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Abstract 

Accurately predicting emergence from disorders of consciousness (DoC) after acute brain injury 

can profoundly influence mortality, acute management, and rehabilitation planning. While recent 

advances in functional neuroimaging and stimulus-based EEG offer the potential to enrich shared 

decision-making, their procedural sophistication and expense limit widespread availability or 

repeated performance. We investigated continuous EEG (cEEG) within a passive, "resting-state" 

framework to provide continuously updated predictions of DoC recovery at 24-, 48-, and 72-hour 

prediction horizons. To develop robust, continuous prediction models from a large population of 

patients with acute brain injury (ABI), we leveraged a recently described pragmatic approach 

transforming Glasgow Coma Scale assessment sub-score combinations into frequently assessed 

DoC diagnoses: coma, vegetative state, minimally conscious state with or without language, and 

post-injury confusional or recovered states. We retrospectively identified consecutive patients 

undergoing cEEG following acute traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), 

or intracerebral hemorrhage (ICH). Models continuously predicting DoC diagnosis for multiple 

prediction horizons were evaluated utilizing recent clinical assessments with or without cEEG 

information, which comprised a comprehensive EEG feature set of 288 time, frequency, and time-

frequency characteristics computed from consecutive 5-minute EEG epochs, with 6 additional 

features capturing each EEG feature’s temporal dynamics. Features were fed into a predictive 

model developed with cross-validation; the ordinal DoC diagnosis was discriminated using an 

ensemble of XGBoost binary classifiers. For 201 ABI patients (46 TBI, 140 SAH, 15 ICH patients 

comprising 27,280 cEEG-hours with concomitant clinical assessments), cEEG-augmented models 

accurately predicted the future DoC diagnosis at 24 hours (one-vs-rest AU-ROC, 92.4%; 

weighted-F1 84.1%), 48 hours (one-vs-rest AU-ROC=88%, weighted-F1=80%) and 72 hours 

(one-vs-rest AU-ROC=86.3%, weighted-F1=76.6%). Models were robust to utilizing different 

ordinal cut-points for the DoC prediction target and evaluating additional models derived from 

specific sub-populations using a confound-isolating cross-validation framework. The most robust 

features across evaluation configurations included Petrosian fractal dimension, relative power of 

high to low (gamma-beta to delta-alpha) EEG frequency spectra, energy within the 12-35 Hz 

frequency band in the short-time Fourier transform domain, and wavelet entropy. The cEEG-

augmented model exceeded the performance of models using preceding clinical assessments, 
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continuously predicting future DoC diagnosis with one-vs-rest AU-ROC in the range of 84.3-

92.4% while utilizing approaches to limit overfitting. The proposed continuous, resting-state cEEG 

prediction method represents a promising tool to predict DoC emergence in ABI patients. Enabling 

these methods prospectively would represent a new paradigm of continuous prognostic monitoring 

for predicting coma recovery and assessing treatment response.  
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Introduction  

Caring for patients with coma and other disorders of consciousness (DoC) following acute brain 

injury (ABI) involves high-stakes decision-making compounded by diagnostic and prognostic 

uncertainty. Relying on clinical behavior alone to measure consciousness can result in 

misdiagnosis,1,2 leading to premature withdrawal of life-sustaining therapy or limitation of 

rehabilitative treatments.3,4 While functional MRI,5–8 stimulus-based EEG,8–11 and transcranial 

magnetic stimulation-EEG (TMS-EEG)12,13 have been demonstrated to detect consciousness and 

predict recovery, these tools require highly structured stimulus-based paradigms, and thus are not 

widely available, easily performed at scale, or repeated at a frequency required for continuous 

prediction.  

Tools for continuously predicting coma recovery could empower clinicians and family members 

with updated prognostic information during the dynamic period of early recovery and secondary 

complications. Continuous EEG (cEEG) is a tool that offers advantages by virtue of its high 

temporal resolution and underlying representation of functional brain networks.14 As a result, 

cEEG has been widely utilized after ABI for cross-sectional diagnosis of DoC,15,16 

encephalopathy,17,18 language dysfunction,19,20 and monitoring treatment response21,22 or 

neurologic deterioration.22,23 High-density cEEG has been employed for many of these 

applications,24–28 but has practical limitations associated with numerous collocating channels in 

the setting of invasive neuromonitoring devices, drains, or cranial wounds, which prevent its use 

in the intensive care unit (ICU) setting. Where low-density scalp coverage has been examined,29 

no significant association was found between low-density EEG network measures and good 

outcomes at 3-6 months after injury, although EEG measures of functional connectivity have 

demonstrated promise in predicting poor outcomes in small cohorts of patients with postanoxic 

coma.30 

We sought to develop models utilizing resting-state cEEG for predicting emergence from DoC 

continuously. Individual EEG features, such as alpha power and variability,31,15 have demonstrated 

promise for the cross-sectional classification of unresponsive wakefulness syndrome (UWS) 

versus minimally conscious state (MCS). We specifically aimed to develop cEEG prediction 

models robust to ABI etiology, age, and the time following admission, while advancing on prior 

investigations by incorporating ordinal rather than binary predictions, enabling continuous 
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prediction, and including model evaluation metrics beyond the area under a receiver operating 

characteristic (AU-ROC) curve.15,30 The latter is essential in highly imbalanced classes because 

the AU-ROC curve may still indicate relatively high performance while misclassifying most 

samples from a minority class. To accomplish this, we evaluated the incremental benefit of cEEG 

over information from prior neurologic assessments among 201 ABI patients undergoing cEEG 

over a 3-year period. We developed and evaluated a multiclass, ordinal prediction model with a 

rolling window to facilitate predicting consciousness levels at multiple time horizons, assessing 

robustness using a confound-isolating cross-validation approach. 

