

1 **Affinity-matured homotypic interactions induce spectrum of PfCSP-antibody structures
2 that influence protection from malaria infection**

3
4 Gregory M. Martin¹, Jonathan L. Torres¹, Tossapol Pholcharee^{1,7}, David Oyen^{1,8}, Yvel Flores-
5 Garcia², Grace Gibson¹, Re'em Moskovitz¹, Nathan Beutler³, Diana D. Jung¹, Jeffrey Copps¹,
6 Wen-Hsin Lee¹, Gonzalo Gonzalez-Paez¹, Daniel Emerling⁵, Randall S. MacGill⁶, Emily Locke⁶,
7 C. Richter King⁶, Fidel Zavala², Ian A. Wilson^{1,4}, Andrew B. Ward^{1*}

8
9 **Affiliations**

10 ¹Department of Integrative Structural and Computational Biology; The Scripps Research
11 Institute; La Jolla, CA 92037; USA.

12 ²Department of Molecular Microbiology and Immunology, Malaria Research Institute; Johns
13 Hopkins Bloomberg School of Public Health; Baltimore, MD 21205; USA.

14 ³Department of Immunology and Microbiology; The Scripps Research Institute; La Jolla, CA
15 92037; USA.

16 ⁴The Skaggs Institute for Chemical Biology; The Scripps Research Institute; La Jolla, CA 92037;
17 USA.

18 ⁵Atreca Inc; San Carlos, CA 94070; USA.

19 ⁶PATH's Malaria Vaccine Initiative; Washington, DC 20001; USA.

20 ⁷Present address: Department of Biochemistry, University of Oxford, Oxford OX1 3DR; UK.

21 ⁸Present address: Pfizer Inc; San Diego, CA 92121; USA.

22
23 *Correspondence: andrew@scripps.edu

24
25 **Summary**

26 The generation of high-quality antibody responses to PfCSP, the primary surface antigen of
27 *Plasmodium falciparum* sporozoites, is paramount to the development of an effective malaria
28 vaccine. Here we present an in-depth structural and functional analysis of a panel of potent
29 antibodies encoded by the *IGHV3-33* germline gene, which is among the most prevalent and
30 potent antibody families induced in the anti-CSP immune response and targets the NANP
31 repeat region. Cryo-EM reveals a remarkable spectrum of helical Fab-CSP structures stabilized
32 by homotypic interactions between tightly packed Fabs, many of which correlate with somatic
33 hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity
34 binding to CSP and in protection from *P. falciparum* malaria infection. These data emphasize
35 the importance of anti-homotypic affinity maturation in the frequent selection of *IGHV3-33*
36 antibodies, advance our understanding of the mechanism(s) of antibody-mediated protection,
37 and inform next generation CSP vaccine design.

38
39 **Key Words:** malaria vaccine, PfCSP, RTS,S, cryo-EM, *Plasmodium falciparum*, *IGHV3-33*,
40 homotypic interaction.

41
42
43 **Introduction**

44 Vaccines are critical tools for sustainable elimination of malaria, which in 2020 was responsible
45 for 241 million infections and 627,000 deaths worldwide (World malaria report, 2021). The
46 pressing need for an improved vaccine is underscored by the continual emergence of resistance
47 to antimalarial compounds by the malaria parasite, *Plasmodium falciparum* (Wicht et al., 2020).
48 In an important milestone for global health, the first vaccine for malaria, RTS,S/AS01 (RTS,S),
49 received recommendation for widespread use in young children living in areas of moderate to
50 high *P. falciparum* malaria transmission by the World Health Organization (WHO) in late 2021.
51 However, the initially robust immune response and protective efficacy conferred by RTS,S are
52 transient, as both wane rapidly after about one year. Thus, a key challenge in malaria vaccine
53 design is the generation of highly effective and long-lived (durable) immunity.

54
55 Many malaria vaccine candidates, like RTS,S, are based on *P. falciparum* circumsporozoite
56 protein (PfCSP), which is the primary surface antigen of *P. falciparum* sporozoites, the stage of
57 malaria parasites infectious to humans. The structure of PfCSP comprises three domains (Fig.
58 1): (1) a disordered N-terminus, which contains a heparin sulfate binding site for hepatocyte
59 attachment; (2) a central repeat region composed of 25 to 40 major (NANP) repeats, which are
60 interspersed by a few, N-terminal minor repeats (NVDP, NPDP); and (3) a small, structured C-
61 terminal domain. Vaccination with whole sporozoites or full-length PfCSP generates antibodies
62 against each domain, but the NANP repeats are immunodominant (Dame et al., 1984; Enea et
63 al., 1984; Zavala et al., 1983). Moreover, anti-NANP monoclonal antibodies (mAbs) have been
64 shown to confer sterile protection against malaria infection in animal models through their ability

65 to arrest sporozoite motility in the skin and to block liver infection (Flores-Garcia et al., 2019;
66 Foquet et al., 2014; Hollingdale et al., 1984; Hollingdale et al., 1982; Raghunandan et al., 2020;
67 Vanderberg, 1974).

68

69 Early observation of these effects provided the rationale for the design of RTS,S (Figure 1), a
70 virus-like particle based on the Hepatitis B surface antigen (HBsAg) that displays 19 NANP
71 repeats and the ordered C-terminal domain of CSP (Gordon et al., 1995). Phase III clinical trials
72 have shown that, in children aged 5-17 months, RTS,S confers modest protection (~50%) from
73 clinical malaria at 12 months after the third vaccine dose (RTS,S CTP et al., 2011), which
74 waned to 26% at 4 years in follow-up studies (RTS,S CTP 2015). Anti-NANP titers are
75 associated with protection (McCall et al., 2018), and display similar induced antibody decay
76 kinetics to other vaccines following vaccination (White et al., 2015). Thus, improving vaccine
77 efficacy requires boosting antibody quantity over time (durability) and/or improving antibody
78 quality (potency).

79

80 A modern approach to vaccine design entails structural analysis of potent monoclonal
81 antibodies (mAbs) in complex with antigen (Burton, 2017). To this end, recent X-ray and cryo-
82 EM structures have shown the repeat region is organized into NPNA structural units (Imkeller et
83 al., 2018; Murugan et al., 2020; Oyen et al., 2017; Pholcharee et al., 2021; Pholcharee et al.,
84 2020), and that the NPNA prolines serve as key anchor points for conserved aromatic residues
85 in the heavy and light chain CDR loops. Interestingly, the humoral response to PfCSP is heavily
86 biased towards antibodies descended from the human heavy chain germline gene *IGHV3-33*
87 (Imkeller et al., 2018; Murugan et al., 2020), which has also given rise to the majority of the
88 most potent anti-NPNA mAbs isolated to date.

89

90 We previously showed one such highly potent *IGHV3-33* mAb, mAb 311, utilizes homotypic
91 interactions to stabilize an extended helical structure of 311 Fabs bound to rsCSP, which is a
92 recombinant form of PfCSP containing 19 NANP repeats (Fig. 1) (Oyen et al., 2018).
93 Somatically mutated residues mediating key homotypic contacts between adjacent Fabs were
94 critical for stability of the extended helical structure but were not directly involved in CSP
95 binding. Homotypic contacts were also observed in the structures of two other potent *IGHV3-33*
96 mAbs 1210 and 239 (Imkeller et al., 2018; Pholcharee et al., 2021). Interestingly, in mAb 1210,
97 mutations designed to disrupt these contacts significantly reduced B-cell activation in response
98 to NANP₅, without substantially impacting affinity to NANP₃, implying that homotypic interactions
99 may occur *in vivo* between adjacent B-cell receptors in response to CSP antigens. Overall,
100 these observations suggest the nature of the NANP repeats facilitates antibody-antibody (anti-
101 homotypic) affinity maturation, which may underlie the frequent selection of the *IGHV3-33*
102 germline. However, whether homotypic interactions contribute to the protective efficacy of
103 soluble antibodies, and if they occur on the surface of sporozoites, has not been demonstrated.
104 To address these questions, we expanded our investigation of *IGHV3-33* mAbs (Pholcharee et
105 al., 2021), and used electron microscopy combined with *in vivo* and *in vitro* assays to
106 understand the structural basis of CSP engagement by this family of mAbs, the role of
107 homotypic interactions, and the mechanism of protection from malaria infection.
108

109 **Helical structure formation on CSP is common among anti-NPNA mAbs from the *IGHV3-33* germline**

110 The antibody sequences in the current study were isolated from protected individuals within the
111 dose fractionation arm of a Phase IIa clinical trial of RTS,S (Regules et al., 2016), the same trial
112 from which mAbs 311 and 317 were derived. We focused specifically on antibodies encoded by
113 the heavy chain germline gene *IGHV3-33*, which has given rise to many potent anti-NPNA
114 mAbs with a tendency toward homotypic interactions, as exemplified by Abs 1210 and 311

116 (Imkeller et al., 2018; Oyen et al., 2018). In all, the panel includes seven *IGHV3-33* mAbs
117 (Table 1), including 311 for comparison, which are encoded by three different light chain genes:
118 *IGKV1-5* (mAbs 239, 334, and 364), *IGKV3-15* (mAbs 337 and 356), and *IGLV1-40* (mAbs 311
119 and 227).

