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Abstract

Individuals with cystic fibrosis (CF) are suscef#ilio chronic lung infections that lead to
inflammation and irreversible lung damage. Whilest@spiratory infections that occur in CF
are caused by bacteria, some are dominated by &uah as the slow-growing black yeast
Exophiala dermatitidis. Here, we analyze isolates Bf dermatitidis cultured from two samples,
collected from a single subject two years aparie 3olate genome was sequenced using long-
read Nanopore technology as an in-population ret&réo use in comparative single nucleotide
polymorphism (SNP) and insertion-deletion (INDELgriant analyses of twenty-three isolates.
We then used population genomics and phylo-genotaicempare the isolates to each other as
well as the type straiix. dermatitidis NIH/UT8656. Within the CF lung population, thrde
dermatitidis clades were detected, each with varying mutatatast Overall, the isolates were
highly similar suggesting that they were recenilyeced. All isolates were MAT 1-1, which
was consistent with their high relatedness and dbsence of evidence for mating or
recombination between isolates. Phylogenetic arsaty®uped sets of isolates into clades that
contained isolates from both early and late timmfgaindicating there are multiple persistent
lineages. Functional assessment of variants urim@ach clade identified alleles in genes that
encode transporters, cytochrome P450 oxidoredgtasen acquisition and DNA repair
processes. Consistent with the genomic heterogensdlates showed some stable phenotype
heterogeneity in melanin production, subtle diffees in antifungal minimum inhibitory
concentrations, growth on different substrates. Jérsistent population heterogeneity identified
in lung-derived isolates is an important factor donsider in the study of chronic fungal
infections, and the analysis of changes in fungah@gens over time may provide important
insights into the physiology of black yeasts arteoslow-growing fungin vivo.

I ntroduction

Cystic fibrosis (CF) is an autosomal recessiverdsiocaused by mutations in the cystic fibrosis
transmembrane regulator (CFTR) gene that impaib#l@nce of salts and water across epithelia.
In the lungs, these ion transport defects causmwss mucus which contributes to respiratory
infections that cause most of the morbidity andtaiy in CF populationgRiordanet al. 1989;
Davis 2006; Ferec and Cutting 2(Q1Microbial colonization of mucosal plugs results i
recurring infection and inflammation that causesvarsible lung damage and declining lung
function(Turcios 2020)Bacteria, particularlytaphylococcus aureus, Pseudomonas aeruginosa,
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Burkholderia cepacia and Senotrophomonas maltophilia are pathogens that frequently dominate
CF respiratory infectionfBurnset al. 1998; Mariani-Kurkdjian and Bingen 2003; Hoeal.
2004; Steinkampet al. 2005; Tunneyet al. 2008; Pihetet al. 2009; Zhacet al. 2012)and are
sometimes isolated with various species of fundini€lly significant fungi in CF lung
infections includeExophiala dermatitidis, Scedosporium apiospermum, Aspergillus fumigatus,
Candida albicans and Clavispora (Candida) lusitaniae (Kusenbachet al. 1992; Cimonet al.
2000; Defontaineet al. 2002; Horréet al. 2004, 2009; Parizet al. 2014; Chenet al. 2018;
Demerset al. 2018; Joncet al. 2020) The consequences of fungal infection on CF ouasois
not well understood but is influenced by the gepesyof both the host and microli@sirns et

al. 1998; Naganet al. 2007; Pihett al. 2009; Packeet al. 2012)

Exophiala dermatitidis, previously nameéHormiscium dermatitidis andWangiella dermatitidis,

are taxonomically classified in Phylum Ascomycot@rder Chaetothyriales, Family
Herpotrichiellaceae. To date, about 40 specieshénEkophiala genus have been identified,
seventeen of which are known to cause disease nmnma¢s. Among thes&. dermatitidis is the
most clinically prevalent with reported mortaligtes of 25-80% in systemic and invasive cases,
even though fatal systemic cases are relativel/(rarchhoff et al. 2019) Clinical presentations
of this fungus include phaeohyphomycosis, keratittromoblastomycosis and even several
neural diseases and meningitisevankaret al. 2002; Matoset al. 2002; Uijthofet al. 2009;
Revankar and Sutton 2010; Seyedmoustal. 2014; Soncet al. 2017; Kirchhoffet al. 2019;
Lavrin et al. 2020) The first instance oE. dermatitidis to be isolated from a sputum culture
procured from a cystic fibrosis patient was in 198@asect al. 1990; Kusenbacht al. 1992)
Many studies have since isolated dermatitidis from CF sputum culture§Rath et al. 1997;
Diemertet al. 2001; Horréet al. 2004; Griffardet al. 2010; Packewt al. 2012) some of which
have led to the development of later state myothsisasg Sudfeldet al. 2010; Kondoriet al.
2011; Songet al. 2017; Grenouilletet al. 2018) treatment(Packeuet al. 2012; Mukaiet al.
2014)or even deatlKlasincet al. 2019)

Exophiala species are black yeasts which are Gileddly three defining features. They produce
melanin through 1-8 dihydroxynapthalene (DHN) biasesis pathway, exhibit morphological
plasticity or meristematic growth (yeast cells, hgp or even pseudohyphae), and have
membrane associated carotenoids and an intracatyleosporine-like amino acidsiooget al.
2000; Nosanchuk and Casadevall 2003, 2006; Satiale 2012; Smith and Casadevall 2019)
All of these properties likely contribute to thetrexne resistance to environmental stresses
including desiccation, UV or solar exposure, andzimg radiation. These resistance traits may
also contribute to success in growth in mammaliastdand their ability to cause disease in
susceptible hosts. The dermatitidis strain NIH/UT8656 genome was sequenced and asedmbl
into 11 complete and contiguous chromosonfésbertsonet al. 2012; Chenet al. 2014,
Schultzhauset al. 2020; Maloet al. 2021) which has enabled comparative genomics and
identification of the genes which may underliergsilience(Robertsoret al. 2012; Schultzhaus

et al. 2020; Maloet al. 2021) and success in human host colonizatisondori et al. 2011;
Kirchhoff et al. 2019)

Reservoirs ofE. dermatitidis have long been associated with hot and humid dabprigins
(Sudhadhanet al. 2008. E. dermatitidis are isolated from many man-made substrates faund i
humidifiers (Nishimura and Miyaji 1982) saunas(Matos et al. 2002) and dishwashers
(Zupartic et al. 2016; Babi et al. 2018) Babic et al.(Babi et al. 2018) concluded that
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Exophiala tends to be found in locations with oligotroph@nditions or whereubber seals and
humidity act as an enrichment or trapping mechamnignch supporté&Exophiala persistencek.
dermatitidis and related species are also found in broad emvieatal niches including wasp
nest(Conti-Diazet al. 1977) healthy batgReiss and Mok 1979Jesions of toadé-ranket al.
1970) rotten wood(Dixon et al. 1980)which suggests human patients acquire infectioos f
environmental exposuf&udhadhanet al. 2011)

Successful microbial invasions require iron, aiaalt growth-limiting factor, which must be
sequestered from the surrounding environment thrahg release of iron chelating proteins
called siderophores(Neilands 1995; Mossialos and Amoutzias 200%or example,
Pseudomonas aeruginosa produces the fluorescent siderophores, pyoverdimg pyochelin,
which are used to sequester iron from the lungrenment and as cofactors for respiratory
proteins needed for surface motility and biofilmtaration(Haasest al. 1990; Baniret al. 2005;
Matilla et al. 2007) Another example, the funguAspergillus fumigatus produces two
hydroxamate-type siderophores: triacetylfusariniBedD) and ferricrocin (SidC), while also
producing fusarinine and hydroxyferricrocin typdesophoregSchrettlet al. 2007; Haas 2014)

