	(Schnider et al. 1995)
2	A237_13620-75	3078634-3092789	Achromobactin	(Berti and Thomas 2009)
3	A237_13780-805	3114737-3146952	Syringafactin	(Berti et al. 2007)
4	A237_15210-90	3468871-3507069	Yersinabactin	(Jones et al. 2007)
5	A237_17675-780	4049667-4106763	Pyoverdine	(Jones et al. 2007)
6	A237_17945-90	4138999-4150353	3-thiaglutamate	(Ting et al. 2019)
7	A237_20270-90	4633641-4638941	N-acetylglutaminylglutamine	(Beattie et al. 2016)
8	A237_25245-340	5767408-5786589	Unknown	
9	A237_27070-85	6181744-6187662	Mangotoxin	(Carrión et al. 2012)

137

138 Table 2. List of biosynthetic pathways identified using AntiSMASH.

139

Figure 1

MLST UPGMA tree	Isolate	HopY1d_1	HopB01c_1	HopAS1b_1	HopW1f_1	HopR1b_1	HopAG1d_1	HopAH1k_1	HopAI1e_1	HopF1b_1	HopAR1e_1	AvrPto1r_1	HopAF1b_1	HopAB1e_1	HopN1a_1	HopAA1d_1	HopM1f_1	AvrE1d_1	HopX1d_1	HopAZ1a_1	HopAH1a_1	HopAH1i_1	HopW1c_1	HopE1a_1	HopAF1f_1	HopS2c_1	HopT1c_1	HopO1a_1	HopO2b_1	Hop1c_1	HopA1a_1		
	L1a-ICMP18803	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		
	L1b-ICMP19497	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100			
	L2-CFBP8043	98.2	100	99.1	99.3	99.1	98.4	93.7	99	100	100	100	100	99.95	99.9	99.8	100	99.7	99.0	99.8	100	99.1	99.8	99.9	99.7	100	97.9	97.9	99.9	100	98	94.0	99.6
	L4-CFBP8160	98.2	99.9	99.1	99.3	99.1	98.4	93.7	99	100	100	100	100	99.95	99.9	99.8	99.7	99.8	99.0	99.8	100	99.1	99.8	99.7	99.7	100	97.9	96.8	99.9	99.9	99	94.0	99.5
	L3-ICMP18807	98.4	99.8	99.7	100	99.7	100	100	100	100	100	100	100	100	100	99.9	98.9	99.8	99.1	99.9	100	99.4	99.9	99.7	99.8	99.7	98.6	100	99.9	100	100	94.0	99.9
	L5-MAFF212156	96.7	0.0	98.4	99.3	98.9	96.6	98.1	99	0	0	0	0	0	99.6	99.7	99.6	98.0	99.9	0	98.9	99.5	99.7	99.5	99.5	98.8	100	99.8	99.7	99	96.1	0	
	L6-MAFF212171	97.1	0.0	98.3	99.3	98.8	95.2	92.1	99	0	0	0	0	0	99.6	99.6	99.5	98.8	99.9	0	99.0	99.4	99.6	99.3	0	98.4	97.2	99.9	100	100	95.5	99.7	

Figure 1. Comparison of the effector complement from different lineages of *Pseudomonas syringae* pv. *actinidifoliorum*. BLAST was used to search representative genomes from each lineage of *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) with every effector from Pfm ICMP18803. The first column is an MLST tree using the core genes *gyrB*, *ropD*, *gapA*, *pgi*, *acnB*. The percentage homology at the nucleotide level is given for each result. Green boxes indicate a full-length coding sequence, and red boxes indicate the presence of a premature stop codon or a transposon insertion. Orange boxes indicate that it could not be ascertained whether the gene could produce a full-length protein, usually because the gene spanned two contigs in the short read assembly.

References

Abelleira, A., Ares, A., Aguin, O., Peñalver, J., Morente, M. C., López, M. M., Sainz, M. J., and Mansilla, J. P. 2015. Detection and characterization of *Pseudomonas syringae* pv. *actinidifoliorum* in kiwifruit in Spain. *J Appl Microbiol* 119:1659-1671.

Alfano, J. R., Charkowski, A. O., Deng, W. L., Badel, J. L., Petnicki-Ocwieja, T., van Dijk, K., and Collmer, A. 2000. The *Pseudomonas syringae* Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. *Proc Natl Acad Sci U S A* 97:4856-4861.

Beattie, G.A., Chen, C., Nielsen, L. and Freeman, B.C. (2016). Interstrain Variation in the Physiological and Transcriptional Responses of *Pseudomonas Syringae* to Osmotic Stress. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, F.J. de Bruijn (Ed.). <https://doi.org/10.1002/9781119004813.ch62>.

Bender, C. L., Alarcón-Chaidez, F., and Gross, D. C. 1999. *Pseudomonas syringae* phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. *Microbiol Mol Biol Rev* 63:266-292.

Berti, A. D., Greve, N. J., Christensen, Q. H., and Thomas, M. G. 2007. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of *Pseudomonas syringae* pv. *tomato* DC3000. *J Bacteriol* 189:6312-6323.

Berti, A. D., and Thomas, M. G. 2009. Analysis of achromobactin biosynthesis by *Pseudomonas syringae* pv. *syringae* B728a. *J Bacteriol* 191:4594-4604.

Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, Marnix H., and Weber, T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic Acids Research* 49:W29-W35.