120

121 To structurally characterize the interaction of each mAb with PfCSP, we formed complexes of
122 the Fabs with rsCSP (Fig. 1). Initial negative-stain electron microscopy (NS-EM) imaging
123 showed each *IGHV3-33* Fab formed well-ordered, multivalent structures on rsCSP (Fig. S1),
124 with well-resolved Fabs radiating outwards from a central rsCSP polypeptide. For comparison,
125 we performed the same analysis with a panel of non-*IGHV3-33*-encoded mAbs (*IGHV3-30*, 3-
126 49, 3-15, and 1-2) isolated from the same clinical trial (Fig. S1); we previously published EM
127 data on two of these: 317 and 397 (Oyen et al., 2017; Pholcharee et al., 2020). Similarly to the
128 *IGHV3-33* mAbs, the non *IGHV3-33* panel bound multivalently to rsCSP and displayed general
129 helical or spiral curvature. However, the 2D NS-EM classes demonstrate greater structural
130 variation and the absence of long-range helical order, in contrast to each of the *IGHV3-33*
131 mAbs. Accordingly, we were unable to obtain stable 3D reconstructions from NS or cryo-EM of
132 these non-*IGHV3-33* Fab-rsCSP complexes. These EM data suggest that among human
133 mAbs, long-range helical structural ordering stabilized by homotypic interactions may be specific
134 to the *IGHV3-33* germline.

135

136 ***IGHV3-33* antibodies exhibit a spectrum of helical conformations on rsCSP**

137 We next utilized single particle cryo-EM to elucidate the 3D organization of these distinctive
138 Fab-rsCSP structures, the potential roles of homotypic contacts, and the mechanisms governing
139 their formation. Cryo-EM datasets were collected for the seven *IGHV3-33* mAbs in our panel.
140 Each complex was resolved to high resolution (Table S1), and the cryo-EM maps are shown in
141 Figure 1. Of these, six structures are new, while the 311-rsCSP structure was re-refined from

142 our previously published cryo-EM dataset to achieve higher resolution (3.0 \AA from 3.4 \AA). In
143 general, each complex was homogeneous in both structure and composition, with the overall
144 resolution of the reconstructions ranging from 2.7 \AA to 3.8 \AA .

145
146 This compendium of high-resolution structures reveals the remarkable conformational plasticity
147 of PfCSP. In each complex, CSP displays some form of helical structure that is stabilized by
148 homotypic interfaces between tightly packed Fabs bound along the length of the NPNA repeats.
149 However, the observed helical conformations of CSP vary dramatically. These range from near
150 planar discs with shallow pitch and large helical radius, as observed in 364 and 227, to
151 extended helices with varying helical parameters (Table 1). Each of the extended helices in
152 complexes with 337, 334, 311, 356, and 239 are right-handed, while the partial, disc-like helices
153 of 364 and 227 displays left-handed curvature. The extended helical structures of CSP in the
154 337, 334, and 239 complexes are each unique, i.e., non-superimposable. Strikingly however,
155 the 311 and 356 rsCSP helical structures are almost perfectly superimposable (Fig. S2), which
156 is notable as these mAbs utilize distinct homotypic interactions and different light chains (*IGLV1-*
157 *40* and *IGKV1-5*, respectively; Fig. S3). This finding suggests that either this is a relatively
158 stable conformation of PfCSP, or that this particular structure is associated with high-level
159 protection from malaria infection, as both 311 and 356 have been shown to be highly protective
160 in *in vivo* mouse challenge models (Pholcharee et al., 2021).

161

162 The 227 Fab complex is distinct, as the NPNA repeats form two discontinuous, anti-parallel
163 disc-like structures with moderate helical pitch and left-handed curvature, with each disc bound
164 by 4 Fabs in tandem (Fig. 1). However, we note the 227 Fab structure was solved in complex
165 with NPNA₈ peptide instead of rsCSP, as was done for the rest of the mAbs in the panel, due to
166 the tendency of the 227-rsCSP complex to aggregate. Thus, the two antiparallel disc structures
167 in the 227 complex likely comprise two individual NPNA₈ peptides, as the four available NPNA₂

168 epitopes on the peptide are fully occupied by 227 Fabs and there is no density linking the two
169 discs. Nonetheless, a NS-EM reconstruction of the 227-rsCSP complex is nearly identical to the
170 227-NPNA₈ cryo-EM structure, within the 15-20Å limit of the NS data (data not shown).
171 Therefore, this antibody may induce dimerization of separate CSP molecules mediated by
172 homodimeric interactions of the Fabs themselves, which may have important implications for the
173 way this antibody engages PfCSP on sporozoites.

174
175

176 **The *IGHV3-33* NPNA₂ core epitope structure is highly conserved**

177 As shown previously for this family of antibodies, the epitope of each *IGHV3-33* mAb comprises
178 two tandem NPNA structural units, with an N-terminal type 1 β-turn followed by an Asn-
179 mediated pseudo 3₁₀ turn (Oyen et al., 2018; Oyen et al., 2017; Pholcharee et al., 2021).
180 Interestingly, despite large differences in global helical structure, the local structure of this core
181 (NPNA)₂ epitope is highly conserved and exhibits a nearly identical extended S-shaped
182 conformation in each of the seven mAbs (Fig. 2B). rsCSP binds within a deep groove running
183 along the length of each Fab that is composed entirely of the three heavy chain CDR loops and
184 CDR3 (Fig. 2A). Overall, the structure of the *IGHV3-33* heavy chain is also highly conserved.
185 Moreover, the cryo-EM structures of Fabs of 239, 356, and 364 correspond very well to our
186 previously determined X-ray structures of these three Fabs in complex with NPNA₂ (Fig. S2)
187 (Pholcharee et al., 2021).

188

189 As noted previously for mAbs 311, 239, 356, and 364, conserved aromatic residues in CDRH2
190 of mAbs 227, 337, and 334 also each utilize the two prolines of the NPNA₂ epitope as anchor
191 points (Fig. 2B-D). The strictly conserved, germline-encoded W52 and either a Tyr (germline) or
192 Phe at position 58 (Y/F58) each form critical, alternating CH-π interactions with the Pro of the
193 pseudo Asn 3₁₀ turn and the type 1 β-turn, respectively (Fig. 2D). These two NPNA structural

194 units reside in two distinct hydrophobic pockets in each Fab (site 1 and site 2). While each Fab
195 binds CSP through differing sets of interactions, this basic paratope architecture is conserved
196 across the panel: site 1, which binds the type 1 β -turn, comprises residues from CDRH2
197 (Y/F58), CDRH3, and CDRL3; and site 2, which binds the pseudo Asn 3₁₀ turn, is formed from
198 the three HCDR loops and is centered on W52 and another conserved aromatic residue in
199 CDRH2, Tyr/His52A, which in each structure packs tightly against the side chain of the C-
200 terminal Ala of NPNA₂ (Fig. 2C).

201

202 Importantly, the cryo-EM structures show the full epitope for a single Fab extends beyond
203 NPNA₂, such that adjacent Fabs engage overlapping epitopes with between 1 and 4 shared
204 residues at the N- and C-terminal ends of each NPNA₂ core (Fig. 2E-H; Table 1). The extent of
205 the full epitope footprint on rsCSP tends to correlate with light chain usage and CDRH3 and
206 CDRL3 length (Table 1). Thus, these key antibody features appear to determine the binding
207 mode, superstructure assembly and fine epitope specificity of anti-NPNA antibodies and may
208 also correlate with protective efficacy.

209

210 **A constellation of homotypic interactions stabilizes the CSP helical structures**

211 Each of the multivalent antibody-CSP structures are stabilized by homotypic interactions
212 between Fabs binding immediately adjacent NPNA₂ epitopes, i.e., the primary homotypic
213 interface (Interface 1; Fig. 3). This expands the full paratope, as each Fab simultaneously binds
214 both CSP and the neighboring Fab, and substantially increases the total buried surface area
215 (BSA) on each Fab (Table S2). The architecture of the primary homotypic interface is similar
216 across the seven complexes and is composed mainly of the heavy chain CDR loops and
217 CDRL3, with polar contacts between CDRH1_A-CDRH2_B and CDRH3_A-CDRL3_B (Fig. 3B).
218 Importantly, this asymmetric, edge-to-edge interaction, in which FabA and FabB contribute
219 different residues to the interface, is distinct from the asymmetric head-to-head configuration

220 observed in the crystal structure of mAb 1210-NANP₅, another potent *IGHV3-33/IGKV1-5*
221 antibody (Imkeller et al., 2018). This mode of binding also differs from our previous crystal
222 structure of 399-NPNA₆ (*IGHV3-49/IGKV2-29*), which forms a *symmetric* head-to-head
223 homotypic interface between adjacent Fabs (Pholcharee et al., 2021). As these latter two mAbs
224 are not known to form stable structures on extended repeats, the edge-to-edge binding mode
225 seen here is likely necessary for optimal geometry and packing of Fabs to promote long-range
226 helical order.