In a study by Zajc et al(Zajc et al. 2019) indicated 10 predicted siderophores in fBxophiala
dermatitidis genomes, two of which include triacetylfusarinared ferricrocin. Ferricrocin is an
internal siderophore used to store iron and isrgsddor sexual development and contributes to
oxidative stress resistanf®chrettlet al. 2007; Tyrrell and Callaghan 2018jriacetylfusarinine

is used to facilitate hyphal growth under iron-@épdl conditiongSchrettiet al. 2007; Tyrrell
and Callaghan 2016)

The E. dermatitis locus HMPREF1120 _07636depicts the non-ribosomal peptide synthase
SidC necessary for siderophore synthésisic et al. 2019; Maloet al. 2021) Polymicrobial
infections persist in the CF lung environment tlgimyproduction and scavenging of extracellular
siderophores which aid microbes in competitionrésourcegTyrrell and Callaghan 2016; Sass
et al. 2019; Yanet al. 2022) Microbes can use, obtain, and sequester irordearghores from
hemoglobin found in red blood cells and lactoferdontained in mucosal secretions. The
competition and use of iron is an important dynamicpolymicrobial infections including
fungal-bacteria competition within plant and aninfadsts, and may sometimes assist in
promoting the growth of their hoSCrowleyet al. 1991; Johnson 2008; Azneiral. 2014; Kim
2018; Mochochoket al. 2021 ; Pohl Carolina H. and Noverr Mairi C.)

In light of several studies that chronic CF-relatedgal infections diversify over timgim et

al. 2015; Demerst al. 2018; Jonest al. 2020; Rost al. 2021) here we report both phenotypic
and genomic diversity among. dermatitidis isolates from a single individual. Population
genomic analyses identified multiple lineages fh&sisted over two years. This data set allows
us to test the hypothesis that, as seen in prevstudies, the CF lung environment supports
stably diverged populations of a clonally derivedst.

Methods

Soutumderived isolate cultures

Frozen sputum was obtained from a specimen bankvhith samples were obtained in
accordance with protocols approved by the Dartmélitthcock Institutional Review Board.

Aliquots of sputum were plated onto Sabouraud R=grAgar (SAB) medium as described
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previously(Grahlet al. 2018) Individual isolates were obtained and bankedatsoidentifiers
are listed inSupplemental Table 1.

DNA extraction and sequencing

Exophiala isolates were grown in Yeast Peptone Dextrose media (YPD) for approximately 24
hours in 5 ml roller-drum cultures at 37 [1C. Cells were spun down for 5 minutes at 5000 RCF
and washed thrice with deionized water. Genomic D& extracted from cell pellets using the
MasterPure yeast DNA purification kit (Epicentr®)elanin was removed from genomic DNA
using the OneSep™ PCR Inhibitor Removal kit (Zymo Research). GenomblA was
measured by Nanodrop and diluted to ~20ng/ul. DM&aetions were sent to Novogene,
(Novogene Corporation Inc., Cambridge, United Kiogg) for 2x150bp sequencing on an
lllumina NovoSeq 6000. DNA from isolate DCF04 wésoaextracted and sequenced on Oxford
Nanopore (ONT) platform with library preparationdasequencing following manufacturer’s
directions (Oxford Nanopore, Oxford United Kingdonflow cell versions FAK67997 and
FAK73296 were used along with base-calling usingpyuv. 3.4.4+a296c¢b) (Wick et al. 2019)

Genome assembly and annotation

Genome assemblies were constructed for the twanggE. dermatitidis isolates from Illlumina
sequencing. One isolate, Ex4, was also re-sequamsiad Oxford Nanopore technology. All
genomes werele novo assembled with AAFTF pipeliner.0.2.3) (Palmer and Stajich 2022)
which performs read QC and filtering with BBToolsduk §.38.86) (Bushnell 2014 ¥ollowed

by SPAdes \(.3.15.2) (Bankevichet al. 2012) assembly using default parameters, followed by
screening to remove short contigs < 200 bp andaoein@tion using NCBI's VecScreeiihe
BUSCO ascomycota_odb9 databéstanni et al. 2021)was used to determine how complete
the assembly was for all 23 isolatedcotermatitidis. A hybrid assembly of isolate DCF04/Ex4
was generated using MaSUrCa3(3.4) (Zimin et al. 2013) as the assembler using both
Nanopore and lIllumina sequencing reads. Generahuttefpparameters were used except:
CA_PARAMETERS=cgwErrorRate=0.15, NUM_THREADS=16, dadF_SIZE=200000000.
The updated genome was then scaffolded to strait/UNI8656 accession GCF_00053b
using Ragtagw1.0.2) (Alonge et al. 2019)which uses minimap2v(2.17-r941) (Li 2018) to
further link scaffolds based on shared co-lineasftyhese isolates’ genomes.

We predicted genes in this near complete genonmemddg with Funannotatev.8.1) (Palmer
and Stajich 2020)A masked genome was created by first generatifigrary of sequence
repeats with the RepeatModeler pipelifémit and Hubley 2008)These species-specific
predicted repeats were combined with fungal repedtse RepBaséBaoet al. 2015)to identify
and mask repetitive regions in the genome assewibiyRepeatMaskewn(4-1-1) (SMIT A. F. A
2004) To predict genesab initio gene predictors SNAPv.@013 11 29) (Korf 2004) and
AUGUSTUS ¢.3.3.3) (Stankeet al. 2006)were trained using the Funannotate ‘train’ command
based on the full-length transcripts constructed@@nome-Guided run of Trinityw.2.11.0)
(Grabherret al. 2011)using RNA-Seq from published Bermatitis SRA accession SRS282040.
The assembled transcripts were aligned with PAS24.1) (Haaset al. 2008)to produce full-
length spliced alignments and predicted open regilames for training thab initio predictors
and as informant data for gene predictions. Add@élogene models were predicted by
GeneMark.HMM-ES \(.4.62_lic) (Brinaet al. 2020) and GlimmerHMM ¥.3.0.4) (Majoros et

al. 2004)that utilize a self-training procedure to optimaeinitio predictions. Additional exon
evidence to provide hints to gene predictors wasegged by DIAMOND BLASTX alignment
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of SwissprotDB proteins and polished by Exonerai24.0) (Slater and Birney 2005Finally,
EvidenceModeler\1.1.1) (Haaset al. 2008) generated consensus gene models in Funannotate
were constructed using default evidence weightsn-plotein-coding tRNA genes were
predicted by tRNAscan-S&.2.0.9) (Lowe and Chan 2016)

The annotated genome was processed with antiSMAS&L.Q) (Blin et al. 2021)to predict
secondary metabolite biosynthesis gene clustemssé annotations were also incorporated into
the functional annotation by Funannotate. Putafiv@ein functions were assigned to genes
based on sequence similarity to InterProScarta51-85.0) (Joneset al. 2014) Pfam ¢.35.0)
(Finnet al. 2014) Eggnog ¥.2.1.6-d35afda) (Huerta-Cepast al. 2019) dbCAN2 §¢.9.0) (Zhang

et al. 2018)and MEROPS\Y12.0) (Rawlingset al. 2018) databases relying on NCBI BLAST
(v.2.9.0+) (Sofi et al. 2022) and HMMer ¢.3.3.2) (Potteret al. 2018) Gene Ontology terms
were assigned to protein products based on theraéafdhomology based on these sequence
similarity analyses. The final annotation produtgdFunannotate was deposited in NCBI as a
genome assembly with gene model annotation.

Copy number variation (CNV) was examined by plagitimindow-based read coverage of the
short-read alignments of each isolate. The depthowskrage was calculated using mosdepth
(Pedersen and Quinlan 201&nd visualized with R using the ggplot2 packétjeckham 2016)

The Mating Type (MAT) locus was identified througharching for homologous MAT genes
(HMPREFO0886% and HMPREF0572Y in this study’'s 2&E dermatitidis isolate genomes with
cblaster(Gilchrist et al. 2021) A homothallic black yeastCapronia coronata CBS 617.96
(AMWNOO0000000.) (Teixeiraet al. 2017) which has both MAT genes, was also incorporated
into the analyses and visualization. The identifietnologous regions were examined for their
conserved synteny of the MAT locus using clink€ilchrist and Chooi 2021and a custom
Biopython script(Cock et al. 2009) (Kurbessoian 2022fo extract the annotated region of the
genome which contained the locus.

