bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510331; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

CiDRE" M2¢ macrophages hijacked by SARS-CoV-2 cause COVID-19 severity

Yuichi Mitsui'!?, Tatsuya Suzuki®!2, Kanako Kuniyoshi', Jun Inamo*, Kensuke Yamaguchi*, Mariko

Komuro!, Junya Watanabe', Mio Edamoto!, Songling Li°, Tsukasa Kouno®, Seiya Oba’, Tadashi

Hosoya’, Shohei Koyama?, Nobuo Sakaguchi®, Daron M. Standley®, Jay W. Shin®, Shizuo Akira®’,

3,11

Shinsuke Yasuda’, Yasunari Miyazaki'®, Yuta Kochi*, Atsushi Kumanogoh?, Toru Okamoto®!!, and

Takashi Satoh'®"

"Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical

and Dental University, Tokyo 113-8510, Japan.

’Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School

of Medicine, Osaka 565-0871, Japan.

Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka

University, Osaka 565-0871, Japan.

*Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and

Dental University, Tokyo 113-8510, Japan.

SLaboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center,


https://doi.org/10.1101/2022.09.30.510331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510331; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

WPI-IFReC, Osaka University, Osaka 565-0871, Japan.

®RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan.

"Department of Rheumatology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
$Innate Cell Therapy Inc., Osaka 530-0017, Japan.

Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, WPI-
IFReC, Osaka University, Osaka 565-0871, Japan.

9Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
"Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
2These authors contributed equally.

*Correspondence: e-mail: satoh.mbch@tmd.ac.jp (T. Satoh)


https://doi.org/10.1101/2022.09.30.510331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510331; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Infection of the lungs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via

the angiotensin I converting enzyme 2 (ACE2) receptor induces a type of systemic inflammation

known as a cytokine storm. However, the precise mechanisms involved in severe coronavirus

disease 2019 (COVID-19) pneumonia are unknown. Here, we show that interleukin-10 (IL-10)

changed normal alveolar macrophages into ACE2-expressing M2c-type macrophages that

functioned as spreading vectors for SARS-CoV-2 infection. The depletion of alveolar

macrophages and blockade of IL-10 attenuated SARS-CoV-2 pathogenicity. Furthermore,

genome-wide association and quantitative trait locus analyses identified novel mRNA transcripts

in human patients, COVID-19 infectivity enhancing dual receptor (CiDRE), which has unique

synergistic effects within the IL-10-ACE2 system in M2c-type macrophages. Our results

demonstrate that alveolar macrophages stimulated by IL-10 are key players in severe COVID-

19. Collectively, CiDRE expression levels are potential risk factors that predict COVID-19

severity, and CiDRE inhibitors might be useful as COVID-19 therapies.
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Introduction

SARS-CoV-2 emerged in December 2019 and led to the COVID-19 pandemic, which has globally

disrupted society (/). The excess mortality rate of COVID-19 was reported to be 120.3 deaths per

100,000 persons (2). The main cause of death is respiratory failure related to severe pneumonia, also

termed acute respiratory distress syndrome (3). Although there are asymptomatic cases of SARS-CoV-

2 infection, some patients progress rapidly into a severe and fatal illness. In a recent retrospective study,

several indexes, including sex, age, and body mass index, were reported to be risk factors for the

exacerbation of COVID-19 (4, 5). However, the detailed molecular mechanism of severe pneumonia

in COVID-19 remains unknown. The marked amplification of inflammatory responses triggered by

SARS-CoV-2 infection, termed a “cytokine storm”, is considered to be a key process in the course of

the disease’s progression and leads to multiple organ dysfunction (6-8). Various cytokines (including

IL-6) and chemokines produced by virus-infected cells in the lungs are thought to be important for the

establishment of cytokine storms. In addition, the accumulation of several types of immune cells,

including monocytes, dendritic cells, and CD4 and CD8 T-cells, by chemotaxis facilitates this process.

In the first step of this mechanism, SARS-CoV-2 invades host cells via the spike (S) glycoprotein that

normally binds to the host cell-surface receptor, ACE2 (9-12), which is expressed abundantly in

proximal airway cells of the human respiratory system and partially in the distal epithelium, including
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on alveolar epithelial cells (/3, 74). Because the focus of cytokine storms is the alveolar space, it is

unclear how proximal airway-dominant infections of SARS-CoV-2 lead to widespread inflammation

in the distal alveolar area. In alveoli, alveolar macrophages, mainly involved in the maintenance of the

immune system, are considered low-ACE2-expressing cells. However, recent research has suggested

that alveolar macrophages are susceptible to SARS-CoV-2 infection and are involved in the virus-

induced cytokine storm (735, 16). In this study, we focused on alveolar macrophages and investigated

their functional involvement in COVID-19 severity.

IL-10 is critical for COVID-19 severity

To investigate the histological changes caused by infection with SARS-CoV-2 in a hamster model, we

stained samples of lungs infected with the virus. Histological evaluation of the infected lungs indicated

the progression of autophagy and apoptosis but not fibrosis (Fig. 1A). Next, we investigated the

comprehensive gene expression pattern differences between healthy lungs (Mock group) and SARS-

CoV-2-infected lungs (COVID-19 group) using RNA sequencing (RNA-seq) and extracted 1624

upregulated differentially expressed genes (DEGs) and 1427 downregulated DEGs (Fig. 1, B and C,

and fig. S1A). In addition, we performed enrichment analysis using gene ontology (GO) and extracted

cellular processes enriched for the upregulated DEGs (table S1 and S2). A Venn diagram was created
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for five GOs expected to involve macrophages, including immune-response-related, cell death, and

autophagy signatures, which were selected based on histological analysis (Fig. 1D). We identified five

genes (Psenl, Ticaml, Pycard, Trem2, and 1110) that overlapped across all GOs. Among these genes,

1110 was the most upregulated in the SARS-CoV-2 infection group compared with uninfected normal

lungs (Fig. 1E). IL-10, a soluble protein with anti-inflammatory properties, was reported to induce the

differentiation of macrophages into anti-inflammatory M2c-type macrophages (/7, 18). However, no

reports have investigated the tissue-specific effects of IL-10 on alveolar macrophages in vivo during

SARS-CoV-2 infection. A histological assessment of the infected lungs showed that SARS-CoV-2

appeared in the central bronchial epithelium 1 day after infection and then spread through the alveolar

space within a few days (fig. S1B). In addition, our investigation of IL-10 localization revealed that it

was produced at high levels in the bronchial epithelium during COVID-19 infection (Fig. 1F). These

results suggest that IL-10 secreted by the bronchial epithelium infected with SARS-CoV-2 has an

influence on the spread of the virus in lung parenchyma and leads to severe inflammation. To

investigate the importance of IL-10 in human COVID-19 severity, clinical serum samples from

patients with SARS-CoV-2 were collected after hospital admission (early-stage post-infection), and

the concentrations of IL-10 and other serum factors were measured. Based on the extent of disease

progression after diagnosis, the patients were divided into two groups: Stable and Progressive (fig.
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S2A). Interestingly, a significant difference in serum IL-10 was observed between the progressive and

stable group in the early stage of SARS-CoV-2 infection (after admission), whereas there were no

significant differences in other inflammatory cytokines, including IL-6, that have been reported to be

highly expressed in the late stages of infection (/9) (Fig. 1G and fig. S2B). Consistent with recent

clinical research, CRP levels were also significantly different between the two groups (20) (table S3).

Collectively, these data suggest that IL-10 is a critical factor involved in COVID-19 severity in the

early stage of SARS-CoV-2 infection in humans.

M2c-skewing is a key cellular process in SARS-CoV-2 susceptibility of alveolar macrophages

To clarify the role of high levels of IL-10 in severe COVID-19 patients, we investigated a potential

relationship between IL-10 and alveolar macrophages, as this cell type is involved in inflammation in

other virus infections of the lungs (27, 22). First, we examined the expression levels of various

molecules associated with SARS-CoV-2 infection and found that the expression levels of Ace2 and

Furin, a protease essential for virus-binding to ACE2 (23, 24) and critical for SARS-CoV-2 entry, was

significantly increased in alveolar macrophages skewed to M2c-type macrophages after IL-10

stimulation (Fig. 2A). In addition, the gene expression levels of the lectin receptor Siglecl and the

Fcgrl Fc receptor, which were recently reported to be associated with SARS-CoV-2 infection and
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disease progression (25, 26), were also significantly elevated in IL-10-induced M2c-type alveolar

macrophages (Fig. 2B). Furthermore, gene expression of the IL-6 receptor (I161), a key molecule in

cytokine storms (6), was significantly increased in IL-10-induced M2c-type alveolar macrophages (Fig.

