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ABSTRACT

In this paper we describe a set of 3D microscopy volumes we have

partially manually annotated. We describe the volumes annotated

and the tools and processes we use to annotate the volumes. In

addition, we provide examples of annotated subvolumes. We also

provide synthetically generated 3D microscopy volumes that can be

used for training segmentation methods. The full set of annotations,

synthetically generated volumes, and original volumes can be ac-

cessed as described in the paper.

Index Terms— ground truth, segmentation, training data

1. INTRODUCTION

Recent progress in microscopy technology has enabled the acquisi-

tion of large 3D volumetric data, including 3D multi-spectral data,

using fluorescence imaging. Analyses of these large volumes often

involve a segmentation of cells or cellular nuclei. As cell boundaries

are typically poorly defined in tissues, segmentation can be done on

nuclei rather than entire cells [1]. One then characterize and clas-

sify cells on the basis of the fluorescence in the user-defined regions

surrounding the nuclei [2].

Segmentation techniques based on deep learning have shown

great promise, in some cases providing accurate and robust results

across a range of image types [3, 4, 5, 6, 7]. However, their utility is

limited by the large amounts of manually annotated data needed for

training, validation, and testing. Annotation is a labor-intensive and

time-consuming process, especially for 3D volumes.

Many publicly available annotated microscopy datasets, such as

those in the Broad Bioimage Benchmark Collection [8], are 2D im-

ages. There is a lack of 3D volumes with annotations that are avail-

able. The 3D volumes that are available are typically synthetic vol-

umes and not real microscopy volumes.

In this paper we describe a set of annotated 3D subvolumes of

real microscopy volumes, along with a set of synthetically generated

subvolumes, that are available for use by the research community. A

list of available volumes can be found in Tables 1, 2, and 3.

2. MANUAL ANNOTATION PROCESS

In this section, we describe the process we used to annotate real 3D

microscopy volumes.

Thirty 3D subvolumes (of 128 by 128 pixels by variable depth

in z) from eight different 3D microscopy volumes were annotated.

Note that we manually annotated the nuclei in the subvolumes. Sub-

volumes from each volume were chosen such that the subvolumes

are different and representative areas of the larger original volume.

Subvolumes were also chosen from particular regions of interest,

such as regions with overlapping, densely-packed, or irregularly

shaped nuclei.

2.1. Annotating Using ITK-Snap

Manual annotations were obtained using ITK-Snap [9]. Here we

describe the specific steps in ITK-Snap we use to annotate the sub-

volumes.

We use the 3D adaptive brush as a first pass for annotating a

subvolume. Different “Active Labels” are used for nuclei that touch

other nuclei. It is acceptable for nuclei that are far away (i.e. not

touching) to have the same “Active Label.” As a result of this, as

many as eight different “Active Labels” are used for each subvol-

ume. Minor adjustments were made using a 3D round brush after

the initial use of the 3D adaptive brush.

The final result is a manually annotated subvolume with the

same size as the original subvolume. Any background voxel, i.e.

any voxel not being annotated as part of a nucleus, has a voxel in-

tensity of 0. A voxel belonging to a nucleus will have an intensity

value between 1 and m, where m is the number of “Active Labels”

used during the annotation. Each intensity value between 1 and m

corresponds to an “Active Label.”

3. SYNTHETICALLY GENERATED VOLUMES

We also generate synthetic microscopy subvolumes using SpCycle-

GAN [10]. In SpCycleGAN, we generate synthetic nuclei segmen-

tation masks where we can control the size, location, shape, and

orientation of desired nuclei. SpCycleGAN learns the properties of

real microscopy images and then generates synthetic microscopy im-

ages of nuclei with the size, location, shape, and orientation of the

nuclei in the synthetic nuclei segmentation masks. Note that only

microscopy volumes and synthetically generated nuclei segmenta-

tion masks are input to the subvolume generation process. Manual

annotations were not needed for synthetic microscopy subvolume

generation because we know the location of the nuclei as part of the
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Table 1. Table of Volumes. Subvolumes can be found in https:doi.org//10.5281/zenodo.7065147.

Index Volume Name Original Volume Repository

Number of

Subvolumes

Annotated

Number of

Synthetic

Subvolumes

Synthetic Subvolume

Directory Name

1 Cleared mouse intestine 1
https://doi.org/10.

5281/zenodo.7032409
4 4

Cleared mouse intestine 1/

synthetic

2
Diabetic Biopsy

Human Spectral 1

https://doi.org/10.

