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Abstract

Accurately predicting emergence from disorders of consciousness (DoC) after acute brain injury
can profoundly influence mortality, acute management, and rehabilitation planning. While recent
advances in functional neuroimaging and stimulus-based EEG offer the potential to enrich shared
decision-making, their procedural sophistication and expense limit widespread availability or
repeated performance. We investigated continuous EEG (cEEG) within a passive, "resting-state"
framework to provide continuously updated predictions of DoC recovery at 24-, 48-, and 72-hour
prediction horizons. To develop robust, continuous prediction models from a large population of
patients with acute brain injury (ABI), we leveraged a recently described pragmatic approach
transforming Glasgow Coma Scale assessment sub-score combinations into frequently assessed
DoC diagnoses: coma, vegetative state, minimally conscious state with or without language, and
post-injury confusional or recovered states. We retrospectively identified consecutive patients
undergoing cEEG following acute traumatic brain injury (TBI), subarachnoid hemorrhage (SAH),
or intracerebral hemorrhage (ICH). Models continuously predicting DoC diagnosis for multiple
prediction horizons were evaluated utilizing recent clinical assessments with or without cEEG
information, which comprised a comprehensive EEG feature set of 288 time, frequency, and time-
frequency characteristics computed from consecutive 5-minute EEG epochs, with 6 additional
features capturing each EEG feature’s temporal dynamics. Features were fed into a predictive
model developed with cross-validation; the ordinal DoC diagnosis was discriminated using an
ensemble of XGBoost binary classifiers. For 201 ABI patients (46 TBI, 140 SAH, 15 ICH patients
comprising 27,280 cEEG-hours with concomitant clinical assessments), cEEG-augmented models
accurately predicted the future DoC diagnosis at 24 hours (one-vs-rest AU-ROC, 92.4%;
weighted-F1 84.1%), 48 hours (one-vs-rest AU-ROC=88%, weighted-F1=80%) and 72 hours
(one-vs-rest AU-ROC=86.3%, weighted-F1=76.6%). Models were robust to utilizing different
ordinal cut-points for the DoC prediction target and evaluating additional models derived from
specific sub-populations using a confound-isolating cross-validation framework. The most robust
features across evaluation configurations included Petrosian fractal dimension, relative power of
high to low (gamma-beta to delta-alpha) EEG frequency spectra, energy within the 12-35 Hz
frequency band in the short-time Fourier transform domain, and wavelet entropy. The cEEG-

augmented model exceeded the performance of models using preceding clinical assessments,
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continuously predicting future DoC diagnosis with one-vs-rest AU-ROC in the range of 84.3-
92.4% while utilizing approaches to limit overfitting. The proposed continuous, resting-state cEEG
prediction method represents a promising tool to predict DoC emergence in ABI patients. Enabling
these methods prospectively would represent a new paradigm of continuous prognostic monitoring

for predicting coma recovery and assessing treatment response.
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Introduction

Caring for patients with coma and other disorders of consciousness (DoC) following acute brain
injury (ABI) involves high-stakes decision-making compounded by diagnostic and prognostic
uncertainty. Relying on clinical behavior alone to measure consciousness can result in
misdiagnosis,' leading to premature withdrawal of life-sustaining therapy or limitation of
rehabilitative treatments.>* While functional MRI,>® stimulus-based EEG,®*!! and transcranial
magnetic stimulation-EEG (TMS-EEG)'*!? have been demonstrated to detect consciousness and
predict recovery, these tools require highly structured stimulus-based paradigms, and thus are not
widely available, easily performed at scale, or repeated at a frequency required for continuous

prediction.

Tools for continuously predicting coma recovery could empower clinicians and family members
with updated prognostic information during the dynamic period of early recovery and secondary
complications. Continuous EEG (cEEG) is a tool that offers advantages by virtue of its high
temporal resolution and underlying representation of functional brain networks.!* As a result,

cEEG has been widely utilized after ABI for cross-sectional diagnosis of DoC,!>

19,20 21,22

encephalopathy,!”!® language dysfunction, and monitoring treatment response or
neurologic deterioration.’>** High-density cEEG has been employed for many of these
applications,”*® but has practical limitations associated with numerous collocating channels in
the setting of invasive neuromonitoring devices, drains, or cranial wounds, which prevent its use
in the intensive care unit (ICU) setting. Where low-density scalp coverage has been examined,”
no significant association was found between low-density EEG network measures and good
outcomes at 3-6 months after injury, although EEG measures of functional connectivity have
demonstrated promise in predicting poor outcomes in small cohorts of patients with postanoxic

COIIlEl.30

We sought to develop models utilizing resting-state cEEG for predicting emergence from DoC
continuously. Individual EEG features, such as alpha power and variability,*!"!* have demonstrated
promise for the cross-sectional classification of unresponsive wakefulness syndrome (UWS)
versus minimally conscious state (MCS). We specifically aimed to develop cEEG prediction
models robust to ABI etiology, age, and the time following admission, while advancing on prior

investigations by incorporating ordinal rather than binary predictions, enabling continuous
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prediction, and including model evaluation metrics beyond the area under a receiver operating
characteristic (AU-ROC) curve.'>" The latter is essential in highly imbalanced classes because
the AU-ROC curve may still indicate relatively high performance while misclassifying most
samples from a minority class. To accomplish this, we evaluated the incremental benefit of cEEG
over information from prior neurologic assessments among 201 ABI patients undergoing cEEG
over a 3-year period. We developed and evaluated a multiclass, ordinal prediction model with a
rolling window to facilitate predicting consciousness levels at multiple time horizons, assessing

robustness using a confound-isolating cross-validation approach.