2B). However, the gene expression levels of CD147 (27, 28), Neuropilin-1 (Nrpl) (29), and Tmprss2

(30), which were reported to be important for virus entry, were unchanged in IL-10-induced M2c-type

alveolar macrophages (Fig. 2A). These results suggested that IL-10 changed the phenotype of alveolar

macrophages to M2c-type macrophages, which can be infected by SARS-CoV-2. Furthermore, ACE2

expression on M2c-type alveolar macrophages was inhibited by IL-10 receptor (IL-10R) blockade (Fig.

2C). A previous study reported that ACE2 expression was induced by interferon (IFN) in the airway

epithelium (37), but this was not confirmed in alveolar macrophages, suggesting the manner of ACE2

induction is cell-specific (Fig. 2C). When IL-10 was administered intratracheally into mice in vivo,

the expression of ACE2 on alveolar macrophages was increased compared with control mice (Fig. 2D).

In contrast, experiments using epithelial and stromal cells showed no upregulation of ACE2 in

response to IL-10 (fig. S3). In addition, IL-10-induced M2c-type alveolar macrophages exhibited

proliferative and morphological changes (fig. S4, A to D). We performed an in vitro infection

experiment to evaluate whether the ability of cells to be infected with SARS-CoV-2 increased under

IL-10 stimulation. Importantly, SARS-CoV-2 rarely infected normal alveolar macrophages directly in
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vitro (Fig. 2E), whereas the SARS-CoV-2 virus was detected and proliferated in alveolar macrophages

in in vivo infection experiments, indicating alveolar macrophages are changed by a factor released

from the surrounding environment under the influence of SARS-CoV-2 infection (fig. S4E). Thus, we

next performed infection experiments using IL-10-induced M2c-type macrophages and found that the

expression of viral genomic RNA (N gene) increased in IL-10-treated cells (Fig. 2E top). Infecting

virus RNA proliferated in M2c-type alveolar macrophages (Fig. 2E bottom), and fluorescent staining

clearly showed that ACE2-expressing IL-10-induced M2c-type alveolar macrophages were infected

with SARS-CoV-2 (Fig. 2F). These results suggested that IL-10, which is prevalent in patients with

severe COVID-19, skewed alveolar macrophages towards an M2c-type macrophage that is susceptible

to SARS-CoV-2, leading to increased inflammation within the alveoli.

Inhibition of Mz2c-skewing of alveolar macrophages induced by IL-10 attenuates the

pathogenesis of COVID-19

To evaluate the relationship between M2c-type alveolar macrophages and the pathology of COVID-

19, we developed an alveolar macrophage depletion model using the intratracheal administration of

clodronate liposome (CLP) (fig. S5, A and B). On day 5 after COVID-19 infection, the expression

levels of the inflammatory cytokine //6 and IFN-inducible Cxc/10 and Ccl5 significantly decreased in
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the lungs of the macrophage-depleted group (CLP group) compared with the control group injected

with control liposomes (Control group) (Fig. 3A). Although there was no significant difference in the

amount of viral RNA found in quantitative PCR (qPCR) analysis (Fig. 3B), we confirmed the virus

was histologically localized in the central respiratory tract and that inflammation in the lung

parenchyma was attenuated in the CLP group, suggesting that inflammation had not spread because

the virus had not proliferated in the alveoli (Fig. 3C). In addition, to demonstrate that I[L.-10 promoted

the exacerbation of alveolar-macrophage-mediated infection, we blocked IL-10R on the cell surface

of alveolar macrophages. We used a continuous injection protocol based on flow cytometric analysis

of IL-10R blocking (fig. S5, C and D) and found that the expression of inflammatory cytokines and

IFN-inducible genes was significantly suppressed after IL-10R blocking in pulmonary tissues, like

what was observed in the CLP group (Fig. 3D). In addition, inflammatory lesions in the lung

parenchyma were reduced, and the virus accumulated in the central bronchus, although there was no

significant difference in the quantities of viral RNA (Fig. 3, E and F). RNA-seq data from isotype

control and IL-10R blocked groups after SARS-CoV-2 challenge showed that pathways associated

with inflammatory response and IFN signaling were down-regulated in the IL-10R-blocked group (Fig.

3G, fig. SSE, and table S4). These results clearly showed that IL-10/IL-10R blockade in alveolar

macrophages attenuated the pathology of COVID-19 infection. Our in vitro and in vivo studies on the
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relationship between IL-10 and alveolar macrophages revealed the mechanism by which macrophages

acquire susceptibility to SARS-CoV-2 infection (Fig. 3H).

Genetic analysis revealed novel mRNA transcripts generated by alternative splicing between

IFNAR?2 and IL10RB genes were involved in human COVID-19 severity

It was suggested that IL-10 signaling in alveolar macrophages in the lungs is critical for COVID-19

aggravation. This prompted us to look for a genetic basis for the differences in IL-10 and IL-10R gene

expression related to COVID-19 severity in humans. We investigated comprehensive gene expression

data from many COVID-19 patient specimens. We evaluated the /L /0 and IL10R loci using genome-

wide association study (GWAS) datasets obtained from the COVID-19 Host Genetics Initiative (HGI)

(32, 33). GWAS are widely used to determine which genotypes in humans are likely to be associated

with disease severity. First, we examined single-nucleotide polymorphisms (SNPs) around the /210

promoter region to confirm the association between patients with high IL-10 and COVID-19 severity.

Although an SNP at the /L 10 promoter was reported to affect IL-10 expression in vitro (34), consistent

with the expression quantitative trait loci (eQTL) effects for /L10 on rs1800871 (fig. S6A), no GWAS

signal associated with COVID-19 severity was found in the same region (fig. S6B). Next, we focused

on IL-10R, which amplifies IL-10 signals and consists of IL-10RA and IL-10RB subunits. Regarding
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IL-10RA, GWAS signals in this region were not involved in COVID-19 severity (fig. S6C). Next, we

examined SNPs at the region around the /L/0RB locus on chromosome 21. GWAS demonstrated the

IFNAR?2 locus located near /IL10RB was significantly associated with COVID-19 severity, consistent

with recent reports (35-37) (fig. S6D). We evaluated the cell-specific eQTL effects of ILIORB

expression on monocytes/macrophages according to rs13050728 (Variant ID; chr21:33242905:T:C),

which had the most significant association with COVID-19 severity on the locus (P = 4.07¢!, T =

risk allele) in the COVID-19 HGI A2 datasets (Fig. 4A), whose QTL data were obtained from two

cohorts (the DICE and EvolmmunoPop project) (38-417). There was no significant eQTL effects on

IL10RB expression in these datasets, indicating that this variant does not affect the IL-10RB expression

pattern in monocytes/macrophages (Fig. 4B). In contrast, we found a unique splicing QTL (sQTL)

effect on rs13050728 at the splice junction between IFNAR2 and ILIORB (chr2l: 33252830:

33268394: clu 34140 +) in monocyte/macrophage datasets (Fig. 4C). Thus, we performed co-

localization analysis between this sSQTL and GWAS for COVID-19 severity. Interestingly, the sQTL

effect according to rs13050728 in monocyte/macrophage datasets was significantly co-localized with

the GWAS results (PP-H4 = 0.96), indicating that patients harboring the risk (T) allele of rs13050728

had a higher proportion of the novel splicing isoforms and were more likely to develop severe disease

compared with those with the nonrisk (C) allele (Fig. 4D). To investigate which transcripts were
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expressed under the influence of this sQTL effect, we performed long-read capture sequencing using

the monocyte/macrophage transcriptome. We identified two novel transcripts in addition to the normal

IFNAR?2 and IL10RB mRNA transcripts (Fig. 4A and table S5). These novel transcripts were fused

with parts of IJFNAR2 and IL10RB as a result of the unique splicing and contained the same coding

sequence (CDS) (fig S6E and table S5). Thus, we evaluated the expression levels of the novel

transcripts in human peripheral blood mononuclear cell (PBMC)-derived monocytes/macrophages.

