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Summary

The generation of high-quality antibody responses to PfCSP, the primary surface antigen of
Plasmodium falciparum sporozoites, is paramount to the development of an effective malaria
vaccine. Here we present an in-depth structural and functional analysis of a panel of potent
antibodies encoded by the IGHV3-33 germline gene, which is among the most prevalent and
potent antibody families induced in the anti-CSP immune response and targets the NANP
repeat region. Cryo-EM reveals a remarkable spectrum of helical Fab-CSP structures stabilized
by homotypic interactions between tightly packed Fabs, many of which correlate with somatic
hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity
binding to CSP and in protection from P. falciparum malaria infection. These data emphasize
the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33
antibodies, advance our understanding of the mechanism(s) of antibody-mediated protection,

and inform next generation CSP vaccine design.
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Introduction

Vaccines are critical tools for sustainable elimination of malaria, which in 2020 was responsible
for 241 million infections and 627,000 deaths worldwide (World malaria report, 2021). The
pressing need for an improved vaccine is underscored by the continual emergence of resistance
to antimalarial compounds by the malaria parasite, Plasmodium falciparum (Wicht et al., 2020).
In an important milestone for global health, the first vaccine for malaria, RTS,S/AS01 (RTS,S),
received recommendation for widespread use in young children living in areas of moderate to
high P. falciparum malaria transmission by the World Health Organization (WHO) in late 2021.
However, the initially robust immune response and protective efficacy conferred by RTS,S are
transient, as both wane rapidly after about one year. Thus, a key challenge in malaria vaccine

design is the generation of highly effective and long-lived (durable) immunity.

Many malaria vaccine candidates, like RTS,S, are based on P. falciparum circumsporozoite
protein (PfCSP), which is the primary surface antigen of P. falciparum sporozoites, the stage of
malaria parasites infectious to humans. The structure of PFCSP comprises three domains (Fig.
1): (1) a disordered N-terminus, which contains a heparin sulfate binding site for hepatocyte
attachment; (2) a central repeat region composed of 25 to 40 major (NANP) repeats, which are
interspersed by a few, N-terminal minor repeats (NVDP, NPDP); and (3) a small, structured C-
terminal domain. Vaccination with whole sporozoites or full-length PfCSP generates antibodies
against each domain, but the NANP repeats are immunodominant (Dame et al., 1984; Enea et
al., 1984; Zavala et al., 1983). Moreover, anti-NANP monoclonal antibodies (mAbs) have been

shown to confer sterile protection against malaria infection in animal models through their ability
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to arrest sporozoite motility in the skin and to block liver infection (Flores-Garcia et al., 2019;
Foquet et al., 2014; Hollingdale et al., 1984; Hollingdale et al., 1982; Raghunandan et al., 2020;

Vanderberg, 1974).

Early observation of these effects provided the rationale for the design of RTS,S (Figure 1), a
virus-like particle based on the Hepatitis B surface antigen (HBsAg) that displays 19 NANP
repeats and the ordered C-terminal domain of CSP (Gordon et al., 1995). Phase lll clinical trials
have shown that, in children aged 5-17 months, RTS,S confers modest protection (~50%) from
clinical malaria at 12 months after the third vaccine dose (RTS,S CTP et al., 2011), which
waned to 26% at 4 years in follow-up studies (RTS,S CTP 2015). Anti-NANP titers are
associated with protection (McCall et al., 2018), and display similar induced antibody decay
kinetics to other vaccines following vaccination (White et al., 2015). Thus, improving vaccine
efficacy requires boosting antibody quantity over time (durability) and/or improving antibody

quality (potency).

A modern approach to vaccine design entails structural analysis of potent monoclonal
antibodies (mAbs) in complex with antigen (Burton, 2017). To this end, recent X-ray and cryo-
EM structures have shown the repeat region is organized into NPNA structural units (Imkeller et
al., 2018; Murugan et al., 2020; Oyen et al., 2017; Pholcharee et al., 2021; Pholcharee et al.,
2020), and that the NPNA prolines serve as key anchor points for conserved aromatic residues
in the heavy and light chain CDR loops. Interestingly, the humoral response to PfCSP is heavily
biased towards antibodies descended from the human heavy chain germline gene IGHV3-33
(Imkeller et al., 2018; Murugan et al., 2020), which has also given rise to the majority of the

most potent anti-NPNA mADbs isolated to date.
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We previously showed one such highly potent IGHV3-33 mAb, mAb 311, utilizes homotypic
interactions to stabilize an extended helical structure of 311 Fabs bound to rsCSP, which is a
recombinant form of PfCSP containing 19 NANP repeats (Fig. 1) (Oyen et al., 2018).
Somatically mutated residues mediating key homotypic contacts between adjacent Fabs were
critical for stability of the extended helical structure but were not directly involved in CSP
binding. Homotypic contacts were also observed in the structures of two other potent IGHV3-33
mAbs 1210 and 239 (Imkeller et al., 2018; Pholcharee et al., 2021). Interestingly, in mAb 1210,
mutations designed to disrupt these contacts significantly reduced B-cell activation in response
to NANPs, without substantially impacting affinity to NANPs, implying that homotypic interactions
may occur in vivo between adjacent B-cell receptors in response to CSP antigens. Overall,
these observations suggest the nature of the NANP repeats facilitates antibody-antibody (anti-
homotypic) affinity maturation, which may underlie the frequent selection of the IGHV3-33
germline. However, whether homotypic interactions contribute to the protective efficacy of
soluble antibodies, and if they occur on the surface of sporozoites, has not been demonstrated.
To address these questions, we expanded our investigation of IGHV3-33 mAbs (Pholcharee et
al., 2021), and used electron microscopy combined with in vivo and in vitro assays to
understand the structural basis of CSP engagement by this family of mAbs, the role of

homotypic interactions, and the mechanism of protection from malaria infection.

Helical structure formation on CSP is common among anti-NPNA mAbs from the IGHV3-
33 germline

The antibody sequences in the current study were isolated from protected individuals within the
dose fractionation arm of a Phase lla clinical trial of RTS,S (Regules et al., 2016), the same trial
from which mAbs 311 and 317 were derived. We focused specifically on antibodies encoded by
the heavy chain germline gene IGHV3-33, which has given rise to many potent anti-NPNA

mAbs with a tendency toward homotypic interactions, as exemplified by Abs 1210 and 311
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116  (Imkeller et al., 2018; Oyen et al., 2018). In all, the panel includes seven IGHV3-33 mAbs

117  (Table 1), including 311 for comparison, which are encoded by three different light chain genes:
118  IGKV1-5(mAbs 239, 334, and 364), IGKV3-15 (mAbs 337 and 356), and /IGLV1-40 (mAbs 311
119 and 227).

120

121  To structurally characterize the interaction of each mAb with PfCSP, we formed complexes of
122  the Fabs with rsCSP (Fig. 1). Initial negative-stain electron microscopy (NS-EM) imaging

123 showed each IGHV3-33 Fab formed well-ordered, multivalent structures on rsCSP (Fig. S1),
124 with well-resolved Fabs radiating outwards from a central rsCSP polypeptide. For comparison,
125  we performed the same analysis with a panel of non-IGVH3-33-encoded mAbs (IGHV3-30, 3-
126 49, 3-15, and 1-2) isolated from the same clinical trial (Fig. S1); we previously published EM
127  data on two of these: 317 and 397 (Oyen et al., 2017; Pholcharee et al., 2020). Similarly to the
128 IGHV3-33 mAbs, the non IGHV3-33 panel bound multivalently to rsCSP and displayed general
129  helical or spiral curvature. However, the 2D NS-EM classes demonstrate greater structural

130 variation and the absence of long-range helical order, in contrast to each of the IGHV3-33

131  mAbs. Accordingly, we were unable to obtain stable 3D reconstructions from NS or cryo-EM of
132 these non-IGHV3-33 Fab-rsCSP complexes. These EM data suggest that among human

133  mAbs, long-range helical structural ordering stabilized by homotypic interactions may be specific
134  to the IGHV3-33 germline.