Methods

Study design

We performed a retrospective, single-center study of patients with ABI of different etiologies
undergoing cEEG during clinical bedside monitoring of neurologic status in the Neuroscience
ICU. We specified that models be constructed and tested for predicting future consciousness levels
at multiple future time horizons and categorized as an ordinal outcome (i.e., coma, VS/UWS,
minimally conscious state with or without language (MCS+ and MCS-), post-injury confusional
state (PICS), and recovered from PICS (rPICS)). We specified sensitivity analyses examining

different ordinal cut points in the level of consciousness.

Study participants, environment, and clinical measures

We included patients aged 18 or greater, admitted to the Massachusetts General Hospital
Neurosciences Intensive Care Unit between April 2016 to October 2018 with a diagnosis of
traumatic brain injury (TBI), aneurysmal or non-traumatic subarachnoid hemorrhage (SAH), or
intracerebral hemorrhage (ICH) who had cEEG monitoring?. We restricted the analysis to patients
for whom EEG was initiated within 14 days of admission, recorded for at least 35 minutes, and for
whom both the cEEG data and nurse-documented clinical examinations were available from our
institution's electronic data warehouse. We augmented this cohort with additional patients

previously enrolled in a cohort study (May 2013-April 2016) in which these nurse-documented
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examinations were not yet populated in the electronic data warehouse but were instead extracted
by manual chart review. Patients with other types of brain injuries, such as anoxic-ischemic injury
from cardiac arrest, were excluded unless having TBI, comorbid SAH, or ICH. The institutional
review board approved this retrospective study and determined that it was exempt from obtaining
participants' informed consent. Per clinical standard, cEEG was performed using the 10-20

International Standard (21 electrodes, 256 or 512 Hz sampling rate).

According to our institutional guidelines for patients with these conditions, the Glasgow Coma
Scale (GCS) score*® was measured for patients with these conditions approximately every 2 hours;
more frequent assessments were indicated for patients during periods of heightened risk, or less
frequently if a patient was nearing transfer out of the intensive care environment. According to our
institutional critical care nursing standards of practice, the clinical standard of care was to examine
patients during sedation interruption, waiting between 5 and 20 minutes based on the nurse's

judgment.

Prediction framework

Given an EEG time series with a lookback history of length T, we specified the objective to
continuously predict the consciousness level of an ABI patient at a prediction horizon of H with a
S-minute stride. This is a rolling prediction, where each epoch and corresponding consciousness
level (i.e., prediction target) were shifted forward by 5 minutes through time. We considered T <
14 hours to provide the flexibility to utilize varying-length EEG recordings for up to 14 hours
based on their availability at a time. For H, three prediction horizons of 24, 48, and 72 hours were

determined to assess the effects of the prediction horizon on the performance (see Figure 1).

EEG feature engineering

For each patient, we utilized a longitudinal bipolar montage of scalp EEG channels containing 18
bipolar channels consisting of the following pairs: Fp1-F7, F7-T3, T3-T5, T5-O1, Fp1-F3, F3-C3,
C3-P3, P3-0O1, Fp2-F4, F4-C4, C4-P4, P4-02, Fp2-F8, F8-T4, T4-T6, T6-02, Fz-Cz, and Cz-Pz.

For preprocessing, a Butterworth bandpass filter with lower and higher cutoff frequencies of 0.5-

45 Hz was applied, as well as a notch filter to remove both 60-Hz electrical noise and its 120-Hz
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harmonic. Data were segmented into epochs of 5 minutes with no overlap. Reported analyses were
performed on these 5-minute epochs unless otherwise stated. To automatically identify possible
artifactual epochs, we applied a simple rule-based method using the absolute value of EEG voltage;
if any absolute value in the epoch exceeded 250 uV, the epoch was considered an artifact.’* EEG-
based features consisted of 16 features from each of 18 bipolar channels, extracted from each 5-

minute epoch. Candidate EEG features included the following:

Petrosian fractal dimension

There are numerous methods in a pure math setting to gauge fractal dimensions, e.g., Minkowski
and Hausdorf.*> However, such spatial analyses are not appropriate for time series with self-
affinity properties due to either the lack of well-defined special characteristics in one-dimensional
signals or their relatively high computational complexity. We, therefore, utilized Petrosian's

algorithm?®*’ to compute the time series fractal dimension as follows

logion

n
logion + logron(G 152N,

FDpetrosian =

where n and N, are the length of the epoch and the number of sign changes in the first derivative
of the EEG, respectively. The Petrosian fractal dimension can be considered a measure of

complexity where the more complex EEG epoch leads to a higher value of its FDpgtrosian-

Power spectral analysis

In many EEG classification or prediction studies, power spectral analysis in specific frequency
bands is used alone or combined with other features in various tasks.’®3° We extracted three

features from this domain. For power spectral density estimation, Welch's method was utilized.*’

The first feature is the relative power of 8; : i;, inspired by da Silveira et al.,*! where S, ¥, &, and

a indicate the frequency bands between 12-35, >35, 1-4, and 8—12 Hz, respectively. The second
and third features in this domain are the decay of the EEG power spectrum.’®* We performed
regression log,oPSD = alog,,w between 4-8 and 8-12 Hz frequency bands to characterize the
decay of the EEG power spectrum, a. Here, PSD and w indicate the power spectral density and

frequency bin in Hz, respectively.
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Short-Time Fourier transform analysis

Short-Time Fourier Transform (STFT) characterizes time-frequency power and phase information
of nonstationary signal changes over time. We computed 10 features from this domain. For STFT
calculation, Welch's method was used with a 9-second Hann window and a 6-second overlap. Also,
we computed the logarithm of the amplitude spectrum as it can provide a more detailed structure

while preserving the relative relation in the spectrum.*?