Methods 

Study design 

We performed a retrospective, single-center study of patients with ABI of different etiologies 

undergoing cEEG during clinical bedside monitoring of neurologic status in the Neuroscience 

ICU. We specified that models be constructed and tested for predicting future consciousness levels 

at multiple future time horizons and categorized as an ordinal outcome (i.e., coma, VS/UWS, 

minimally conscious state with or without language (MCS+ and MCS-), post-injury confusional 

state (PICS), and recovered from PICS (rPICS)). We specified sensitivity analyses examining 

different ordinal cut points in the level of consciousness.  

Study participants, environment, and clinical measures 

We included patients aged 18 or greater, admitted to the Massachusetts General Hospital 

Neurosciences Intensive Care Unit between April 2016 to October 2018 with a diagnosis of 

traumatic brain injury (TBI), aneurysmal or non-traumatic subarachnoid hemorrhage (SAH), or 

intracerebral hemorrhage (ICH) who had cEEG monitoring32. We restricted the analysis to patients 

for whom EEG was initiated within 14 days of admission, recorded for at least 35 minutes, and for 

whom both the cEEG data and nurse-documented clinical examinations were available from our 

institution's electronic data warehouse. We augmented this cohort with additional patients 

previously enrolled in a cohort study (May 2013-April 2016) in which these nurse-documented 
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examinations were not yet populated in the electronic data warehouse but were instead extracted 

by manual chart review. Patients with other types of brain injuries, such as anoxic-ischemic injury 

from cardiac arrest, were excluded unless having TBI, comorbid SAH, or ICH. The institutional 

review board approved this retrospective study and determined that it was exempt from obtaining 

participants' informed consent. Per clinical standard, cEEG was performed using the 10-20 

International Standard (21 electrodes, 256 or 512 Hz sampling rate).  

According to our institutional guidelines for patients with these conditions, the Glasgow Coma 

Scale (GCS) score33 was measured for patients with these conditions approximately every 2 hours; 

more frequent assessments were indicated for patients during periods of heightened risk, or less 

frequently if a patient was nearing transfer out of the intensive care environment. According to our 

institutional critical care nursing standards of practice, the clinical standard of care was to examine 

patients during sedation interruption, waiting between 5 and 20 minutes based on the nurse's 

judgment. 

Prediction framework  

Given an EEG time series with a lookback history of length Ā, we specified the objective to 

continuously predict the consciousness level of an ABI patient at a prediction horizon of � with a 

5-minute stride. This is a rolling prediction, where each epoch and corresponding consciousness 

level (i.e., prediction target) were shifted forward by 5 minutes through time. We considered Ā f 14 /ĄĂÿĀ to provide the flexibility to utilize varying-length EEG recordings for up to 14 hours 

based on their availability at a time. For �, three prediction horizons of 24, 48, and 72 hours were 

determined to assess the effects of the prediction horizon on the performance (see Figure 1). 

EEG feature engineering 

For each patient, we utilized a longitudinal bipolar montage of scalp EEG channels containing 18 

bipolar channels consisting of the following pairs: Fp1-F7, F7-T3, T3-T5, T5-O1, Fp1-F3, F3-C3, 

C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, T6-O2, Fz-Cz, and Cz-Pz. 

For preprocessing, a Butterworth bandpass filter with lower and higher cutoff frequencies of 0.5- 

45 Hz was applied, as well as a notch filter to remove both 60-Hz electrical noise and its 120-Hz 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.510334doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510334
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

harmonic. Data were segmented into epochs of 5 minutes with no overlap. Reported analyses were 

performed on these 5-minute epochs unless otherwise stated. To automatically identify possible 

artifactual epochs, we applied a simple rule-based method using the absolute value of EEG voltage; 

if any absolute value in the epoch exceeded 250 µV, the epoch was considered an artifact.34 EEG-

based features consisted of 16 features from each of 18 bipolar channels, extracted from each 5-

minute epoch. Candidate EEG features included the following: 

Petrosian fractal dimension 

There are numerous methods in a pure math setting to gauge fractal dimensions, e.g., Minkowski 

and Hausdorf.35 However, such spatial analyses are not appropriate for time series with self-

affinity properties due to either the lack of well-defined special characteristics in one-dimensional 

signals or their relatively high computational complexity. We, therefore, utilized Petrosian's 

algorithm36,37 to compute the time series fractal dimension as follows 

āÿ��āÿĀĀÿ�ÿ = āĄý10ăāĄý10ă + āĄý10ă( ăă + 0.4�△) 

where n and N△are the length of the epoch and the number of sign changes in the first derivative 

of the EEG, respectively. The Petrosian fractal dimension can be considered a measure of 

complexity where the more complex EEG epoch leads to a higher value of its āÿ��āÿĀĀÿ�ÿ. 

Power spectral analysis 

In many EEG classification or prediction studies, power spectral analysis in specific frequency 

bands is used alone or combined with other features in various tasks.38,39 We extracted three 

features from this domain. For power spectral density estimation, Welch's method was utilized.40 

The first feature is the relative power of 
(ā + Ā)(Ă + ÿ), inspired by da Silveira et al.,41 where Ā, ā, Ă, and ÿ indicate the frequency bands between 12–35, >35, 1–4, and 8–12 Hz, respectively. The second 

and third features in this domain are the decay of the EEG power spectrum.38,39 We performed 

regression āĄý10�ÿÿ = ÿāĄý10� between 4-8 and 8-12 Hz frequency bands to characterize the 

decay of the EEG power spectrum, ÿ. Here, �ÿÿ and � indicate the power spectral density and 

frequency bin in Hz, respectively. 
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Short-Time Fourier transform analysis 

Short-Time Fourier Transform (STFT) characterizes time-frequency power and phase information 

of nonstationary signal changes over time. We computed 10 features from this domain. For STFT 

calculation, Welch's method was used with a 9-second Hann window and a 6-second overlap. Also, 

we computed the logarithm of the amplitude spectrum as it can provide a more detailed structure 

while preserving the relative relation in the spectrum.42 

The first two features are the total energy between the 4-8Hz and 12-35Hz frequency bands in the 

STFT domain as below 

Ā�12�2 �� = ∑|�ÿÿ|2�2
�1  

Furthermore, we extracted 8 features by tracking the prominent frequency components and their 

time intervals within each epoch. This is inspired by music recognition algorithms, which distill 

music samples into fingerprints for matching and searching.43 For this purpose, first, the prominent 

peaks were identified in each STFT time segment. These peaks indicate the highest frequency 

powers in the corresponding time interval. To avoid identifying too many peaks and focus on the 

most prominent ones, we applied a constraint to our search by specifying a minimum distance (100 

bins) between the peaks. Once the peaks in all the time segments were obtained, the four most 

significant peaks were chosen. In addition to the four most frequent dominant frequencies, the 

medians of their time intervals are used as features. We computed the median of their time intervals 

when the same frequency component is the dominant peak in several time segments. This dynamic 

approach captures the most informative frequency components and their time relations from a 

broad spectrum rather than focusing on specific frequency bands. 