135

136 |GHV3-33 antibodies exhibit a spectrum of helical conformations on rsCSP

137  We next utilized single particle cryo-EM to elucidate the 3D organization of these distinctive
138  Fab-rsCSP structures, the potential roles of homotypic contacts, and the mechanisms governing
139 their formation. Cryo-EM datasets were collected for the seven IGHV3-33 mAbs in our panel.
140 Each complex was resolved to high resolution (Table S1), and the cryo-EM maps are shown in

141  Figure 1. Of these, six structures are new, while the 311-rsCSP structure was re-refined from
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our previously published cryo-EM dataset to achieve higher resolution (3.0A from 3.4A). In
general, each complex was homogeneous in both structure and composition, with the overall

resolution of the reconstructions ranging from 2.7A to 3.8A.

This compendium of high-resolution structures reveals the remarkable conformational plasticity
of PfICSP. In each complex, CSP displays some form of helical structure that is stabilized by
homotypic interfaces between tightly packed Fabs bound along the length of the NPNA repeats.
However, the observed helical conformations of CSP vary dramatically. These range from near
planar discs with shallow pitch and large helical radius, as observed in 364 and 227, to
extended helices with varying helical parameters (Table 1). Each of the extended helices in
complexes with 337, 334, 311, 356, and 239 are right-handed, while the partial, disc-like helices
of 364 and 227 displays left-handed curvature. The extended helical structures of CSP in the
337, 334, and 239 complexes are each unique, i.e., non-superimposable. Strikingly however,
the 311 and 356 rsCSP helical structures are almost perfectly superimposable (Fig. S2), which
is notable as these mAbs utilize distinct homotypic interactions and different light chains (/GLV1-
40 and IGKV1-5, respectively; Fig. S3). This finding suggests that either this is a relatively
stable conformation of PfCSP, or that this particular structure is associated with high-level
protection from malaria infection, as both 311 and 356 have been shown to be highly protective

in in vivo mouse challenge models (Pholcharee et al., 2021).

The 227 Fab complex is distinct, as the NPNA repeats form two discontinuous, anti-parallel
disc-like structures with moderate helical pitch and left-handed curvature, with each disc bound
by 4 Fabs in tandem (Fig. 1). However, we note the 227 Fab structure was solved in complex
with NPNAg peptide instead of rsCSP, as was done for the rest of the mAbs in the panel, due to
the tendency of the 227-rsCSP complex to aggregate. Thus, the two antiparallel disc structures

in the 227 complex likely comprise two individual NPNAg peptides, as the four available NPNA2
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epitopes on the peptide are fully occupied by 227 Fabs and there is no density linking the two
discs. Nonetheless, a NS-EM reconstruction of the 227-rsCSP complex is nearly identical to the
227-NPNAg cryo-EM structure, within the 15-20A limit of the NS data (data not shown).
Therefore, this antibody may induce dimerization of separate CSP molecules mediated by
homodimeric interactions of the Fabs themselves, which may have important implications for the

way this antibody engages PfCSP on sporozoites.

The IGHV3-33 NPNA: core epitope structure is highly conserved

As shown previously for this family of antibodies, the epitope of each IGHV3-33 mAb comprises
two tandem NPNA structural units, with an N-terminal type 1 B-turn followed by an Asn-
mediated pseudo 31 turn (Oyen et al., 2018; Oyen et al., 2017; Pholcharee et al., 2021).
Interestingly, despite large differences in global helical structure, the local structure of this core
(NPNA): epitope is highly conserved and exhibits a nearly identical extended S-shaped
conformation in each of the seven mAbs (Fig. 2B). rsCSP binds within a deep groove running
along the length of each Fab that is composed entirely of the three heavy chain CDR loops and
CDRL3 (Fig. 2A). Overall, the structure of the IGHV3-33 heavy chain is also highly conserved.
Moreover, the cryo-EM structures of Fabs of 239, 356, and 364 correspond very well to our
previously determined X-ray structures of these three Fabs in complex with NPNA; (Fig. S2)

(Pholcharee et al., 2021).

As noted previously for mAbs 311, 239, 356, and 364, conserved aromatic residues in CDRH2
of mAbs 227, 337, and 334 also each utilize the two prolines of the NPNA: epitope as anchor
points (Fig. 2B-D). The strictly conserved, germline-encoded W52 and either a Tyr (germline) or
Phe at position 58 (Y/F58) each form critical, alternating CH-r interactions with the Pro of the

pseudo Asn 31 turn and the type 1 B-turn, respectively (Fig. 2D). These two NPNA structural
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units reside in two distinct hydrophobic pockets in each Fab (site 1 and site 2). While each Fab
binds CSP through differing sets of interactions, this basic paratope architecture is conserved
across the panel: site 1, which binds the type 1 B-turn, comprises residues from CDRH2
(Y/F58), CDRHS, and CDRLS; and site 2, which binds the pseudo Asn 31 turn, is formed from
the three HCDR loops and is centered on W52 and another conserved aromatic residue in
CDRH2, Tyr/His52A, which in each structure packs tightly against the side chain of the C-

terminal Ala of NPNA: (Fig. 2C).

Importantly, the cryo-EM structures show the full epitope for a single Fab extends beyond
NPNA., such that adjacent Fabs engage overlapping epitopes with between 1 and 4 shared
residues at the N- and C-terminal ends of each NPNA: core (Fig. 2E-H; Table 1). The extent of
the full epitope footprint on rsCSP tends to correlate with light chain usage and CDRH3 and
CDRLS3 length (Table 1). Thus, these key antibody features appear to determine the binding
mode, superstructure assembly and fine epitope specificity of anti-NPNA antibodies and may

also correlate with protective efficacy.

A constellation of homotypic interactions stabilizes the CSP helical structures

Each of the multivalent antibody-CSP structures are stabilized by homotypic interactions
between Fabs binding immediately adjacent NPNA: epitopes, i.e., the primary homotypic
interface (Interface 1; Fig. 3). This expands the full paratope, as each Fab simultaneously binds
both CSP and the neighboring Fab, and substantially increases the total buried surface area
(BSA) on each Fab (Table S2). The architecture of the primary homotypic interface is similar
across the seven complexes and is composed mainly of the heavy chain CDR loops and
CDRLS3, with polar contacts between CDRH14-CDRH2g and CDRH34-CDRL3g (Fig. 3B).
Importantly, this asymmetric, edge-to-edge interaction, in which FabA and FabB contribute

different residues to the interface, is distinct from the asymmetric head-to-head configuration
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observed in the crystal structure of mAb 1210-NANPs, another potent IGHV3-33/IGKV1-5
antibody (Imkeller et al., 2018). This mode of binding also differs from our previous crystal
structure of 399-NPNAs (IGHV3-49/IGKV2-29), which forms a symmetric head-to-head
homotypic interface between adjacent Fabs (Pholcharee et al., 2021). As these latter two mAbs
are not known to form stable structures on extended repeats, the edge-to-edge binding mode
seen here is likely necessary for optimal geometry and packing of Fabs to promote long-range

helical order.