The first two features are the total energy between the 4-8Hz and 12-35Hz frequency bands in the
STFT domain as below

w2

Evi-w2Hz = ZlPSDlz

wl

Furthermore, we extracted 8 features by tracking the prominent frequency components and their
time intervals within each epoch. This is inspired by music recognition algorithms, which distill
music samples into fingerprints for matching and searching.*® For this purpose, first, the prominent
peaks were identified in each STFT time segment. These peaks indicate the highest frequency
powers in the corresponding time interval. To avoid identifying too many peaks and focus on the
most prominent ones, we applied a constraint to our search by specifying a minimum distance (100
bins) between the peaks. Once the peaks in all the time segments were obtained, the four most
significant peaks were chosen. In addition to the four most frequent dominant frequencies, the
medians of their time intervals are used as features. We computed the median of their time intervals
when the same frequency component is the dominant peak in several time segments. This dynamic
approach captures the most informative frequency components and their time relations from a

broad spectrum rather than focusing on specific frequency bands.

Wavelet analysis

We extracted two features using discrete wavelet transform. We used Daubechies-4 wavelets with
a decomposition level of 7. These features are based on the approximation coefficients in level 7
and detail coefficients from levels 1 to 7. The first feature is Wavelet entropy, computed as

follows.** 46
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Wavelet Entropy = — Z pilog(p;)
j

A

— J — k=11"J]

where p; = e = I >
total Zj2k=1lcj(k)|

, and ¢; (k) is decomposition coefficients at scale j.

The correlation between sleep spindles and recovery of consciousness has been investigated in
several studies, which is the underlying motivation for extracting the second feature in this
domain.*’>° The frequency range associated with fast and slow spindles is 12-15 Hz.>! We
therefore filtered the EEG signal with a passband frequency range of approximately 8-16 Hz
(which may slightly change based on the sampling frequency) using wavelet decomposition.
Briefly, filtering using discrete wavelet transform first decomposes the signal into approximation
and detail coefficients, zeros out the details coefficients at some chosen scales, and finally
assembles them back into the original signal without affecting the general shape of the signal. Once
the desired passband filtering was conducted, the frequency component with maximum power

spectral density was used as a feature.

Multiclass, ordinal DoC level prediction targets

To develop continuous prediction models from a large population, we required frequent clinical
assessments over a prolonged duration. We, therefore, leveraged a recently described pragmatic
approach®? transforming repeated clinical assessments of GCS sub-scores combinations into

frequently assessed DoC diagnoses: coma, VS/UWS, MCS+, MCS-, PICS, and rPICS.

Overall, we examined three targets with specific cut-points utilizing these measures. The primary
ordinal prediction target (Target I) classified DoC as poor (coma), moderate (VS, MCS-, MCS+),
and good (PICS, rPICS). In two sensitivity analyses, we examined different ordinal cut-points;
Target II utilized cut-points as poor (Coma, VS/UWS), moderate (MCS-, MCS+), and good (PICS,
rPICS), and Target III utilized cut-points based on the raw GCS scores: poor (total GCS= 3-8),
moderate (total GCS=9-12), and good (total GCS=13-15).
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Continuous, ordinal prediction model

Our classification approach leverages discriminative models for continuous prediction of
consciousness states, i.e., DoC diagnoses stratified by the criteria above, by (1) facilitating the
temporal dependencies in varying length sequences, i.e., utilizing varying length historical data
based on the availability of collected cEEG up to 14 hours, and (2) exploiting the ordering of

information in the prediction targets rather than treating them as nominal classes.

Each 5-minute raw EEG data was transformed into a 16x18 feature space, where 16 represents the
number of EEG characteristics discussed in the previous section, and 18 indicates the number of
bipolar channels. Such feature space does not convey temporal information and time dependencies
of adjacent epochs. To add the temporal dimension, 6 statistical features, i.e., maximum, minimum,
mean, variance, 95% percentile, and interquartile range, were computed over the lookback period
(up to the 14 preceding hours). This transformed each 5-minute EEG epoch into a (16x18x6) 1728-
dimensional feature space with the temporal information to predict its future consciousness level,
capturing each feature's temporal dynamics and permitting discriminative methods, such as
XGBoost, for sequence prediction problems. The same approach was applied to the consecutive

total GCS score and its three subscale scores, i.e., 4x6 (Figure 1A).

The prediction targets, i.e., poor, moderate, and good consciousness levels, have a natural ordering
which should be used to conduct a more robust analysis. However, standard classification
algorithms do not often utilize ordering information in ordinal prediction and classification
problems, treating the range of classes as a set of unordered values. We used an ensemble of
XGBoost>® classifiers to account for the inherent order between classes using a previously
proposed method.* For the three-class classification problem, two binary XGBoost classifiers
were trained. The first binary classifier was trained to estimate the probability of belonging to
moderate and good classes, Pr(target > poor). The second classifier was trained to estimate the
probability of belonging to the good class, Pr(target > moderate). Finally, the following

ensemble rule was employed to generate the final prediction labels:
Pr(poor) = 1 — Pr(target > poor)
Pr(moderate) = Pr(target > poor) - Pr(target > moderate)

Pr(good) = Pr(target > moderate)
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The above approach considers the ordering information and breaks down the three-class
classification problem into two binary ones. We used an ensemble of 250 decision trees for each
XGBoost model. No hyperparameter tuning was conducted for training to avoid the chance of
overfitting, and the default values were set with learning rate=0.3, gamma=0, maximum depth=6,
and the minimum child weight=1. A random under-sampling method was performed in the training

phase to mitigate class imbalance.