Wavelet analysis 

We extracted two features using discrete wavelet transform. We used Daubechies-4 wavelets with 

a decomposition level of 7. These features are based on the approximation coefficients in level 7 

and detail coefficients from levels 1 to 7. The first feature is Wavelet entropy, computed as 

follows.44–46 
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��ăÿāÿā ĀăāÿĄą� =  2 ∑ ąĀāĄý(ąĀ)Ā  

where ąĀ  =  �ÿ�����ā  =  ∑ |�ÿ(ā)|2�ÿĀ=1∑ ∑ |�ÿ(ā)|2�ÿĀ=1ÿ , and ýĀ(Ā) is decomposition coefficients at scale ÿ. 

The correlation between sleep spindles and recovery of consciousness has been investigated in 

several studies, which is the underlying motivation for extracting the second feature in this 

domain.47–50 The frequency range associated with fast and slow spindles is 12-15 Hz.51 We 

therefore filtered the EEG signal with a passband frequency range of approximately 8-16 Hz 

(which may slightly change based on the sampling frequency) using wavelet decomposition. 

Briefly, filtering using discrete wavelet transform first decomposes the signal into approximation 

and detail coefficients, zeros out the details coefficients at some chosen scales, and finally 

assembles them back into the original signal without affecting the general shape of the signal. Once 

the desired passband filtering was conducted, the frequency component with maximum power 

spectral density was used as a feature. 

Multiclass, ordinal DoC level prediction targets 

To develop continuous prediction models from a large population, we required frequent clinical 

assessments over a prolonged duration. We, therefore, leveraged a recently described pragmatic 

approach52 transforming repeated clinical assessments of GCS sub-scores combinations into 

frequently assessed DoC diagnoses: coma, VS/UWS, MCS+, MCS-, PICS, and rPICS.  

Overall, we examined three targets with specific cut-points utilizing these measures. The primary 

ordinal prediction target (Target I) classified DoC as poor (coma), moderate (VS, MCS-, MCS+), 

and good (PICS, rPICS). In two sensitivity analyses, we examined different ordinal cut-points; 

Target II utilized cut-points as poor (Coma, VS/UWS), moderate (MCS-, MCS+), and good (PICS, 

rPICS), and Target III utilized cut-points based on the raw GCS scores: poor (total GCS= 3-8), 

moderate (total GCS=9-12), and good (total GCS=13-15). 
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Continuous, ordinal prediction model 

Our classification approach leverages discriminative models for continuous prediction of 

consciousness states, i.e., DoC diagnoses stratified by the criteria above, by (1) facilitating the 

temporal dependencies in varying length sequences, i.e., utilizing varying length historical data 

based on the availability of collected cEEG up to 14 hours, and (2) exploiting the ordering of 

information in the prediction targets rather than treating them as nominal classes. 

Each 5-minute raw EEG data was transformed into a 16×18 feature space, where 16 represents the 

number of EEG characteristics discussed in the previous section, and 18 indicates the number of 

bipolar channels. Such feature space does not convey temporal information and time dependencies 

of adjacent epochs. To add the temporal dimension, 6 statistical features, i.e., maximum, minimum, 

mean, variance, 95% percentile, and interquartile range, were computed over the lookback period 

(up to the 14 preceding hours). This transformed each 5-minute EEG epoch into a (16×18×6) 1728-

dimensional feature space with the temporal information to predict its future consciousness level, 

capturing each feature's temporal dynamics and permitting discriminative methods, such as 

XGBoost, for sequence prediction problems. The same approach was applied to the consecutive 

total GCS score and its three subscale scores, i.e., 4×6 (Figure 1A).  

The prediction targets, i.e., poor, moderate, and good consciousness levels, have a natural ordering 

which should be used to conduct a more robust analysis. However, standard classification 

algorithms do not often utilize ordering information in ordinal prediction and classification 

problems, treating the range of classes as a set of unordered values. We used an ensemble of 

XGBoost53 classifiers to account for the inherent order between classes using a previously 

proposed method.54 For the three-class classification problem, two binary XGBoost classifiers 

were trained. The first binary classifier was trained to estimate the probability of belonging to 

moderate and good classes, �ÿ(ā�ÿýÿā > ąĄĄÿ). The second classifier was trained to estimate the 

probability of belonging to the good class, �ÿ(ā�ÿýÿā > ĂĄþÿÿ�āÿ). Finally, the following 

ensemble rule was employed to generate the final prediction labels: �ÿ(ąĄĄÿ) = 1 2 �ÿ(ā�ÿýÿā > ąĄĄÿ) �ÿ(ĂĄþÿÿ�āÿ) = �ÿ(ā�ÿýÿā > ąĄĄÿ) 3  �ÿ(ā�ÿýÿā > ĂĄþÿÿ�āÿ) �ÿ(ýĄĄþ) =  �ÿ(ā�ÿýÿā > ĂĄþÿÿ�āÿ) 
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The above approach considers the ordering information and breaks down the three-class 

classification problem into two binary ones. We used an ensemble of 250 decision trees for each 

XGBoost model. No hyperparameter tuning was conducted for training to avoid the chance of 

overfitting, and the default values were set with learning rate=0.3, gamma=0, maximum depth=6, 

and the minimum child weight=1. A random under-sampling method was performed in the training 

phase to mitigate class imbalance. 