Identification of telomeric repeat sequences wadopeed using FindTelomeres.py script
(https://github.com/JanaSperschneider/Find Teloner8siefly, this searches for chromosomal
assembly with a regular expression pattern fanteric sequences at the 5’ and 3’ end of each
scaffold. Telomere repeat sequences were alsogeddising A Telomere Identification toolkit
(tidk) (v.0.1.5) “explore” option [ttps://github.com/tolkit/telomeric-identifilr

| dentification of sequence variation

Sequence variation among isolates was assessepthsibest practices of the Genome Analysis
ToolKit GATK (v. 4.0.4.0) (McKennaet al. 2010; Franke and Crowgey 2040)identify SNPs
and Insertion/Deletions (INDEL). lllumina pairedeemeads were aligned to isolate DCFO04
assembly with BWAV.0.7.17) (Li and Durbin 2010and processed with Samtools1(8) (Li et

al. 2009)and Picard ToolkifInstitute; Toolkit) AddOrReplaceReadGroups and MarkDuplicates
(v.2.18.3). The alignments were further improved by realgnreads near inferred INDELs
using GATK tools RealignerTargetCreator, IndelRgadr, and PrintRead$senotypes were
inferred with the GATK Haplotype and GenotypeGVCEthods to produce a single VCF file of
the identified variants. Low quality SNPs were lant filtered using GATK VariantFiltration and
finally SelectVariants was used with the parameterapping quality (score < 40), quality by
depth (<2 reads), Strand Odds Ratio (SQR > 4.8hdfiStrand Bias (> 200), and Read Position
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Rank Sum Test (< -20) to retain only high-qualitglymnorphisms. Finally, an additional
stringent series of three filtering steps implersdnh bcftools §. 1.12)(Li et al. 2019)was used

on the VCF file to remove calls that were below i¥0 quality score threshold, where any
individual isolate had a "no call”, and where thh@nslard deviation in read depth (DP) was above
or below a standard deviation value of 1 for anvigial SNP. SnpEff\(.4.3r) (Cingolaniet al.
2012)was used to score the impact of the identifiedanés using the Funannotate annotated
DCF04 genome GFF3 file.

Variant calling was performed on two sets of induals, one limited to the twenty-three CF
patient population isolates with reads aligned he DCF04 isolate and one using tke
dermatitidis NIH/UT8656 type strain. Pairwise isolate compamsmf SNP and INDEL were
counted to generate isolate correlation heatmapsbdébh variant types using a UPGMA
clustering. A custom script make_diagonal.sh udesk [{v.2.00a3LM_AVX2) (Changet al.
2015)to count all pairwise differences between indialdun the VCF files stratified by SNPs or
INDELs. A custom Perl script transformed pairwigeicts into a matrix of isolated differences
observed for both SNP and INDEL variants. Countseveammarized as heatmaps with a R
script. To summarize the matrix plots, a distance plot using regression statessi@pplied on
both SNP counts and INDEL counts. A regresspdot and statistics for the slope of the
progression line, Pearson’s R, R-squared andpih@ue were computed with a R script. All
scripts developed for this manuscript are availailehe Github(Kurbessoian 2022jproject
linked in this paper.

A calculation of the population mutation rate wasfprmed on each isolate based on the number
of SNPs shared among a pair of isolates. The farmktalculate the mutation rate per year for
each isolate is as follows: (SNP Pairwise Valu@djusted Genome Length) / Pair / Year. The
time between isolated collections was 22 monthe VFdlue used for the “Adjusted Genome
Length” was collected from running the assembleFAK pipeline ¥.0.2.3) (Palmer and Stajich
2022) A one-way ANOVA was run on the grouped calculatagtation rates for each isolate to
determine significance.

Genome comparison with dot-plot was constructed idtGENIES (Cabanettes and Klopp
2018)using minimap2 and default parameters through thiesite for the tool. Longer isoform
proteins were extracted for each strain genometatiao in order to call a more accurate gene
count. Using OrthofindefEmms and Kelly 2019and DIAMOND ultra-sensive parameters
(Buchfink et al. 2015) assessment of overlap in the predicted proteilingogene sequences
from the genomes d&. dermatitidis DCF04 andE. dermatitidis NIH/UT8656 protein genomes
was generated.

Phylogenetics relationships of the isolates

SNPs from polymorphic sites were extracted from Ye&F files as multi-fasta files using
BCFTools(Li et al. 2019)and a custom script make_strain_tree.sh. A Maxinhikelihood
phylogenetic tree was constructed from the muttiddile using 1QTree\ 2.0.4) (Minh et al.
2020) and the model parameters [-m GTR+ASC]. The chosmteotide substation model was
GTR+F+ASC selected based on Bayesian informatigarier (BIC). Statistical support for the
tree nodes was evaluated from 1000 bootstrap egpficusing UFBoot ultra-fast bootstrapping
approximation(Hoanget al. 2018) The tree was visualized using iT@Letunic and Bork

2016)
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Phenotype assays

Exophiala isolates were streaked from -80°C onto yeast extract peptone dextrose (YPD) plates
(2% glucose, 2% yeast extract, 1% peptone) and allowed to grow for 48 hours at 37 [C.
Overnight cultures were started from YPD patches inoculated into 5 ml of liquid YPD and grown
for approximately 24 hours in 5 ml rolling barrel cultures at 30 [ 'C. For MIC assays, cultures
were spun down for 5 minutes at 5000 RCF and wasiimezk in deionized water. Cells were
counted on a hemocytometer and added to a finaleztration of 1000 colony forming units per
well in a 96-well flat-bottom dish, then grown at’8 for 72 hours before measuring final MIC.

Results

A molecular and culture-based analysis of a sarfesputum samples identified an individual
with CF with a chronic lung infection caused By dermatitidis (Grahl et al. 2018) E.
dermatitidis isolates were recovered from banked sputum samptdected two years apart.
Staphylococcus aureus and Candida albicans were also identified in clinical cultures from the
patient in the intervening years between the twwoepoints Figure 1). The subject’s
antimicrobial use history included Aztreonam, Amimycin, Tobramycin, Ciprofloxacin, and
Doxycycline and the patient’s lung function, measuby percent predicted forced expiratory
volume (%FEV1), ranged between 80 and 49% durimngtttme period. WhileE. dermatitidis
was not detected in the first clinical microbiologii analysis, perhaps due to its extremely slow
growth out of clinical sample&Grahl et al. 2018)or suppression by bacteria, it was detected in
the second clinical analysis. Twenty-three isold&tsven from the early time point and twelve
from the late timepoint) were selected for furthepulation genomic study.

Sequencing and assembly of E. dermatitidis isolates

To gain information on the genetic variation andeptial population structure for the recovered
E. dermatitidis isolates, we sequenced and assembled the genontles wienty-three isolates
(Supplemental Table 2). The depth of coverage ranged from 11-47x coweragyoss all 23
lllumina sequenced samples. The BUSCO (Benchmardimgersal Single Copy Orthologs) is
another tool used to determine genome assemblyletanpss; within our dataset it ranged from
99-99.3 % complete, 98.3-99.3 single copies pregehtranged in duplicates, with a range of O-
0.3 in missing BUSCOs. Contig counts ranged from1422, while the average genome
assembly size is 26,706,323 Mbp, L50 about 1,078z2id N50 of 9.