227
228 Homotypic interactions within the primary interface are derived from a diverse set of both
229 germline-encoded residues and those that evolved through somatic hypermutation (SHM; Fig.
230 3F-I; Fig. S4, Table S3-S9). Two residues in CDRH1, T28 and S31, mediate key contacts
231 between CDRH1_A-CDRH2_B in nearly every complex in the panel (Fig 3C-E, Figs. S4, S5). T28
232 is a germline residue that is nearly strictly conserved (S28 in 337), while the S31N mutation is
233 seen in four of the seven mAbs: 239, 311, 334, and 356 (Fig. S3). Together, these residues
234 coordinate an extensive network of hydrophobic and electrostatic interactions, with N31 often
235 forming multiple critical contacts with evolved basic and aromatic residues in the neighboring
236 CDRH2_B. Importantly, these specific interactions would likely not occur in the germline
237 sequence (Fig. 4D-F). Other key residues in CDRH1_A are R30 and F32, which in both mAbs
238 239 and 356 form a signature motif R³⁰N³¹F³², mutated from the germline sequence of S³⁰S³¹Y³²
239 (Fig. S3). In both structures, R30 forms a pair of hydrogen bonds with the N56 side chain and
240 S55 main chain, both from CDRH2_B, while F32 forms an anion-π bond (Philip et al., 2011) with
241 the evolved E64 in HFR3_B (Fig. 3C). These interactions would also not occur upon germline
242 reversion. Moreover, except for F32, none of the side chains of these residues directly contact
243 CSP, providing evidence for affinity maturation to stabilize antibody-antibody rather than
244 antibody-antigen interactions.

245

246 As previously shown for 311, the tight helical packing in the complexes of mAbs 334, 337, and
247 356 creates a secondary homotypic interface between Fabs separated by about one helical turn
248 (3 or 4 NPNA₂ epitopes; Fig. S5). Homotypic interactions consist mostly of polar contacts within
249 apposing heavy and light chain framework regions (FRs; Fig. S5B-D). In contrast, the
250 secondary homotypic interface in 227 mediates 227-NPNA₈ dimerization and defines the C2
251 symmetry plane for the complex (Fig. S5B). This interface is therefore symmetric and consists
252 solely of apposing heavy chain framework residues. In general, the secondary homotypic
253 interface contributes about half of the total BSA relative to the primary interface (Table S2).
254 Strikingly, however, the reverse is true with 334, where the total BSA of the secondary interface
255 is roughly twice that of the primary, suggesting a critical role for framework region residues in
256 the stability and/or formation of this complex.

257

258 Key contacts within the secondary interface are also linked to somatic hypermutation of the
259 germline heavy and light chain genes. In HFR1_B of 334, a mutated residue T19 appears critical
260 for the interface and mediates a key hydrogen bond with S65 of LFR3_E (Fig S5D). In the
261 symmetric secondary interface of 227, H82A of HFR3_B mediates a cation-pi bond with R75 of
262 HFR3_G (Fig. S8C). Both were mutated from highly conserved residues in the germline *IGHV3-*
263 33 gene, (N82A-H and K75R). Moreover, the H82A-R75 interaction contributes nearly half of
264 the BSA of this interface (250/550 Å²) and defines the C2 symmetry axis of the 227-rsCSP
265 complex (Fig. S5B,C), suggesting a critical role for this interaction. Overall, these examples
266 represent somatic hypermutation in framework regions distal from the antigen binding site and
267 provide further evidence for antibody-antibody affinity maturation to enhance homotypic Fab-
268 Fab interactions.

269
270
271

Mutagenesis of the homotypic interface

272 We have previously shown germline reversion of the somatically mutated residues that mediate
273 homotypic contacts, but which are not directly involved in CSP binding, abrogates the 311-
274 rsCSP helical structure (Oyen et al., 2018). To further understand the role of homotypic
275 contacts, we applied a similar approach to two other potent mAbs in our panel, 239 and 356.
276 Our original mutant 311 construct, 311R, has four mutations in the heavy chain (N31S, R56N,
277 N57K, E64K), and two in the light chain (R93S, R94S). To create both 239R and 356R
278 constructs, the RNF motif in CDRH1 was mutated to germline, along with the same E64K
279 mutation in HFR3 (R30S, N31S, F32Y, E64K). The light chains of 239R and 356R had one and
280 two additional mutations, respectively (239R: R56T; 356R: Q1E, R27Q) (Fig. 4G).

281

282 We first determined the impact of these mutations on binding to various CSP peptides with
283 biolayer interferometry (BLI). We tested the hypothesis that homotypic interactions underlie the
284 large increase in apparent affinity to peptides with increasing NANP content that is observed for
285 this family of antibodies. Thus, we compared binding of WT and mutant Fabs to NPNA₄,
286 NPNA₈, and rsCSP. In terms of NPNA₄, the apparent affinity of 311R was essentially
287 unchanged relative to 311 ($p=0.17$), while 356R and 239R were ~two-fold higher (improved)
288 ($p=0.005$) and ~two-fold lower ($p=0.01$) than 356 and 239, respectively (Fig. 4I,J; Table S10).
289 These BLI data suggest that binding to minimal NPNA repeats is largely unperturbed by the
290 germline mutations. As expected, for each WT Fab we observed a large increase in apparent
291 affinity to both NPNA₈ and rsCSP relative to NPNA₄, largely driven by substantial reductions in
292 the dissociation rate (k_{off}). However, for the reverted mutants, both affinity and k_{off} remained
293 roughly constant across each peptide and rsCSP. Thus, homotypic interactions are critical for
294 high avidity binding to extended NANP repeats.

295

296 We next used NS-EM to assess the impact of the germline mutations on the structure of the
297 Fab-rsCSP complex. As shown previously for 311R, 2D class averages of both 239R and 356R

298 were highly variable, both in structure and stoichiometry of the Fabs (Fig. 4H). Interestingly, we
299 observed some helical propensity in the 239R-rsCSP complex, similar to 311R, suggesting
300 helical structure formation is at least partially germline-encoded or that CSP has a preferential
301 bias toward a helical conformation. Nonetheless, we were unable to obtain stable 3D
302 reconstructions for each mutant, indicative of a high degree of structural disorder. In contrast,
303 the WT versions formed stable helical structures on rsCSP (Fig. 1, Fig. S1). Thus, somatically
304 mutated homotypic interactions are crucial for both high avidity and for the formation and
305 stability of long-range, helical order on rsCSP, both of which may impact protective efficacy.

306

307 To ensure these effects were due to the loss of homotypic interactions rather than unanticipated
308 changes in the structure of the antibody paratope, which could impact the structure of the bound
309 NPNA₂ epitope, we solved a 1.9Å co-crystal structure of Fab311R in complex with NPNA₃ and
310 compared this to our previous X-ray structure of Fab311 bound to NPNA₃ (Fig. S6) (Oyen et al.,
311 2017). Importantly, we find the structures of both Fab and CSP peptide are nearly identical,
312 with an overall RSMD of 0.28Å. Due to their similarity with 311R, we expect this to also be true
313 for 239R and 356R, although we did not obtain crystals of these mAbs. Therefore, the effects of
314 the germline mutations introduced here are likely confined to antibody-antibody binding with no
315 significant impact on direct interactions with CSP, proving the usefulness of the germline-
316 reverted mutants as tools to specifically probe the role of homotypic interactions.

317

318

319

Affinity-matured homotypic contacts are important for high level protection

320 The role of homotypic contacts in protection from malaria infection is still unclear. To address
321 this question, we compared the protective efficacy of WT and mutant 311, 239, and 356 using
322 the liver burden assay (Fig. 5A), an *in vivo* model of malaria infection in mice that measures the
323 ability of antibodies to prevent invasion of the liver by transgenic *P. berghei* sporozoites

324 expressing *P. falciparum* CSP and luciferase (Flores-Garcia et al., 2019; Raghunandan et al.,
325 2020).

326

327 Mice were injected intravenously (IV) with 75 μ g of IgG (311, 311R, 239, 239R, 356, or 356R),
328 and 16 hours later were challenged with 2×10^3 transgenic sporozoites. Each mAb significantly
329 reduced parasite liver burden relative to the naïve control (Mann-Whitney U-test; $p < 0.05$), which
330 is reported as percent inhibition (Fig. 5B). Strikingly, however, 311R, 239R, and 356R each
331 showed a consistent and dramatic reduction in percent inhibition relative to their WT
332 counterparts, which was statistically significant in each case (Mann-Whitney U-test; $p < 0.001$).

333 In a separate experiment conducted under near identical conditions, serum IgG concentrations
334 were measured at the time of sporozoite challenge (16hr) and were similar across the WT and
335 variant mAbs (Fig. S7), which indicates that the differences in liver burden are likely due to
336 differences in antibody interaction with sporozoites and not differences in antibody levels, *in vivo*
337 mAb kinetics, or off-target responses. Overall, this is the first demonstration of a direct role of
338 homotypic interactions in protection and implies these somatically mutated residues are critical
339 for high-level protection from malaria, likely through their ability to mediate high avidity and
340 helical structure formation with antibody-antibody homotypic interactions.