5281/zenodo.7023876
5 50

Diabetic Biopsy

Human Spectral 1/

synthetic

3
Diabetic Biopsy

Human Spectral 3

https://doi.org/10.

5281/zenodo.7023871
6 50

Diabetic Biopsy

Human Spectral 3/

synthetic

4
Kidney Cortex

Human Spectral 1

https://doi.org/10.

5281/zenodo.5842278
6 92

Kidney Cortex

Human Spectral 1/

synthetic

5 BABB-cleared kidney 1
https://doi.org/10.

5281/zenodo.7032413
4 50

BABB-cleared kidney 1/

synthetic

6
Kidney Human

Nephrectomy 1

https://doi.org/10.

5281/zenodo.7023880
4 4

Kidney Human

Nephrectomy 1/synthetic

7 Scale-cleared rat kidney 1
https://doi.org/10.

5281/zenodo.7032415
1 50

Scale-cleared rat kidney 1/

synthetic

8 Rat liver 1
https://doi.org/10.

5281/zenodo.7032419

The entire

volume is

annotated.

50 Rat liver 1/synthetic

generation process. The synthetic volumes in Table 1 were gener-

ated using SpCycleGAN as described in [10, 6, 11]. Please refer

to these publications [10, 6, 11] for a more detailed description of

SpCycleGAN and examples of how synthetic subvolumes were gen-

erated.

4. DESCRIPTION OF ANNOTATED SUBVOLUMES

We obtained manually annotated subvolumes from eight different

microscopy volumes. Here we describe each of the microscopy vol-

umes in detail.

1. The Cleared mouse intestine 1 volume is a 512 × 930 ×

157 (X × Y × Z) volume of cleared mouse intestine tissue.

The voxel dimensions are 1×1×1 micron3 (X×Y ×Z). Im-

ages of paraformaldehyde-fixed mouse intestine were labeled

with DAPI and imaged using confocal microscopy with a Le-

ica SP8 confocal/multiphoton microscope using a 20X NA

0.75 multi-immersion objective. Tissues were cleared using a

modified version of previously described procedures [12].

2. The Diabetic Biopsy Human Spectral 1 volume is a 9464×
2877 × 35 (X × Y × Z) volume of diabetic kidney biopsy

tissue. The voxel dimensions are 0.5407 × 0.5408 ×

1.0412 micron3 (X × Y × Z). Fresh-frozen human kid-

ney samples are placed in cold Optimal Cutting Temperature

(OCT) compound for 3 min and then transferred to a cry-

omold with partially frozen OCT in the bottom on a block of

dry ice. Once the OCT is completely frozen, the tissue block

is wrapped in parafilm and stored at 80 ◦ C. Frozen tissues are

sectioned to a thickness of 50 µm using a cryostat and then

immediately fixed in 4% fresh paraformaldehyde (PFA) for

24 h, and subsequently stored at 4 ◦ C in 0.25% PFA. Tissue

was imaged using a Leica SP8 confocal scan-head mounted

to an upright DM6000 microscope with computer-controlled

motorized stage [13].

3. The Diabetic Biopsy Human Spectral 3 volume is a 12160×
2440 × 36 (X × Y × Z) volume of diabetic kidney biopsy

tissue. The voxel dimensions are 0.5406 × 0.5408 ×

1.0412 micron3 (X × Y × Z). Fresh-frozen human kid-

ney samples are placed in cold Optimal Cutting Temperature

(OCT) compound for 3 min and then transferred to a cry-

omold with partially frozen OCT in the bottom on a block of

dry ice. Once the OCT is completely frozen, the tissue block

is wrapped in parafilm and stored at 80 ◦ C. Frozen tissues are

sectioned to a thickness of 50 µm using a cryostat and then

immediately fixed in 4% fresh paraformaldehyde (PFA) for

24 h, and subsequently stored at 4 ◦ C in 0.25% PFA. Tissue

was imaged using a Leica SP8 confocal scan-head mounted

to an upright DM6000 microscope with computer-controlled

motorized stage [13].

4. The Kidney Cortex Human Spectral 1 volume is a 3889 ×

4734 × 19 (X × Y × Z) volume of human nephrec-

tomy tissue. The voxel dimensions are 0.5407 × 0.5407 ×

1.0412 micron3 (X × Y × Z). Tissue was cryosectioned

and fixed in formaldehyde (4.0% and stored in 0.25% in 1X

PBS) and imaged using an FV1000 (Olympus) microscope at

20x 0.75 NA oil immersion objective [14].