Model evaluation metrics

Models were evaluated for the following six metrics: accuracy, weighted- and macro-F1 scores,
one-vs-one and one-vs-rest AU-ROC, and Cohen kappa measures.’®> Furthermore, we reported
confusion matrices detailing the magnitude of difference when a prediction deviated from actual.
As patient-wise k-fold cross-validation was used for model assessment to avoid overfitting, we

report the average of the achieved performance on the k held-out unseen sets.
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Figure 1. Schematic pipeline of the developed prediction approach using resting-state EEG
recordings in acute brain injury patients. Future consciousness is continuously predicted using
historical GCS sub-scores as a base model and historical GCS sub-scores in addition to EEG
features in the augmented model, utilizing up to 14 hours of lookback data, depending on
availability. (A) The general framework of the rolling-prediction approach with three prediction
horizons of 24, 48, and 72 hours. L indicates the number of the rolling window with the stride of
5 minutes. (B) The block diagram of the proposed approach consists of preprocessing, feature
extraction, and a prediction model. Six features are computed along the lookback dimension to
capture the temporal dynamics of EEG features. The extracted features are fed into an ordinal
prediction model formed with two XGBoost binary classifiers. The generated predictions labels
poor, moderate, and good are then mapped into three ordinal target scales with clinically relevant
cut-points defined based on disorders of consciousness (Targets I & II) and total GCS score (Target
II). MCS, minimally conscious state; PICS, post-injury confusional state; rPICS, recovered from
post-injury confusional state.

Selection of less-confounded features

We utilized the XGBoost feature importance values, computed as importance by information gain,
for feature selection.>® While various techniques can quantify the relative effect of each feature on
the prediction, such as Shapley additive explanations or filter methods,’’ we chose this method
as it performs the feature ranking and training in parallel, offering a relatively lower computational

complexity for ranking 1728 features.
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Although the main objective of this study was the "prediction" of consciousness level (and not
causal interpretation), we took specific caution to diminish the effect of spurious associations on
the interpretation of feature importance. As such, we utilized a previously introduced data
partitioning approach®® to analyze the potential confounding variables in our feature relevance
explanation. This "confound-isolating cross-validation" approach evaluates the feature importance
where the confounding effect is absent rather than regressing out the confounding variables
separately from each feature as is typical of classical statistical methods. The core idea is to choose
jointly selected features across mutually exclusive partitions of data, where each partition is unique

from the other by containing a dissimilar confounder distribution.

One example of evaluating robustness with confound-isolating cross-validation is for the potential
confounder of etiology, i.e., TBI, SAH, or ICH. Here, the top invariant features would be
calculated distinctly across each of these three etiologies. This approach ensures that feature
importance is not derived by confounders that separately explain the outcome. To handle multiple
confounders, we partitioned the dataset into naturally occurring strata, where each stratum is an
observed combination of the confounders. This approach was taken to avoid bias due to the
association between confounders and the prediction features. To address the natural occurrence
that some strata may contain only a few samples, leading to underfitting the feature ranking model,
we utilized patient-wise cross-validation. Specifically, the dataset was partitioned into strata, and
we used all the strata except one to obtain the feature importance. We continued this process until
all the strata were left out once (Figure 2A). This guaranteed enough data for the training feature
ranking model and isolated one confounding stratum at each fold, albeit at the cost of k times
training, where k indicates the number of strata. First, the 20 features with the highest importance
from each of the two XGBoost binary classifiers were picked to find the relevant features. The
built-in feature importance of the XGBoost was used for computing feature importance. Then, the
common features among them were chosen as the candidate invariant features. The candidate
features were fed into the feature selection approach discussed above (Figure 2) to identify the
mutual features across all the confounder strata. This procedure was performed for all the
determined prediction targets and horizons. While this approach evaluates models without
confounders to ensure robustness in populations with any proportion of the confounder (e.g.,
diagnosis), risks of the approach include the potential elimination of signal and the potential for

low sample size in individual partitions utilized for these deconfounding assessments.
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Our study focused on assessing the population by deconfounding three potential confounder
variables based on the data distribution: etiology (TBI, SAH, and ICH), age (<45, 46-65, and >65
years old), and the current monitoring time of the rolling window (<4, >4 days following
admission), 3x3x2=18 strata. Other unseen confounders, such as sedation, could affect the feature
analysis. However, the purpose here was not to assess causation by exhaustively eliminating strata,
but rather to promote robustness by identifying less-confounded features at the cost of each

confounder stratum, further limiting the cohort size within each fold.

Data availability

The data used in this study are available upon reasonable request, including institutional approval.

Software

All analyses were conducted using the Python programming language. The developed feature
extraction and classification are built on top of the open-source software libraries PyWavelets,>

SciPy,%° NumPy,®' and XGBoost.”
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Figure 2. Evaluation for robustness and confounding. (A) Overview of the utilized
framework for confound-isolating cross-validation. The three studied confounding variables are
age (years old), diagnosis, and time to admission (days). Time refers to the time from hospital
admission to EEG recording. (B) EEG channels from which the selected features were computed
are represented for each target. The channels that were not among the selected ones are shown in
white color. Channels utilized once and more than once are indicated with blue and dark blue
colors, respectively. Subfigures (i), (ii), and (iii) illustrate the selected channels for prediction
Targets I, II, and III, respectively. TBI, traumatic brain injury

Results

Patient characteristics

27,280 hours of EEG recordings from 201 distinct patients with TBI, SAH, and ICH (n=46, n=140,
n=13, respectively) met inclusion criteria. EEG data from nine patients with DoC were unusable
either due to technical difficulties or insufficient data for the prespecified prediction horizons.
Detailed patient characteristics, including the duration of recordings, are shown in Table 1. Of
note, the duration of cEEG for SAH patients was longer than for TBI and ICH patients due to an

institutional guideline for cEEG monitoring through the window of vasospasm or delayed cerebral
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ischemia risk, although the local institutional guidelines also recommend at least 24 hours of EEG

for patients with TBI and ICH.