Intriguingly, the novel transcripts showed a significant increase in the T/T genotype compared with

the C/C and C/T genotypes (Fig. 4E). However, IL10RB expression was lower in the T/T genotype

compared with the C/C genotype, and /FNAR?2 expression levels were not significantly different in

any genotype (Fig. 4E). These results clearly indicated that the risk (T) allele of rs13050728 increased

the amount of the novel transcripts in monocytes/macrophages, and the expression levels of the novel

transcripts was strongly correlated with COVID-19 infectivity and severity in humans.

IFNAR2/IL10RB-fused transcripts encode unique “hybrid” receptor

Based on the common CDS of the novel transcripts (fig. S6E), we examined its corresponding amino

acid sequence and found it contained the extracellular domains of IFNAR2 and IL-10RB, and the

transmembrane and intracellular domains of IL-10RB (Fig. 5, A and B). To investigate whether the
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transcripts were successfully translated and translocated to the cell surface, the full-length CDS was

overexpressed in HEK293 cells. As a result, we confirmed that the coding protein was translated and

translocated to the cell surface (fig. S6, F and G). Next, we investigated whether complexes of hybrid

receptors and other receptors could bind to their corresponding ligands. The wild-type IL-10RB and

IFNAR?2 formed complexes with IL-10RA and IFNARI, respectively, for ligand recognition. The IL-

10RB/IL-10RA complex forms a dimer that interacts with dimeric IL-10, whereas the

IFNAR2/IFNAR1 complex forms a monomer that interacts with monomeric IFN-a. (42, 43). Thus, we

modelled a complex of the hybrid receptor, which contains IL-10RB and IFNAR2, with IL-10RA as a

dimer or IFNAR1 as a monomer using AlphaFold v2.2.2. From a structural point of view, the

Hybrid/IL-10RA successfully formed a complex that could activate downstream IL-10 signaling

pathways (Fig. 5C). In contrast, the Hybrid/IFNARI was predicted not to be activated by IL-10

signaling because each intracellular domain was too far apart (Fig. SD). Next, we evaluated the binding

affinities of the Hybrid complex with ligands, including IL-10 and IFN-a., using the DockQ (pDockQ)

score program (detailed in Materials and Methods). The binding affinities of complexes containing

the Hybrid/IL-10RA receptor with the ligand IL-10 were predicted to be similar to those of wild-type

IL-10RB/IL-10RA, whereas most complex models involving IFN-y, a negative control ligand, had

quite low pDockQ scores, suggesting that the Hybrid/IL-10RA and Hybrid/[FNAR?2 did not recognize
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IFN-y (Fig. SE). In addition, the pDockQ score for Hybrid/IFNAR2 and IFN-a (a known [FNAR2

ligand) was also high, indicating that the Hybrid receptors could bind to IFN-a but were unable to

activate downstream signaling pathways (Fig. 5, D and E). Since this novel receptor was suggested to

recognize two molecules, we termed this “COVID-19 infectivity enhancing dual receptor” (CiDRE).

CiDRE is involved in COVID-19 severity as a dual receptor for IL-10 and type I IFN signaling

To investigate the biological function of human CiDRE in alveolar macrophages, murine alveolar

macrophages transduced with human CiDRE-expressing lentiviral vectors were stimulated with

cytokines, including human IL-10 (hIL-10), and the phosphorylation of STAT3 was examined, since

STAT3 is phosphorylated in response to IL-10 (44). STAT3 phosphorylation was strongly amplified in

hIL10-stimulated CiDRE-expressing macrophages compared with controls, consistent with the model

of hIL-10 binding to hIL-10R and mouse IL-10R (mIL-10R) (Fig. 6A). In contrast, the

phosphorylation of STAT3 and its amplification were not found in response to human IFN-o (hIFN-

o) or IFN-y (hIFN-y). In addition, augmented phosphorylation via CiDRE in response to hIL-10 was

suppressed by the addition of an anti-human IL-10RB antibody (clone 90220) that recognizes hIL-

10RB but not mIL-10RB (Fig. 6B). Moreover, the expression levels of Ace? was significantly

augmented by IL-10 in CiDRE-expressing alveolar macrophages (Fig. 6C). Although type I IFN did
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not activate IL-10 signaling in CiDRE-expressing macrophages, IFN-a was strictly associated with

CiDRE (Fig. 6, A and D). Taken together, the evidence suggests CIDRE and IL-10R bind strongly to

IL-10 to synergistically activate M2c-type macrophages, which can be infected by SARS-CoV-2,

whereas CiDRE functions as a decoy receptor that sequesters type I IFNs, which have important roles

in antiviral responses.

Taken together, our findings confirmed an antibody-independent pathway of SARS-CoV-2 infection

in M2c-type alveolar macrophages and clarified the mechanism of COVID-19 severity mediated by

the IL-10 pathway. In addition, analysis using human samples demonstrated a genetic difference in IL-

10 reactivity in alveolar macrophages that was affected by the expression levels of the novel receptor,

CiDRE.

Discussion

We found that IL-10 signal amplification mediated by the native IL-10RB and CiDRE, followed by

M2c-skewing of alveolar macrophages, is critical for disease progression in COVID-19. This finding

may have important implications for predicting the severity of COVID-19, prioritizing vaccination

programs, and developing new preventive drugs such as anti-IL10R inhalers. Recent studies reported

the involvement of monocytes/macrophages in COVID-19 (735, 16, 45). Monocytes/macrophages were
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reported to be diverse, and resident macrophages and bone marrow-derived macrophages are thought

to contribute to the pathogenesis of lung disease (46, 47). Spatiotemporal analysis of these myeloid

cells is very important, and the relationship between IL-10 and alveolar macrophages in this study

suggested they are responsible for the transition from the early stages of infection to a progressive state

and, therefore, might determine the fate of patients with SARS-CoV-2. We confirmed that the

expressions of IL-10RB and CiDRE are mutually exclusive, indicating that the upregulation of CiDRE

influences the total IL-10 signal intensity because 1L-10 was reported to have a low binding affinity

for IL-10RB (42). Therefore, small changes in the ligand-receptor relationship can have a large impact

on the downstream signaling pathways (42). In addition, CiDRE is expected to act as a decoy receptor

for type I IFNs, thereby delaying viral clearance and promoting the progression of COVID-19.

Interestingly, compared with SARS and Middle East respiratory syndrome, COVID-19 was suggested

to significantly increase Th2 cytokines, including IL-10 (48). CiDRE might be specific to SARS-CoV-

2 infection; however, it might also be involved in IL-10-related diseases such as Crohn’s disease,

ulcerative colitis, and psoriasis (49). Furthermore, CiDRE might have dominant functions in other

immune cells that have low expression levels of IL-10RB, such as lymphocytes. CiDRE represents a

paradigm shift in our understanding of the relationship between type I IFN and IL-10 signaling and

their roles in the development of disease.
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Materials and Methods

Animals

BALB/c mice and Syrian hamsters were purchased from Japan SLC (Shizuoka, Japan). Male mice

between 6 and 8 weeks of age and male hamsters between 3 and 4 weeks of age were used. All animals

were housed in individually ventilated cages with free access to food and water in a temperature and

light-regulated room in a specific pathogen free (SPF) facility. All animal experiments without SARS-

CoV-2 were performed at the Tokyo Medical and Dental University. The study protocols were

approved by the ethical committees of Tokyo Medical and Dental University (A2021-275C and

A2021-294A). All animal experiments with SARS-CoV-2 were performed in Animal Biosafety Level

3 (ABSL3) facilities at the Research Institute for Microbial Diseases, Osaka University. The study

protocols were approved by the Institutional Committee of Laboratory Animal Experimentation of the

Research Institute for Microbial Diseases, Osaka University (R02-08-0). All efforts were made during

the study to minimize animal suffering and to reduce the number of animals used in the experiments.