Model evaluation metrics 

Models were evaluated for the following six metrics: accuracy, weighted- and macro-F1 scores, 

one-vs-one and one-vs-rest AU-ROC, and Cohen kappa measures.55 Furthermore, we reported 

confusion matrices detailing the magnitude of difference when a prediction deviated from actual. 

As patient-wise k-fold cross-validation was used for model assessment to avoid overfitting, we 

report the average of the achieved performance on the Ā held-out unseen sets. 
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Figure 1. Schematic pipeline of the developed prediction approach using resting-state EEG 

recordings in acute brain injury patients. Future consciousness is continuously predicted using 

historical GCS sub-scores as a base model and historical GCS sub-scores in addition to EEG 

features in the augmented model, utilizing up to 14 hours of lookback data, depending on 

availability. (A) The general framework of the rolling-prediction approach with three prediction 

horizons of 24, 48, and 72 hours. � indicates the number of the rolling window with the stride of 

5 minutes. (B) The block diagram of the proposed approach consists of preprocessing, feature 

extraction, and a prediction model. Six features are computed along the lookback dimension to 

capture the temporal dynamics of EEG features. The extracted features are fed into an ordinal 

prediction model formed with two XGBoost binary classifiers. The generated predictions labels 

poor, moderate, and good are then mapped into three ordinal target scales with clinically relevant 

cut-points defined based on disorders of consciousness (Targets a & b) and total GCS score (Target 

c). MCS, minimally conscious state; PICS, post-injury confusional state; rPICS, recovered from 

post-injury confusional state. 

Selection of less-confounded features 

We utilized the XGBoost feature importance values, computed as importance by information gain, 

for feature selection.53 While various techniques can quantify the relative effect of each feature on 

the prediction, such as Shapley additive explanations56 or filter methods,57 we chose this method 

as it performs the feature ranking and training in parallel, offering a relatively lower computational 

complexity for ranking 1728 features. 
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Although the main objective of this study was the "prediction" of consciousness level (and not 

causal interpretation), we took specific caution to diminish the effect of spurious associations on 

the interpretation of feature importance. As such, we utilized a previously introduced data 

partitioning approach58 to analyze the potential confounding variables in our feature relevance 

explanation. This "confound-isolating cross-validation" approach evaluates the feature importance 

where the confounding effect is absent rather than regressing out the confounding variables 

separately from each feature as is typical of classical statistical methods. The core idea is to choose 

jointly selected features across mutually exclusive partitions of data, where each partition is unique 

from the other by containing a dissimilar confounder distribution. 

One example of evaluating robustness with confound-isolating cross-validation is for the potential 

confounder of etiology, i.e., TBI, SAH, or ICH. Here, the top invariant features would be 

calculated distinctly across each of these three etiologies. This approach ensures that feature 

importance is not derived by confounders that separately explain the outcome. To handle multiple 

confounders, we partitioned the dataset into naturally occurring strata, where each stratum is an 

observed combination of the confounders. This approach was taken to avoid bias due to the 

association between confounders and the prediction features. To address the natural occurrence 

that some strata may contain only a few samples, leading to underfitting the feature ranking model, 

we utilized patient-wise cross-validation. Specifically, the dataset was partitioned into strata, and 

we used all the strata except one to obtain the feature importance. We continued this process until 

all the strata were left out once (Figure 2A). This guaranteed enough data for the training feature 

ranking model and isolated one confounding stratum at each fold, albeit at the cost of Ā times 

training, where Ā indicates the number of strata. First, the 20 features with the highest importance 

from each of the two XGBoost binary classifiers were picked to find the relevant features. The 

built-in feature importance of the XGBoost was used for computing feature importance. Then, the 

common features among them were chosen as the candidate invariant features. The candidate 

features were fed into the feature selection approach discussed above (Figure 2) to identify the 

mutual features across all the confounder strata. This procedure was performed for all the 

determined prediction targets and horizons. While this approach evaluates models without 

confounders to ensure robustness in populations with any proportion of the confounder (e.g., 

diagnosis), risks of the approach include the potential elimination of signal and the potential for 

low sample size in individual partitions utilized for these deconfounding assessments. 
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Our study focused on assessing the population by deconfounding three potential confounder 

variables based on the data distribution: etiology (TBI, SAH, and ICH), age (≤45, 46-65, and >65 

years old), and the current monitoring time of the rolling window (≤4, >4 days following 

admission), 3×3×2=18 strata. Other unseen confounders, such as sedation, could affect the feature 

analysis. However, the purpose here was not to assess causation by exhaustively eliminating strata, 

but rather to promote robustness by identifying less-confounded features at the cost of each 

confounder stratum, further limiting the cohort size within each fold. 

Data availability 

The data used in this study are available upon reasonable request, including institutional approval. 

Software 

All analyses were conducted using the Python programming language. The developed feature 

extraction and classification are built on top of the open-source software libraries PyWavelets,59 

SciPy,60 NumPy,61 and XGBoost.53 
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Figure 2. Evaluation for robustness and confounding. (A) Overview of the utilized 

framework for confound-isolating cross-validation. The three studied confounding variables are 

age (years old), diagnosis, and time to admission (days). Time refers to the time from hospital 

admission to EEG recording. (B) EEG channels from which the selected features were computed 

are represented for each target. The channels that were not among the selected ones are shown in 

white color. Channels utilized once and more than once are indicated with blue and dark blue 

colors, respectively. Subfigures (i), (ii), and (iii) illustrate the selected channels for prediction 

Targets a, b, and c, respectively. TBI, traumatic brain injury 

Results 

Patient characteristics 

27,280 hours of EEG recordings from 201 distinct patients with TBI, SAH, and ICH (n=46, n=140, 

n=15, respectively) met inclusion criteria. EEG data from nine patients with DoC were unusable 

either due to technical difficulties or insufficient data for the prespecified prediction horizons. 