Table 1. Patient Characteristics.

Patient Characteristic (1;1;143116) (nS=AlfIIO) (;SFS)

Age (years), mean+SD 61.5+19.44 58.47 £ 13.48 64.93 £11.67
Age (years), median [IQR] 59.5 [46-80.5] 59 [50-67] 64 [59.5-72]
Weight (kg), mean+SD 74.76 +0.45 74.99 +0.41 70.93 + 14.24

Weight (kg), median [IQR] 70 [64.25-83.75] 72 [68-76] 70 [65.5-78]
Sex (female), n (%) 13 (28.26%) 108 (77.15%) 6 (40%)
Latency to EEG initiation (days from admission), 086 + 1.64 082 4155 153 + 1.54
mean+SD
EEG duration (hours), mean+SD 43.67 £42.87 149.51 £70.14 61.88 +40.92
EEG duration (our, mdian 1QR) 7055 ISAISDLIS.  SLAl [0S
Initial GCS score, mean+SD 8.43 £4.38 9.96 +3.81 7.8+4.41
Initial GCS score, median [IQR] 8 [7-14] 10 [5-13] 6[4.25-12]
Discharge GCS score, mean+SD 11.69 +4.24 12.39 +£3.35 11.06 +4.44
Discharge GCS score, median [IQR] 14 [10-15] 14 [9-15] 14 [8.25-15]
Initial DoC level, n (%)
Coma 10 (21.73%) 9 (6.42%) 3 (20%)
VS/UWS 0 (0%) 2 (1.42%) 2 (13.33%)
MCS - 6 (13.04%) 30 (21.42%) 6 (40%)
MCS + 13 (28.26%) 24 (17.14%) 1 (6.66%)
PICS 13 (28.26%) 28 (20%) 1 (6.66%)
rPICS 4 (8.69%) 47 (33.57) 2 (13.33%)
Discharge DoC level, n (%)
Coma 9 (19.56%) 8 (5.71%) 4 (26.66%)
VS/UWS 3 (6.52%) 15 (10.71%) 1 (6.66%)
MCS - 5 (10.86) 15 (10.71%) 3 (20%)
MCS + 6 (13.04) 16 (11.42%) 3 (20%)
PICS 15 (32.60%) 22 (15.71%) 3 (20%)
rPICS 8 (17.39) 64 (45.71%) 1 (6.66%)

PICS, confusional state; GCS, Glasgow Coma Scale score; MCS-, minimally conscious state without
language function; MCS+, minimally conscious state with language function, rPICS, recovered from PICS;
TBI, traumatic brain injury, VS/UWS, vegetative state/unresponsive wakefulness syndrome

Model performance for ordinal prediction targets and time horizons

To examine whether the EEG markers could improve discrimination of different consciousness
levels, we compared their performance with the recent GCS in a patient-wise standard 5-fold cross-

validation scheme across different prediction targets and horizons.

The developed approach obtained the highest performance when EEG features were added to the

base model of recent GCS scores (


https://doi.org/10.1101/2022.09.30.510334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510334; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2). This added value was present across all types of prediction targets and horizons. More
specifically, for Target I the obtained one-vs-rest AU-ROC curve and macro-F1, respectively, were
92.4% and 70.2% at 24h, 88% and 64.8% at 48h, and 86.3% and 61.5% at 72h. For Target II, the
obtained one-vs-rest AU-ROC curve and macro-F1 were 92.4% and 75.7%, at 24h 88% and 70.2%
at 48h, and 85.3% and 63.3% at 72h. Finally, for Target III, one-vs-rest AU-ROC curve and macro-
F1 were 90.8% and 74% at 24h, 85.7% and 65% at 48h, and 84% and 61% at 72h. Detailed
evaluations of cEEG, historical GCS, and their combinations at different prediction horizons are

shown in Supplementary Tables S1-S3.

Table 2. Performance of multiclass prediction for various time horizons and targets in a 5-
fold cross-validation scheme. The results show the performance on the unseen test set data.

24-h Horizon 48-hour Horizon 72-hour Horizon

ig:’lilcat:glelan Historical Historical Historical Historical Historical Historical
(SD) > GCS GCS + cEEG GCS GCS + cEEG GCS GCS + cEEG
Target I
Weighted-F1 0.773 (0.023)  0.841 (0.026) 0.742 (0.039)  0.800 (0.052) 0.701 (0.014)  0.766 (0.026)
Macro-F1 0.645 (0.025) 0.702 (0.044)  0.606 (0.007)  0.648 (0.062) 0.561 (0.050) 0.615 (0.035)
OVR AU-ROC 0.866 (0.023) 0.924 (0.009) 0.820(0.022)  0.880 (0.029) 0.798 (0.032)  0.863 (0.018)
Target 11
Weighted-F1 0.766 (0.017) 0.814 (0.021) 0.713 (0.030) 0.764 (0.033) 0.675 (0.027)  0.713 (0.023)
Macro-F1 0.704 (0.012)  0.757 (0.039) 0.652 (0.030) 0.702 (0.035) 0.597 (0.051)  0.633 (0.028)
OVR AU-ROC 0.871(0.014) 0.924 (0.008) 0.833 (0.026)  0.880 (0.028) 0.799 (0.028)  0.853 (0.020)
Target I11
Weighted-F1 0.746 (0.019)  0.787 (0.025) 0.689 (0.016)  0.711 (0.022) 0.656 (0.032)  0.687 (0.016)
Macro-F1 0.693 (0.024) 0.740 (0.025) 0.631(0.018)  0.650 (0.027) 0.584 (0.040) 0.610 (0.023)
OVR AU-ROC 0.882(0.013) 0.908 (0.016) 0.833 (0.012)  0.857 (0.014) 0.796 (0.034)  0.840 (0.013)