To further examine the fine-scale variation witttie CF isolates we sought to generate a within
population high-quality reference genome. The it®olRCF04 was sequenced using Oxford
Nanopore (ONT) long reads to a genome depth of regeeat 11x and a hybrid genome
assembly constructed from both ONT and llluminalse@able 1; Supplemental Table 2). The
26.6 Mb assembly contained only 3.19% of identifiegbetitive elements. The candidate
telomeric repeat units “TTTAGGG/ICCTAA” were identified as repeat arrays at botdseof
five scaffolds, but also found as single pairshia temaining 4 scaffolds, as would be expected
for 9 complete chromosomeSupplemental Table 3). Sixty-four tRNA models were predicted
from the genome. While the total number of genexlipted was 10030, 9599 of which are
protein coding. 15 secondary metabolite clustershidsynthetic enzymes, and 49 small COGs
were predicted with antiSMASH.
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Table 1. Genome assembly summary statisticsfor referenceisolate E. dermatitidis DCF04.

Genome Assembly Statistics | E. dermatitidis DCF04
Scaffold Count 44

Total length 26,633,774 bp
Minimum length 501

Maximum length 4,314,646
Mean contig length 59,1861.64
Scaffold L50 4

Scaffold N50 3,672,342
Scaffold L90 7

Scaffold N90 2,864,055
Contig Count 165

Contig L50 21

Contig N50 451,966
BUSCO Complete % 99%

BUSCO Duplicate % 0%

BUSCO Single % 99%

GC% 51.40

Comparing genome assembly and annotation of DCF04 to NIH/UT8656

Our DCFO04 isolate is genetically close to the pubtrainExophiala dermatitidis NIH/UT8656
sequenced with Sanger sequencing technology (Biefro PRINA225511, Assembly:
GCF_000230625.1). To assess the differences betinegwo genome assemblies we compiled
summary statisticsT@ble 1 and Supplemental Table 2) and interrogated the predicted gene
content of both genomes. The DCF04 assembly hadtcdgtigs linked into 44 scaffolds, while
NIH/UT8656 comprised 238 contigs linked into 10féulds. Note that DCF04 scaffolds were
derived by a comparative assembly against the NTlB836 assembly to achieve best assembly
after checking for rearrangements. The total leraftthe genome assembly is nearly the same
for both DCF04 at 26.6Mb and NIH/UT8656 at 26.4Mhe summary statistics for scaffold L50
and N50 are also nearly identical for DCF04 at 4 &¥Mb and NIH/UT8656 were 4 and
3.6Mb. A dot-plot comparing the two genome asseesbievealed minimal rearrangements or
discontinuity suggesting high similarity of the twemlated genome$S@pplemental Figure 1).
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346 The genome content was further compared using ©irtder (Emms and Kelly 2019)
347 (Supplemental Table 4). OrthoFinder identified 8,256 orthologous groups br,640
348 orthologous protein-coding genes between the twoomes. Both strains had a number of
349 unassigned genes that were given orthogroups,af0BG@F04 and 475 for NIH/UT8656, along
350 with 58 genes that were assigned, 34 DCF04 gen@24rNIH/UT8656 genes. Of the 34
351 isolate-specific assigned genes in DCF04, 21 haehtiiable fungal homologs with
352 NIH/UT8656 including ABC multidrug transporters, AAfamily amino acid transporter, 5-
353 oxoprolinase and hypothetical protein/P-loop camiej nucleoside triphosphate hydrolase
354 protein. Two of the 13 assigned protein-coding gemsulted in a ribonuclease HI protein, while
355 the remaining assigned 11 resulted in hypothepoadein matches. 4 out of the 5 orthogroups
356 specific to NIH/UT8656 (22 protein-coding genesyevidentical to the 4 seen in DCF04, while
357 1 orthogroup matched to a hypothetical protein/DQ-8omain containing protein. When
358 analyzing the unassigned genes, these functiohattyno known paralog on NCBI. We believe
359 these results reflect differences in gene predigtipelines as much as it could be due to gene
360 content difference8/Neismanet al. 2022)

361

362 All ExCF isolates are MAT1-1 mating type

363 The small-scale genome synteny evaluation tookelimvas used to visualize slices of the

364 genome adjacent to the identified MAT loci. All thumg isolates including DCF04/Ex&

365 dermatitidisisolate encoded a MAT1-1 locusigure 2, Supplemental Figure 2, Supplemental
366 Tableb). For all othele. dermatitidis isolates andapronia species analyze® A2, a SRC-like
367 adapter protein, anllPN2, apurinic-apyrimidinic endonuclease 2, flanked Mh&T loci in all

368 isolates, and a hypothetical protein between SLA®MAT1-1-4 was also present across

369 isolates. The MAT locus found in strain NIH/UT86B&ve the MAT1-2 mating type, while our
370 clinical isolates have the MAT 1-1 mating type. Gistent with MAT loci described iB.

371 dermatitidis (Metin et al. 2019)DCF04 had both MAT1-1-4 and MAT1-1-1 genésglre 2).

372 The homothallic outgrou@apronia coronata CBS617.96 genomegTeixeiraet al. 2017)contains

373 both MAT1-1 and MAT1-2 genes.
374

375 Chromosome copy number variation across E. dermatitidisisolates

376 Copy number variation of full or partial chromos@n&as evaluated by calculating depth of
377 coverage using 10kb sliding window&idure 3). The read depths of windows acroSs
378 dermatitidis isolate genomes from this study were comparedsacatl 9 chromosomes. Visual
379 scanning of the plots identified an anomaly ofeaist 1.5x higher coverage on chromosome 5 in
380 Ex3 (Figure 3A). A similar but much smaller region of chromosofhappears to have 2-2.25x
381 coverage and may be duplicated as an aneuploidi8.EAdditional partial 1.25-1.5x coverage

382 for part of the left arm of chromosome 2 in isol&tel 8 is also observed.
383

384 The plots of isolates Ex15, Ex18 and Ex20 indic8téx less normalized coverage in
385 chromosomes 1 and Figure 3B and Figure 3C), a possible sign of segmental chromosomal
386 aneuploidy event. The continuation of the covenaattern between chromosomes 1 & 3 seem to
387 complement each other for these isolates. Haplgedrosms, likeExophiala dermatitidis, could
388 Dbenefit from genomic plasticity through expansigrcontraction to enable adaptation in a new
389 environment(Selmeckiet al. 2010; Legrancet al. 2019) Noting that Ex3 was isolated in the
390 early time point, this genome copy may contribubean adaptive mechanism to support
391 colonization and persistence in the human hostelOplates sharing potential aneuploidies
392 (Ex15, Ex18, Ex20) are from the late time point afgb have the highest mutation rate among
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this population as observed from the phylogenete and mutation rate calculatidfidure 4
and Table4).

SNP genotyping and SNP-based phylogenetic analysis of 23 E. dermatitidis isolates

We used the DCFO04/Ex4 isolate as a reference faantadentification within the 23 CF isolate
collection. The DCF04/Ex4 VCF file generated 44fiamts between twenty-two isolates and the
DCFO04 reference isolate. A phylogenetic tree wasegged using the filtered SNP data results
and rooted with the earliest diverging group comtey Ex1, Ex2, Ex12 and Ex1#iQure 4).
When repeated for out-population reference strdid/MIT8656 the analysis resulted in about
~11,000 variants between the NIH/8656 strain ardGFR isolategKurbessoian 2022)Another
phylogenetic tree was generated using a secondéaget created with the NIH strain to be used
as a rootfupplemental Figure4).

Three clades (Clade |, Clade 1l, and Clade Ill) evedentified based on the tree. Clade | is
composed of two early collected and two late ct#lédsolates oE. dermatitidis Ex1, Ex2, and
Ex12, and Ex14. Clade Il is composed of three sulgeg, one of which contains only early
isolates and a second group with both an eaohate and late isolates. The third group in Clade
Il contains two early collected isolates Ex6 and &xClade Ill has two main groups composed
of both early and late isolates. The subgroup aid€llll had a long branch length suggesting
more divergence. Interestingly, the CNV plbidur e 3) showed these three isolates, Ex15, Ex20
and Ex18 contained similar CNV differences in chogome 1 and 3 when compared to the
other isolates.