Detailed patient characteristics, including the duration of recordings, are shown in Table 1. Of 

note, the duration of cEEG for SAH patients was longer than for TBI and ICH patients due to an 

institutional guideline for cEEG monitoring through the window of vasospasm or delayed cerebral 
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ischemia risk, although the local institutional guidelines also recommend at least 24 hours of EEG 

for patients with TBI and ICH. 

Table 1. Patient Characteristics.  

Patient Characteristic 
TBI 

(n=46) 

SAH 

(n=140) 

ICH 

(n=15) 

Age (years), mean+SD 61.5 ± 19.44 58.47 ± 13.48 64.93 ± 11.67 

Age (years), median [IQR] 59.5 [46-80.5] 59 [50-67] 64 [59.5-72] 

Weight (kg), mean+SD 74.76 ± 0.45 74.99 ± 0.41 70.93 ± 14.24 

Weight (kg), median [IQR] 70 [64.25-83.75] 72 [68-76] 70 [65.5-78] 

Sex (female), n (%) 13 (28.26%) 108 (77.15%) 6 (40%) 

Latency to EEG initiation (days from admission), 

mean+SD 
0.86 ± 1.64 0.82 ±1.55 1.53 ± 1.54 

EEG duration (hours), mean+SD 43.67 ± 42.87 149.51 ± 70.14 61.88 ± 40.92 

EEG duration (hours), median [IQR] 
29.7 [20.95-

43.06] 

154.25 [91.75-

194.85] 

51.41 [29.91-

88.7] 

Initial GCS score, mean+SD 8.43 ± 4.38 9.96 ± 3.81 7.8 ± 4.41 

Initial GCS score, median [IQR] 8 [7-14] 10 [5-13] 6 [4.25-12] 

Discharge GCS score, mean+SD 11.69 ± 4.24 12.39 ± 3.35 11.06 ± 4.44 

Discharge GCS score, median [IQR] 14 [10-15] 14 [9-15] 14 [8.25-15] 

Initial DoC level, n (%)  

 Coma 10 (21.73%) 9 (6.42%) 3 (20%) 

 VS/UWS 0 (0%) 2 (1.42%) 2 (13.33%) 

 MCS - 6 (13.04%) 30 (21.42%) 6 (40%) 

 MCS + 13 (28.26%) 24 (17.14%) 1 (6.66%) 

 PICS 13 (28.26%) 28 (20%) 1 (6.66%) 

 rPICS 4 (8.69%) 47 (33.57) 2 (13.33%) 

Discharge DoC level, n (%)  

 Coma 9 (19.56%) 8 (5.71%) 4 (26.66%) 

 VS/UWS 3 (6.52%) 15 (10.71%) 1 (6.66%) 

 MCS - 5 (10.86) 15 (10.71%) 3 (20%) 

 MCS + 6 (13.04) 16 (11.42%) 3 (20%) 

 PICS 15 (32.60%) 22 (15.71%)  3 (20%) 

 rPICS 8 (17.39) 64 (45.71%)  1 (6.66%) 

PICS, confusional state; GCS, Glasgow Coma Scale score; MCS-, minimally conscious state without 

language function; MCS+, minimally conscious state with language function; rPICS, recovered from PICS; 

TBI, traumatic brain injury; VS/UWS, vegetative state/unresponsive wakefulness syndrome 

Model performance for ordinal prediction targets and time horizons 

To examine whether the EEG markers could improve discrimination of different consciousness 

levels, we compared their performance with the recent GCS in a patient-wise standard 5-fold cross-

validation scheme across different prediction targets and horizons. 

The developed approach obtained the highest performance when EEG features were added to the 

base model of recent GCS scores ( 
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Table 2). This added value was present across all types of prediction targets and horizons. More 

specifically, for Target a the obtained one-vs-rest AU-ROC curve and macro-F1, respectively, were 

92.4% and 70.2% at 24h, 88% and 64.8% at 48h, and 86.3% and 61.5% at 72h. For Target b, the 

obtained one-vs-rest AU-ROC curve and macro-F1 were 92.4% and 75.7%, at 24h 88% and 70.2% 

at 48h, and 85.3% and 63.3% at 72h. Finally, for Target c, one-vs-rest AU-ROC curve and macro-

F1 were 90.8% and 74% at 24h, 85.7% and 65% at 48h, and 84% and 61% at 72h. Detailed 

evaluations of cEEG, historical GCS, and their combinations at different prediction horizons are 

shown in Supplementary Tables S1-S3. 

Table 2. Performance of multiclass prediction for various time horizons and targets in a 5-

fold cross-validation scheme. The results show the performance on the unseen test set data. 

 24-h Horizon 48-hour Horizon 72-hour Horizon 

Evaluation 

metric, mean 

(SD) 

Historical 

GCS 

Historical 

GCS + cEEG 

Historical 

GCS 

Historical 

GCS + cEEG 

Historical 

GCS 

Historical 

GCS + cEEG 

Target I  

Weighted-F1 0.773 (0.023) 0.841 (0.026) 0.742 (0.039) 0.800 (0.052) 0.701 (0.014) 0.766 (0.026) 

Macro-F1 0.645 (0.025) 0.702 (0.044) 0.606 (0.007) 0.648 (0.062) 0.561 (0.050) 0.615 (0.035) 

OVR AU-ROC 0.866 (0.023) 0.924 (0.009) 0.820 (0.022) 0.880 (0.029) 0.798 (0.032) 0.863 (0.018) 

Target II  

Weighted-F1 0.766 (0.017) 0.814 (0.021) 0.713 (0.030) 0.764 (0.033) 0.675 (0.027) 0.713 (0.023) 

Macro-F1 0.704 (0.012) 0.757 (0.039) 0.652 (0.030) 0.702 (0.035) 0.597 (0.051) 0.633 (0.028) 

OVR AU-ROC 0.871 (0.014) 0.924 (0.008) 0.833 (0.026) 0.880 (0.028) 0.799 (0.028) 0.853 (0.020) 

Target III  

Weighted-F1 0.746 (0.019) 0.787 (0.025) 0.689 (0.016) 0.711 (0.022) 0.656 (0.032) 0.687 (0.016) 