341

342 **Correlation of Protection and Affinity**

343 We next compared the reduction in liver burden across each of the WT mAbs in our panel,
344 using the same protocol as the previous protection experiment (Fig. 6A,B). For the mAbs with
345 repeats across multiple experiments, i.e., 311, 239, and 356, and the highly-protective *IGHV3-*
346 30 mAb 317, the level of inhibition is consistent, enabling comparison of efficacy across
347 separate experiments. As before, at 75 μ g, each IgG significantly reduced parasite infectivity in
348 the liver relative to the naïve control. While there is a range in the level of inhibition, many
349 antibodies are highly potent and have statistically indistinguishable protection relative to mAb

350 317, namely mAbs 356, 311, 334, and 364. Protection for these mAbs generally ranges from
351 around 85-92%. mAb 239 is slightly less potent than 317, at 81% inhibition, while 337 and 227
352 have the lowest levels of protection in the panel, at 68% and 52% inhibition, respectively
353 ($p<0.001$; Mann-Whitney U-test). However, the reduced potency of 227 may be due to poor
354 pharmacokinetics *in vivo* (Fig. S7). Overall, these results are consistent with our previous liver
355 burden data testing of many of these same mAbs at 100 μ g (Pholcharee et al., 2021).

356

357 As each of these mAbs target the same epitope(s) on CSP, affinity to the NPNA repeat may
358 underlie differences in protection. To test this notion, we measured apparent affinities of each
359 Fab to NPNA₄, NPNA₈, and rsCSP with BLI (Table S10). Except for the germline mutants,
360 apparent affinity increased substantially between NPNA₄ and NPNA₈, and again between
361 NPNA₈ and rsCSP; this is likely due to the high avidity afforded by homotypic interactions, as
362 increases in avidity were largely driven by reductions in the dissociation rate (k_{off}). In general,
363 rsCSP apparent affinity was very high (10^{-9} M or higher) for the WT Fabs, and lower for the three
364 mutants (10^{-7} to 10^{-8} M). We then correlated these data with percent inhibition from the liver
365 burden experiment. Interestingly, we observe no correlation between protection and NPNA₄
366 affinity, while there is a moderate correlation with NPNA₈ and rsCSP apparent affinity ($R^2=0.61$
367 and 0.68, respectively), as well as rsCSP dissociation rate ($R^2=0.65$). These data suggest
368 avidity to extended NPNA repeats, which is facilitated by homotypic interactions, is a key
369 determinant of protective efficacy among *IGHV3-33* mAbs. However, apparent affinity to NPNA₈
370 or rsCSP poorly discriminates protective efficacy among the WT mAbs in the panel, which all
371 have rsCSP apparent affinities of 10^{-9} M or lower. Therefore, high avidity to extended repeats is
372 likely necessary but on its own insufficient to confer high level protection in *IGHV3-33* mAbs.
373 Thus other parameters, likely concerning specifics of the interaction of antibodies with PfCSP on
374 live sporozoites, also appear to be involved in determining protective efficacy.

375

376 **Discussion**

377 The wealth of structural data presented herein, and the wide spectrum of observed helical
378 conformations of rsCSP, are a vivid illustration of the extensive conformational plasticity of the
379 NANP repeat region, which had been both predicted and demonstrated with indirect structural
380 methods, but not directly or at high resolution (Guy et al., 2015; Kucharska et al., 2020; Patra et
381 al., 2017; Plassmeyer et al., 2009). Our panel of cryo-EM structures reveal how these diverse
382 conformations are anchored by a subset of key, somatically mutated residues mediating
383 homotypic interactions across two antibody-antibody interfaces, yet which do not directly
384 participate in CSP binding. Intriguingly, we observe this behavior in each of the seven *IGHV3-*
385 *33* mAbs we examined, suggesting that, within this antibody family, affinity maturation promotes
386 the evolution of homotypic interactions that frequently lead to long-range, ordered helical
387 structures on CSP. Together, these data support a model in which the highly repetitive nature
388 of the NANP repeats drives antibody-antibody affinity maturation, and that this selective
389 advantage underlies the generation of high avidity antibodies and the frequent selection of the
390 *IGHV3-33* germline.

391

392 We also demonstrate somatically mutated homotypic interactions, and possibly the CSP
393 structures that they stabilize, play a key role in the mechanism of protection from *P. falciparum*
394 infection. Specifically, we show reversion of these somatically mutated residues to their
395 germline identities, in both heavy and light chains, abolishes well-ordered, extended helical CSP
396 structures and eliminates the high avidity to extended NANP repeats characteristic of this
397 antibody family, without significantly impacting affinity to the core epitope or the ability to
398 assemble multiple Fabs onto CSP. Importantly, these effects are accompanied by a significant
399 and consistent reduction in protective efficacy of the affinity-matured IgGs *in vivo*, relative to
400 their WT counterparts, implying a critical role for homotypic interactions in protective efficacy for
401 *IGHV3-33* mAbs.

402

403 Based on these data, we speculate that this family of IgGs bind multivalently on the surface of
404 sporozoites *in vivo*, as Fabs do *in vitro*, and homotypic interactions that occur between adjacent
405 IgGs and are critical for the stability of Ab-SPZ complexes and for protection. However, at
406 present, little is known regarding the nature of the interaction between CSP antibodies and
407 sporozoites, which makes it difficult to predict how differences in antibody structure or function
408 may ultimately impact protective efficacy *in vivo*. Observations in this study and others
409 underscore NPNA affinity alone cannot fully account for protective efficacy (Imkeller et al., 2018;
410 Murugan et al., 2020; Pholcharee et al., 2021). Nevertheless, our functional and mutagenesis
411 data strongly suggest high avidity to NANP repeats, driven by dramatic reductions in the off-
412 rate, is a key component of antibody potency in the *IGHV3-33* family.

413

414 In terms of a vaccine design strategy, whether the development of homotypic interactions in an
415 immune response is advantageous or not for both vaccine efficacy and durability remains to be
416 determined. The current working hypothesis in the field posits that highly avid binding to
417 extended NANP repeats, potentially afforded by homotypic interactions, induces strong B-cell
418 activation but limits affinity maturation in germinal centers, which ultimately suppresses the
419 development of antibodies with high affinity to the core NPNA epitope (Cockburn & Seder, 2018;
420 Wahl & Wardemann, 2022). This would account for the robust antibody response to CSP, but
421 also the difficulty in generating long-lived immunity and the generally low levels of somatic
422 hypermutation observed in anti-NANP antibodies (Aye et al., 2020; McNamara et al., 2020;
423 Murugan et al., 2018). However, there is little direct evidence showing that CSP immunogens
424 with reduced NANP content promote the development of higher affinity antibodies, and thus
425 improved vaccine efficacy. While two studies have indicated a trend towards greater protection
426 in mice immunized with constructs containing reduced numbers of NANP repeats (either 9 vs 27
427 NANP, or 5 vs 20 NANP), the results were not statistically significant (Chatterjee et al., 2021;

428 Langowski et al., 2020). Thus, future studies are needed to specifically assess the role of
429 homotypic interactions in B-cell responses to CSP and whether they underlie differences in
430 immunogenicity to different repeat constructs.

431

432 Overall, our compendium of antibody-CSP structures provides a series of high-quality structural
433 templates which will enable both structure-based vaccine design and antibody engineering. In
434 particular, anti-PfCSP monoclonal antibodies have emerged as promising prophylactics for
435 malaria, with two landmark studies demonstrating the ability of two anti-PfCSP mAbs (cis43LS
436 and L9LS) to provide months-long sterile immunity against controlled human malaria infection
437 (CHMI) in humans (Gaudinski et al., 2021; Wu et al., 2022). Thus a key aim is to identify the
438 most potent mAbs and improve both their potency and pharmacokinetic properties through
439 rational, *in vitro* and *in vivo* affinity maturation. Proof-of-concept for this approach was
440 demonstrated recently via CRISPR-based knock-in of cis43 germline heavy and light chain
441 genes in mice (Kratochvil et al., 2021), where the authors identified a cis43 derivative with
442 greater potency than the best-in-class mAb L9.

443

444 Our panel of cryo-EM structures will also be of immediate use in the design of NANP antigens
445 that either promote or prevent the development of adjacent homotypic Fab-Fab interactions, or
446 long-range bivalent IgG interactions, which may occur on extend NANP repeats. This will likely
447 be invaluable in parsing the potentially countervailing forces homotypic interactions may exert
448 on vaccine efficacy. Moreover, in combination with the functional and *in vivo* protection data,
449 these structural data enable the identification of the key structural, functional, and sequence-
450 based features of highly potent anti-PfCSP antibodies, which at this point are still not well-
451 defined.

452

453 The fact that each of the seven *IGHV3-33* mAbs we examined, many of which are highly potent,
454 forms distinct, extended helical structures on rsCSP suggests that these EM structures may
455 serve as structural correlates of protection. Critically, few clear correlates of CSP vaccine-
456 induced immunity have been identified (Julien & Wardemann, 2019; McCall et al., 2018); thus,
457 EM-based analysis of antibody responses may be a powerful new tool for evaluating efficacy of
458 malaria vaccines. However, at present, the correlation of higher order structures with protective
459 efficacy is not unequivocally resolved due to the small size of our antibody panel. Future
460 studies with larger panels of monoclonals, and especially polyclonal serum from protected and
461 nonprotected individuals, will determine whether this phenomenon is specific to human *IGHV3-*
462 *33* mAbs, or whether it represents a general solution for a productive immune response to
463 repeat antigens.