Non-synonymous and synonymous SNP and INDEL pairwise differences

A dissimilarity matrix was constructed comparing thverlaps of SNPs and INDELs collated for
all pairs of isolates. As expected, isolates that cosest to each other in the SNP-based
phylogenetic tree had fewer differences in theiPSMmpositionKigure 5A). Our analysis was
further supported by the observation that the nundbeSNP differences correlated with the
number of INDELs detected in pairwise analysegyre 5B). Within Clade | and Clade I,
isolates had few SNP and INDEL differences, indincathe evolutionary distance between them
was small. The SNP and INDEL counts within Clademére much higher indicating a higher
divergence within this group of isolates as comgpaoeother groups.

Table 2. Geneswith SNP variantsfound stratified by clade.

Clade I solates Nonsynonymous mutations of Number of
interest in clade NonSynonymous/Synonymous
SNPs uniqueto clade

Ex1, Ex2, Ex12, | MADS box Transcription factc 59/7
Ex14 G4 quadruplex binding protein, MFS
transporter SP family sugar:H+
symporter, Bud site selection Bud4,
DNA polymerase alpha subunit A,
GTPase-activiting protein

I a) Ex3, Ex4, Ex8 | a. All hypothetica 56/8
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b) Ex22, Ex17, b. Ex7- Ex2Z GO terms indicate Sign
Ex16, Ex7, Ex19, | Transduction Mechanism and

Ex23 Transcription Factor, Ex7-Ex1Zinc
finger binding protein TFIIIA,_Ex16
queuine tRNA-ribosyltransferase, MFS
transporter SP family sugar:H+
symporter, NAD-dependent histone
deacetylase SIR2 and cytochrome P4%0,
family 7, subfamily B (oxysterol 7-
alpha-hydroxylase)

c) Ex6, Ex10

c. None.

11 a) Ex9, Ex13, a. Ex13 & Ex9, Ex11 A-3 complex 125/20
Ex11 subunit delta, DNA repair protein
RAD50, and Regulator of nonsense

b) Ex18, ExI5, transcripts 1-like protein.
Ex20, EX2LBXS |y £y18 & Ex15, EX20 an MFS
transporter DHA2 family
methylenomycin A resistance protein,
sulfite reductase (ferredoxin), glycerol
ethanol-ferric requiring protein,
polyketide synthase, MFS transporter 5P
family solute carrier family 2 and a DN
repair protein RAD20

> U

Non-synonymous SNP Differences seen between clades

The human-readable snpEff table which best desttiee variant analysis along with functional
gene annotation can be foundSapplemental Table 6. Clade | is composed of four isolates:
two (Ex1, Ex2) and two isolates from the late tipwnt (Ex12, Ex14). Two genes with
mutations are of note, a MADS-box transcriptiontéacHMPREF1120 06786and a G4
guadruplex nucleic acid binding proteiiMIPREF1120 02174 The MADS-box transcription
factor is part of the MADS-box proteins with a higltonserved 56 amino acid DNA-binding
domain, some containing a weakly conserved K-baxaln that is involved in the dimerization
of transcription factor§Shore and Sharrocks 199%) fungi, isolates with knocked-out MADS-
box genes have reduced virulen@amveldet al. 2005; Quet al. 2014; Xionget al. 2016)
Mutations inE. dermatitidis MADS-box regions may increase their pervasiveregstolerance
of the lung environment. Previous studies havendiotihat G4 quadruplex nucleic acid binding
proteins. The helical complex is formed throughrgoa rich nucleic acid sequences and is
found at the telomeric regions of chromosomes.

Clade Il contains 11 isolates, six from the earlyetpoint and five from the later time point, that
fall into three different subgroups. Ex3, Ex4/DCF@4d Ex8 fell into one group, Ex22, Ex17,
Ex16, Ex7, Ex19 and Ex23 fell into the second gram Ex6 and Ex10 formed a third group.
Group one and group three both contain only eadiates, while the second group contains the
majority of the later isolates.

Clade lll, which contains eight isolates, also ded into two groups: one composed of Ex18,
Ex15, Ex20, Ex21, and the other group of Ex9, Eaa8 Ex11. Five are later isolated while the
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451 other three are from the early isolations. The nsagtificant group is the second consisting of
452 Ex9, Ex13 and Ex11. Four genes were found to hastnct mutational differences when
453 comparing Ex13 (a late isolate) to the early igddEx9 and Ex11. These four genes are the Ap-
454 3 complex subunit delta HVIPREF1120 00143 DNA repair protein RAD50
455 (HMPREF1120 05599 a regulator of nonsense transcripts 1-like  pmote
456 (HMPREF1120 06837 which is similar to helicase-RNA complex, and ang with no
457 identified function HMPREF1120 02596 The second group had three isolates (Ex18, Ex15
458 and Ex20) with a higher mutation rate thBndermatitidis in Clade lll. There are about 13
459 instances of hypothetical proteins, while the oth2linstances are predicted genes. Only six of
460 the twelve are genes of note: an MFS transporteADFmily methylenomycin A resistance
461 protein HMPREF1120_0001)? sulfite reductase (ferredoxinf{/PREF1120 00943 glycerol
462 ethanol-ferric requiring protein  HMPREF1120 01007  polyketide synthase
463 (HMPREF1120 031753 MFS transporter SP family solute carrier family2
464 (HMPREF1120 0677land a DNA repair protein RAD5SMVIPREF1120 05599 Research on
465 polyketide synthases in micro-colonial fungi aBddermatitidis have been found to impact
466 phenotypes and adjust the melanin synthesis pathh@aigtance or susceptibility to antifungals
467 and extreme environment adaptabiliaoloet al. 2006)

468

469  Analysis of SNP differences between clades

470 Finally, a single non-synonymous mutation in a gemthologous toS. cerevisae MRS
471 (HMPREF1120 06597 a mitochondrial iron transporter. One alleleMiRS4 allele encoded a
472 protein that was identical in sequence to theallelthe reference NIH strain UT8656, present in
473 the isolates in Clade | (Ex1, Ex2, Ex12, Ex14), andubclade of clade Il (Ex3, Ex4/DCF04,
474 Ex8). The remainder of the isolates had a secdetealith a non-synonymous mutation in the
475 40" amino acid position, converting a glutamic acicgidee to glycine. The functional
476 consequences and differences of these Mrs4 aliéldse described in a separate manuscript.
477

478 Testing for enrichment of evolutionary patterns within clades

479 A pairwise comparison of the synonymous and nonsymous SNP differences was performed
480 on fifteen pairs of isolates identified as earlyddate members of the same lineageble 3
481 summarizes the significant results with a focuscamdidate genes that may relate to lung
482 pathogenicity. A comprehensive list of gene differes among all pairwise comparisons is in
483 Supplemental Table 7 and includes hypothetical proteins with no ideedif function. This
484 analysis tested for differences between early ataisolates found in the same clade to focus on
485 changes that may have occurred within the host.

486
487  Table3. Representative genes with non-synonymous SNP variants of interest in pairwise comparisons of E.
488  dermatitidis CF lung strains.

Early vs. Late Function
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Ex5 & Ex18 MFS transporter, DHA2 family, methylenomycin A iIstaince

protein HMPREF1120 00012

DNA repair protein RAD50MMPREF1120 05599

cytochrome P450 oxidoreductaséMPREF1120 01361

sulfite reductase (ferredoxinfIPREF1120 00943

sulfite oxidase IMPREF1120 01306

MFS transporter, DHAL family, multidrug resistamretein

polyketide synthase{MPREF1120_ 6570

MFS transporter, SP family, sugar:H+ symportéPREF1120 04157
tyrosinase IMPREF1120 04514

Ex9 & Ex13 G2/mitotic-specific cyclin 3/4 HMPREF1120_007¢)

cytochrome P450 oxidoreductas¢éMPREF1120 01361

DEAD box RNA helicase HelAH{MPREF1120 02010

MFS transporter, DHAL family, multidrug resistamretein HMPREF1120_ 01715
MFS transporter, SP family, sugar:H+ symportéMPREF1120 04157

DNA repair protein RAD50MMPREF1120 05599

ISU1 - iron-binding proteinMPREF1120 067951

MFES transporter, SIT family, siderophore-iron:H+gorter HMPREF1120 07833

The analysis considered all pairwise combinaticgisveen the early Ex1 and Ex2 and the late
Ex12 and Ex14 isolates from Clade I. These isolatesv very little genetic differentiation
(about 6-9 variant SNPs and 6-10 variant INDEL$)e Tontrast of early Ex1 vs Ex2 isolates to
the late isolates (Ex12,Ex14) found variants in eg¢hrgenes: AFG2- an ATPase
(HMPREF1120_06104 a DNA polymerase HMPREF1120 0799 GYP1l- a GTPase
activating protein IMPREF1120 08601 and MFS transporter HMPREF1120 04157
homologs. These variants are an interesting obgenvand warrants extra analysis in the future.