Cells and Viruses

HEK?293 (ATCC, Manassas, VA, USA), HEK293T (ATCC), and A549 (ATCC) cells were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated foetal bovine


https://doi.org/10.1101/2022.09.30.510331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510331; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

serum and 1% penicillin/streptomycin (complete DMEM). Roswell Park Memorial Institute (RPMI)

1640 medium was used for THP-1 (ATCC) cells instead of DMEM. MLE12 cells and primary lung

fibroblasts were cultured as described previously(50, 51). Vero E6/TMPRSS2 cells were provided by

the National Institutes of Biomedical Innovation, Health and Nutrition (Japan) and maintained at 37°C

with 5% CO; in complete DMEM. SARS-CoV-2 strains, hCoV-19/Japan/QHN002/2021 (Alpha),

hCoV-19/Japan/TY8-612/2021  (Beta),  hCoV-19/Japan/TY7-503/2021  (Gamma), hCoV-

19/Japan/TY 11-927/2021 (Delta), and 2019-nCoV/Japan/TY38-873/2021 (Omicron) were isolated at

the National Institute of Infectious Diseases (Japan) and provided for this research. SARS-CoV-2 was

propagated in VeroE6/TMPRSS2 cells. The virus stock was generated from the supernatant of

VeroE6/TMPRSS2 cells infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.1 and

harvested 2 days after infection. The viral titer was determined by plaque assay.

Human clinical samples

This study was in part based on clinical materials and information from the BioBank at the Bioresource

Research Center, Tokyo Medical and Dental University (BRC2021-001). Human serum samples for

ELISA were obtained from 122 hospitalized patients with COVID-19 at the Tokyo Medical and Dental

University. All subjects signed a consent form approved by the ethical committees of Tokyo Medical
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and Dental University. Ethical approval for the human study protocols was obtained from the ethical

committees of Tokyo Medical and Dental University (G2020-034).

Gene cloning

The coding sequence (CDS) of the CiDRE transcripts was amplified by PCR using KOD FX Neo

(TOYOBO, Osaka, Japan) with THP-1 complementary DNA as a template and the following primer

pairs: Forward: 5'-ATGCTTTTGAGCCAGAATGCCTTC-3' and Reverse: 5'-

CTAGCTTTGGGGCCCCTGCCCA-3'. The PCR reaction was performed with the following settings:

initial denaturation step of 4 min at 96°C, amplification of 40 cycles of 30 s denaturation at 96°C,

followed by annealing for 30 s at 70°C and the last extension step of 7 min at 72°C. Blunt-end

amplified CDS products were cloned into a pCR-Blunt II-TOPO vector using a Zero Blunt™ TOPO™

PCR Cloning Kit (Thermo Fisher Scientific, Waltham, MA, USA) in accordance with the

manufacturer’s protocol. The cloned vectors were sent to Azenta Japan Corp. (Tokyo, Japan) and

sequenced with two universal primers (M13 Forward and M13 Reverse) to confirm the CiDRE-CDS

total sequence. Then, a PCR reaction was performed in the same manner using a vector including the

correct CiDRE-CDS sequence with the following primer pairs: Forward: 5'-

GGATCCATGCTTTTGAGCCAGAATGCC-3' and Reverse: 5'-
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CTCGAGCTAGCTTTGGGGCCCCTG-3', which were designed to have BamHI and X#ol restriction

sites on the 5’ end of the former primers, respectively. PCR products were cloned into a subcloning

vector and then the CiDRE-CDS insert sequence was transferred to a FUGW-IRES-GFP (FUIGW)

vector (52) after enzymatic restriction by BamHI (TOYOBO) and X#ol (TOYOBO), followed by

ligation using a DNA Ligation Kit Ver. 2.1 (Takara, Shiga, Japan). In this experiment, competent high

DH5a (TOYOBO) competent cells were used for plasmid amplification.

Transfection

HEK293 cells were transfected with FUIGW-NanoLuc (empty control), FUIGW-CiDRE, or FUIGW-

IL-10RB using Lipofectamine 2000 (Thermo Fisher Scientific) following the manufacturer’s protocols.

Then, 48 h after transfection, cells were incubated with 40 ng/ml human IL-10 (BioLegend, San Diego,

CA, USA) for 2 h at 4°C and cells were collected for flow cytometric analysis.

Lentiviral transduction

Lentiviruses were produced in HEK293T cells by the co-transfection of FUIGW-NanoLuc or FUIGW-

CiDRE with two lentiviral helper plasmids, pPCMV-dR8.2 (53) and pCAG-VSV-G (53, 54). Culture

supernatants containing lentivirus were collected 24 and 48 h after transfection and concentrated by a
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Lenti-X concentrator (Takara) followed by passing through a 0.45-um PES filter. Lentiviral

transduction of murine alveolar macrophages was performed for 7 days in the presence of 5 pg/cm?

RetroNectin (Takara). Stable gene expression was confirmed by GFP signals using a BZ-X710

(KEYENCE, Osaka, Japan). For WB analysis, successfully transduced cells were collected after 10

min incubation with human IFN-a (BioLegend), [FN-y (BioLegend), or IL-10 with or without anti-IL-

10RB antibody (clone 90220, R&D Systems, Minneapolis, MN, USA) for 30 min. For qPCR analysis,

cells were collected 24 h after incubation with 40 ng/ml IL-10 following the protocol of the High Pure

RNA Isolation Kit (Roche, Basel, Switzerland).

Intratracheal injection of IL-10

BALB/c mice were anaesthetized by the intraperitoneal administration with 10 pl/g body weight of a

medetomidine-midazolam-butorphanol tartrate mixture (0.75 pg/ml medetomidine, 4 upg/ml

midazolam, and 5 pg/ml butorphanol tartrate), and then the intratracheal administration of murine IL-

10 (10 pg/animal in 50 pl phosphate buffered saline (PBS)) was performed. The intraperitoneal

administration of atipamezole was performed for the recovery from anesthesia. Bronchoalveolar

lavage (BAL) and lungs were collected at 3 days after instillation.
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BAL

To isolate alveolar macrophages, animals were euthanized by CO» narcosis. Then, the lungs were

inflated with 1-ml (mice) or 2.5-ml (hamsters) aliquots of PBS three times. After centrifugation and

red blood cell lysis, the collected cells were cultured at 37°C with 5% CO- in complete RPMI for 4 h.

Then, the attached cells (typically >95% alveolar macrophages) were stimulated with 40 ng/ml murine

IL-10, IFN-a, or IFN-y (all from BioLegend). For IL-10R blocking, cells were treated with 10 pg/ml

anti-IL-10R antibody (clone 1.3B1a, BioLegend) for 30 min prior to IL-10 stimulation. Then, samples

were collected 72 h after incubation for flow cytometric analysis. For IL-10 intratracheal injection

experiments, collected BAL samples were directly used for subsequent experiments. For SARS-Co V-

2 challenge, isolated alveolar macrophages were infected with each strain of SARS-CoV-2 (Alpha,

Beta, Gamma, and Omicron) at an MOI of 10 24 h after incubation with or without IL-10. Cells were

harvested at 72 h after viral challenge and lysed for RNA extraction or fixed in 10% neutral-buffered

formalin (NBF) for immunofluorescence staining.

Preparation of primary lung cells

Murine lungs were dissociated with 1 mg/ml type I collagenase (Sigma, St. Louis, MO, USA) in the

presence of DNase I (Roche) for 30 min at 37°C. The cells were then centrifuged at 300 x g for 10
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min and treated with RBC Lysing buffer for red blood cell lysis for 2 min at room temperature. The

collected samples were suspended in FACS buffer (0.5% bovine serum albumin (BSA) and 2 mM

EDTA in PBS) for flow cytometric analysis.

Syrian hamster COVID-19 model

Syrian hamsters were anaesthetized with isoflurane and challenged with 1.0 x 10° plaque-forming unit

SARS-CoV-2 (Delta strain) via the intranasal route. For alveolar macrophage depletion experiments,

hamsters were anaesthetized with the anesthetic tartrate mixture as above, and then the intratracheal

administration of clodronate liposome 100 (Katayama Chemical, Osaka, Japan) or control liposomes

(Katayama Chemical) was performed 7 days prior to infection. For IL-10 blocking experiments, daily

intratracheal injection with 400 pg/body of anti-IL-10R antibody (clone 1.3Bla, BioLegend) or

isotype control (BioLegend) under anesthesia with the tartrate mixture was started 2 days post-

infection until the day of analysis. Atipamezole was used for hamster recovery as described above. In

both experiments, hamsters were euthanized by CO> narcosis and lungs were collected 5 days post-

infection for subsequent experiments.

quantitative PCR
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Total RNA was extracted using a High Pure RNA isolation kit (Roche) or TRIzol (Thermo Fisher

Scientific), in accordance with the manufacturer’s instructions. If necessary, RNA was concentrated

using a Monarch RNA Cleanup Kit (New England Biolabs, Ipswich, MA, USA). After reverse

transcription with the ReverTra Ace qPCR RT Master Mix (TOYOBO), qPCR was performed using

THUNDERBIRD SYBR qPCR Mix (TOYOBO) on a LightCycler 480 instrument (Roche). Relative

values of target gene expression were calculated using the standard curve method normalized to -

actin. qPCR primer sequences are listed in table. S6.