464

465 **Acknowledgements**

466 The authors thank B. Anderson for maintenance and administration of the cryo-EM facility at
467 The Scripps Research Institute, and H.L. Turner and C.A. Bowman for technical support. The
468 project was supported by National Institutes of Health grant 1F32AI150216-01A1 to G.M.M.,
469 and by funding from PATH's Malaria Vaccine Initiative and the Bill & Melinda Gates Foundation
470 (grant INV-004923) under collaborative agreements with The Scripps Research Institute.
471 This publication was also possible through support provided by the Office of Infectious
472 Diseases, Malaria Branch, Bureau for Global Health, U.S. Agency for International Development
473 (USAID), under the terms of Contract No. 7200AA20C00017. The opinions expressed herein
474 are those of the author(s) and do not necessarily reflect the views of the U.S. Agency for
475 International Development. Research by F.Z. and Y.F-G. is supported by the Bill and Melinda
476 Gates Foundation (INV-001763), PATH's Malaria Vaccine Initiative and the Bloomberg
477 Philanthropies. This research used resources of the SSRL, SLAC National Accelerator
478 Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of

479 Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural
480 Molecular Biology Program is supported by the DOE Office of Biological and Environmental
481 Research, and by the National Institutes of Health, National Institute of General Medical
482 Sciences (including P41GM103393 and P30GM133894).

483

484 **Author Contributions**

485 G.M. performed experiments, analyzed the data, prepared figures, wrote the original manuscript
486 draft, and conceived the study. J.T., T.P., and D.O. performed experiments and analyzed the
487 data. Y.F.G., R.M. and N.B. performed experiments, analyzed data, and wrote the manuscript.
488 G.G., D.J., J.C., W.H.L., and G.G.P. performed experiments. D.E., R.S.M, E.L., and C.R.K.
489 provided access to reagents and advised the study. F.Z. supervised and provided resources for
490 the *in vivo* studies and analyzed the resulting data. I.A.W. and A.B.W. supervised the project,
491 acquired funding, wrote the manuscript, and conceived the study. All authors contributed to
492 manuscript editing.

493

494 **Declaration of Interests**

495 The authors declare no competing interests.

496

497 **Data Availability**

498 Cryo-EM structures and density maps were deposited to the PDB and EMDB, respectively, with
499 the following accession codes:

500 **227-NPNA₈**: 8DYT, EMD-27781

501 **239-rsCSP**: 8DYW, EMD-27784

502 **311-rsCSP**: 8DYX, EMD-27785

503 **334-rsCSP**: 8DYY, EMD-27786

504 **337-rsCSP**: 8DZ3, EMD-27787

505 **356-rsCSP:** 8DZ4, EMD-27788

506 **364-rsCSP:** 8DZ5, EMD-27789

507

508 **Figure Legends**

509 **Figure 1.** High resolution cryo-EM of *IGHV3-33* Fabs in complex with rsCSP. **(A)** Cryo-EM map
510 of 337-rsCSP at 2.7Å, looking down the axis of the rsCSP helix. **(B)** Side-view of the 337-
511 rsCSP structure, with four of seven Fabs removed to highlight rsCSP helical structure in black.
512 Only variable region of Fabs are modeled. **(C)** Same as in (B), with all seven Fabs shown. Two
513 homotypic interfaces (1 and 2) are highlighted. **(D)** Top view of (B). Rotation angle between
514 Fabs (helical turn) is shown. **(E)** Schematic of PfCSP sequences relevant to current study. **(F)**
515 Top view, i.e., as viewed down the axis of rsCSP helix, of cryo-EM maps. mAb name and the
516 resolution of each cryo-EM map are listed. In panels F-I, all structures and maps are on the
517 same scale to enable comparison of relative dimensions. **(G)** Top view of the surface
518 representation of the various structures. rsCSP is colored in black. Diameter of the rsCSP helix
519 is listed. **(H)** Side view of the cryo-EM maps. **(I)** Side view of various cryo-EM structures.
520 Helical pitch is shown.

521

522 **Figure 2.** Structure and conservation of the NPNA₂ epitope. **(A)** Surface model of a single Fab
523 from 337-rsCSP structure, showing only the core epitope NPNA₂ in gold. The heavy chain is
524 colored dark gray, and light chain is in light gray. **(B)** Superposition of a Fab and NPNA₂ from
525 each of seven structures. Same coloring as in (A). **(C)** Zoomed-in view of paratope of 337,
526 highlighting two hydrophobic pockets, Site 1 and Site 2. **(D)** CH-π interactions of CDRH2 and
527 CDRL3 residues with Pro in the NPNA repeat. **(E-F)** Full epitope structure of 334 and 356,
528 showing N and C-terminal extensions beyond NPNA₂, which are labeled as residues 1-8. **(G-H)**
529 Buried surface area (BSA) contributions by each residue within the full epitope of 334 (G) and
530 356 (H). See also Figure S2.

531

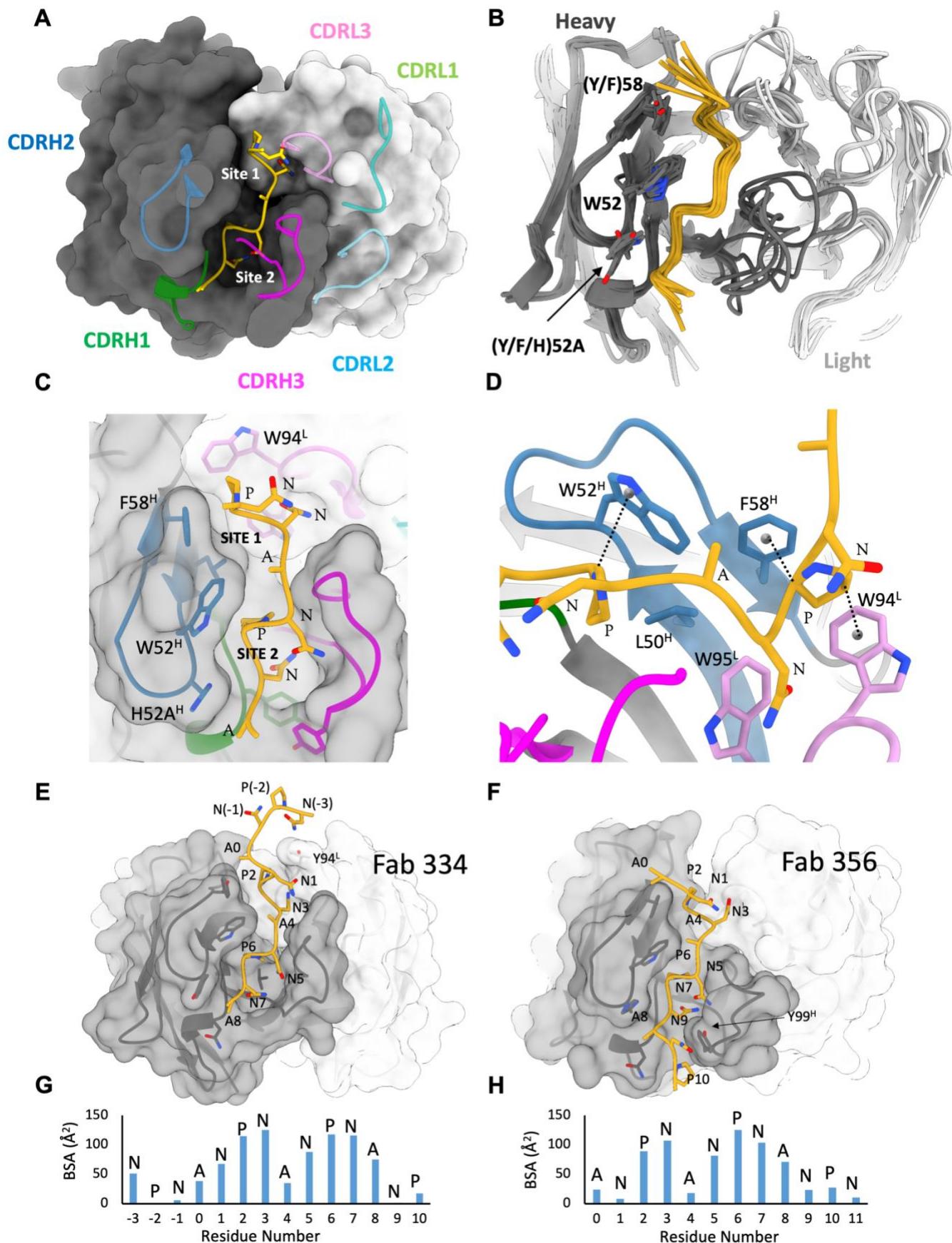
532 **Figure 3.** Structure of the primary homotypic interface (Interface 1). **(A)** Surface representation
533 of two adjacent Fabs from 356-rsCSP structure. rsCSP is colored in gold. **(B)** Cartoon
534 representation of same model as in (A), with residues mediating homotypic contacts highlighted
535 in magenta. **(C-E)** Structural details of key homotypic interactions in 356 (C, D) and 364 (E).
536 Specific contacts are indicated with dashed lines. **(C)** CDRH1 of FabB with CDRH2 of FabA.
537 **(D)** CDRH3 of FabB with CDRL1 of FabA. **(E)** CDRH1 of FabB with CDRL3 of FabA. **(F-I)** Per-
538 residue BSA contributions to homotypic interface identified in 356-rsCSP (F,G) and 364-rsCSP
539 (H,I) structures. Note this plot does not contain BSA from CSP. See also Figures S4 and S5.