AU-ROC, area under the receiver-operating-characteristic curve;, OVR, one-versus-rest; SD, standard
deviation

Evaluation of feature robustness

The framework for feature calculation is shown in Figure 2. Feature robustness was evaluated
using the previously discussed confound-isolating cross-validation. The joint features across
different prediction horizons, i.e., 24, 48, and 72 hours, were chosen for each prediction target

using this method are shown in Supplementary Tables S4-S6. These results show that the Petrosian

r+8)
+a)

fractal dimension, the relative power of , STFT energy in the 12-35 Hz frequency band,


https://doi.org/10.1101/2022.09.30.510334
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510334; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

wavelet entropy, and the time interval of prominent frequency components extracted from the
STFT domain were associated with the consciousness levels independent of the determined
prediction targets and time horizons. As shown in Figure 2B, the selected features were extracted
from the Fp1-F7, Fp1-F3, C3-P3, and T6-O2 channels more than once for prediction types II and
III. The Petrosian fractal dimension was the most selected feature across different configurations,
and none of the extracted features were selected from the Fp2-F8 channel through the confound-
isolating cross-validation. Examples of features extracted from these parameters and their change

in relation to the clinical trajectory are shown in Figure 3.

Evaluation of model robustness

To assess whether the selected EEG features were invariant under different confounder
distributions, we evaluated the prediction model's performance for robustness by employing the
same confound-isolating approach. Figure 4 displays the three-dimensional covariate space for 24-
hour prediction and the three prediction types. For TBI patients <45-year-old evaluated >4 days
after admission, EEG markers did not improve the prediction performance across prediction
Targets I, II, or III. The primary prediction target Type I (4A) was robust to other strata, whereas
EEG markers did not improve the prediction performance for Targets II and III (Figure 4A and
4B) for ICH patients >65-year-old evaluated <4 days from admission.
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Figure 3. Example feature dynamics in a non-sedated TBI patient over 35 hours of cEEG.
GCS, rolling maximum of the Petrosian fractal dimension (PFD) in channel Fpl-F7, rolling

maximum of the relative power (RP) of %
epochs with different GCS scores with their corresponding Fp1-F7's STFT are shown. As can be
seen, the dynamics of the features have predictive value and are associated with the future trend
of GCS. CH, channel.

changes in channel Cz-Pz, and two random 1-minute
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Figure 4. Three-dimensional confounder variables spaces for the 24-hour prediction horizon.
Comparison of the obtained confusion matrices during the confound-isolating cross-validation
procedure. The proposed approach and the recent GCS results are shown in blue and orange
matrices, respectively. Green squares demonstrate the combinations of covariates for which cEEG
improved prediction beyond that provided by historical GCS information. Red squares indicate
strata in which the general prediction power of the EEG markers was less than the historical GCS.
Black squares show the empty strata. Panel (A) corresponds to prediction Target I, whereas panels
(B-C) correspond to the two sensitivity analyses respectively examining prediction Targets II and
II. Overall, most strata are green, confirming the added value of featurized cEEG information
under different distributions of confounding variables. For TBI patients <45 years old evaluated
greater than 4 days from admission, EEG markers did not augment prediction compared to using
historical GCS information alone. However, the primary prediction target, Target I (4A) was
robust to other strata. In the sensitivity analysis predicting future DoC diagnosis using different
cut-points (Target II), (Figure 4B), prediction performance for elderly ICH patients evaluated
within 4 days of admission was also not augmented by cEEG markers. The sensitivity analysis
predicting Target III (future GCS score) had the fewest strata in which cEEG markers augmented
historical GCS data. In the confusion matrix, rows indicate true classes and columns indicate their
corresponding prediction. The elements of the left to right (and top to bottom) show the bad,
moderate, and good classes, respectively.
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Discussion

Continuous resting-state EEG features can predict coma recovery after ABI and add prognostic
value compared to the recent historical trend of neurologic GCS exam scores alone. These results
are robust to multiple cross-validation procedures and across various test statistics, demonstrating
that EEG features convey additional predictive information beyond neurologic examination trends,
even meeting this standard when developed and cross-validated across small population strata for

the vast majority of potential confounder combinations.

An increasing prediction horizon only modestly diminished the performance of prediction models
augmented by cEEG features, whereas prediction models utilizing historical GCS information
alone decayed by a greater magnitude when extending the prediction horizon. For instance, for the
primary prediction target (Target 1) using only EEG, one-vs-rest AU-ROC dropped 3.9% by
increasing the prediction horizon from 24h to 72h, whereas using the GCS baseline trend alone
under the same conditions reduced one-vs-rest AU-ROC by 6.4%. One possible explanation is that
the history of 14 hours of EEG recordings may convey more relevant information about the longer-

scale dynamics of coma recovery.

Of note, poor recovery was the most challenging class to predict compared to moderate and good
categories across all three targets with different ordinal DoC cut-points. This may be due to the
cohort containing relatively few poor samples, approximately 7-21% of the data set (varying by
target and prediction horizon). This imbalance may also explain the significant gap between
weighted- and macro-F1 metrics. Additionally, predictions for Target I and Target II, future DoC
ordinal rank transformed from GCS sub-score combinations, demonstrated superior performance
to predictions for Target III (raw future GCS score as a total). Most GCS total scores represent a

wide range of functions, and the DoC diagnoses are likely a more accurate marker of recovery.