Pairwise comparisons of the Clade Il isolates @stéd the early Ex7 with each of the four late
isolates Ex16, Ex17, Ex19, and Ex23. There was mari@tion among these isolates (about 11-
169 variant SNPs and 3-16 variant INDELS) than oleskin Clade | isolates. Isolate Ex23 also
appeared to have substantially more differences fadl others indicating it may be more
distantly related or where its corresponding amaestrly strain was not sampled. A variant of
note, NAD-dependent histone deacetylase SIR2, velvied with chromosomal remodeling
specifically with phenotype transcription modificet (Freire-Benéitezt al. 2016)

Comparison of Clade Il group 1 members Ex5 (eady)Ex15,18,20,21 identified the highest
number of variants as compared to the other cléddas 62-138 variant SNPs and 7-10 variant
INDELS). Clade IIl group 2 members Ex9 (early), Extarly) and Ex13 had a similar number
of variants as Clades | & Il (6-15 variant SNPs &atl7 variant INDELS). The five pairwise
comparisons for group 1 revealed a non-synonymougation in the RAD50-DNA repair
protein HMPREF1120 05599 Group 1 members in the phylogenetic tree alg@apto have a
long branch length indicating a potentially highigversification rate than the other clades. It
may be that the RAD50 changes could have an impadDNA repair and contribute to the
higher mutation rate observed. In addition, nomesyymous mutations were identified in a
cytochrome P450 oxidoreductasélIMPREF1120 0136] MFS transporter sugar to H+
symporter HMPREF1120 04197and GTPase activating proteindMPREF1120 08601
SNP variants with predicted functional impact oteiactions with the host and CF lungs were
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found in the sulfite oxidased(M/PREF1120 01306 sulfite reductaseHMPREF1120_ 00943
polyketide synthasé{MPREF1120 03173and tyrosinase{MPREF1120_ 0451/genes.

Interestingly, the group 2 (Clade lll) isolates EX¥X11 and Ex13 had more variants in iron-
binding HMPREF1120 06791 and siderophore relatedHi{(IPREF1120 07838genes than
group 1. We took a candidate gene approach aneédtaétthe siderophore NPRS SidC
(HMPREF1120_07636had accumulated any specific mutations in thesages, but we failed

to identify any non-synonymous variants in this g@@cross the CF lung isolates. Though, the
presence of SNP variants in iron-binding and sioleooe transporters indicates there are other
meansE. dermatitidis is obtaining the elusive iron molecules from itsvieonment. Further
analysis of these variants will point to supportpttenotypic differences allowing for effective
colonization of CF lung environments.

Mutation rate calculation to test for different rates of evolution between clades

We calculated a mutation rate for each of the tiotades Table 4) by taking an average of all
the pairwise comparisons with a clade. The Claaleerage of the four pairwise calculations for
all combinations of early and late isolates was88B:08 variants/pair/2 years. The average rate
for the five comparisons of early to late isolate<lade Il was 2.20E-07 variants/pair/2 years.
The average rate for the six comparisons of earliate isolates in Clade Il the first group
values were averaged and determined to be 7.39af)@nts/pair/2 years, while the second
group values were averaged and determined to 3107 variants/pair/2 years. The Clade Il
group 1 isolates appear to be a faster evolvingmend may have acquired variants allowing
improved adaptation to the lung environment. Ong-WAlIOVA test revealed a statistically
significant difference between all Clades (F-valu@.0711, p-value = 0.00104) and a Tukey
post-hoc test across the clades indicated CladéQ@tbup 1) has a significantly different
mutation rate. Calculations underlying the mutatrate values are detailed Bupplemental
Table 8.

Table 4. Average mutation ratesfor each clade/group.

Groupsor Clades | Pairs Mutation Rates

Clade | Ex1+Ex12, Ex1+Ex14, Ex2+Ex12, 6.76E-08 variants/pair/months
Ex2+Ex12

Clade 1l Ex7+Ex16, ExX7+Ex17, Ex7+Ex19, 2.20E-07 variants/pair/months
ExX7+Ex22, EX7+EXx23

Clade lll (Group I) | Ex5+Ex15, Ex5+Ex18, EX5+Ex20, 7.39E-07 variants/pair/months
Ex5+Ex21

Clade lll (Group II) | Ex9+Ex11, Ex9+Ex13, Ex11+Ex13 1.13E-07 variants/pair/months

Heterogeneous phenotypes observed in the E. dermatitidisisolates

The twenty-thred. dermatitidisisolates (Ex1-11 from the early time point andased Ex12-23
from the late time point) were heterogeneous faitdrin a number of ways including
pigmentation, antifungal sensitivity, and auxotrpphWe noted differences in melanin
pigmentation across isolatefigure 6A) that did not correlate with either time point or
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553 phylogenetic clade. Within Clade 1, Ex1, Ex2, awdZhad light melanization, but isolate Ex14
554 was one of the strongest melanin produckigure 6B). In a search for genetic determinants
555 responsible for this phenotypic range, we iderdiftaree candidate intergenic mutations. Of
556 particular interest is a mutation in the 5 UTR afputative iron-dependent biphenyl-2,3-
557 dioxygenase potentially involved in the degradatioh phenolic compounds. Melanin is

558 synthesized through the oxidation of various arcenabmpounds, and thus disruption or
559 enhancement of biphenyl oxidation may be a mechatig which melanin production was

560 enhanced in Ex14.
561

562 The 23 isolates also varied in sensitivity to itna@zole, a recommended treatment Eor
563 dermatitidis infections (Fotherqill et al. 2009; Mukaiet al. 2014) over a ~10-fold range
564 (minimum inhibitory concentrations (MIC) from 0.0&®.5 pug/ml) Figure 7). Heterogeneity in
565 amino acid auxotrophy, scored as no growth on ainmih medium that was rescued by
566 supplementation of amino acid&igure 7), was also observed. Lastly, there were stable
567 differences in filamentation across isolates in tiiahe three clades; closely related strains did

568 not have similar morphologieEigure 8).
569

570 Discussion

571

572  Fungus-dominant population

573 While opportunistic fungal pathogens are often umabble from the sputum of patients with
574  cystic fibrosis, they do not commonly present asdbminant microbe or as a risk for infection.
575 In this paper we have presented a clinicake where a population of the black yeast
576 dermatitidis was the predominant microbe concomitant with a lergcerbation event. Other
577 reported clinical cases have shown tkRadermatitidis has an underappreciated role as a CF
578 pathogen(Haaseet al. 1990; Kusenbaclet al. 1992; Kondoriet al. 2014). Previous sputum
579 isolates revealed the presence of this uncommay fwo years prior, indicating that it persisted
580 in low concentrations before having the opportutatyominate the lung microbiome. Because
581 E. dermatitidisis relatively slow growindRathet al. 1997; Sudhadhart al. 2011; Maloet al.

582 2021) it may be easily missed during routine clinicatmbiological identification. To better
583 understand the CF disease and the fungal infectiessciated with a long-term disease such as
584 this one, it is important to consider testing féows growing microorganisms such as black
585 yeasts.