Flow cytometry

After Fc-blocking using FcX reagents (BioLegend), cells were incubated with primary antibodies in

FACS buffer for 30 min at 4°C and if necessary, incubated with secondary antibodies for 20 min at

4°C. Lung epithelial cells were defined as CD45 CD31 EpCAM" cells. Lung endothelial cells were

defined as CD45 CD31"EpCAMI~ cells. Lung fibroblasts were defined as lung

CD45 CD31 EpCAM1 CDI140a" cells. For the assessment of ACE2 expression, goat anti-ACE2

antibody (R&D Systems) and Alexa Flour 647-conjugated anti-goat [gG antibody (Abcam, Cambridge,

UK) were used as primary and secondary antibodies, respectively. Data were acquired on a flow

cytometer (FACS Cantoll; BD Bioscience, Franklin Lakes, NJ, USA) and analyzed using FlowJo
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software (Tree Star, Inc., Ashland, OR, USA).

ELISA

IL-10, IL-6, IFN-0, IFN-y, IFN-A, IL-1a, IL-1B, TNF-q, IL-2, IL-4, IL-5, IL-13, IL-33, MCP-1,

HMGBI, TGF-B, NGAL, and MRP-8/14 in human blood serum were measured by ELISA kits

(BioLegend, R&D Systems, or Shino-Test Corp., Tokyo, Japan) following the manufacturer’s

protocols.

Western blotting

Separation of protein samples, which were quantified using a Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific), was performed by SDS-PAGE. After transfer to polyvinylidene difluoride (PVDF)

membranes, the membranes were incubated with the appropriate primary antibodies overnight. Then,

membranes were incubated with HRP-conjugated secondary antibodies, and reacted with HRP

substrates (Merck Millipore, Darmstadt, Germany) for enhanced chemiluminescence (ECL) detection

using Amersham Imager 680 (Cytiva, Marlborough, MA, USA). B-Actin was selected as a loading

control.
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Histopathology

Lung tissues were fixed in 10% NBF for 2448 h and embedded in paraffin. Sections were cut at 4-

um thickness using a microtome and mounted on glass slides. After deparaffinization and dehydration,

the slides were used for subsequent HE staining and other staining procedures. To evaluate fibrotic

lesions, sections were stained with azan. Terminal deoxynucleotidyl transferase-mediated dUTP nick

end labeling (TUNEL) staining was performed using an Apop Tag Plus Peroxidase In Situ Apoptosis

Kit (Merck Millipore) following the manufacturer’s protocols. Histopathological evaluation was

performed using a BZ-X710 microscope.

Immunochemistry and Immunofluorescence

For immunochemistry and immunofluorescence, heat-activated antigen retrieval of

deparaftinized/dehydrated sections was performed using Target Retrieval Solution (Dako, Glostrup,

Denmark). After the blocking of endogenous peroxidases using Peroxidase-Blocking Solution (Dako),

the sections were incubated overnight at 4°C with anti-ACE2 (1:100), mouse anti-SARS-CoV-2

(1:1000), and rabbit anti-LC3B (1:1000) antibodies in Antibody Diluent (Dako) as primary antibodies.

If necessary, the M.O.M. Fluorescein Kit (Vector Laboratories, Newark, CA, USA) was used for

endogenous mouse IgG blocking. For immunochemistry, the Envision+ System- HRP Labeled
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Polymer (Dako) was used as a secondary antibody. Counter staining was performed by hematoxylin

followed by DAB staining. Then, histopathological evaluation was performed using a BZ-X710

microscope. For immunofluorescence, the appropriate fluorescent labelled antibodies were used as

secondary antibodies with DAPI (Bio-Rad, Watford, England). The sections were incubated for 60 min

at room temperature in the dark. Then, the histopathological evaluation was performed using an LSM

780 microscope (Carl Zeiss, Oberkochen, Germany).

Electron microscopy

The specimens were fixed in 2.5% glutaraldehyde in 0.1 M phosphate-buffer (PB) for 2 h. The

specimens were washed overnight at 4°C in 0.1 M PB and post-fixed with 1% osmium tetroxide

buffered with 0.1 M PB for 2 h. For scanning electron microscopy, the specimens were dehydrated in

a graded series of ethanol and dried in a critical point drying apparatus (JCPD-5; JEOL, Tokyo, Japan)

with liquid CO.. The specimens were spatter-coated with platinum and examined by scanning electron

microscope (JSM-7900F; JEOL). For transmission electron microscopy, the specimens were

dehydrated in a graded series of ethanol and embedded in Epon 812 (TAAB Laboratories Equipment,

Aldermaston, England). Ultrathin sections (70 nm thickness) were collected on coppergrids, double-

stained with uranyl acetate and lead citrate and then examined by transmission electron microscope
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(JEM-1400Flash; JEOL). Experiments in electron microscopy were performed at the Research Core

of Tokyo Medical and Dental University.

Human PBMC and Genotyping

Human PBMCs were purchased from Precision for Medicine, Inc. (Cat# 551-37651 and 555-41341;

Frederick, MD, USA) and cultured for 7 days with 20 ng/ml recombinant M-CSF (R&D Systems) to

allow them to differentiate to macrophages. The macrophages were used for the qPCR analysis of

CiDRE transcripts and genotyping at rs13050728. For genotyping at rs13050728, PCR reactions were

performed using KOD FX Neo with each macrophage genome DNA as a template and the following

primer pairs: Forward: 5-GAGGCATAGTTTCACTCTGTTG-3" and Reverse: 5'-

CTGGACACAGTGGCTCATAC-3'. PCR products were sent to Azenta Japan and complementary

sequenced with the following primers: 5'-CAGTGGCTCATACCTGTAACC-3'". Genomic DNA was

extracted using DNA lysis buffer (1 M Tris-HCI, pH 8.0, 0.5 M EDTA, 10% SDS, 5 M NacCl, and 100

pg/mL Proteinase K).

RNA library preparation and RNA-seq

Approximately 200 ng total RNA was used to generate single-end cDNA libraries using TruSeq
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stranded mRNA Library Prep (Illumina, San Diego, CA). The libraries were sequenced using a

NovaSeq 6000 Sequencing System in 100 base single reads and all samples had around 120M reads.

Library construction and sequencing were performed at the Genome Information Research Center,

Osaka University.

RNA-seq data processing and DEG analysis

HISAT2 (55) was used to perform alignments to the MesAurl.0 golden hamster genome. Transcripts

were assembled using StringTie ver 1.3.6 (56). Gene and transcript counts were generated with

StringTies prepDE.py script. The raw count data from duplicates were analyzed using DEseq?2 (57) to

obtain DEGs between day 0 and day 5. The significance of DEGs with a p-value < 0.1 were shown as

a volcano plot using the “EnhancedVolcano” R package

(https://github.com/kevinblighe/EnhancedVolcano). A heatmap was generated using the “heatmap.2”

R package (https://cran.r-project.org/web/packages/gplots/index.html).

Enrichment pathway analysis

Extracted DEGs were converted to human homologue genes, hsapiens_associated gene name using

the “Biomart” R package (58). GSEA was inferred using the “fgsea” R package
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(https://github.com/ctlab/fgsea/) with h.all.v7.5.symbols.gmt for 1000 permutations. Representative

pathways were highlighted by the plotEnrichment function.

Gene ontology

Overall, 5537 upregulated genes were selected and analyzed with g:Profiler (59). The GO terms “Cell

death”, “Autophagy”, “Immune Response”, “Cytokine Production”, and “Myeloid Leukocyte

Activation” were selected to create Venn diagrams of significantly associated genes using VennPlot

(http://bioinformatics.psb.ugent.be/webtools/Venn/).