540

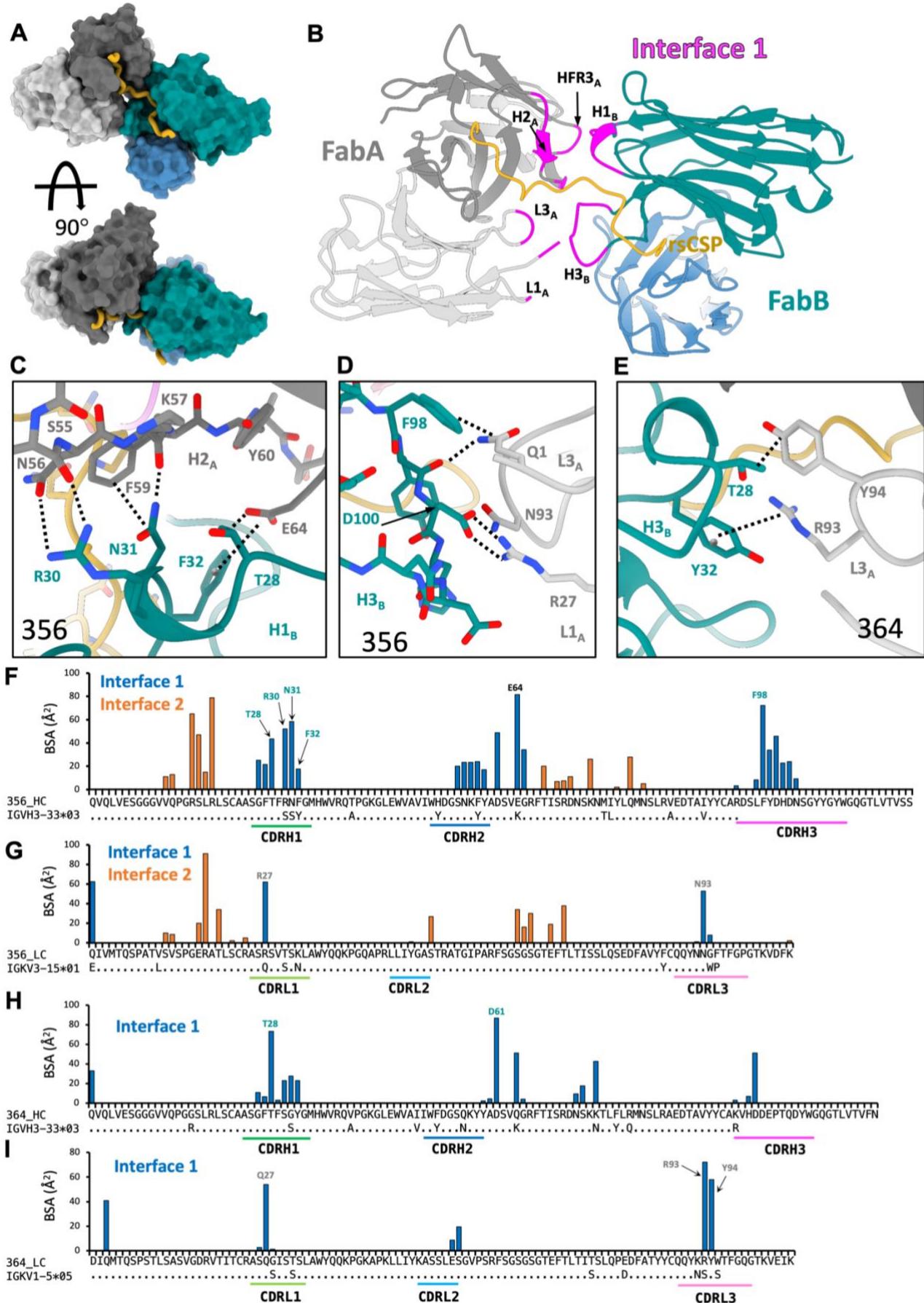
541 **Figure 4.** Structural and functional effects of mutagenesis of the homotypic interface. **(A-C)**
542 Key, somatically mutated homotypic interactions observed in cryo-EM structures of 239 (A), 311
543 (B) and 356 (C). Dashed lines indicate observed homotypic contacts. **(D-F)** Anticipated
544 structural impact of reversion of these residues to germline identities. Mutant structures were
545 calculated from WT cryo-EM structures in Coot and are not experimental. Red asterisk
546 indicates loss of homotypic contacts. Dashed lines indicate potential germline-encoded
547 homotypic contacts. **(G)** List of germline-reverted constructs. Mutations are listed on right,
548 using Kabat numbering system. **(H)** 2D class averages from NS-EM of WT and mutant Fab
549 complexes with rsCSP. Mutant classes on right clearly show loss of well-ordered helical
550 structure observed with WT Fabs. **(I,J)** Binding curves from BLI for WT (I) and mutant (J) Fabs.
551 NPNA₄ and rsCSP were immobilized on Streptavidin and Ni-NTA sensors, respectively, and
552 binding of each of the Fabs were measured at 6.25, 12.5, 25, 50, 100, and 200 nM. Curves
553 were fit with a 2:1 binding model shown in red. See also Figure S6.

554

555


556 **Figure 5.** Protective efficacy of WT and germline-reverted IgGs. **(A)** Schematic of liver burden
557 assay used to compare protective efficacy. **(B)** Liver luminescence measurements 42 hr post
558 challenge; expressed as log total flux on the Y axis. Each group (mAb) contained seven mice.
559 Geometric mean and SD are indicated as black and colored lines, respectively. A Mann-
560 Whitney U-test was used to compare efficacy relative to naïve (no mAb) and between WT and
561 mutant mAbs. Percent inhibition listed is relative to naïve. Significance: * p<0.05; *** p<0.001.
562 See also Figure S7.

563


564 **Figure 6.** Correlation of protective efficacy and affinity to CSP. **(A,B)** Liver burden results for
565 each mAb in the panel. Two separate experiments were conducted, and mAbs 311 and 317
566 were included for comparison in each. Liver burden experiments were performed and analyzed
567 as in Figure 5B. Percent inhibition is relative to naïve (no mAb). Significance: *** p<0.001. **(C-E)**
568 Correlation of percent inhibition with apparent affinity of each Fab, as measured by BLI, to
569 NPNA₄ (C), NPNA₈ (D), and rsCSP. Binding to immobilized NPNA₄ and rsCSP was measured
570 at 6.25, 12.5, 25, 50, 100, and 200 nM, and binding to immobilized NPNA₈ at 12.5, 25, 50, and
571 100 nM. Binding curves were fit with a 2:1 model and affinity measurements were averaged
572 across all fits (≥ 4) with $R^2 \geq 0.98$. **(F)** Correlation of percent inhibition with the rate of unbinding
573 (K_{OFF}) from rsCSP in BLI experiments as in (E). See also Table S10.