5. The BABB-cleared kidney 1 volume is a 512 × 512 ×

415 (X × Y × Z) volume of BABB-cleared rat kidney. The

voxel dimensions are 1×1×1 micron3 (X×Y ×Z). Images

of paraformaldehyde-fixed rat kidney tissue were collected

with a 40X NA 1.3 oil immersion objective, using an Olym-

pus FV1000 confocal microscope system (Olympus Amer-

ica, Inc., Center Valley, PA, USA) adapted for two-photon

microscopy. Rat kidney tissues were fixed, cleared and im-

aged using confocal microscopy (anti-vimentin immunoflu-

orescence, and Lens culinaris agglutinin) and multiphoton

microscopy (Hoechst33342-labeled nuclei) as previously

described [15].
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Table 2. Table of Annotated Subvolumes. Files can be found in https:doi.org//10.5281/zenodo.7065147.
Index Volume Name Subvolume File Names Annotated File Names

1
Cleared mouse
intestine 1

Cleared mouse intestine 1/

Cleared mouse intestine 1 150 800 20/

Cleared mouse intestine 1 150 800 20.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 150 800 20/

Cleared mouse intestine 1 150 800 20 gt.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 400 300 120/

Cleared mouse intestine 1 400 300 120.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 400 300 120/

Cleared mouse intestine 1 400 300 120 gt.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 400 850 57/

Cleared mouse intestine 1 400 850 57.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 400 850 57/

Cleared mouse intestine 1 400 850 57 gt.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 430 315 74/

Cleared mouse intestine 1 430 315 74.tif

Cleared mouse intestine 1/

Cleared mouse intestine 1 430 315 74/

Cleared mouse intestine 1 430 315 74 gt.tif

2
Diabetic Biopsy

Human Spectral 1

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-3100-1700/Diabetic

Biopsy Human Spectral 1-3100-1700.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-3100-1700/Diabetic

Biopsy Human Spectral 1-3100-1700 gt.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-5300-2300/Diabetic

Biopsy Human Spectral 1-5300-2300.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-5300-2300/Diabetic

Biopsy Human Spectral 1-5300-2300 gt.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-5800-2500/Diabetic

Biopsy Human Spectral 1-5800-2500.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-5800-2500/Diabetic

Biopsy Human Spectral 1-5800-2500 gt.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-6000-1150/Diabetic

Biopsy Human Spectral 1-6000-1150.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-6000-1150/Diabetic

Biopsy Human Spectral 1-6000-1150 gt.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-8000-1350/Diabetic

Biopsy Human Spectral 1-8000-1350.tif

Diabetic Biopsy Human Spectral 1/Diabetic

Biopsy Human Spectral 1-8000-1350/Diabetic

Biopsy Human Spectral 1-8000-1350 gt.tif

3
Diabetic Biopsy

Human Spectral 3

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-1529 864/Diabetic

Biopsy Human Spectral 3-1529 864.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-1529 864/Diabetic

Biopsy Human Spectral 3-1529 864 gt.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-1728 1100/Diabetic

Biopsy Human Spectral 3-1728 1100.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-1728 1100/Diabetic

Biopsy Human Spectral 3-1728 1100 gt.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-3480 1070/Diabetic

Biopsy Human Spectral 3-3480 1070.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-3480 1070/Diabetic

Biopsy Human Spectral 3-3480 1070 gt.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-4180 1590/Diabetic

Biopsy Human Spectral 3-4180 1590.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-4180 1590/Diabetic

Biopsy Human Spectral 3-4180 1590 gt.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-6137 1985/Diabetic

Biopsy Human Spectral 3-6137 1985.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-6137 1985/Diabetic

Biopsy Human Spectral 3-6137 1985 gt.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-6320 1385/Diabetic

Biopsy Human Spectral 3-6320 1385.tif

Diabetic Biopsy Human Spectral 3/Diabetic

Biopsy Human Spectral 3-6320 1385/Diabetic

Biopsy Human Spectral 3-6320 1385 gt.tif

6. The Kidney Human Nephrectomy 1 volume is a 2912 ×

3520 × 35 (X × Y × Z) volume of human stone dis-

ease biopsy. Tissue was fixed in 4% paraformaldehyde

overnight and stored in 0.25% paraformaldehyde. Nuclei

were stained with DAPI and imaged by fluorescence con-

focal imaging microscopy [16]. The voxel dimensions are

1× 1× 1 micron3 (X × Y × Z).