Total GCS has an alarming rate of VS and MCS misdiagnosis compared to Coma Recovery
Scale-Revised (CRS-R),!%%%% and recent studies ®* have emphasized the imprecision of total
GCS, especially in the range of 3-8 total GCS.% Our predictive models included recent GCS sub-
scores as features rather than total scores, which may have enhanced the ability of the GCS-only

models to predict future DoC diagnosis.
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One strength of these results is that the prediction approach is invariant within most confounder
strata. We utilized confound-isolating cross-validation for robustness evaluation of EEG features
and the proposed approach. The critical difference between confound-isolating and conventional
cross-validation is randomization. In standard cross-validation, data portioning is performed
randomly, but in the chosen confound-isolating approach, data is partitioned based on the
confounders. While random partitioning is an excellent approach for generalization in prediction
problems, randomness in cross-validation can increase the imbalance of confounding variables and
should not be used for deconfounding. This confound-isolating evaluation approach demonstrated
the robust association between the selected features and future consciousness level, as the selected
EEG markers were invariant within small strata of different confounder combinations and also did
not vary by target type or prediction horizon. Additionally, the proposed approach outperformed
recent GCS even in models derived from small subsets of confounder combinations across all the

prediction types.

Multiple methods intended for predicting DoC emergence have been reported, but many of these
rely on technologies that are challenging to disseminate, including fMRI and high-density EEG,
and most enable binary rather than ordinal prediction targets (Table 3). While it is infeasible to
draw a direct comparison between the proposed coma recovery prediction methods because of
different paradigms, patient characteristics, prediction horizons, evaluation methods, and metrics,
the current methods overcome these limitations without sacrificing accuracy, albeit for short-term
prediction targets. Should the current method be highly disseminated, patients with a high degree
of residual uncertainty may benefit from additional diagnostic methods to examine concordance

and provide information for long-term prognosis.
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Table 3. Comparison of reported methods for coma prediction.

Paradiem Modalities N Prediction  Prediction Confounding Validation Performance
g Horizon Target Analysis Approach  Statistic
Stim-based paradigm required
Edlow et al. fMRI .
Brain. 20175 Stimbased O 6m GOSE tme-to-(est N Mann-
(TBI) sedation Whitney
EEG
Classen et al. Stim-based
NEJM. 2019.° EEG 104 12-m GOSE sedation NA NA
Egbebike et al.
Lancet Neurol.  Stim-based Hosp d/c;
2022, 10 EEG 193 3.6, 12-m GOSE NA NA NA
Engemann et . Binary Average
al. Brain. 2018. ]S;]f:rg based 357 ¢ (MSC vs. NA E(X d‘iut AU-ROC
15 UWS) 0.750
Resting-state paradigm but requiring HD EEG; no MRI required; binary but long-term prediction target
Chennu et al. HD rs- Binary GOSE Best
Brain. 2017.%  EEG or 1y NA cv AU-ROC 0.78
Kustermann et Binary CPC,
al. Neuroimage  HD rs- 98 3m semi-structured NA 50% Best
Clin. 2020. % EEG (CA) interviews hold-out AU-ROC 0.71
. Student t-test
Schorr et al. J HD rs- Binary CRS-R
Neurol. 201626 EEG & Iy (improvement) NA NA SES_ROC 0.71-
Binary
ztrzf;“ ‘2:531‘18 - ggGr s 39 (Sflgegn) (UWS/dead vs.  NA cv AU-ROC 0.92
) ) MCS<)
Resting-state paradigm with LD EEG but requiring fMRI for highest accuracy; binary endpoint
EEG+fMRI:
AU-ROC 0.83
. PPV 0.82, Se
.. Binary Linear . 0.77
g;n in eztoazli 8 le\]gRri—EEG ?/ZBI) ff/ch (MCS vs. EE?SS&SJSE v rs-EEG only:
au. : UWS/coma) numben) AU-ROC 0.81
PPV 0.79, Se
0.79
Carrasco-
Gomez et al. Binary CPC Se 73%
Clin LDrs-EEG 594  6-m &0 e oor)  NA cv S 100%
Neurophysiol. & P p ¢
2021. %

Resting-state paradigm with LD EEG, no fMRI required; acute trajectory targets; very high accuracy despite ordinal
target; robust to confounder

Continuous 24-72h
ol % Multiclass OVR AU-ROC
201 cedi ftion DoC levels Confound- 86.3-92.4%
Present Method LD rs-EEG pre¢ with various isolating CcvV Weighted-F1
(ABI) horizon .
24, 48. 7- ordinal cut- CV 76.6-84.1%
T points (Additional
h .
metrics*)

ABI, acute brain injury; AU-ROC, area under the receiver-operating-characteristic curve;, CPC, Cerebral
Performance Category;, CRS-R, Coma Recovery Scale-Revised; CV, cross-validation; d, day,; d/c,
discharge; GOSE, Extended Glasgow Outcome Scale; fMRI, functional MRI; HD, High-density, LD, Low-
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Density; m, month; MCS, minimally conscious state; OVR, one-versus-rest; rs-EEG, resting-state EEG;
stim-based, stimulus-based; UWS, unresponsive wakefulness syndrome; y, year; Se, Sensitivity, Sp,
Specificity; *Additional metrics: confusion matrix, accuracy, macro-F1, one-vs-one AU-ROC, Cohen’s