Homotypic interactions within the primary interface are derived from a diverse set of both
germline-encoded residues and those that evolved through somatic hypermutation (SHM; Fig.
3F-I; Fig. S4, Table S3-S9). Two residues in CDRH1, T28 and S31, mediate key contacts
between CDRH1A-CDRH2g in nearly every complex in the panel (Fig 3C-E, Figs. S4, S5). T28
is a germline residue that is nearly strictly conserved (S28 in 337), while the S31N mutation is
seen in four of the seven mAbs: 239, 311, 334, and 356 (Fig. S3). Together, these residues
coordinate an extensive network of hydrophobic and electrostatic interactions, with N31 often
forming multiple critical contacts with evolved basic and aromatic residues in the neighboring
CDRH2g. Importantly, these specific interactions would likely not occur in the germline
sequence (Fig. 4D-F). Other key residues in CDRH14 are R30 and F32, which in both mAbs
239 and 356 form a signature motif R%°N3'F32, mutated from the germline sequence of S30S31Yy32
(Fig. S3). In both structures, R30 forms a pair of hydrogen bonds with the N56 side chain and
S55 main chain, both from CDRH2g, while F32 forms an anion-r bond (Philip et al., 2011) with
the evolved E64 in HFR3g (Fig. 3C). These interactions would also not occur upon germline
reversion. Moreover, except for F32, none of the side chains of these residues directly contact
CSP, providing evidence for affinity maturation to stabilize antibody-antibody rather than

antibody-antigen interactions.
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As previously shown for 311, the tight helical packing in the complexes of mAbs 334, 337, and
356 creates a secondary homotypic interface between Fabs separated by about one helical turn
(3 or 4 NPNA: epitopes; Fig. S5). Homotypic interactions consist mostly of polar contacts within
apposing heavy and light chain framework regions (FRs; Fig. S5B-D). In contrast, the
secondary homotypic interface in 227 mediates 227-NPNAg dimerization and defines the C2
symmetry plane for the complex (Fig. S5B). This interface is therefore symmetric and consists
solely of apposing heavy chain framework residues. In general, the secondary homotypic
interface contributes about half of the total BSA relative to the primary interface (Table S2).
Strikingly, however, the reverse is true with 334, where the total BSA of the secondary interface
is roughly twice that of the primary, suggesting a critical role for framework region residues in

the stability and/or formation of this complex.

Key contacts within the secondary interface are also linked to somatic hypermutation of the
germline heavy and light chain genes. In HFR1g of 334, a mutated residue T19 appears critical
for the interface and mediates a key hydrogen bond with S65 of LFR3e (Fig S5D). In the
symmetric secondary interface of 227, H82A of HFR3g mediates a cation-pi bond with R75 of
HFR3c (Fig. S8C). Both were mutated from highly conserved residues in the germline IGHV3-
33 gene, (N82A-H and K75R). Moreover, the H82A-R75 interaction contributes nearly half of
the BSA of this interface (250/550A2) and defines the C2 symmetry axis of the 227-rsCSP
complex (Fig. S5B,C), suggesting a critical role for this interaction. Overall, these examples
represent somatic hypermutation in framework regions distal from the antigen binding site and
provide further evidence for antibody-antibody affinity maturation to enhance homotypic Fab-

Fab interactions.

Mutagenesis of the homotypic interface

10
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We have previously shown germline reversion of the somatically mutated residues that mediate
homotypic contacts, but which are not directly involved in CSP binding, abrogates the 311 -
rsCSP helical structure (Oyen et al., 2018). To further understand the role of homotypic
contacts, we applied a similar approach to two other potent mAbs in our panel, 239 and 356.
Our original mutant 311 construct, 311R, has four mutations in the heavy chain (N31S, R56N,
N57K, E64K), and two in the light chain (R93S, R94S). To create both 239R and 356R
constructs, the RNF motif in CDRH1 was mutated to germline, along with the same E64K
mutation in HFR3 (R30S, N31S, F32Y, E64K). The light chains of 239R and 356R had one and

two additional mutations, respectively (239R: R56T; 356R: Q1E, R27Q) (Fig. 4G).

We first determined the impact of these mutations on binding to various CSP peptides with
biolayer interferometry (BLI). We tested the hypothesis that homotypic interactions underlie the
large increase in apparent affinity to peptides with increasing NANP content that is observed for
this family of antibodies. Thus, we compared binding of WT and mutant Fabs to NPNA4,
NPNAg, and rsCSP. In terms of NPNA., the apparent affinity of 311R was essentially
unchanged relative to 311 (p=0.17), while 356R and 239R were ~two-fold higher (improved)
(p=,0.005) and ~two-fold lower (p=0.01) than 356 and 239, respectively (Fig. 41,J; Table S10).
These BLI data suggest that binding to minimal NPNA repeats is largely unperturbed by the
germline mutations. As expected, for each WT Fab we observed a large increase in apparent
affinity to both NPNAg and rsCSP relative to NPNAy, largely driven by substantial reductions in
the dissociation rate (kox). However, for the reverted mutants, both affinity and ke remained
roughly constant across each peptide and rsCSP. Thus, homotypic interactions are critical for

high avidity binding to extended NANP repeats.

We next used NS-EM to assess the impact of the germline mutations on the structure of the

Fab-rsCSP complex. As shown previously for 311R, 2D class averages of both 239R and 356R
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were highly variable, both in structure and stoichiometry of the Fabs (Fig. 4H). Interestingly, we
observed some helical propensity in the 239R-rsCSP complex, similar to 311R, suggesting
helical structure formation is at least partially germline-encoded or that CSP has a preferential
bias toward a helical conformation. Nonetheless, we were unable to obtain stable 3D
reconstructions for each mutant, indicative of a high degree of structural disorder. In contrast,
the WT versions formed stable helical structures on rsCSP (Fig. 1, Fig. S1). Thus, somatically
mutated homotypic interactions are crucial for both high avidity and for the formation and

stability of long-range, helical order on rsCSP, both of which may impact protective efficacy.

To ensure these effects were due to the loss of homotypic interactions rather than unanticipated
changes in the structure of the antibody paratope, which could impact the structure of the bound
NPNA: epitope, we solved a 1.9A co-crystal structure of Fab311R in complex with NPNA3z and
compared this to our previous X-ray structure of Fab311 bound to NPNAs (Fig. S6) (Oyen et al.,
2017). Importantly, we find the structures of both Fab and CSP peptide are nearly identical,
with an overall RSMD of 0.28A. Due to their similarity with 311R, we expect this to also be true
for 239R and 356R, although we did not obtain crystals of these mAbs. Therefore, the effects of
the germline mutations introduced here are likely confined to antibody-antibody binding with no
significant impact on direct interactions with CSP, proving the usefulness of the germline-

reverted mutants as tools to specifically probe the role of homotypic interactions.

Affinity-matured homotypic contacts are important for high level protection

The role of homotypic contacts in protection from malaria infection is still unclear. To address
this question, we compared the protective efficacy of WT and mutant 311, 239, and 356 using
the liver burden assay (Fig. 5A), an in vivo model of malaria infection in mice that measures the

ability of antibodies to prevent invasion of the liver by transgenic P. berghei sporozoites
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expressing P. falciparum CSP and luciferase (Flores-Garcia et al., 2019; Raghunandan et al.,

2020).