7. The Scale-cleared rat kidney 1 volume is a 512 × 512 ×

200 (X × Y × Z) volume of scale-cleared rat kidney. The

voxel dimensions are 1 × 1 × 1 micron3 (X × Y × Z).
An Olympus Fluoview 1000 MPE confocal/multiphoton mi-

croscope system mounted on an Olympus IX-81 inverted

stand (Olympus America, Inc., Center Valley, PA, USA),

equipped with an Olympus 60X oil immersion objective

was used to collect images of rat kidney. For this volume,

paraformaldehyde-fixed tissue was labeled with phalloidin

and Hoechst 33342, cleared and mounted in Scale mounting

medium [17] and imaged by confocal microscopy using an

Olympus 25X, NA1.05 water immersion objective.

8. The Rat liver 1 volume is a 512 × 512 × 32 (X × Y × Z)
volume of rat liver. The voxel dimensions are 1 × 1 ×

1 micron3 (X × Y × Z). An Olympus Fluoview 1000

MPE confocal/multiphoton microscope system mounted on

an Olympus IX-81 inverted stand (Olympus America, Inc.,
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Table 3. Table of Annotated Subvolumes Continued. Files can be found in https:doi.org//10.5281/zenodo.7065147.
Index Volume Name Subvolume File Names Annotated File Names

4
Kidney Cortex

Human Spectral 1

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1060-400/Kidney

Cortex Human Spectral 1-1060-400.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1060-400/Kidney

Cortex Human Spectral 1-1060-400 gt.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1317-1381/Kidney

Cortex Human Spectral 1-1317-1381.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1317-1381/Kidney

Cortex Human Spectral 1-1317-1381 gt.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1600-2100/Kidney

Cortex Human Spectral 1-1600-2100.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1600-2100/Kidney

Cortex Human Spectral 1-1600-2100 gt.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1600-2400/Kidney

Cortex Human Spectral 1-1600-2400.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-1600-2400/Kidney

Cortex Human Spectral 1-1600-2400 gt.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-2000-1800/Kidney

Cortex Human Spectral 1-2000-1800.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-2000-1800/Kidney

Cortex Human Spectral 1-2000-1800 gt.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-750-930/Kidney

Cortex Human Spectral 1-750-930.tif

Kidney Cortex Human Spectral 1/Kidney

Cortex Human Spectral 1-750-930/Kidney

Cortex Human Spectral 1-750-930 gt.tif

5
BABB-cleared
kidney 1

BABB-cleared kidney 1/BABB-cleared kidney 1-

153-85/BABB-cleared kidney 1-153-85.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

153-85/BABB-cleared kidney 1-153-85 gt.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

274-238/BABB-cleared kidney 1-274-238.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

274-238/BABB-cleared kidney 1-274-238 gt.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

383-350/BABB-cleared kidney 1-383-350.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

383-350/BABB-cleared kidney 1-383-350 gt.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

405-237/BABB-cleared kidney 1-405-237.tif

BABB-cleared kidney 1/BABB-cleared kidney 1-

405-237/BABB-cleared kidney 1-405-237 gt.tif

6
Kidney Human

Nephrectomy 1

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 1400 1400/Kidney

Human Nephrectomy 1 1400 1400.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 1400 1400/Kidney

Human Nephrectomy 1 1400 1400 gt.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 1450 230/Kidney

Human Nephrectomy 1 1450 230.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 1450 230/Kidney

Human Nephrectomy 1 1450 230 gt.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 2000 600/Kidney

Human Nephrectomy 1 2000 600.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 2000 600/Kidney

Human Nephrectomy 1 2000 600 gt.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 400 2500/Kidney

Human Nephrectomy 1 400 2500.tif

Kidney Human Nephrectomy 1/Kidney

Human Nephrectomy 1 400 2500/Kidney

Human Nephrectomy 1 400 2500 gt.tif

7
Scale-cleared

rat kidney 1

Scale-cleared rat kidney 1 192-192-48/Scale-

cleared rat kidney 1 192-192-48.tif

Scale-cleared rat kidney 1 192-192-48/Scale-

cleared rat kidney 1 192-192-48 gt.tif

8 Rat liver 1
The entire volume is annotated. The whole original

volume is at Rat liver 1/ Rat liver 1.tif

The entire volume is annotated. The annotated vol-

ume is at Rat liver 1/ Rat liver 1 gt.tif

Center Valley, PA, USA), equipped with an Olympus 60X oil

immersion objective was used to collect images of rat liver.

For this volume, paraformaldehyde-fixed rat liver tissue was

labelled with phalloidin, anti-Mrp2 immunofluorescence,

and Hoechst 33342, cleared and mounted in Scale mounting

medium [17] and imaged by confocal microscopy using an

Olympus 25X, NA1.05 water immersion objective.