Butler, M. I., Stockwell, P. A., Black, M. A., Day, R. C., Lamont, I. L., and Poulter, R. T. 2013. *Pseudomonas syringae* pv. *actinidiae* from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. *PLoS One* 8:e57464.

Carrión, V. J., Arrebola, E., Cazorla, F. M., Murillo, J., and de Vicente, A. 2012. The mbo operon is specific and essential for biosynthesis of mangotoxin in *Pseudomonas syringae*. *PLOS ONE* 7:e36709.

Chapman, J. R., Taylor, R. K., Weir, B. S., Romberg, M. K., Vanneste, J. L., Luck, J., and Alexander, B. J. 2012. Phylogenetic relationships among global populations of *Pseudomonas syringae* pv. *actinidiae*. *Phytopathology* 102:1034-1044.

Cunty, A., Cesbron, S., Briand, M., Carrère, S., Poliakoff, F., Jacques, M. A., and Manceau, C. 2016. Draft genome sequences of five *Pseudomonas syringae* pv. *actinidifoliorum* strains isolated in France. *Braz J Microbiol* 47:529-530.

Cunty, A., Poliakoff, F., Rivoal, C., Cesbron, S., Saux, M. L., Lemaire, C., Jacques, M. A., Manceau, C., and Vanneste, J. L. 2015. Characterization of *Pseudomonas syringae* pv. *actinidiae* (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: *Pseudomonas syringae* pv. *actinidifoliorum* pv. nov. *Plant Pathology* 64:582-596.

Dillon, M. M., Almeida, R. N. D., Laflamme, B., Martel, A., Weir, B. S., Desveaux, D., and Guttman, D. S. 2019. Molecular evolution of *Pseudomonas syringae* type III secreted effector proteins. *Front Plant Sci* 10:418.

Ferrante, P., and Scorticini, M. 2015. Redefining the global populations of *Pseudomonas syringae* pv. *actinidiae* based on pathogenic, molecular and phenotypic characteristics. *Plant Pathology* 64:51-62.

Fujikawa, T., and Sawada, H. 2019. Genome analysis of *Pseudomonas syringae* pv. *actinidiae* biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine. *Scientific Reports* 9:3836.

Jayaraman, J., Yoon, M., Applegate, E. R., Stroud, E. A., and Templeton, M. D. 2020. AvrE1 and HopR1 from *Pseudomonas syringae* pv. *actinidiae* are additively required for full virulence on kiwifruit. *Molecular Plant Pathology* 21:1467-1480.

Jones, A. M., Lindow, S. E., and Wildermuth, M. C. 2007. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen *Pseudomonas syringae* pv. *tomato* DC3000: synthesis, regulation, and impact on tomato and *Arabidopsis* host plants. *J Bacteriol* 189:6773-6786.

Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., and Pevzner, P. A. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. *Nature Methods* 17:1103-1110.

Kuznetsov, A., and Bollin, C. J. 2021. NCBI genome workbench: desktop software for comparative genomics, visualization, and Genbank data submission. *Methods Mol Biol* 2231:261-295.

Li, W., O'Neill, K. R., Haft, D. H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F., Derbyshire, M. K., Durkin, A. S., Gonzales, N. R., Gwadz, M., Lanczycki, C. J., Song, J. S., Thanki, N., Wang, J., Yamashita, R. A., Yang, M., Zheng, C., Marchler-Bauer, A., and Thibaud-Nissen, F. 2021. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. *Nucleic Acids Res* 49:D1020-d1028.

McAtee, P. A., Brian, L., Curran, B., van der Linden, O., Nieuwenhuizen, N. J., Chen, X., Henry-Kirk, R. A., Stroud, E. A., Nardozza, S., Jayaraman, J., Rikkerink, E. H. A., Print, C. G., Allan, A. C., and Templeton, M. D. 2018. Re-programming of *Pseudomonas syringae* pv. *actinidiae* gene expression during early stages of infection of kiwifruit. *BMC Genomics* 19:822.

McCann, H. C., Rikkerink, E. H. A., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Andersen, M. T., Gleave, A. P., Haubold, B., Wohlers, M. W., Guttman, D. S., Wang, P. W., Straub, C., Vanneste, J. L., Rainey, P. B., and Templeton, M. D. 2013. Genomic analysis of the kiwifruit pathogen *Pseudomonas syringae* pv. *actinidiae* provides insight into the origins of an emergent plant disease. *PLoS Pathog* 9:e1003503.

Morgan, G. L., Kretsch, A. M., Santa Maria, K. C., Weeks, S. J., and Li, B. 2019. Specificity of nonribosomal peptide synthetases in the biosynthesis of the *Pseudomonas* virulence factor. *Biochemistry* 58:5249-5254.

Schnider, U., Keel, C., Voisard, C., Défago, G., and Haas, D. 1995. Tn5-directed cloning of pqq genes from *Pseudomonas fluorescens* CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. *Appl Environ Microbiol* 61:3856-3864.

Ting, C. P., Funk, M. A., Halaby, S. L., Zhang, Z., Gonen, T., and van der Donk, W. A. 2019. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. *Science* 365:280-284.

Vanneste, J. L., Yu, J., Cornish, D. A., Tanner, D. J., Windner, R., Chapman, J. R., Taylor, R. K., Mackay, J. F., and Dowlut, S. 2013. Identification, virulence, and distribution of two biovars of *Pseudomonas syringae* pv. *actinidiae* in New Zealand. *Plant Dis* 97:708-719.

Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., and Earl, A. M. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 9:e112963.