Mice were injected intravenously (1V) with 75 ug of IgG (311, 311R, 239, 239R, 356, or 356R),
and 16 hours later were challenged with 2x10° transgenic sporozoites. Each mAb significantly
reduced parasite liver burden relative to the naive control (Mann-Whitney U-test; p<0.05), which
is reported as percent inhibition (Fig. 5B). Strikingly, however, 311R, 239R, and 356R each
showed a consistent and dramatic reduction in percent inhibition relative to their WT
counterparts, which was statistically significant in each case (Mann-Whitney U-test; p<0.001).

In a separate experiment conducted under near identical conditions, serum IgG concentrations
were measured at the time of sporozoite challenge (16hr) and were similar across the WT and
variant mAbs (Fig. S7), which indicates that the differences in liver burden are likely due to
differences in antibody interaction with sporozoites and not differences in antibody levels, in vivo
mADb kinetics, or off-target responses. Overall, this is the first demonstration of a direct role of
homotypic interactions in protection and implies these somatically mutated residues are critical
for high-level protection from malaria, likely through their ability to mediate high avidity and

helical structure formation with antibody-antibody homotypic interactions.

Correlation of Protection and Affinity

We next compared the reduction in liver burden across each of the WT mAbs in our panel,
using the same protocol as the previous protection experiment (Fig. 6A,B). For the mAbs with
repeats across multiple experiments, i.e., 311, 239, and 356, and the highly-protective IGHV3-
30 mAb 317, the level of inhibition is consistent, enabling comparison of efficacy across
separate experiments. As before, at 75 ug, each IgG significantly reduced parasite infectivity in
the liver relative to the naive control. While there is a range in the level of inhibition, many

antibodies are highly potent and have statistically indistinguishable protection relative to mAb
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317, namely mAbs 356, 311, 334, and 364. Protection for these mAbs generally ranges from
around 85-92%. mADb 239 is slightly less potent than 317, at 81% inhibition, while 337 and 227
have the lowest levels of protection in the panel, at 68% and 52% inhibition, respectively
(p<0.001; Mann-Whitney U-test). However, the reduced potency of 227 may be due to poor
pharmacokinetics in vivo (Fig. S7). Overall, these results are consistent with our previous liver

burden data testing of many of these same mAbs at 100 ug (Pholcharee et al., 2021).

As each of these mAbs target the same epitope(s) on CSP, affinity to the NPNA repeat may
underlie differences in protection. To test this notion, we measured apparent affinities of each
Fab to NPNA4, NPNAsg, and rsCSP with BLI (Table S10). Except for the germline mutants,
apparent affinity increased substantially between NPNA4 and NPNAg, and again between
NPNAs and rsCSP; this is likely due to the high avidity afforded by homotypic interactions, as
increases in avidity were largely driven by reductions in the dissociation rate (kor). In general,
rsCSP apparent affinity was very high (10°M or higher) for the WT Fabs, and lower for the three
mutants (107 to 108M). We then correlated these data with percent inhibition from the liver
burden experiment. Interestingly, we observe no correlation between protection and NPNA4
affinity, while there is a moderate correlation with NPNAg and rsCSP apparent affinity (R2=0.61
and 0.68, respectively), as well as rsCSP dissociation rate (R?=0.65). These data suggest
avidity to extended NPNA repeats, which is facilitated by homotypic interactions, is a key
determinant of protective efficacy among IGHV3-33 mAbs. However, apparent affinity to NPNAg
or rsCSP poorly discriminates protective efficacy among the WT mAbs in the panel, which all
have rsCSP apparent affinities of 10° M or lower. Therefore, high avidity to extended repeats is
likely necessary but on its own insufficient to confer high level protection in IGHV3-33 mAbs.
Thus other parameters, likely concerning specifics of the interaction of antibodies with PFCSP on

live sporozoites, also appear to be involved in determining protective efficacy.
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Discussion

The wealth of structural data presented herein, and the wide spectrum of observed helical
conformations of rsCSP, are a vivid illustration of the extensive conformational plasticity of the
NANP repeat region, which had been both predicted and demonstrated with indirect structural
methods, but not directly or at high resolution (Guy et al., 2015; Kucharska et al., 2020; Patra et
al., 2017; Plassmeyer et al., 2009). Our panel of cryo-EM structures reveal how these diverse
conformations are anchored by a subset of key, somatically mutated residues mediating
homotypic interactions across two antibody-antibody interfaces, yet which do not directly
participate in CSP binding. Intriguingly, we observe this behavior in each of the seven IGHV3-
33 mAbs we examined, suggesting that, within this antibody family, affinity maturation promotes
the evolution of homotypic interactions that frequently lead to long-range, ordered helical
structures on CSP. Together, these data support a model in which the highly repetitive nature
of the NANP repeats drives antibody-antibody affinity maturation, and that this selective
advantage underlies the generation of high avidity antibodies and the frequent selection of the

IGHV3-33 germline.

We also demonstrate somatically mutated homotypic interactions, and possibly the CSP
structures that they stabilize, play a key role in the mechanism of protection from P. falciparum
infection. Specifically, we show reversion of these somatically mutated residues to their
germline identities, in both heavy and light chains, abolishes well-ordered, extended helical CSP
structures and eliminates the high avidity to extended NANP repeats characteristic of this
antibody family, without significantly impacting affinity to the core epitope or the ability to
assemble multiple Fabs onto CSP. Importantly, these effects are accompanied by a significant
and consistent reduction in protective efficacy of the affinity-matured 1gGs in vivo, relative to
their WT counterparts, implying a critical role for homotypic interactions in protective efficacy for

IGHV3-33 mADs.
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Based on these data, we speculate that this family of IgGs bind multivalently on the surface of
sporozoites in vivo, as Fabs do in vitro, and homotypic interactions that occur between adjacent
lgGs and are critical for the stability of Ab-SPZ complexes and for protection. However, at
present, little is known regarding the nature of the interaction between CSP antibodies and
sporozoites, which makes it difficult to predict how differences in antibody structure or function
may ultimately impact protective efficacy in vivo. Observations in this study and others
underscore NPNA affinity alone cannot fully account for protective efficacy (Imkeller et al., 2018;
Murugan et al., 2020; Pholcharee et al., 2021). Nevertheless, our functional and mutagenesis
data strongly suggest high avidity to NANP repeats, driven by dramatic reductions in the off-

rate, is a key component of antibody potency in the IGHV3-33 family.

In terms of a vaccine design strategy, whether the development of homotypic interactions in an
immune response is advantageous or not for both vaccine efficacy and durability remains to be
determined. The current working hypothesis in the field posits that highly avid binding to
extended NANP repeats, potentially afforded by homotypic interactions, induces strong B-cell
activation but limits affinity maturation in germinal centers, which ultimately suppresses the
development of antibodies with high affinity to the core NPNA epitope (Cockburn & Seder, 2018;
Wahl & Wardemann, 2022). This would account for the robust antibody response to CSP, but
also the difficulty in generating long-lived immunity and the generally low levels of somatic
hypermutation observed in anti-NANP antibodies (Aye et al., 2020; McNamara et al., 2020;
Murugan et al., 2018). However, there is little direct evidence showing that CSP immunogens
with reduced NANP content promote the development of higher affinity antibodies, and thus
improved vaccine efficacy. While two studies have indicated a trend towards greater protection
in mice immunized with constructs containing reduced numbers of NANP repeats (either 9 vs 27

NANP, or 5 vs 20 NANP), the results were not statistically significant (Chatterjee et al., 2021;
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Langowski et al., 2020). Thus, future studies are needed to specifically assess the role of
homotypic interactions in B-cell responses to CSP and whether they underlie differences in

immunogenicity to different repeat constructs.