Splicing QTL analysis

We used the datasets (SNP array and RNA-seq data) of previous eQTL studies obtained from two

Europeans cohorts: the DICE (database of immune cell expression, expression quantitative trait loci,

and epigenomics) project (38) (the database of Genotypes and Phenotypes (dbGaP), phs001703.v1.p1)

and the EvolmmunoPop project (39) (European Genome-phenome Archive [EGA],

EGAS00001001895). We additionally performed genotype imputation using SNP array data. Pre-

imputation quality control (QC) of the genotyping data was performed using PLINK 2.0

(https://www.cog-genomics.org/plink/2.0/) with the following parameters (--mind 0.02 --king-cutoff
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0.0884 --geno 0.01 --maf 0.01 --hwe le-5). Post-QC variants were prephased using SHAPEIT (60)

and imputation was performed using MiniMac3 (6/) and 1000 Genomes Phase 3 (release 5) as the

reference panel (62). Post-imputation QC was performed using PLINK 2.0 with the following

parameter (--minimac3-r2-filter 0.3). Genotyped and imputed autosomal SNPs or indels with minor

allele frequency (MAF) > 0.01 were used for subsequent QTL analysis with a related expression

dataset. We re-aligned the RNA-seq reads on the GRCh38 genome using STAR software v2.7.0 (63)

in two-pass mode with the GENCODE38 annotations combined with the de novo fusion transcripts

obtained from long-read capture RNA-sequencing. We conducted junction-based sQTL analysis using

LeafCutter (64). For the normalization of junction read counts, we performed quantile normalization,

rank-transformed normalization, and PEER normalization using 15 hidden factors (65). Correlation

analysis of the genotype with the junction read count was performed for variants with a MAF > 0.01

within a 1-Mb window around each transcript using the MatrixEQTL R package (66) with the top 10

genetic principal components as covariates.

Colocalization analysis of sQTL and GWAS signals

We used the GWAS summary statistic of severe COVIDI9 (COVID-19 HGI release5

(https://storage.googleapis.com/covid19-hg-
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public/20201215/results/20210107/COVID19 HGI A2 ALL eur leave 23andme 20210107.b37.t

xt.gz). To evaluate the colocalization of sQTL and GWAS signals, we applied a Bayesian framework

using the coloc R package (67). We tested for the 500,000 bp window centered on the GWAS lead

variant and we considered PP-H4 (posterior probability of shared causal variant) > 0.8 to indicate

significant colocalization. Colocalization plots were generated using LocusCompare (68).

Long-read capture RNA-sequencing

We prepared xGen Custom Target Capture Probes (biotinylated 120bp-ssDNAs generated by IDT,

Coralville, 1A, USA) that covered the entire main-isoform sequences of [IFNAR?2

(ENST00000342136.9) and IL10RB (ENST00000290200.7) as well as the junction sequences of the

novel transcripts. We isolated total RNA from THP-1 cells with or without stimulation by PMA (10

ng/ml for 24 h/72 h), LPS (100 ng/ml for 24 h/72 h) or human IFN-y (10 ng/ml for 24 h/72 h). We

reverse transcribed 100 ng of total RNA by smartseq v2 protocols (69) with oligo-dT primers and then

amplified them by 22 cycles of PCR using the KAPA HiFi Hot Start Ready Mix (Kapa Biosystems,

Wilmington, MA, USA) with 5Me-isodC-TSO and ISPCR primers. We hybridized and captured cDNA

with xGen probes using an xGEN Hybridization and Wash Kit (IDT). We then amplified the captured

cDNA with an additional 14 cycles of PCR as described above. For library preparation for sequencing,
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we used a Nanopore Ligation Sequencing Kit (Oxford Nanopore Technologies, Oxford, United

Kingdom) and NEBNext Quick Ligation Module/NEBNext Ultra I End-Repair/dA-Tailing Module

(New England Biolabs). Then, cDNAs were sequenced by Flongle Flow Cell (FLO-FLG001; Oxford

Nanopore Technologies). Basecalling was performed using Guppy (v4.4.1). The obtained fastq files

were aligned to the GRCh38 primary assembly using minimap2 v2.17 with reference to the splice

junctions in the GENCODE38 annotation. We used the flair pipeline (70) to identify the full-length of

the novel transcripts and filtered them using the following criteria: 1) isoforms expressing more than

50 reads in total, 2) isoforms whose 5’ end was located within 100 bp from the FANTOM CAGE peak

(TSS peak based on a relaxed 0.14 threshold by TSS classifier), 3) isoforms whose 3’ end is located

within 100 bp from the TES of PolyASite2.0, and 4) isoforms evaluated as protein coding isoforms by

CPAT v3.0.4 (coding probability > 0.364) (71).

Three-dimensional structure computational analysis

Three-dimensional (3D) structures of the hybrid receptor and receptor-ligand complexes were

predicted by AlphaFold v2.2.2 (https://github.com/deepmind/alphafold) (72). For each receptor-ligand

complex, 25 structural models were generated (5 predictions for each of 5 AlphaFold machine learning

models). Predicted DockQ (pDockQ) scores (https://gitlab.com/ElofssonLab/FoldDock/-
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/blob/main/src/pdockq.py) (73) were calculated to evaluate the binding affinity of complex models,

based on predicted structures and their predicted interface IDDT (pIDDT) scores. A violin plot was

drawn by Matplotlib (https://ieeexplore.ieee.org/document/4160265) to compare the distribution of

pDockQ scores of different complexes. Because AlphaFold modelling is not restricted by the

transmembrane domain position, a follow-up step was carried out to construct membrane-embedded

complex models. The extracellular domains were first trimmed out of the complex models, and the

transmembrane domains were then repositioned onto the same plane beneath the C-terminus of the

extracellular domains. They were joined by rebuilding joint regions with the protein structure

modelling program MODELLER (74). Coarse-grained lipid bilayer models were generated by

BUMPy (75) for visualization. Structural visualization was performed by PyMOL (The PyMOL

Molecular Graphics System, Version 2.5.2, Schrédinger, LLC, New York, NY, USA).

Statistical analyses

Statistical analyses were performed using GraphPad Prism 8.0. Statistical significance was determined

by two-tailed, unpaired parametric #-tests or Mann—Whitney U-test. For multiple experimental groups,

one-way ANOVA with Tukey multiple comparisons was used. Quantitative data are presented as the

mean =+ standard deviation (SD). Differences were considered significant when *p < 0.05, **p <0.01,
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**%kp < 0.005, or ****p < 0.001. Additional statistical details are shown in the figure legends.
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Fig. 1. IL-10 is a key regulator of COVID-19 severity.
(A) Hematoxylin and eosin (HE) staining (top), immunohistochemistry of SARS-CoV-2 (second from
the top), TUNEL (third from the top), immunohistochemistry of LC3B (fourth from the top), and Azan

(bottom) staining of hamster lung specimens. Scale bars, 100 um. (B) Principal component analysis
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(PCA) of RNA-seq data between Mock and COVID-19 groups (n=2). (C) Volcano plot showing DEGs.

The upregulated genes are marked in red and downregulated genes are marked in blue. (D) Venn

diagram based on five GO groups related to important cellular processes in COVID-19. Each GO

includes the upregulated DEGs in COVID-19. (E) Heatmap showing the overlapping genes within the

five GOs. (F) Immunohistochemical staining of IL-10 in lung sections. Scale bars, 50 um. (G)

Comparison of serum levels of IL-10, IL-6, IFN-a, IFN-y, and IFN-A between two groups of COVID-

19 hospitalized patients. The patients were divided into Stable (no disease progression through

treatment, n=95) and Progressive groups (disease progression after admission, n=27). Patient

classification criteria are shown in fig. S2A. The dots represent individual patients and the error bars

indicate the median. Statistical significance was determined by a Mann—Whitney U-test.