Here we also describe the naming convention of the subvolumes

and annotations of the data provided. The main directory contains

eight directories, one for each of the volumes provided. Within each

of these directories will contain many subdirectories. Each subdirec-

tory corresponds to a subvolume of the original microscopy volume.

The subdirectory name will contain the original microscopy volume

name and the location of the subvolume in the original volume. Each

subdirectory will contain two files: one file corresponding to the real

microscopy subvolume, and one file corresponding to the manually

annotated subvolume. The annotated file name will contain the suffix

‘ gt’ before the file extension. Under each main directory for each

volume, there is a directory named ‘synthetic’ where synthetically

generated subvolumes are provided. Under the ‘synthetic’ directory

will be two directories, ‘gt’ and ‘syn’. ‘gt’ will contain numbered

.tif files containing the masks corresponding to where the nuclei lo-

cations will be in the synthetically generated subvolumes. ‘syn’ will

contain numbered .tif files containing the synthetically generated mi-

croscopy subvolumes. The numbering of the files in ‘gt’ corresponds

to the numbering of the files in ‘syn’.
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Table 4. Eight Contiguous 2D Slices from an Annotated 3D Subvolume of the BABB-cleared kidney 1 Volume

Slices of Original

Subvolume

Slices of

Annotated

Subvolume

5. EXAMPLE GROUND TRUTH ANNOTATIONS

In this section, we give a few examples of the output of our 3D

ground truth annotations. Table 4 shows eight contiguous 2D slices

from an annotated 3D subvolume of BABB-cleared kidney 1. Note

that the same nucleus across different focal planes is given the same

“Active Label” and thus has the same pixel intensity shown in the

“Slices of Annotated Subvolume” section. Also note that different

nuclei that are close to one another are given different “Active La-

bels” and thus have different pixel intensities. As indicated in Sec-

tion 2.1, nuclei that are far away may have the same “Active Label.”

Table 5 shows example 2D slices from annotated 3D subvolumes of

each volume provided.

5.1. Use of Annotated Volumes in Our Work

A subset of these annotated volumes were used to evaluate the quan-

titative performance of DeepSynth [6], NisNet3D [18], 3D Centroid-

Net [19], EMR-CNN [20], and RNN-SliceNet [21]. A partial subset

of these annotated volumes is also used to lightly retrain a version of

NisNet3D [18].

6. AVAILABILITY OF DATA

Manually annotated and synthetically generated volumes can be

accessed at https:doi.org//10.5281/zenodo.7065147.

For a list of file names in the directory, please refer to Table 1.

For a list of annotated subvolumes in the directory, please refer to

Tables 2 and 3. The synthetically generated and annotated set is

1.67GB. The real, original microscopy volumes are found at their

respective repositories according to Table 1. The original volumes

amount to 3.13GB.

The data is distributed under Creative Commons license Attri-

bution - NonCommercial - NoDerivs - CC BY-NC-ND.

You are free to:

• Share - copy and redistribute the material in any medium or

format

• The licensor cannot revoke these freedoms as long as you fol-

low the license terms

Under the following terms:

• Attribution - You must give appropriate credit, provide a link

to the license, and indicate if changes were made. You may do

so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use

• NonCommercial - You may not use the material for commer-

cial purposes

• NoDerivatives - If you remix, transform, or build upon the

material, you may not distribute the modified material

• No additional restrictions - You may not apply legal terms or

technological measures that legally restrict others from doing

anything the license permits

More details are available in the ”readme” files in the images

including how we suggest you cite our work and this paper.

7. CONCLUSION

In this paper, we provide a set of annotated 3D subvolumes of real

microscopy volumes and describe the tools we use to obtain the man-

ual annotations. We also provide a set of synthetically generated mi-

croscopy subvolumes, generated from an SpCycleGAN [7], that is

available for training segmentation networks.
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Table 5. Example 2D Slices from Annotated 3D Subvolumes

Volume Name
Slices of Original

Volume

Slices of Annotated

Volume

Cleared mouse intestine 1

Diabetic Biopsy Human Spectral 1

Diabetic Biopsy Human Spectral 3

Kidney Cortex Human Spectral 1

BABB-cleared kidney 1

Kidney Human Nephrectomy 1

Scale-cleared rat kidney 1

Rat liver 1

The collection of Kidney Human Nephrectomy 1 was ap-

proved by the Institutional Review Board of Indiana University No.

1010002261.
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