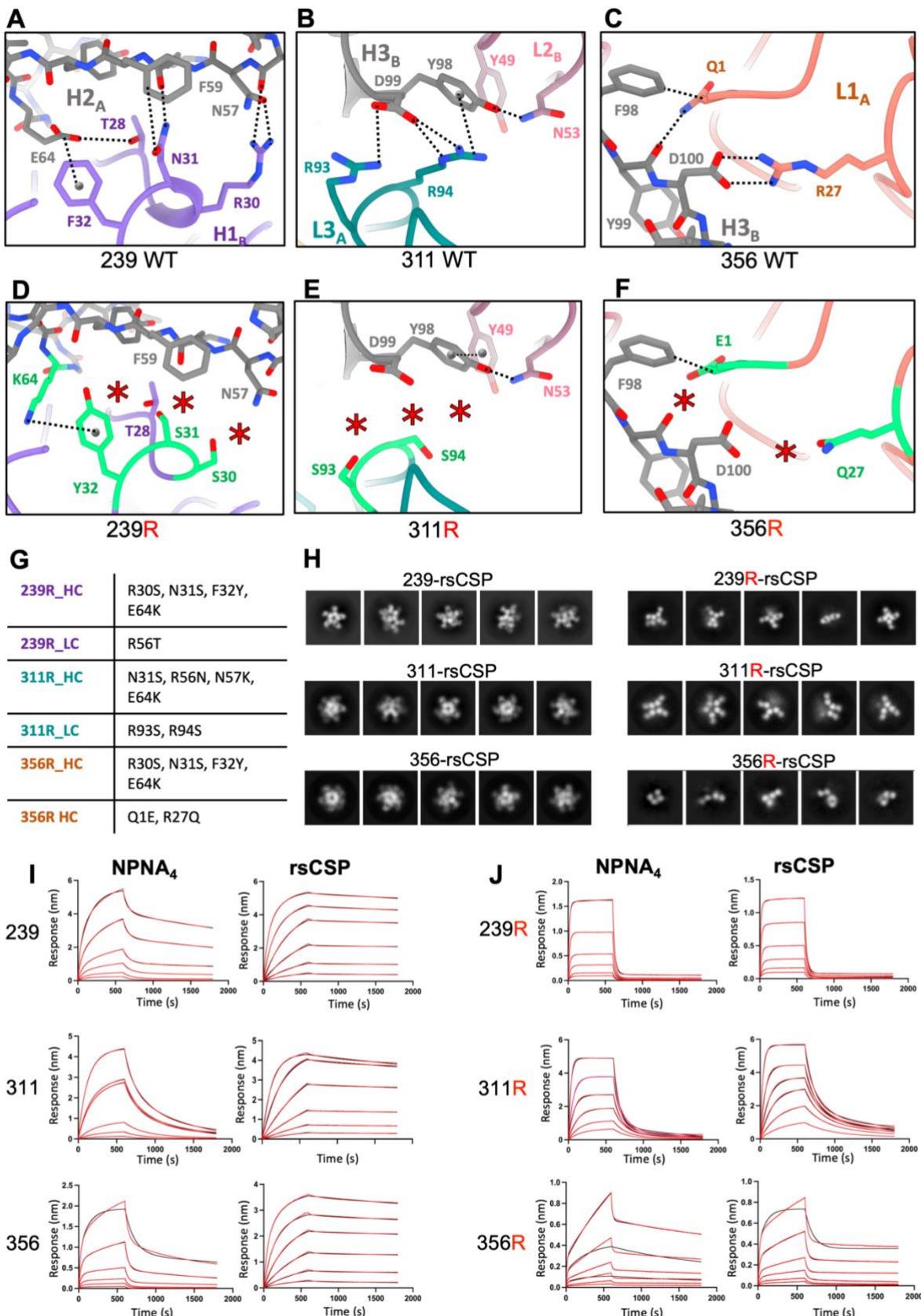

Figure 1. High resolution cryo-EM of *IGHV3-33* Fabs in complex with rsCSP.


Figure 2. Structure and conservation of the NPNA₂ epitope.

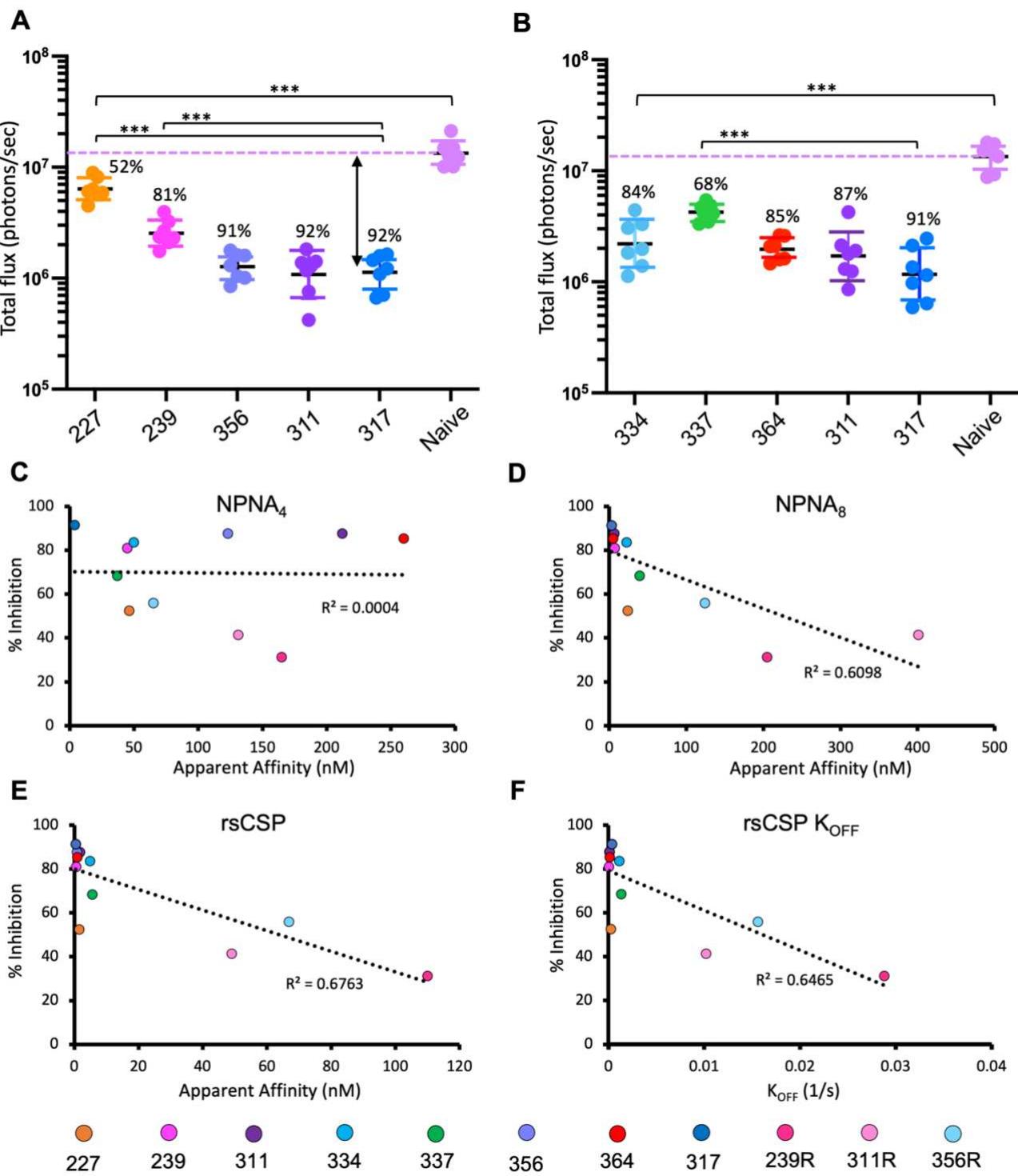

Figure 3. Structure of the primary homotypic interface (Interface 1).

Figure 4. Structural and functional effects of mutagenesis of the homotypic interface

Figure 5. Protective efficacy of WT and germline-reverted IgGs.

Figure 6. Correlation of protective efficacy and affinity to CSP.

Table 1. Structural features of antibodies in this study, and helical parameters of Fab-rsCSP cryo-EM structures

mAb	IGHV Allele	IGKV/IGLV Allele	CDR3 Length (aa)				Full epitope (cryo-EM)	Map res. (Å)	Helical Parameters					
			HC	LC	HC	LC			Fabs Bound	Turn (°)	Fabs/ turn	Rise (Å)	Pitch (Å)	Diameter (Å)
227	3-33*01	LV1-40*01	15	11	10	3	ANPNANPNA	3.3	8	69.9	5.2	2.3	12	35
311	3-33*01	LV1-40*01	12	12	10	5	ANPNANPNA	3.0	11	68	5.3	10.6	50	27
239	3-33*03	KV1-5*05	12	10	11	9	NpnANPNANPNA	3.72	10	71.9	5	14.4	72	25
334	3-33*08	KV1-5*05	14	10	10	6	NpnANPNANPNA	3.62	9	80	4.5	9.3	42	19
364	3-33*03	KV1-5*05	10	8	10	8	ANPNANPNA	3.84	5	61.7	5.8	1.7	10	35
337	3-33*08	KV3-15*01	15	8	12	4	ANPNANPNA	2.7	7	83.8	4.3	8.6	37	19
356	3-33*03	KV3-15*01	15	8	12	8	ANPNANPNA	3.2	11	68	5.3	10.6	50	27

574

575 **Table 1.** Structural features of antibodies in this study, and helical parameters of Fab-rsCSP
 576 cryo-EM structures. Germline alleles were derived from the IMGT database, and CDR lengths
 577 are according to IMGT definitions. Full epitope describes the complete epitope of one Fab in
 578 the rsCSP cryo-EM structure. The core NPNA₂ epitope is highlighted in green. Map res. is the
 579 overall resolution of reconstruction. The helical parameters were calculated from
 580 measurements in UCSF-Chimera. **Helical turn:** the angular step between adjacent Fabs on
 581 central rsCSP helix, as measured from the center of the helix. **Helical pitch:** the length
 582 required to complete one full helical turn, measured parallel to the rsCSP helical axis. **Helical**
 583 **rise:** the distance traversed along the rsCSP helix by each Fab, measured parallel to helical
 584 axis.

585

586

587

588

589

590 **Materials and Methods**

591 *CSP peptides*

592 All peptides were produced by InnoPep Inc (San Diego, CA) at a purity level of \geq 97%. Peptides
593 for crystallography contained N-terminal acetylation and C-terminal amidation to eliminate
594 charges at the peptide termini. Peptides for BLI were biotinylated at the C-terminus.

595

596 *Antibody sequences*

597 All antibody sequences in the current study were derived from the MAL071 clinical trial of
598 RTS,S/AS01 (Regules et al., 2016). Plasmablast isolation and BCR sequencing of antibody
599 genes in malaria vaccine trials have been previously described (Regules et al., 2016; Tan et al.,
600 2014). Fab or IgG1 heavy and light chain genes were codon-optimized and synthesized by
601 GenScript (Piscataway, NJ).