https://doi.org/10.1101/2022.09.30.510331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.30.510331; this version posted October 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

factors involved in infection

A
Ace2 Furin Cd147 Nrp1 Tmprss2
e ns ns ns
% 10 K 2 K 8 —_ 10 20
% 8 . 15 64 * 8 0 1
¥ 6 1 4 . 6 rx 1
E 4 R0 = 4
: 2 2 F
E o ﬁ . i . *le
2 o ! i o4 i
A N N N N
AR AR CAR\ AR\ AR
NN N o N NI N
N N Vo Vo N
c ns
ns
— |sotype control s
/ 1500 * %k k% **_**
Mock ns *
N E 1000 l‘t
~ e |L-10 =
w L ‘ =
Q O 500 ||
< A IL-10 + alL-10R < ‘ ‘
—— IFNa o *
P S Q& e*
W 0 10 s NETe) Q
IFNy S EVSTEE
. »
Fluorescence Intensity \%QQ) o ©
(Alexa Flour 647) & \\;'\
E Alpha strain Beta strain Gamma strain Omicron strain
1 * kK 10 - Lt ] 20 K
+
@ 8 15 - @
£ 10 3
- o
©
T 4 4 . 3
S R T [ [
0+ 0+ [
Ao A Ao AN
SO\, NG X NN N
NN NN NN N
N/ AR VoW Vo
Alpha strain Beta strain Gamma strain Omicron strain
L L] A 1 L b ] 1 o
6 T g
» p
o
.g 6 1 Q
& 4 4 3
E 4 5 o
AL il [ ’
i [ m 0 0
Do AN Ao Ao
O X LIRS N X NN
O70 NN N NN
W W W VoW

IL-10 (-)

IL-10 (+)

factors involved in severity

B
Siglect Fegrt li6ra
E 1 bl 1 ok 20, KEEE
2 .
z ' 1 ;
£ ) :
g ﬁ :
E=} 2: - 2 . [;]
[
E 0 0 I'é'l I
AR N N o
N X \ x % x
S NS NI
AR A\ ARV,
D ] 1
s
JUR—
£
o .
3 - \
counts s S
T Isotype control e ACE2
Alexa Flour 647
F

Fig. 2. IL-10 promotes SARS-CoV-2 infection in alveolar macrophages.

(A and B) mRNA expression of genes related to COVID-19 susceptibility (A) and severity (B) in

murine alveolar macrophages stimulated by 40 ng/ml IL-10 for 24 h (n=6). (C) Flow cytometric

analysis of ACE2 expression in murine alveolar macrophages stimulated by IL-10 (40 ng/ml) with and

without IL-10R antibody (clone 1.3B1a, 10 pg/ml), IFN-a (40 ng/ml), and IFN-y (40 ng/ml) for 72 h.
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(D) Flow cytometric analysis of ACE2 expression in alveolar macrophages isolated from IL-10-

challenged mice at day 3 after intratracheal injection. (E) Quantitative PCR (qPCR) analysis of SARS-

CoV-2 genomic and subgenomic (N) RNA in murine alveolar macrophages treated with IL-10 (40

ng/ml) 72 h after viral challenge (n=3). The error bars indicate mean + standard deviation (SD).

Statistical significance was determined by two-tailed, unpaired parametric ¢-tests (A, B, and E) or one-

way ANOVA with Tukey multiple comparisons (C). Data are representative of at least three

independent experiments. (F) Immunofluorescence of infected alveolar macrophages with IL-10 (40

ng/ml) 72 h after viral challenge. Cells were stained for SARS-CoV-2 (Alexa Fluor 568, red), ACE2

(Alexa Fluor 488, green), and with DAPI (blue). Scale bars, 50 pm.
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Fig. 3. IL-10-activated alveolar macrophages trigger SARS-CoV-2 infection and exacerbate

systemic inflammation in lungs.

(A to C) Quantitative and histological analysis in a hamster alveolar macrophage depletion model

between two groups: Control and CLP (n=5). (A) mRNA expression of inflammatory cytokines and

chemokines. (B) Relative RNA levels of the SARS-CoV-2 genome. (C) HE (top) and
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immunohistochemistry of SARS-CoV-2 (bottom) staining of hamster lung specimens. Scale bars, 500

um (left) and 100 um (right) in both groups. (D to F) Quantitative and histological analysis in the IL-

10R antibody administration model in hamsters between two groups: Isotype and anti-IL-10R (n=4).

(D) mRNA expression of inflammatory cytokines and chemokines. (E) The relative RNA levels of the

SARS-CoV-2 genome. (F) HE (top) and immunohistochemistry of SARS-CoV-2 (bottom) staining of

hamster lung specimens. Scale bars, 500 um (left) and 100 um (right) in both groups. The error bars

indicate mean + SD. Statistical significance was determined by two-tailed, unpaired parametric z-tests

(A, B, D, and E). Data are representative of at least three independent experiments. (G) RNA-seq

analysis of the IL-10R antibody administration model in hamsters (n=2). Enrichment plots of

significantly enriched signaling pathways (top four) between the Isotype and anti-IL-10R groups are

shown. Differences were considered significant when false discovery rate (FDR) <0.05. (H) Graphical

abstract of IL-10 signaling skewing alveolar macrophages towards the M2¢ phenotype, which leads to

COVID-19 susceptibility and severity. Created with BioRender.com.
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Fig. 4. IFNAR2-IL10RB fusion transcripts are highly expressed in COVID-19 patients with

COVID-19 severity risk-allele at rs13050728.

Genetic analysis of human monocytes/macrophages based on rs13050728 genotypes, which were

significantly associated with COVID-19 severity in COVID-19 HGI Release 5 GWAS (A2 datasets:

Critically ill COVID-19 patients vs population controls). The rs13050728 T allele is a risk allele for
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COVID-19 severity. (A) Diagram showing the results of the genetic analysis of the /FNAR2-IL10RB

locus. Manhattan plot shows GWAS results from COVID-19 HGI Release 5 A2 datasets. SNPs in the

IFNAR2-IL10RB locus are shown as dots. The picture below shows the exon containing the novel

transcripts (red square) and other isoforms annotated in Basic GENECODE V38. The splicing pattern

and read counts in the same locus are shown. A splicing pattern affected by rs13050728 variants

(21:33252830:33268394:clu 34140 +) is shown as a red line. (B and C) QTL analysis of

monocyte/macrophage datasets based on the rs13050728 genotype. SNP array and RNA-seq data

obtained from the DICE and EvolmmunoPop project were used. Data were analyzed using a linear

regression model with MatrixQTL (66). (B) Box plot shows the eQTL effect on /L/0RB expression.

(C) Box plot shows the sQTL effect on the intron excision of 21:33252830:33268394:clu 34140 +.

Normalized gene expression levels and percent spliced in (PSI) were plotted based on the genotype of

rs13050728, respectively. Each box reflects the interquartile range (IQR), and the upper and bottom

whiskers represent the maximum and minimum values within 1.5 times IQR from the hinge,

respectively. (D) Colocalization analysis of the sQTL effects on the intron excision of

21:33252830:33268394:clu_34140 + with a GWAS signal for COVID-19 in the same region. SNPs

on the IFNAR2-ILI0RB locus are represented as dots colored based on linkage disequilibrium (r?).

rs13050728 is marked with a purple dot. PP-H4 colocalization is also indicated. The DICE nonclassical
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monocyte datasets were used. (E) Relative expression of the IFNAR2-ILIORB fusion transcripts,

IL10RB and IFNAR?2 in human PBMC-derived monocytes/macrophages according to the rs13050728

genotype (n=22). The error bars indicate mean + SD. Statistical significance was determined by one-

way ANOVA with Tukey multiple comparisons.
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Fig. 5. A computational structure model of the hybrid receptor.

(A) Amino acid sequence of the hybrid receptor predicted from the CDS of the IFNAR2-IL10RB fusion
transcripts. The functional domains predicted from the wild-type IFNAR2 and IL-10RB subunits are
shown as purple (signal peptide), blue (extracellular domain of IFNAR?2), green (extracellular domain

of IL-10RB), orange (transmembrane domain of IL-10RB) and red (cytoplasmic domain of IL-10RB).
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(B) Structural modelling of the IFNAR2-IL-10RB hybrid receptor. The hybrid receptor model covers

residues 27-545. The signal peptide at the N-terminus was excluded from modelling. The chain colors

from the N-terminus (blue) to the C-terminus (red) vary with a rainbow spectrum. (C) Structural

modelling of the IL-10RA-Hybrid receptor in a complex with an IL-10 dimer embedded in a lipid

bilayer membrane. The extracellular domains of IFNAR2 and IL-10RB within the hybrid receptor are

shown as blue and green, respectively. Two IL-10RA receptors are shown in brown. Two dimerized

IL-10 chains are shown as pink and red. Transmembrane domains are yellow, and short fragments of

cytoplasmic domains are purple. The cell membrane is represented as translucent spheres in grey. (D)

Structural modelling of the IFNAR1-Hybrid receptor in complex with IFN-02 embedded into a lipid

bilayer structure. The extracellular domains of IFNAR2 and IL-10RB are shown as blue and green.