Macro-F1 0.693 (0.024) 0.740 (0.025) 0.631 (0.018) 0.650 (0.027) 0.584 (0.040) 0.610 (0.023) 

OVR AU-ROC 0.882 (0.013) 0.908 (0.016) 0.833 (0.012) 0.857 (0.014) 0.796 (0.034) 0.840 (0.013) 

AU-ROC, area under the receiver-operating-characteristic curve; OVR, one-versus-rest; SD, standard 

deviation 

Evaluation of feature robustness 

The framework for feature calculation is shown in Figure 2. Feature robustness was evaluated 

using the previously discussed confound-isolating cross-validation. The joint features across 

different prediction horizons, i.e., 24, 48, and 72 hours, were chosen for each prediction target 

using this method are shown in Supplementary Tables S4-S6. These results show that the Petrosian 

fractal dimension, the relative power of 
(ā + Ā)(Ă + ÿ), STFT energy in the 12-35 Hz frequency band, 
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wavelet entropy, and the time interval of prominent frequency components extracted from the 

STFT domain were associated with the consciousness levels independent of the determined 

prediction targets and time horizons. As shown in Figure 2B, the selected features were extracted 

from the Fp1-F7, Fp1-F3, C3-P3, and T6-O2 channels more than once for prediction types b and 

c. The Petrosian fractal dimension was the most selected feature across different configurations, 

and none of the extracted features were selected from the Fp2-F8 channel through the confound-

isolating cross-validation. Examples of features extracted from these parameters and their change 

in relation to the clinical trajectory are shown in Figure 3. 

Evaluation of model robustness 

To assess whether the selected EEG features were invariant under different confounder 

distributions, we evaluated the prediction model's performance for robustness by employing the 

same confound-isolating approach. Figure 4 displays the three-dimensional covariate space for 24-

hour prediction and the three prediction types. For TBI patients ≤45-year-old evaluated >4 days 

after admission, EEG markers did not improve the prediction performance across prediction 

Targets I, II, or III. The primary prediction target Type I (4A) was robust to other strata, whereas 

EEG markers did not improve the prediction performance for Targets b and c (Figure 4A and 

4B) for ICH patients >65-year-old evaluated ≤4 days from admission. 
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Figure 3. Example feature dynamics in a non-sedated TBI patient over 35 hours of cEEG. 

GCS, rolling maximum of the Petrosian fractal dimension (PFD) in channel Fp1-F7, rolling 

maximum of the relative power (RP) of 
(ā + Ā)(Ă + ÿ) changes in channel Cz-Pz, and two random 1-minute 

epochs with different GCS scores with their corresponding Fp1-F7's STFT are shown. As can be 

seen, the dynamics of the features have predictive value and are associated with the future trend 

of GCS. CH, channel.  
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Figure 4. Three-dimensional confounder variables spaces for the 24-hour prediction horizon. 

Comparison of the obtained confusion matrices during the confound-isolating cross-validation 

procedure. The proposed approach and the recent GCS results are shown in blue and orange 

matrices, respectively. Green squares demonstrate the combinations of covariates for which cEEG 

improved prediction beyond that provided by historical GCS information. Red squares indicate 

strata in which the general prediction power of the EEG markers was less than the historical GCS. 

Black squares show the empty strata. Panel (A) corresponds to prediction Target a, whereas panels 

(B-C) correspond to the two sensitivity analyses respectively examining prediction Targets b and 
c. Overall, most strata are green, confirming the added value of featurized cEEG information 

under different distributions of confounding variables. For TBI patients ≤45 years old evaluated 
greater than 4 days from admission, EEG markers did not augment prediction compared to using 

historical GCS information alone. However, the primary prediction target, Target I (4A) was 

robust to other strata. In the sensitivity analysis predicting future DoC diagnosis using different 

cut-points (Target II), (Figure 4B), prediction performance for elderly ICH patients evaluated 

within 4 days of admission was also not augmented by cEEG markers. The sensitivity analysis 

predicting Target III (future GCS score) had the fewest strata in which cEEG markers augmented 

historical GCS data. In the confusion matrix, rows indicate true classes and columns indicate their 

corresponding prediction. The elements of the left to right (and top to bottom) show the bad, 

moderate, and good classes, respectively.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2022. ; https://doi.org/10.1101/2022.09.30.510334doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510334
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Discussion 

Continuous resting-state EEG features can predict coma recovery after ABI and add prognostic 

value compared to the recent historical trend of neurologic GCS exam scores alone. These results 

are robust to multiple cross-validation procedures and across various test statistics, demonstrating 

that EEG features convey additional predictive information beyond neurologic examination trends, 

even meeting this standard when developed and cross-validated across small population strata for 

the vast majority of potential confounder combinations. 

An increasing prediction horizon only modestly diminished the performance of prediction models 

augmented by cEEG features, whereas prediction models utilizing historical GCS information 

alone decayed by a greater magnitude when extending the prediction horizon. For instance, for the 

primary prediction target (Target I) using only EEG, one-vs-rest AU-ROC dropped 3.9% by 

increasing the prediction horizon from 24h to 72h, whereas using the GCS baseline trend alone 

under the same conditions reduced one-vs-rest AU-ROC by 6.4%. One possible explanation is that 

the history of 14 hours of EEG recordings may convey more relevant information about the longer-

scale dynamics of coma recovery.  

Of note, poor recovery was the most challenging class to predict compared to moderate and good 

categories across all three targets with different ordinal DoC cut-points. This may be due to the 

cohort containing relatively few poor samples, approximately 7-21% of the data set (varying by 

target and prediction horizon). This imbalance may also explain the significant gap between 

weighted- and macro-F1 metrics. Additionally, predictions for Target I and Target II, future DoC 

ordinal rank transformed from GCS sub-score combinations, demonstrated superior performance 

to predictions for Target III (raw future GCS score as a total). Most GCS total scores represent a 

wide range of functions, and the DoC diagnoses are likely a more accurate marker of recovery.  