Overall, our compendium of antibody-CSP structures provides a series of high-quality structural
templates which will enable both structure-based vaccine design and antibody engineering. In
particular, anti-PfCSP monoclonal antibodies have emerged as promising prophylactics for
malaria, with two landmark studies demonstrating the ability of two anti-PfCSP mAbs (cis43LS
and LOLS) to provide months-long sterile immunity against controlled human malaria infection
(CHMI) in humans (Gaudinski et al., 2021; Wu et al., 2022). Thus a key aim is to identify the
most potent mAbs and improve both their potency and pharmacokinetic properties through
rational, in vitro and in vivo affinity maturation. Proof-of-concept for this approach was
demonstrated recently via CRISPR-based knock-in of cis43 germline heavy and light chain
genes in mice (Kratochvil et al., 2021), where the authors identified a cis43 derivative with

greater potency than the best-in-class mAb L9.

Our panel of cryo-EM structures will also be of immediate use in the design of NANP antigens
that either promote or prevent the development of adjacent homotypic Fab-Fab interactions, or
long-range bivalent IgG interactions, which may occur on extend NANP repeats. This will likely
be invaluable in parsing the potentially countervailing forces homotypic interactions may exert
on vaccine efficacy. Moreover, in combination with the functional and in vivo protection data,
these structural data enable the identification of the key structural, functional, and sequence-
based features of highly potent anti-PfCSP antibodies, which at this point are still not well-

defined.
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The fact that each of the seven IGHV3-33 mAbs we examined, many of which are highly potent,
forms distinct, extended helical structures on rsCSP suggests that these EM structures may
serve as structural correlates of protection. Critically, few clear correlates of CSP vaccine-
induced immunity have been identified (Julien & Wardemann, 2019; McCall et al., 2018); thus,
EM-based analysis of antibody responses may be a powerful new tool for evaluating efficacy of
malaria vaccines. However, at present, the correlation of higher order structures with protective
efficacy is not unequivocally resolved due to the small size of our antibody panel. Future
studies with larger panels of monoclonals, and especially polyclonal serum from protected and
nonprotected individuals, will determine whether this phenomenon is specific to human IGHV3-
33 mAbs, or whether it represents a general solution for a productive immune response to

repeat antigens.
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356-rsCSP: 8DZ4, EMD-27788

364-rsCSP: 8DZ5, EMD-27789

Figure Legends

Figure 1. High resolution cryo-EM of IGHV3-33 Fabs in complex with rsCSP. (A) Cryo-EM map
of 337-rsCSP at 2.7A, looking down the axis of the rsCSP helix. (B) Side-view of the 337-
rsCSP structure, with four of seven Fabs removed to highlight rsCSP helical structure in black.
Only variable region of Fabs are modeled. (C) Same as in (B), with all seven Fabs shown. Two
homotypic interfaces (1 and 2) are highlighted. (D) Top view of (B). Rotation angle between
Fabs (helical turn) is shown. (E) Schematic of PFCSP sequences relevant to current study. (F)
Top view, i.e., as viewed down the axis of rsCSP helix, of cryo-EM maps. mAb name and the
resolution of each cryo-EM map are listed. In panels F-1, all structures and maps are on the
same scale to enable comparison of relative dimensions. (G) Top view of the surface
representation of the various structures. rsCSP is colored in black. Diameter of the rsCSP helix
is listed. (H) Side view of the cryo-EM maps. (l) Side view of various cryo-EM structures.

Helical pitch is shown.

Figure 2. Structure and conservation of the NPNA: epitope. (A) Surface model of a single Fab
from 337-rsCSP structure, showing only the core epitope NPNA: in gold. The heavy chain is
colored dark gray, and light chain is in light gray. (B) Superposition of a Fab and NPNA: from
each of seven structures. Same coloring as in (A). (C) Zoomed-in view of paratope of 337,
highlighting two hydrophobic pockets, Site 1 and Site 2. (D) CH-r interactions of CDRH2 and
CDRLS residues with Pro in the NPNA repeat. (E-F) Full epitope structure of 334 and 356,
showing N and C-terminal extensions beyond NPNA;, which are labeled as residues 1-8. (G-H)
Buried surface area (BSA) contributions by each residue within the full epitope of 334 (G) and

356 (H). See also Figure S2.
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Figure 3. Structure of the primary homotypic interface (Interface 1). (A) Surface representation
of two adjacent Fabs from 356-rsCSP structure. rsCSP is colored in gold. (B) Cartoon
representation of same model as in (A), with residues mediating homotypic contacts highlighted
in magenta. (C-E) Structural details of key homotypic interactions in 356 (C, D) and 364 (E).
Specific contacts are indicated with dashed lines. (C) CDRH1 of FabB with CDRH2 of FabA.
(D) CDRH3 of FabB with CDRL1 of FabA. (E) CDRH1 of FabB with CDRL3 of FabA. (F-I) Per-
residue BSA contributions to homotypic interface identified in 356-rsCSP (F,G) and 364-rsCSP

(H,I) structures. Note this plot does not contain BSA from CSP. See also Figures S4 and S5.

Figure 4. Structural and functional effects of mutagenesis of the homotypic interface. (A-C)
Key, somatically mutated homotypic interactions observed in cryo-EM structures of 239 (A), 311
(B) and 356 (C). Dashed lines indicate observed homotypic contacts. (D-F) Anticipated
structural impact of reversion of these residues to germline identities. Mutant structures were
calculated from WT cryo-EM structures in Coot and are not experimental. Red asterisk
indicates loss of homotypic contacts. Dashed lines indicate potential germline-encoded
homotypic contacts. (G) List of germline-reverted constructs. Mutations are listed on right,
using Kabat numbering system. (H) 2D class averages from NS-EM of WT and mutant Fab
complexes with rsCSP. Mutant classes on right clearly show loss of well-ordered helical
structure observed with WT Fabs. (1,J) Binding curves from BLI for WT (l) and mutant (J) Fabs.
NPNA. and rsCSP were immobilized on Streptavidin and Ni-NTA sensors, respectively, and
binding of each of the Fabs were measured at 6.25, 12.5, 25, 50, 100, and 200 nM. Curves

were fit with a 2:1 binding model shown in red. See also Figure S6.
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556 Figure 5. Protective efficacy of WT and germline-reverted IgGs. (A) Schematic of liver burden
557  assay used to compare protective efficacy. (B) Liver luminescence measurements 42 hr post
558 challenge; expressed as log total flux on the Y axis. Each group (mAb) contained seven mice.
559  Geometric mean and SD are indicated as black and colored lines, respectively. A Mann-

560 Whitney U-test was used to compare efficacy relative to naive (no mAb) and between WT and
561 mutant mAbs. Percent inhibition listed is relative to naive. Significance: * p<0.05; *** p<0.001.
562  See also Figure S7.