kappa

While this study is limited by its single-center design, using readily available data from existing
clinical workflows allows for future external validation as it does not require stimulus-based
paradigms and uses the novel approach to leverage frequently performed nurse assessments to
derive DoC levels from combinations of GCS sub-scores. Additionally, while imbalance in the
number of TBI, SAH, and ICH patients in the cohort represents a potential limitation, the
deconfounding analysis did demonstrate robustness to etiology. We recognize that the confound-
isolating cross-validation approach employed has two significant shortcomings. First, only the
time-invariant confounders can be adjusted using this approach, such that dynamic ICU covariates
cannot be evaluated for confounding using this method.®® Nevertheless, the DoC level was
routinely ascertained off sedation per institutional guideline. Second, this confound-isolating
approach requires categorical bins for continuous confounders such as age, such that residual
confounding can be preserved within each category.®”*® We elected to use the clinical neurological
exam rather than mortality as a prediction target to avoid self-fulfilling prophesies related to targets
such as mortality, which are susceptible to withdrawal of care. Additionally, the emphasis here
was on prediction, such that confounder analyses were intended to assess robustness and

generalizability rather than define causal relationships.

The feature engineering included handcrafted features, i.e., nominated using human expertise, with
an ensemble of XGBoosts for prediction modeling. We choose this approach as various studies
have demonstrated that end-to-end deep learning approaches, with purely data-driven feature
learning, perform significantly lower than expectations.®’® Although the performance of any
machine learning model depends highly on feature engineering, hyperparameter tuning, and the
data generation process, several empirical studies have shown that these approaches to feature
engineering can be highly valuable across a variety of applications when paired with the XGBoost
framework.”!"”> One future direction to examine additional benefits of deep learning would be to
facilitate models combining these approaches. As previously mentioned, we did not conduct

hyperparameter tunning across the XGBoost cross-validation folds to avoid overfitting.
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Although nested cross-validation is an effective solution in general for hyperparameter estimation
and provides a reliable generalization performance, it can increase the bias in a dataset with severe
confounder imbalance. For instance, in our cohort, ICH was less common in the cohort than other
diagnoses. With a severely skewed confounder distribution, if we had randomly split the data into
training and test sets in the cross-validation scheme, the confounder distribution in most folds
likely would have inherited the same etiology distribution from the original data. As a result, only
a few samples in the training data of the most folds would potentially belong to ICH patients,
because the data partitioning is performed with a uniform probability distribution.”® Often,
machine learning approaches hypothesize that training and test sets have the same distribution, but
such concerns should be cautiously approached, particularly in clinical applications. We specified

our approach accordingly to promote the robustness and rigor of the methods.

Other approaches taken to ensure rigor and robustness included patient-wise evaluation and
temporal ordering. Patient-wise evaluation avoids data leakage that could occur if different
samples of the same patient were present in both a training and testing partition. We took particular
care to obey the autoregressive property by maintaining the chronological order of EEG sequences.
For predicting the consciousness level in H, the model only relies on cEEG data from the present
period preceding the time horizon ( t — H), looking backward through a fixed historical period (t —
T — H). More history of EEG becomes available as we move forward through time, leading to more
accurate predictions. Although our design limiting the historical lookback period has the potential
for a hugely adverse effect on the evaluation performance, this rolling prediction is essential for

the realistic evaluation of continuous prediction models, especially for real-time applications.

Important future directions will include validating in external data sets, examining how
intercurrent changes in treatment affect predictions, and evaluating how the implementation of
real-time continuous prediction influences shared decision making. For example, the approach
might encourage more aggressive rehabilitation strategies, appeals for insurance coverage, and
short-term trials of therapy when a high probability of coma recovery is predicted. Predicting poor
outcomes may have a different effect on decision-making, either because of the irreversible nature
of withdrawal of care or because model performance excels at predicting good and moderate

outcomes more so than predicting poor outcomes.
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Overall, these methods offer the potential for continuous prognostic monitoring (Figure 5).
Conceptually, this new approach leverages continuously accruing clinical and EEG data so that
updated predictions of DoC trajectory can be considered in context during iterative shared decision
making. The methods inherently promote a continuous dialogue because predictions utilizing early

data, despite a high accuracy in this study, can change with updated electroclinical information.

Conclusion

A systematic approach using passive, resting-state low-density EEG, accurately predicted future
consciousness state in ABI patients at 24-, 48-, and 72-hour time horizons, improving the
performance over historical clinical assessments alone. By achieving ROC-AUC in the range of
84%-92.4% for each ordinal DoC diagnosis versus others for a range of configurations, we showed
that the predictive power of the EEG-based features not only improves the prediction performance
but also reveals additional information compared to clinical baseline information. These EEG
features were robust to a rigorous approach to reduce confounding. While predicting a poor
outcome remains most challenging, predictions of improvement (i.e., good outcomes) are most
likely to change practice by encouraging time-limited treatment trials. While further studies should
evaluate the effect of treatment strategies on the evolution of consciousness trajectory as well as
cross-institutional performance, the continuous nature of the proposed approach allows for real-

time application, which can potentially capture the impact of treatment in real-time.
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Figure 5. Conceptual continuous prognostic monitoring paradigm. A) Prognostic
information from prior clinical trends on the Glasgow Coma Scale and cEEG is utilized for
developing a new prediction of coma recovery every 5 minutes. B) Intermittently, these
predictions of the patient's recovery trajectory over the next 24, 48, and 72 hours are computed to
ordinal DoC categories (e.g., Coma/VS-UWS, MCS+/MCS-, and PICS/rPICS) are available for
C) integration within the clinical context, and D) shared decision making. cEEG, continuous
EEG; DoC, disorders of consciousness;, MCS, minimally conscious state; PICS, post-injury
confusional state (PICS); VS-UWS, vegetative state - unresponsive wakefulness syndrome.
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