Total GCS has an alarming rate of VS and MCS misdiagnosis compared to Coma Recovery 

Scale-Revised (CRS-R),1,62,63 and recent studies 64 have emphasized the imprecision of total 

GCS, especially in the range of 3-8 total GCS.65 Our predictive models included recent GCS sub-

scores as features rather than total scores, which may have enhanced the ability of the GCS-only 

models to predict future DoC diagnosis. 
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One strength of these results is that the prediction approach is invariant within most confounder 

strata. We utilized confound-isolating cross-validation for robustness evaluation of EEG features 

and the proposed approach. The critical difference between confound-isolating and conventional 

cross-validation is randomization. In standard cross-validation, data portioning is performed 

randomly, but in the chosen confound-isolating approach, data is partitioned based on the 

confounders. While random partitioning is an excellent approach for generalization in prediction 

problems, randomness in cross-validation can increase the imbalance of confounding variables and 

should not be used for deconfounding. This confound-isolating evaluation approach demonstrated 

the robust association between the selected features and future consciousness level, as the selected 

EEG markers were invariant within small strata of different confounder combinations and also did 

not vary by target type or prediction horizon. Additionally, the proposed approach outperformed 

recent GCS even in models derived from small subsets of confounder combinations across all the 

prediction types. 

Multiple methods intended for predicting DoC emergence have been reported, but many of these 

rely on technologies that are challenging to disseminate, including fMRI and high-density EEG, 

and most enable binary rather than ordinal prediction targets (Table 3). While it is infeasible to 

draw a direct comparison between the proposed coma recovery prediction methods because of 

different paradigms, patient characteristics, prediction horizons, evaluation methods, and metrics, 

the current methods overcome these limitations without sacrificing accuracy, albeit for short-term 

prediction targets. Should the current method be highly disseminated, patients with a high degree 

of residual uncertainty may benefit from additional diagnostic methods to examine concordance 

and provide information for long-term prognosis. 
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Table 3. Comparison of reported methods for coma prediction. 

Paradigm Modalities N 
Prediction 

Horizon 

Prediction 

Target 

Confounding 

Analysis 

Validation 

Approach 

Performance 

Statistic 

Stim-based paradigm required 

Edlow et al. 

Brain. 2017.6 

 

fMRI 

Stim-based 

EEG 

16 

(TBI) 
6-m GOSE 

time-to-test; 

sedation 
NA 

Mann- 

Whitney 

Classen et al. 

NEJM. 2019. 9 

 

Stim-based 

EEG 
104 12-m GOSE sedation NA NA 

Egbebike et al. 

Lancet Neurol. 

2022. 10 

 

Stim-based 

EEG 
193 

Hosp d/c; 

3, 6, 12-m 
GOSE NA NA NA 

Engemann et 

al. Brain. 2018. 
15 

Stim-based 

EEG 
327 0 

Binary 

(MSC vs. 

UWS) 

NA 
CV & 

hold-out 

Average 

AU-ROC 

0.750 
 

Resting-state paradigm but requiring HD EEG; no MRI required; binary but long-term prediction target 

Chennu et al. 

Brain. 2017. 24 

HD rs-

EEG 
61 1-y 

Binary GOSE 

 
NA CV 

Best 

AU-ROC 0.78 

Kustermann et 

al. Neuroimage 

Clin. 2020. 25 

 

HD rs-

EEG 

98 

(CA) 
3-m 

Binary CPC, 

semi-structured 

interviews 

 

NA 
50% 

hold-out 

Best 

AU-ROC 0.71 

Schorr et al. J 

Neurol. 2016 26 

HD rs-

EEG 
73 1-y 

Binary CRS-R 

(improvement) 
NA NA 

Student t-test 

AU-ROC 0.71-

0.75 

Stefan et al. 

Brain. 2018. 27 

HD rs-

EEG 
39 

589d 

(mean) 

Binary 

(UWS/dead vs. 

MCS≤) 

NA CV AU-ROC 0.92 

Resting-state paradigm with LD EEG but requiring fMRI for highest accuracy; binary endpoint 

Amiri et al. 

Brain. 2022. 8 

fMRI 

LD rs-EEG 

87 

(ABI) 

ICU 

d/c 

Binary 

(MCS≤ vs. 

UWS/coma) 

Linear 

regression 

(electrode 

number) 

CV 

EEG+fMRI: 

AU-ROC 0.83 

PPV 0.82, Se 

0.77 

rs-EEG only: 

AU-ROC 0.81 

PPV 0.79, Se 

0.79 

 

Carrasco-

Gomez et al. 

Clin 

Neurophysiol. 

2021. 30 

LD rs-EEG 594 6-m 
Binary CPC 

(good vs. poor) 
NA CV 

Se 73% 

Sp 100% 

Resting-state paradigm with LD EEG, no fMRI required; acute trajectory targets; very high accuracy despite ordinal 

target; robust to confounder 

Present Method LD rs-EEG 
201 

(ABI) 

Continuous 

rolling 

prediction 

horizon 

24, 48, 72-

h 

Multiclass  

DoC levels 

with various 

ordinal cut-

points 

Confound-

isolating 

CV 

CV 

24-72h 

OVR AU-ROC 

86.3-92.4% 

Weighted-F1 

76.6-84.1% 

(Additional 

metrics*) 

ABI, acute brain injury; AU-ROC, area under the receiver-operating-characteristic curve; CPC, Cerebral 

Performance Category; CRS-R, Coma Recovery Scale-Revised; CV, cross-validation; d, day; d/c, 

discharge; GOSE, Extended Glasgow Outcome Scale; fMRI, functional MRI; HD, High-density; LD, Low-
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Density; m, month; MCS, minimally conscious state; OVR, one-versus-rest; rs-EEG, resting-state EEG; 

stim-based, stimulus-based; UWS, unresponsive wakefulness syndrome; y, year; Se, Sensitivity; Sp, 