563

564  Figure 6. Correlation of protective efficacy and affinity to CSP. (A,B) Liver burden results for
565 each mAb in the panel. Two separate experiments were conducted, and mAbs 311 and 317
566  were included for comparison in each. Liver burden experiments were performed and analyzed
567 asin Figure 5B. Percent inhibition is relative to naive (no mAb). Significance: *** p<0.001. (C-
568 E) Correlation of percent inhibition with apparent affinity of each Fab, as measured by BLI, to
569 NPNA4 (C), NPNAg (D), and rsCSP. Binding to immobilized NPNA4 and rsCSP was measured
570 at6.25,12.5, 25, 50, 100, and 200 nM, and binding to immobilized NPNAs at 12.5, 25, 50, and
571 100 nM. Binding curves were fit with a 2:1 model and affinity measurements were averaged
572  across all fits (>4) with R2>0.98. (F) Correlation of percent inhibition with the rate of unbinding

573  (korr) from rsCSP in BLI experiments as in (E). See also Table S10.
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Figure 1. High resolution cryo-EM of IGHV3-33 Fabs in complex with rsCSP.
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Figure 2. Structure and conservation of the NPNA: epitope.
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Figure 3. Structure of the primary homotypic interface (Interface 1).
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Figure 4. Structural and functional effects of mutagenesis of the homotypic interface
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Figure 5. Protective efficacy of WT and germline-reverted IgGs.
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Figure 6. Correlation of protective efficacy and affinity to CSP.
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Table 1. Structural features of antibodies in this study, and helical parameters of Fab-rsCSP cryo-EM structures

CDR3

Length (aa) SHM (# aa) Helical Parameters
s S g e w0 W B T B G G
227 3-33*01 LVi-40%01 15 11 10 3 ANPNANPNA 33 8 69.9 5.2 23 12 35
311 3-33*01 Lvi-40*01 12 12 10 5 ANPNANPNA 3.0 11 68 53 10.6 50 27
239 3-33*03 KV1-5*05 12 10 11 9 NpnANPNANPNA  3.72 10 719 5 14.4 72 25
334 3-33*08 KVI-5*05 14 10 10 6 NpnANPNANPNA  3.62 9 80 4.5 93 42 19
364 3-33*03 KVI-5%05 10 8 10 8 ANPNANPNA 3.34 5 61.7 5.8 1.7 10 35
337 3-33*08 KV3-15*01 15 8 12 4 ANPNANPNANP 2.7 7 83.8 4.3 8.6 37 19
356 3-33*03 KV3-15%01 15 8 12 8 ANPNANPNANP kR 11 68 53 10.6 50 27

574

575 Table 1. Structural features of antibodies in this study, and helical parameters of Fab-rsCSP
576  cryo-EM structures. Germline alleles were derived from the IMGT database, and CDR lengths
577  are according to IMGT definitions. Full epitope describes the complete epitope of one Fab in
578 the rsCSP cryo-EM structure. The core NPNA: epitope is highlighted in green. Map res. is the
579  overall resolution of reconstruction. The helical parameters were calculated from

580 measurements in UCSF-Chimera. Helical turn: the angular step between adjacent Fabs on
581 central rsCSP helix, as measured from the center of the helix. Helical pitch: the length

582  required to complete one full helical turn, measured parallel to the rsCSP helical axis. Helical
583 rise: the distance traversed along the rsCSP helix by each Fab, measured parallel to helical
584  axis.
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Materials and Methods

CSP peptides

All peptides were produced by InnoPep Inc (San Diego, CA) at a purity level of >97%. Peptides
for crystallography contained N-terminal acetylation and C-terminal amidation to eliminate

charges at the peptide termini. Peptides for BLI were biotinylated at the C-terminus.

Antibody sequences

All antibody sequences in the current study were derived from the MALO71 clinical trial of
RTS,S/AS01 (Regules et al., 2016). Plasmablast isolation and BCR sequencing of antibody
genes in malaria vaccine trials have been previously described (Regules et al., 2016; Tan et al.,
2014). Fab or IgG1 heavy and light chain genes were codon-optimized and synthesized by

GenScript (Piscataway, NJ).

Protein production

Antibody genes were subcloned into pPCMV or pCDNAS3 .4, either for expression as Fab or IgG1.
Antibodies were expressed in ExpiCHO cells (Thermo Fisher) and purified using either mAb
Select PrismA (GE Healthcare) or Capture Select (Thermo Fisher) columns, followed by SEC
purification with a Superose S200 Increase column (GE Healthcare) equilibrated with TBS (pH
8.0). For in vivo testing of IgG protective efficacy in mice, endotoxins were removed with Pierce
High-Capacity Endotoxin Removal Spin Columns (Thermo Fisher), following the manufacturer’s
instructions. rsCSP, a recombinant, shortened construct of PfCSP containing the full N-terminal
and C-terminal regions, but only 19 NANP repeats, was expressed in E. coliin the pET26b(+)

vector, and purified as previously described (Schwenk et al., 2014).

Mutagenesis

24
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Inferred germline sequences were identified with IgBlast and the IMGT database. Mutations in
311R, 239R, and 356R were introduced into the light chain and Fab or IgG heavy chain by
mutagenic PCR, either with the QuikChange Multi Site-Directed Mutagenesis Kit (Agilent) or the
Q5 Site-Directed Mutagenesis Kit (New England BioLabs). For each point mutation, the

germline codon was used. Germline reversion was confirmed by Sanger sequencing.

Sample preparation for NS and cryo-EM

Complexes of Fabs and rsCSP, or NPNAs, were prepared by incubation of saturating amounts
of Fab with CSP overnight at 4° C, and purified by SEC with a Superose 6 Increase column
equilibrated with TBS. For negative stain EM, complexes were diluted to ~0.05 mg/mL in TBS.
Sample was applied to copper grids containing a thin film of continuous carbon, made in-house,
and negatively stained with 2% uranyl formate. For cryo-EM, complexes were concentrated to
2-5 mg/mL and applied to either Quantifoil holey carbon or UltrAufoil holey gold grids, and

plunge-frozen with a Vitrobot MarklV (Thermo Fisher).

Negative stain electron microscopy

Room temperature imaging was performed either on a 120 keV Tecnai Spirit (Thermo Fisher) or
a 200 keV Talos 200C (Thermo Fisher) electron microscope. Datasets on the Tecnai Spirit
were collected at a nominal magnification of 52,000X (2.05A/pix) with a Tietz TVIPS CMOS 4k x
4k camera, with a defocus of -1.5uM and a total dose of 25 e/A2. Datasets on the Talos were
collected at a nominal magnification of 73,000X (1.98A/pix) with a 4k x 4k CETA camera
(Thermo Fisher), with a defocus of -1.5uM and a total dose of 25 e /Az2. Leginon (Suloway et al.,
2005) was used for automated data collection, and micrographs were stored in the Appion
database (Lander et al., 2009). Single particle analysis was performed in RELION (Scheres,

2012), including CTF estimation, using CtfFind4 (Rohou & Grigorieff, 2015), particle picking, and

25
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reference-free 2D classification. For 3D classification, our previous negative stain
reconstruction of 311-rsCSP, low-pass filtered to 60A, was used as a reference. High quality
3D classes were used as references for 3D refinement in RELION, and C1 symmetry was used

in all cases.