586

587 Phenotypic heterogeneity; Melanin production and drug resistance

588 Identification of key evolutionary strategies isucial to the understanding of microbial
589 pathogenesis in clinically relevant settings. Depelg methods for evaluating population
590 structure and heterogeneity for these human-agsdamaicrobes will aid in future studies. Initial
591 observations of these isolates indicated a strieimgunt of heterogeneity in melanin production,
592 which propelled an investigation into the genotygigersity of the population. Population
593 heterogeneity is an important factor to considdreatment, and determining adaptive responses
594 through genomics can help identify selective stirmuchronic infectiongDemerset al. 2018)

595 We expected that differing levels of melanin, whimbmprises part of the cell wall in black
596 yeasts, would have an effect on antifungal rescsetawhile drug resistance to clinically relevant
597 antifungals Itraconazole and Voriconazole variejhsly between isolates, there was no
598 consistent pattern of evolution that correspondidee with time of isolation or melanin
599 production Figure 7). We found amino acid auxotrophs in the populateomd the isolation of
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600 auxotrophs in CF infections has been previouslycrilesd in bacterial isolates, such Bs
601 aeruginosa (Barth and Pitt 1995; Thomaes al. 2000) This repeated occurrence of filamenting
602 phenotypes in phylogenetically diverse isolates maglicate evolution towards hyper-
603 filamentation or a non-mutation-based differencevieen isolates such as “switching” or phase
604 variation, or epigenetic regulation.

605

606 Short and long read sequencing, in-population vs outside reference

607 While short-read sequencing provided us with th&dand high quality read depth for each CF
608 isolate, using the Oxford Nanopore long-read teldgysequencing to build on top of a short
609 read assembly provided us with a well assembledrgenThis genome was then used as an in-
610 population reference allowing for a better recovefyariants due to the read mapping to a
611 closer isolate. When using our in-population refess compared to the NIH/UT8656 strain
612 (Robertsonet al. 2012; Chenet al. 2014; Schultzhaust al. 2020; Maloet al. 2021) our
613 quantification of population specific number of ieats is higher (due to higher sensitivity)
614 while still maintaining relevance in our study syst

615

616 Temporal resolution of variation accumulation in a fungal CF lung population

617 Contrasting mutations accumulating in isolates eoddld from two time points allowed
618 comparison in mutation rate differences among tditferent genetic lineages & dermatitidis
619 and evaluated if any changes could suggest adapgatiat enabled lineages to survive the lung
620 environment. Average mutation rates within a Cléeleded to be similar indicating common
621 diversification events. Statistical comparisons mfitation rates between Clades indicate
622 significance seen between Clade | and Clade llugrd, Clade Il and Clade 1ll group 1 and
623 Clade Ill group 1 and group 2. The main differeheee is the greatly increased diversification
624 in Clade lll group 1 which is shown with the phyéwgtic tree in Figure 4, chromosomal
625 aneuploidies seen in Figure 3, the very high SN& INDEL counts seen in Figure 5, the
626 increased mutation rates seen in Table 4 and Hijperentous phenotypes see in Figure 8. We
627 propose the mutations found RAD50 may have contributed to the increased diversiboat
628 seen in this group and future studies will tess thypothesigGoldmanet al. 2002; Krogh and

629 Symington 2004)
630

631 These clades persisted over a two-year span. Are ffhysical separations disallowing for SNPs
632 in these sub-populations to mix? When observinduhetional assessment of variants unique to
633 each clade, we identified alleles in genes thato@acfor transporters, cytochrome P450
634 oxidoreductases, iron acquisition and DNA repaocpsses. Iron acquisition can be a possible
635 virulence methocE. dermatitidis could be using to persist in the lung environmesntseen in
636  Aspergillus fumigatus andPseudomonas aeruginosa (Neilands 1995; Matillat al. 2007; Schrettl
637 et al. 2007) Mutations in transporters could be an evolutigmaove to adapt to antibiotics or
638 antifungal treatments. The finding of a non-synoaysimutationMRS3/4 a mitochondrial iron
639 transporter, may also help point into the pathaggniand virulence (Murante, 2022, In
640 preparation) Though, the presence of certain SNP variants an-loinding and siderophore
641 transporters suggests that there could be othensr®awhichE. dermatitidis is obtaining the
642 elusive iron molecules from its environment. It Wwbdbe important to observe the type of
643 variants (e.g. stop codons or a loss of functiamdpced in these iron-related genes to begin
644 searching for other virulence genes. Further arsalySthese variants will point to supporting
645 phenotypic differences allowing for effective calmation of CF lung environments. It's clear
646 that this mutation is not found in the rapidly diy@g Clade Il and only in the Clade | cluster
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with very few variants. The isolates we have segedronly contain one mating type, indicating
the low likelihood that even if the isolates hal@se proximity to each other they are unable to
mate. As these isolates were collected from sputlates, it could be certain isolates have co-
localized within different lobes of the lung andu@ have nutritional or other ecological
partitioning that could be driving these cladesdigerge and remain diverged. Our results
suggest that there may have been a diversificawamt that occurred early perhaps during the
initial colonization. The clades then stabilizecdterto-localizing into their respective niches, or
there may have been a second ‘inoculation’ eveoinfa common, stably heterogeneous
environmental source at some point in the two tieaeline (Warrenet al. 2011)

Conclusions

As it has become increasingly clear, collectingngle strain and using it as a metric to assess a
single environment and moment of time is inaccueateé a more population approach must be
used to best assess microbial infectiDemerset al. 2018) Having a closer reference strain to
assess variants is also necessary to observe aments and not a result of years of strain
formation. Our results indicate the CF lung envin@mt supports stably diverged populations of
clonally derived yeasts.

Data availability

Sequence data generated for isolates with Illlumand Oxford Nanopore technology are
deposited in NCBI Sequence Read Archive linked unB®Project PRINA628510. The
assembled genomes of each CF isolate (Ex1-23) \eadalble under accessions listed in
Supplemental Table 2. The assembled and annotated genome of the ingiapureference
isolate (DCF04) is available at accession JAJGCB00000. All analysis pipelines, custom
scripts used for data analysis, and raw variara datthe variant call format are available in
Github repositoryhttps://github.com/tania-k/CF_Exophiala_dermatit@nd archived in Zenodo
(Kurbessoian 2022)
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Figure L egends

Figure 1. FEV1 pulmonary function data. FEV1 pulmonary function data was tested over th&rs® of three
years, and sputum cultures were acquired at eafitabed time point and assessed for the presenpatbbgens
other than the mixed bacteria that compose normppéurespiratory flora. Colored bars indicate thieation of
treatment for each listed antimicrobial given dgrinfection.
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Figure 2. Mating-type determination of 4 clinical isolates of E. dermatitidis. Gene content, order and orientation
of the MAT locus fromE. dermatitidis DCF04 and NIH/UT8656 strains and the Chaetothgsidblack yeast
Capronia coronata CBS617.98. The locus is flanked by two genes SLA2 (purptej APN2 (green). The MAT 1-1
genes, MAT 1-1-4 (orange) and MAT 1-1-1 (yellowk asbserved in DCF04 strainghile the reference strain
NIH/UT8656 has a MAT 1-2 (teal) gene. In additibmp genes are predicted in the interval betweenZSaAd the
MAT genes. One is a L-type calcium channel domhiund), which is only found in thE. dermatitidis strains, and a
gene with no identified function or domains (piniich is syntentically adjacent to the MAT geneslihstrains
and species.

Figure 3. Genome sequencing depth coverage visualization to test for copy number variation across isolates.
Visualization of depth of coverage was generatedplogting a normalized read depth across chromosoime
isolatesA) Ex 1-8,B) Ex9-16, andC) Ex17-23.

Figure 4: Phylogenetic tree of 23 isolates. A Maximum-Likelihood phylogenetic tree constructedm the Single
Nucleotide Variants by IQTREE?2 identified from tismlate resequencing data. Tree is rooted withGlagle |
branch based on additional analyses that includetdUN' 8656 as an outgroup. Isolates are labelednasod three
clades based on the phylogenetic relationshipstlamdsolation time point is indicated with a recr{g) or blue
(late) colored box.