Specificity; *Additional metrics: confusion matrix, accuracy, macro-F1, one-vs-one AU-ROC, Cohen’s 

kappa 

While this study is limited by its single-center design, using readily available data from existing 

clinical workflows allows for future external validation as it does not require stimulus-based 

paradigms and uses the novel approach to leverage frequently performed nurse assessments to 

derive DoC levels from combinations of GCS sub-scores. Additionally, while imbalance in the 

number of TBI, SAH, and ICH patients in the cohort represents a potential limitation, the 

deconfounding analysis did demonstrate robustness to etiology. We recognize that the confound-

isolating cross-validation approach employed has two significant shortcomings. First, only the 

time-invariant confounders can be adjusted using this approach, such that dynamic ICU covariates 

cannot be evaluated for confounding using this method.66 Nevertheless, the DoC level was 

routinely ascertained off sedation per institutional guideline. Second, this confound-isolating 

approach requires categorical bins for continuous confounders such as age, such that residual 

confounding can be preserved within each category.67,68 We elected to use the clinical neurological 

exam rather than mortality as a prediction target to avoid self-fulfilling prophesies related to targets 

such as mortality, which are susceptible to withdrawal of care. Additionally, the emphasis here 

was on prediction, such that confounder analyses were intended to assess robustness and 

generalizability rather than define causal relationships. 

The feature engineering included handcrafted features, i.e., nominated using human expertise, with 

an ensemble of XGBoosts for prediction modeling. We choose this approach as various studies 

have demonstrated that end-to-end deep learning approaches, with purely data-driven feature 

learning, perform significantly lower than expectations.69,70 Although the performance of any 

machine learning model depends highly on feature engineering, hyperparameter tuning, and the 

data generation process, several empirical studies have shown that these approaches to feature 

engineering can be highly valuable across a variety of applications when paired with the XGBoost 

framework.71,72 One future direction to examine additional benefits of deep learning would be to 

facilitate models combining these approaches. As previously mentioned, we did not conduct 

hyperparameter tunning across the XGBoost cross-validation folds to avoid overfitting. 
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Although nested cross-validation is an effective solution in general for hyperparameter estimation 

and provides a reliable generalization performance, it can increase the bias in a dataset with severe 

confounder imbalance. For instance, in our cohort, ICH was less common in the cohort than other 

diagnoses. With a severely skewed confounder distribution, if we had randomly split the data into 

training and test sets in the cross-validation scheme, the confounder distribution in most folds 

likely would have inherited the same etiology distribution from the original data. As a result, only 

a few samples in the training data of the most folds would potentially belong to ICH patients, 

because the data partitioning is performed with a uniform probability distribution.73 Often, 

machine learning approaches hypothesize that training and test sets have the same distribution, but 

such concerns should be cautiously approached, particularly in clinical applications. We specified 

our approach accordingly to promote the robustness and rigor of the methods. 

Other approaches taken to ensure rigor and robustness included patient-wise evaluation and 

temporal ordering. Patient-wise evaluation avoids data leakage that could occur if different 

samples of the same patient were present in both a training and testing partition. We took particular 

care to obey the autoregressive property by maintaining the chronological order of EEG sequences. 

For predicting the consciousness level in �, the model only relies on cEEG data from the present 

period preceding the time horizon ( ā 2 �), looking backward through a fixed historical period (ā 2Ā 2 �). More history of EEG becomes available as we move forward through time, leading to more 

accurate predictions. Although our design limiting the historical lookback period has the potential 

for a hugely adverse effect on the evaluation performance, this rolling prediction is essential for 

the realistic evaluation of continuous prediction models, especially for real-time applications. 

Important future directions will include validating in external data sets, examining how 

intercurrent changes in treatment affect predictions, and evaluating how the implementation of 

real-time continuous prediction influences shared decision making. For example, the approach 

might encourage more aggressive rehabilitation strategies, appeals for insurance coverage, and 

short-term trials of therapy when a high probability of coma recovery is predicted. Predicting poor 

outcomes may have a different effect on decision-making, either because of the irreversible nature 

of withdrawal of care or because model performance excels at predicting good and moderate 

outcomes more so than predicting poor outcomes. 
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Overall, these methods offer the potential for continuous prognostic monitoring (Figure 5). 

Conceptually, this new approach leverages continuously accruing clinical and EEG data so that 

updated predictions of DoC trajectory can be considered in context during iterative shared decision 

making. The methods inherently promote a continuous dialogue because predictions utilizing early 

data, despite a high accuracy in this study, can change with updated electroclinical information.  

Conclusion 

A systematic approach using passive, resting-state low-density EEG, accurately predicted future 

consciousness state in ABI patients at 24-, 48-, and 72-hour time horizons, improving the 

performance over historical clinical assessments alone. By achieving ROC-AUC in the range of 

84%-92.4% for each ordinal DoC diagnosis versus others for a range of configurations, we showed 

that the predictive power of the EEG-based features not only improves the prediction performance 

but also reveals additional information compared to clinical baseline information. These EEG 

features were robust to a rigorous approach to reduce confounding. While predicting a poor 

outcome remains most challenging, predictions of improvement (i.e., good outcomes) are most 

likely to change practice by encouraging time-limited treatment trials. While further studies should 

evaluate the effect of treatment strategies on the evolution of consciousness trajectory as well as 

cross-institutional performance, the continuous nature of the proposed approach allows for real-

time application, which can potentially capture the impact of treatment in real-time. 
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Figure 5. Conceptual continuous prognostic monitoring paradigm. A) Prognostic 

information from prior clinical trends on the Glasgow Coma Scale and cEEG is utilized for 

developing a new prediction of coma recovery every 5 minutes. B) Intermittently, these 

predictions of the patient's recovery trajectory over the next 24, 48, and 72 hours are computed to 

ordinal DoC categories (e.g., Coma/VS-UWS, MCS+/MCS-, and PICS/rPICS) are available for 

C) integration within the clinical context, and D) shared decision making.  cEEG, continuous 

EEG; DoC, disorders of consciousness; MCS, minimally conscious state; PICS, post-injury 

confusional state (PICS); VS-UWS, vegetative state - unresponsive wakefulness syndrome. 
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