Cryo-EM data collection

For 227-NPNAs, and 239, 334, 356, and 364 in complex with rsCSP, cryo-EM data were
collected on a 200 KEV Talos Arctica (Thermo Fisher) paired with a Gatan K2 Summit direct
electron detector. Micrograph movies were collected at a nominal magnification of 36,000X,
resulting in a pixel size of 1.15A, with a defocus range of -1.0 to -2.2 um. The dose rate was
~7e’/pix/sec for each sample, with a total of 50 frames per micrograph movie resulting in a total
dose of ~50e/A2. Cryo-EM data for 311 and 337 rsCSP were collected on a 300 keV Titan
Krios (Thermo Fisher) with a Gatan K2 Summit direct electron detector. Cryo-EM data
collection parameters for 311-rsCSP were described previously (Oyen et al., 2018), and these
same data were processed in this study. For 337, imaging was performed at a nominal
magnification of 29,000X (1.03A/pix), with a defocus range of -0.9 to -2.1 um. The dose rate
was 5.3e7/pix/sec, and a total of 50 frames were collected resulting in a total dose of ~50e7/Az2.

In all cases, Leginon was used for automated data collection.

Single particle Cryo-EM data processing

For 311-rsCSP, our previous cryo-EM dataset was reprocessed in the current study. Raw
frames were imported into RELION3.0 (Zivanov et al., 2018) and were aligned with the RELION
implementation of MotionCor2 (Zheng et al., 2017). CTF estimation was performed with
CtfFind4. The Laplacian-of-Gaussian picker was used for initial autopicking on a subset of

micrographs, and initial 2D templates were generated with multiple rounds of 2D classification.

26
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665  High quality templates were selected as input for the automated template picker in RELION for
666  use on the whole dataset. Multiple rounds of 2D classification were used to eliminate low-

667  quality particles, after which a total of 605,000 particles were re-extracted for 3D classification.
668  Our previous cryo-EM reconstruction of 311-rsCSP was used as the initial reference, low-pass
669 filtered to 60A. A global angular search was used in the initial round of 3D classification,

670 followed by multiple rounds of 3D classification without alignment. This process resulted in a
671 final stack of ~400,000 particles that were re-extracted to generate a consensus refinement at
672  3.38A, which is the same resolution of our previous 311-rsCSP cryo-EM map generated from
673 these same data (EMD-9065). Further processing in RELIONS3.0 was used to improve the
674  resolution of this complex. Per particle defocus values were refined in RELION, followed by
675 another round of 3D refinement and then Bayesian polishing, which refines per-particle beam-
676 induced motion and implements an optimized dose-weighting scheme to more accurately

677  account for the cumulative effects of radiation damage. The resulting “shiny” particles were
678  subjected to another round of defocus refinement and beam-tilt estimation. A final round of 3D
679 refinement with a soft mask encompassing only the variable region of the Fabs led to the final
680  reconstruction at 3.01A.

681

682 A similar protocol was followed for 356-rsCSP, using the 311-rsCSP map (low-pass filtered to
683  60A) as the initial model, leading to a 3.3A reconstruction in RELION3.0. The particle stack
684  resulting from Bayesian polishing was then imported into cryoSPARCv3.3 (Punjani et al., 2017),
685  and two rounds of non-uniform refinement followed by global CTF (beam-tilt) refinement was
686  performed (Punjani et al., 2020), which led to the final reconstruction at 3.2A.

687

688  The remaining datasets were all processed according to a similar protocol in cryoSPARC.

689  Frames were motion-corrected with MotionCor2, and the aligned and dose-weighted

690 micrographs were imported into cryoSPARCv3.3. CTF estimation was performed with CtfFind4.
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691  Autopicking was performed initially with the blob picker in cryoSPARC, and multiple rounds of
692 2D classification were used to select high quality 2D templates for subsequent template picking.
693  Multiple rounds of 2D classification were used followed by a single round of Ab-initio

694  reconstruction with two classes. The high-quality class was selected for further processing and
695 was also used as the initial model. Multiple rounds of homogenous refinement, global and local
696 CTF refinement, followed by non-uniform refinement were performed which led to the final

697  reconstructions for each data set.

698

699 C1 symmetry was imposed for all refinements of each of the seven datasets, except for the final
700  round of non-uniform refinement of 227, in which C2 symmetry was used. The C1 and C2 maps
701  of 227 were nearly identical and imposing C2 improved the resolution only slightly (0.1A).

702

703  Model building (cryo-EM)

704  For Fabs 311, 239, 356, and 364, our previously-solved X-ray structures of the corresponding
705  Fabs in complex with NPNAz or NPNA3s were used as the starting model (PDB codes 6AXK,
706  6WO00, 6W05, and 6WFW, respectively) (Oyen et al., 2017; Pholcharee et al., 2021). For 227,
707 334, and 337, an initial homology model was generated with RosettaCM (Song et al., 2013).
708  For the heavy chain of each of these three Fabs, the heavy chain coordinates of the 311 X-ray
709  structure (6AXK) were used as the template. To generate the light chain initial model, the light
710 chain coordinates from the X-ray structure of the Fab with the corresponding light chain

711  germline gene was used as the template: 311 for 227 (IGLV1-40), 239 (6W00) for 334 (/IGKV1-
712 5), and 356 (6WO05) for 337 (IGKV3-15). The HC and LC templates were docked into the cryo-
713  EM map, along with the NPNA: peptide from 6AXK, then rebuilt and refined into the map with
714  RosettaCM and manual adjustments with Coot (Emsley et al., 2010). Individual refined Fabs

715  were docked into the full cryo-EM map, and the CSP peptides merged into one polypeptide

28
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716  chain. Further manual adjustments, if necessary, were made in Coot, and the full model was
717  refined into the density with RosettaRelax (Conway et al., 2014).

718

719  Structural analysis

720  General structural analysis, RMSD calculations, and buried surface area calculations were

721  performed with UCSF Chimera (Pettersen et al., 2004). Homotypic contacts included in Table
722  S3-S9 were derived from the Epitope Analyzer software, part of the ViperDB webserver

723  (Montiel-Garcia et al., 2022). Structure figures were generated with UCSF Chimera and UCSF
724  ChimeraX (Pettersen et al., 2021).

725

726  311R X-ray structure determination

727  311R Fab was mixed with a 5-fold molar excess of NPNAz peptide to a final concentration of 10
728 mg/ml. Crystal screening was carried out using our robotic CrystalMation high-throughput

729  system (Rigaku, Carlsbad, CA) at The Scripps Research Institute, by vapor diffusion with 0.1 pL
730  each of protein mixture and precipitant, with 35 pL reservoir solution. 311R-NPNA; crystals
731  were grown in 0.04 M KH2PO4, 20% Glycerol, and 16% PEG3000 at 20°C and were

732 cryoprotected in 30% glycerol. X-ray diffraction data were collected at the Stanford Synchrotron
733  Radiation Lightsource (SSRL) beamline 12—1, and processed and scaled using the HKL-2000
734  package (Otwinowski & Minor, 1997) with data reduction by POINTLESS and AIMLESS (Evans,
735  2006). The structure was determined by molecular replacement using Phaser (McCoy et al.,
736 2007), with the 311-NPNA3; X-ray structure (PDB 6AXK) as search model. Structure refinement
737  was performed using Refmac5 (Kovalevskiy et al., 2018) and iterations of refinement using

738  Coot.

739

740  Biolayer interferometry (BLI)
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BLI was performed with the Octet Red96 (ForteBio) system. A basic kinetics experiment was
used to measure binding of Fabs to NPNA4, NPNAg, and rsCSP. Kinetics buffer (PBS + 0.01%
BSA, 0.002% Tween-20, pH7.4) was used for all dilutions, baseline measurements, and
reference subtractions. Biotinylated NPNA peptides were diluted to 5 ug/mL in kinetics buffer
(KB) and immobilized onto streptavidin BLI biosensors (Sartorius); His-tagged rsCSP was
diluted to ~1ug/mL in KB and loaded onto Ni-NTA biosensors. Association and dissociation
were monitored for 600 and 1200 seconds, respectively. All curves were fit with a 2:1 binding
model, as there were at least two binding sites per peptide (2 sites for NPNAy4, 4 sites for

NPNAs, and 11 sites for rsCSP).