Figure 5. Matrix of E. dermatitidis CF isolates SNP and INDEL pairwise dissimilarities. The numbeof SNPs
(A) and (B) INDELs that differ among pairs of isolates. Therengimilar isolate pairs have lower (darker red)
numbers and the color approaches white indicatiogerdissimilar isolates. Clade | and Clade |l issdagienerally
differ by very few SNP and INDELs (noting a few eptions) consistent with their inferred near phglogtic
relationships. Within Clade 1l isolate pairs diffey more SNPs which may indicate a higher mutatid wathin
these isolates.

Figure 6. E. dermatitidis clades and their comparisonsto melanin phenotype and MIC. (A) Isolates were struck
from freezer stock onto YPD plates and imaged & Kzt 37°C to compare melanin accumulati@). Strong
differences in melanin production between relatedates may be due to intergenic mutations in tHeTR of a
biphenyl-2,3-dioxygenase encoding gene.

Figure 7. Itraconazole MIC testing on 23 isolates of E. dermatitidis, while comparing clades. Isolates were
grown for ~24 hours in liquid YPD at 30°C in a naj barrel culture, then inoculated into 96-weditfbottom plates
at a concentration of 1000 CFU/well, and allowedytow for 72 hours at 37° before determining MiQyich is

represented on the figure as the mean of threediaall replicates. For determination of auxotropteils were
grown as described above, CFU equilibrated, andtesp@nto rich media and minimal media (YNB) withda
without the addition of casamino acids. isolatethvdecreased growth on YNB relative to YPD, andidde

rescued with the addition of amino acids are nageduxotrophic.

Figure 8. Cell phenotype microscopy. Isolates were grown for 18 h in RPMI, at 37° in &8, and imaged at 63X
using DIC microscopy The first row of images depicts isolates dispigyhyper-filamentous attributes, and are
distributed throughout their respective clades. $&eond row depicts the closest related isolatath respective
isolate in the first row, which lack similar pheppés.

Table 1. Genome assembly summary statistics for reference isolate E. dermatitidis DCF04. Table indicates
assembly summary statistics of the hybrid assembigg Illumina and Nanopore sequencing of isola@-04.
Summary statistics of contig and scaffold lengtles gresented with genome completeness data calduith
BUSCO using the ascomycota_odb9 database.

Table 2. Genes with SNP variants found stratified by clade. Isolates collected in the early (red) and lalegp
time points are labeled in the comparisons. Thetfons of genes of interest found to have nonsynaus
mutations among entire clade of comparisons arerteg with the total count of nonsynonymous andsymous
(NonSyn/Syn) variants found in each clade to idglie relative frequency of these changes andrgéfienctional
differences in the types of genes with variantessthe population clades.
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Table 3. Genes with nonsynonymous SNP variants of interest observed in pairwise comparisons of E.
dermatitidis CF lung isolates. Genes with notable non-synonymous differences iiileshin pairwise comparisons
of early and late time point isolates. Full resudfsall pairwise differences are Bupplemental Table 7. For
continuity, gene locus names are in parenthesesedadto the locus names in the reference stafermatitidis
NIH/UT8656.

Table 4. Average mutation rates for each clade/group. Mutation rates calculated for each clade of isslated
two sub-groups of Clade Ill. Calculations were siarired as the median of all pairs of isolates withigroup or
clade.

Supplemental Figure 1. Genome dot plot of E. dermatitidis DCF04 and E. dermatitidis NIH/UT8656. D-
GENIES web application was used to generate a ldbtrgpresentation to compare genome assembly roate
test for structural changes or rearrangements. Bethtions of the plot indicate a majority of thenomes are
nearly identical with each other.

Supplemental Figure 2. Mating-type determination of 23 clinical isolates of E. dermatitidis. Gene content, order
and orientation of the MAT locus from 23 CF isothie dermatitidis, NIH/UT8656 strain and the Chaetothyriales
black yeastCapronia coronata CBS 617.98. The locus is flanked by two genes SLA2 (purpled &PN2 (green).
The MAT 1-1 genes, MAT 1-1-4 (orange) and MAT 1-1ykllow) are observed in all 23 CF strainkile the
reference strain NIH/UT8656 has a MAT 1-2 (tealpgeln addition, two genes are predicted in therirzl
between SLA2 and the MAT genes. One is a L-typeiwal channel domain (blue), which is only foundtie E.
dermatitidis strains, and a gene with no identified functiordomains (pink) which is syntentically adjacenthe
MAT genes in some strains.

Supplemental Figure 3. Phylogenetic tree of 24 isolates. A Maximume-Likelihood phylogenetic tree constructed
from the Single Nucleotide Variants by IQTREE?2 itiged from the isolate resequencing data. Tre®dged with
NIH/UT8656 as an outgroup. Isolates are labelednasof three clades based on the phylogenetidoesdtips and
the isolation time point is indicated with a redr{g) or blue (late) colored box.

Supplemental Table 1. Collection and MIC values for CF patient derived E. dermatitidis isolates. Information
on the 23 CF isolates cultured from one patientwsplacross three years. The table summarizes pényéaig clade
designation, itraconazole MIC, date of collectiangd classification as an Early or Late.

Supplemental Table 2. Genome assembly statistics for 23 CF isolates. Assembly statistics for scaffolded
assemblies of isolates and NIH/UT8656 previouslylished genome. Table indicates assembly summatigtits
of the assembly using lllumina sequencing of alCEisolates. Summary statistics of scaffold leagtre presented
with genome completeness data calculated with BUSSI the ascomycota_odb9 database.

Supplemental Table 3. Telomere Recovery for DCF04. Table depicting telomere recovery results for DCEFH

E. dermatitidis. Candidate telomeric repeat units “TTTAGGG/CCCTAWere identified as repeat arrays at both
ends of five scaffolds, but also found as singlespm the remaining 4 scaffolds, as would be eige#dor 9
complete chromosomes.

Supplemental Table 4. OrthoFinder summary comparing DCF04 and NIH/UT8656. Comparison of the shared
and unique orthogroups found in the annotated pnoés ofE. dermatitidis strains NIH/UT8656 and DCF04. A
majority of orthogroups (8,256; 99%) had membeosnfiboth strains, of these 15 were single-copy oritnaps
containing a single protein-coding gene from eattairs There were 10 orthogroups unique to DCF04
encompassing 34 protein-coding genes and 5 ortbhpgranique to NIH/UT8656 made up of 24 protein-ogdi
genes. DCF04 contained 705 unassigned genes, Miki&JT8656 had 475.
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798  Supplemental Table 5. Mating-type determination locus name descriptions of E. dermatitidis. This table
799  describes all the proteins depicted in Figure 2hef gene content, order and orientation of MAT $oéwom E.
800  dermatitidisisolates in this study, strain NIH/UT8656 alonghwtihe Chaetothyriales black ye&stpronia coronata
801 CBS617.98.

802

803  Supplemental Table 6. Functional impact of identified variants. Filtered human readable snpEff tabular results
804 for all CF 23E. dermatitidis. Annotations have been added to the final lidiettter help assess the function of each
805 protein while also observing variants detected fGATK.

806

807  Supplemental Table 7. All functional SNP and INDEL resultsfor early and late pairs. Results indicated in this
808 table include all hypothetical or undescribed rssalong with results described in Tables 2 anBr8teins listed
809 include Protein ID numbers to better facilitatentitication.

810

811 Supplemental Table 8. All 23 mutation rates calculated. Mutation rates for each 23 GE dermatitidis isolates
812 calculated using formula described in methods. ®ag-ANOVA was run to detect significance (p-valu®80104,
813  F-value = 7.0711) along with Tukey multiple comparis of means indicating Clade Il had the higsistificance
814  among the six pairwise comparisons.

815
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