The IFNAR?2 receptor is brown and the IFN-a2 molecule is red. Transmembrane domains are yellow,

and the short fragments of cytoplasmic domains are purple. (E) The binding affinity of different

receptor/ligand complexes measured by pDockQ scores. pDockQ score threshold (0.23) is plotted as

a dashed red line, above which a complex model was categorized as acceptable and the higher the

better.
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Fig. 6. CiDRE is a dual-receptor related to COVID-19 exacerbation.

(A and B) Western blot (WB) analysis of CIDRE-expressed murine alveolar macrophages. As a control,
alveolar macrophages transduced with empty lentiviral vectors were used. (A) WB analysis of CiDRE-
expressing murine alveolar macrophages treated with 40 ng/ml of hIFN-a, hIFN-y, or hIL-10. (B) WB
analysis of CiDRE-expressing murine alveolar macrophages treated with 40 ng/ml hIL-10 and 1 pg/ml
anti-human IL-10RB antibody (clone 90220), which reacts only with human CiDRE but not native
murine IL-10RB. (C) mRNA expression of ACE2 in CiDRE-expressing alveolar macrophages
stimulated by 40 ng/ml hIL-10 for 24 h (n=3). The error bars indicate mean + SD. Statistical

significance was determined by one-way ANOVA with Tukey multiple comparisons. (D) Flow
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cytometric analysis of CiDRE-expressing murine alveolar macrophages. CIDRE-expressing cells were

stimulated by 40 ng/ml hIFN-a followed by incubation with anti-human IFN-a antibody (PE

conjugated). IFN-a-binding activity was evaluated by the fluorescent intensity of PE in CiDRE-

expressing cells, which were green fluorescent protein (GFP) positive. Data are representative of at

least three independent experiments.
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Supplemental Figures and Figure legends
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Fig. S1. RNA-seq and pathological analysis of the Syrian hamster COVID-19 model.
(A) Heatmap showing DEGs for genes of interest related to immune and virus-related cellular

processes between the Mock and COVID-19 groups (n=2). (B) HE and immunohistochemistry of
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SARS-CoV-2 in the lungs of Syrian hamsters post-infection. The images were focused on the bronchial

epithelium and lung parenchyma. Scale bars, 100 um.
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Fig. S2. ELISA data sets of human serum.

(A) Grouping diagram of enrolled patients for serum ELISA. Based on their clinical course, COVID-
19 patients were divided into Stable (n=95) or Progressive groups (n=27) respectively. All patients
were classified according to the Japanese clinical guidelines, “Clinical Management of Patients with

COVID-19 (Ministry of Health, Labour and Welfare, Japan.)”, as described previously (76). Created
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with BioRender.com. (B) Serum levels of several proteins were compared between the Stable (n=95)

and Progressive (n=27) groups. The dots represent individual patients and the error bars indicate the

median. Statistical significance was determined by a Mann—Whitney U-test.
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Fig. S3. ACE2 expression in epithelial and stromal cells under IL-10 stimulation.

(A) gPCR and (B) flow cytometric analysis of ACE2 expression in human and murine cell lines and

murine primary cells. (C) Flow cytometric analysis of murine lungs intratracheally injected with IL-

10 (10 pg/animal). Gating strategy of each population is shown in the left panel. Samples were

collected 3 days after injection and gated as indicated above. The error bars indicate mean + SD.
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Statistical significance was determined by two-tailed, unpaired parametric ¢-tests. Data are

representative of at least three independent experiments.
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Fig. S4. Morphologic and phenotypic changes in alveolar macrophages after IL-10 induction and

SARS-CoV-2 challenge.

(A) The expression of Mki67 in murine alveolar macrophages stimulated by 40 ng/ml IL-10. (B) The

number of alveolar macrophages obtained from the bronchoalveolar lavage collected at 3 days after

intratracheal administration of IL-10. The error bars indicate mean + SD. Statistical significance was

determined by two-tailed, unpaired parametric r-tests. Data are representative of at least three

independent experiments. (C and D) The morphological changes of alveolar macrophages after IL-10

stimulation (40 ng/ml for 72 h) in vitro. The images created by scanning electron microscopy (C) and

transmission electron microscopy (D) were shown. Scale bars, 1 um. € HE and immunohistochemistry

of SARS-CoV-2 in the lungs of Syrian hamsters post-infection. The images were focused on the alveoli.

Scale bars, 500 um (left), 100 um (middle), and 20 um (right). Orange and black arrows indicate

alveolar macrophages and epithelial cells, respectively.
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Fig. SS. Alveolar macrophage depletion and IL-10R antibody administration model in hamsters.

(A) Diagram showing the experimental protocol for alveolar macrophage depletion. Created with

BioRender.com. (B) Flow cytometric analysis of CLP-induced lungs at day 3 after injection. Alveolar

macrophages were successfully depleted in this model. (C) Diagram showing the experimental

protocol for IL-10R antibody administration model. Created with BioRender.com. (D) Flow cytometry
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analysis of IL-10R antibody-induced lungs. After a single administration (left), IL-10R antibody

binding on the cell surface of alveolar macrophages was confirmed for 1-2 days. After multiple

administration (right), IL-10R antibody binding was enhanced compared to a single administration.

(E) RNA-seq analysis of the IL-10R antibody administration model. Hallmark plot of GSEA

enrichment analysis between the Isotype and anti-IL-10R groups (n=2). Enrichment in the anti-IL-10R

group is shown as a positive normalized enrichment score (NES). Statistically significant gene sets

with FDR < 0.05 are shown.
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Fig. S6. Novel transcripts in the IFNAR2/IL10RB lesion were involved in COVID-19 severity as

functional mRNA encoding the IFNAR2-IL-10RB hybrid receptor.

(A to D) Regional associations of the /L10 and ILI0R locus in genome-wide association studies of

sever COVID-19. (A) Violin plot of /L 10 expression showing the eQTL effect based on rs1800871 at

the /L 10 promoter locus obtained from the GTEx portal (https://gtexportal.org/). (B-D) Manhattan plot

showing GWAS results from COVID-19 HGI A2 datasets for COVID-19 severity and histone

modification plots at the IL10 (B), ILIORA (C) and ILI0RB (D) loci. (E) Coding sequence (CDS) of

the novel transcripts encoding the IFNAR2-IL-10RB hybrid product. The CDS of the transcripts

contains 1638 nucleotides. The CDS consists of the front part of /FNAR2 (exons 2-7) and the rear part

of IL10RB (exons 2-7). Individual exons are colored alternatively (/FNAR2: orange and black, /L/0RB:

green and black). (F and G) Protein expression analysis of the IFNAR2-IL-10RB hybrid product. The

IFNAR2-IL-10RB hybrid protein encoded by the novel transcripts was named CiDRE. NanoLuc

(empty control), CiDRE, and human IL-10RB overexpressing HEK293 cell lines were used. (F) The

successful translation of CiDRE was confirmed by western blot analysis using an anti-IL-10RB

monoclonal antibody (clone 90220). (G) The cell surface expression of CiDRE was confirmed by flow

cytometric analysis using anti-IL-10RB and IFNAR2 monoclonal antibodies (clones 90220 and 122).
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Supplementary Material

Table S1. Gene ontology analysis of the Syrian hamster COVID-19 model.

Table S2. RNA-seq analysis in the Syrian hamster COVID-19 model.

Differentially-expressed genes between Mock (day 0) and COVID-19 (day 5) groups were listed.

Table S3. Patients characteristics.

p values were calculated by parametric t test or Mann-Whitney U test for numerical variables and

Fisher’s extract test for two categorical variables. Statistical significance was defined by two-tailed p

< 0.05 as indicated with an asterisk. SD: standard deviation. IQR: Interquartile range.

Table S4. RNA-seq analysis in IL-10R antibody administration model.

Differentially-expressed genes between Isotype (IL10AbMinus) and COVID-19 (IL10AbPlus) groups

were listed.

Table SS5. Long-read capture RNA-seq analysis of IFNAR2/ILIORB lesion in the

monocyte/macrophage transcriptome.
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Two transcripts which meet the criteria described in Materials and Methods were listed. Both

transcripts contain the same CDS that is translated into CiDRE.

Table S6. qPCR primer sequences, reagents, and materials.
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