Liver burden assay

The protective efficacy of IgGs in this study was assessed by the reduction in liver burden
assay, as previously described (Pholcharee et al., 2021). Three separate protection
experiments were conducted: one to compare the efficacy of 239R, 311R, and 356R to WT 239,
311, and 356, and two to compare efficacy of all WT mAbs in the panel to 317. Each
experiment was performed under near identical conditions. Briefly, C57BL/6 mice were injected
IV with 75 pg/mouse (N=7) of purified IgG and sixteen hours later challenged IV with 2000
chimeric P. berghei sporozoites expressing P. falciparum CSP and, upon liver invasion,
luciferase. Forty-two hours after challenge, mice were injected with 100 pl of D-Luciferin (30
mg/mL), anesthetized with isoflurane and imaged with the IVIS spectrum to measure the

bioluminescence expressed by the chimeric parasites.

Assessment of in vivo kinetics of IgGs

Female, 6-8 week-old C57BL/6 mice were injected IV with 75ug of mAb per mouse. 16 h after

injection, mice were bled and plasma was isolated. In parallel, a 384 well high binding plate
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766  (Corning 3700) was coated with anti-human IgG Fab antibody (Jackson ImmunoResearch 109-
767  006-097) at a dilution of 1:500 and incubated overnight at 4°C. The plate was blocked with 3%
768 BSA in PBS for 1 hr at RT. Plasma was added in a dilution series to the 384 well plate, and
769 incubated for 1 hr at RT. Detection was measured with alkaline phosphatase-conjugated goat
770  anti-human IgG Fcy (Jackson ImmunoResearch 109-005- 008) at 1:2000 dilution in 1% BSA in
771  PBSfor 1hr. The plate was then washed and developed using a phosphatase substrate

772  (Sigma-Aldrich, S0942-200TAB). Absorption was measured at 405 nm.

773

774  Statistical Analysis

775  For all liver burden experiments (N=7 mice), statistical significance relative to either naive

776  control or between experimental conditions using the measure bioluminescence flux was

777  assessed with a Mann-Whitney U-test, which does not assume the data can be modelled

778 according to a probability distribution. The data were reported as the geometric mean of the
779  total flux in the liver +/- the SD (Figure 5-6). This value was converted to percent inhibition

780 relative to the naive control, which is considered as 100% infected. Kinetic parameters from BLI
781  experiments were derived from a non-linear regression of the reference-subtracted binding

782  response according to a 2:1 binding model, as the immobilized antigen (rsCSP, NPNAg, or

783  NPNA,) contained at least two binding sites. Values were averaged across at least 4

784  concentrations of Fab, and only those with R?>>0.98 were considered (Table S10). Significance
785  was calculated with a student’s T-test. For antibody pharmacokinetics studies in mice (N=5),
786  non-linear regression was used to analyze the ELISA data using Prism 9 software, and

787  circulating human IgG concentrations were interpolated based on a standard curve; data were
788  then reported as the geometric mean +/- the SD, in mg/mL (Figure S7).

789

790
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Supplemental Figure Legends
Figure S1. Representative 2D class averages from negative stain EM of anti-NPNA Fabs in
complex with rsCSP. To aid visualization, individual Fabs are colored representing the first

(leftmost) class average of each mAb (grey).

Figure S2. Comparison of cryo-EM structures and previously-published Fab-peptide X-ray
structures. (A-B) Comparison of 311-rsCSP and 356-rsCSP cryo-EM structures from this study.
(A) Top (left) and side (right) views of superposition of 311 (blue) and 356 (tan) complexes. (B)
Same as in (A), showing only the rsCSP helical spiral to highlight high similarity of CSP helical
structures. (C) Superposition of a single Fab from the 311 and 356 cryo-EM structures; CSP is
in gold. (D-G) Comparison of cryo-EM structures of Fabs with X-ray crystal structures of
corresponding Fabs bound to NPNA peptides. (D) 239-rsCSP cryo-EM and 239-NPNA; X-ray.
(E) 356-rsCSP cryo-EM and 356-NPNA; X-ray. (F) 311-rsCSP cryo-EM and 311-NPNAz X-ray.
(G) 364-rsCSP cryo-EM and 364-NPNA X-ray. 239, 356, 364: Pholcharee et al. 2021. 311:

Oyen et al. 2017.

Figure S3. Multiple sequence alignment of heavy chain and light chain variable regions of the
seven IGHV3-33 mAbs in this study with inferred germline genes. (A) Heavy chains aligned to

IGHV3-33*01. (B) IGLV1-40 light chains. (C) IGKV1-5light chains. (D) IGKV3-15light chains.

Figure S4. Buried surface area plots for primary and secondary homotypic interfaces for 239,
311, and 337 Fab-rsCSP cryo-EM structures. Key residues are labelled according to Kabat

numbering system.
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Figure S5. Structure of the secondary homotypic interface (Interface 2). (A) Surface
representation of the five structures in the panel that contain a secondary homotypic interface,
which exists between Fabs separated by one helical turn (Fab i and i+x). (B) Cartoon
representation of 227 and 334, highlighting the secondary interface. rsCSP is shown as a gold
surface. Only Fabs i and i+3 are shown in 334 structure for clarity. The elongated oval in 227 is
the overall C2 symmetry axis of the complex. (C) Details of Interface 2 in 227, which is
symmetric and mediated exclusively by heavy chain framework regions (FR). Local C2 axis is
indicated with black oval. (D) Details of Interface 2 in 334 that is mediated by light chain
framework region 3 (LFR3) and CDRL2 with the heavy chain framework regions 1 and 3 (HFR1

and 3). (E-H) BSA plots of homotypic interface 1 and 2 for 227 (E,F) and 334 (G,H).

Figure S6. Comparison of 311 and 311R X-ray structures. (A) 311-NPNAs crystal structure
(PDB 6AXK). Residues that were mutated are shown, with W52 shown for reference. CSP is in
gold. (B) 311R-NPNA; X-ray structure (this study). (C) Superposition of 311 and 311R
structures. (D) Superposition of CSP structures from 6AXK (gray) and 311R (green). (E)
Sequence alignment of 311 heavy and light chain variable regions with respective germline

sequences. Residues mutated in 311R are shown with arrows.

Figure S7. Circulating concentrations of passively administered IgGs in mice, measured at time
of challenge. Serum titers were measured by anti-human IgG ELISA, and calculated based on
a standard curve. (A) WT and germline reverted 311, 239, and 356 IgG. (B) WT IgGs of 227,

334, 337, and 364.
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841  Figure S8. Cryo-EM reconstructions of seven IGHV3-33 mAbs in this study. Left column: top
842  and side views of final EM map, colored by local resolution; color key at right. Middle column:
843  representative 2D class averages. Right column: Fourier shell correlation for the corrected
844  (noise-substituted) reconstruction. Note that for 311-rsCSP, cryo-EM data originally published
845 in Oyen et al. (2018) were reprocessed here with cryoSPARCv2 and RELION3.0.
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