602

603 *Protein production*

604 Antibody genes were subcloned into pCMV or pCDNA3.4, either for expression as Fab or IgG1.
605 Antibodies were expressed in ExpiCHO cells (Thermo Fisher) and purified using either mAb
606 Select PrismA (GE Healthcare) or Capture Select (Thermo Fisher) columns, followed by SEC
607 purification with a Superose S200 Increase column (GE Healthcare) equilibrated with TBS (pH
608 8.0). For *in vivo* testing of IgG protective efficacy in mice, endotoxins were removed with Pierce
609 High-Capacity Endotoxin Removal Spin Columns (Thermo Fisher), following the manufacturer's
610 instructions. rsCSP, a recombinant, shortened construct of PfCSP containing the full N-terminal
611 and C-terminal regions, but only 19 NANP repeats, was expressed in *E. coli* in the pET26b(+)
612 vector, and purified as previously described (Schwenk et al., 2014).

613

614 *Mutagenesis*

615 Inferred germline sequences were identified with IgBlast and the IMGT database. Mutations in
616 311R, 239R, and 356R were introduced into the light chain and Fab or IgG heavy chain by
617 mutagenic PCR, either with the QuikChange Multi Site-Directed Mutagenesis Kit (Agilent) or the
618 Q5 Site-Directed Mutagenesis Kit (New England BioLabs). For each point mutation, the
619 germline codon was used. Germline reversion was confirmed by Sanger sequencing.

620

621 *Sample preparation for NS and cryo-EM*

622 Complexes of Fabs and rsCSP, or NPNA₈, were prepared by incubation of saturating amounts
623 of Fab with CSP overnight at 4° C, and purified by SEC with a Superose 6 Increase column
624 equilibrated with TBS. For negative stain EM, complexes were diluted to ~0.05 mg/mL in TBS.
625 Sample was applied to copper grids containing a thin film of continuous carbon, made in-house,
626 and negatively stained with 2% uranyl formate. For cryo-EM, complexes were concentrated to
627 2-5 mg/mL and applied to either Quantifoil holey carbon or UltrAufoil holey gold grids, and
628 plunge-frozen with a Vitrobot MarkIV (Thermo Fisher).

629

630 *Negative stain electron microscopy*

631 Room temperature imaging was performed either on a 120 keV Tecnai Spirit (Thermo Fisher) or
632 a 200 keV Talos 200C (Thermo Fisher) electron microscope. Datasets on the Tecnai Spirit
633 were collected at a nominal magnification of 52,000X (2.05 Å/pix) with a Tietz TVIPS CMOS 4k x
634 4k camera, with a defocus of -1.5 μM and a total dose of 25 e⁻/Å². Datasets on the Talos were
635 collected at a nominal magnification of 73,000X (1.98 Å/pix) with a 4k x 4k CETA camera
636 (Thermo Fisher), with a defocus of -1.5 μM and a total dose of 25 e⁻/Å². Leginon (Suloway et al.,
637 2005) was used for automated data collection, and micrographs were stored in the Appion
638 database (Lander et al., 2009). Single particle analysis was performed in RELION (Scheres,
639 2012), including CTF estimation, using CtfFind4 (Rohou & Grigorieff, 2015), particle picking, and

640 reference-free 2D classification. For 3D classification, our previous negative stain
641 reconstruction of 311-rsCSP, low-pass filtered to 60Å, was used as a reference. High quality
642 3D classes were used as references for 3D refinement in RELION, and C1 symmetry was used
643 in all cases.

644

645 *Cryo-EM data collection*

646 For 227-NPNA₈, and 239, 334, 356, and 364 in complex with rsCSP, cryo-EM data were
647 collected on a 200 kEV Talos Arctica (Thermo Fisher) paired with a Gatan K2 Summit direct
648 electron detector. Micrograph movies were collected at a nominal magnification of 36,000X,
649 resulting in a pixel size of 1.15Å, with a defocus range of -1.0 to -2.2 µm. The dose rate was
650 ~7e⁻/pix/sec for each sample, with a total of 50 frames per micrograph movie resulting in a total
651 dose of ~50e⁻/Å². Cryo-EM data for 311 and 337 rsCSP were collected on a 300 keV Titan
652 Krios (Thermo Fisher) with a Gatan K2 Summit direct electron detector. Cryo-EM data
653 collection parameters for 311-rsCSP were described previously (Oyen et al., 2018), and these
654 same data were processed in this study. For 337, imaging was performed at a nominal
655 magnification of 29,000X (1.03Å/pix), with a defocus range of -0.9 to -2.1 µm. The dose rate
656 was 5.3e⁻/pix/sec, and a total of 50 frames were collected resulting in a total dose of ~50e⁻/Å².
657 In all cases, Leginon was used for automated data collection.

658

659 *Single particle Cryo-EM data processing*

660 For 311-rsCSP, our previous cryo-EM dataset was reprocessed in the current study. Raw
661 frames were imported into RELION3.0 (Zivanov et al., 2018) and were aligned with the RELION
662 implementation of MotionCor2 (Zheng et al., 2017). CTF estimation was performed with
663 CtfFind4. The Laplacian-of-Gaussian picker was used for initial autopicking on a subset of
664 micrographs, and initial 2D templates were generated with multiple rounds of 2D classification.

665 High quality templates were selected as input for the automated template picker in RELION for
666 use on the whole dataset. Multiple rounds of 2D classification were used to eliminate low-
667 quality particles, after which a total of 605,000 particles were re-extracted for 3D classification.
668 Our previous cryo-EM reconstruction of 311-rsCSP was used as the initial reference, low-pass
669 filtered to 60Å. A global angular search was used in the initial round of 3D classification,
670 followed by multiple rounds of 3D classification without alignment. This process resulted in a
671 final stack of ~400,000 particles that were re-extracted to generate a consensus refinement at
672 3.38Å, which is the same resolution of our previous 311-rsCSP cryo-EM map generated from
673 these same data (EMD-9065). Further processing in RELION3.0 was used to improve the
674 resolution of this complex. Per particle defocus values were refined in RELION, followed by
675 another round of 3D refinement and then Bayesian polishing, which refines per-particle beam-
676 induced motion and implements an optimized dose-weighting scheme to more accurately
677 account for the cumulative effects of radiation damage. The resulting “shiny” particles were
678 subjected to another round of defocus refinement and beam-tilt estimation. A final round of 3D
679 refinement with a soft mask encompassing only the variable region of the Fabs led to the final
680 reconstruction at 3.01Å.

681
682 A similar protocol was followed for 356-rsCSP, using the 311-rsCSP map (low-pass filtered to
683 60Å) as the initial model, leading to a 3.3Å reconstruction in RELION3.0. The particle stack
684 resulting from Bayesian polishing was then imported into cryoSPARCv3.3 (Punjani et al., 2017),
685 and two rounds of non-uniform refinement followed by global CTF (beam-tilt) refinement was
686 performed (Punjani et al., 2020), which led to the final reconstruction at 3.2Å.

687
688 The remaining datasets were all processed according to a similar protocol in cryoSPARC.
689 Frames were motion-corrected with MotionCor2, and the aligned and dose-weighted
690 micrographs were imported into cryoSPARCv3.3. CTF estimation was performed with CtfFind4.

691 Autopicking was performed initially with the blob picker in cryoSPARC, and multiple rounds of
692 2D classification were used to select high quality 2D templates for subsequent template picking.
693 Multiple rounds of 2D classification were used followed by a single round of Ab-initio
694 reconstruction with two classes. The high-quality class was selected for further processing and
695 was also used as the initial model. Multiple rounds of homogenous refinement, global and local
696 CTF refinement, followed by non-uniform refinement were performed which led to the final
697 reconstructions for each data set.

698

699 C1 symmetry was imposed for all refinements of each of the seven datasets, except for the final
700 round of non-uniform refinement of 227, in which C2 symmetry was used. The C1 and C2 maps
701 of 227 were nearly identical and imposing C2 improved the resolution only slightly (0.1Å).

702

703 *Model building (cryo-EM)*

704 For Fabs 311, 239, 356, and 364, our previously-solved X-ray structures of the corresponding
705 Fabs in complex with NPNA₂ or NPNA₃ were used as the starting model (PDB codes 6AXK,
706 6W00, 6W05, and 6WFW, respectively) (Oyen et al., 2017; Pholcharee et al., 2021). For 227,
707 334, and 337, an initial homology model was generated with RosettaCM (Song et al., 2013).
708 For the heavy chain of each of these three Fabs, the heavy chain coordinates of the 311 X-ray
709 structure (6AXK) were used as the template. To generate the light chain initial model, the light
710 chain coordinates from the X-ray structure of the Fab with the corresponding light chain
711 germline gene was used as the template: 311 for 227 (*IGLV1-40*), 239 (6W00) for 334 (*IGKV1-*
712 *5*), and 356 (6W05) for 337 (*IGKV3-15*). The HC and LC templates were docked into the cryo-
713 EM map, along with the NPNA₂ peptide from 6AXK, then rebuilt and refined into the map with
714 RosettaCM and manual adjustments with Coot (Emsley et al., 2010). Individual refined Fabs
715 were docked into the full cryo-EM map, and the CSP peptides merged into one polypeptide

716 chain. Further manual adjustments, if necessary, were made in Coot, and the full model was
717 refined into the density with RosettaRelax (Conway et al., 2014).

718

719 *Structural analysis*

720 General structural analysis, RMSD calculations, and buried surface area calculations were
721 performed with UCSF Chimera (Pettersen et al., 2004). Homotypic contacts included in Table
722 S3-S9 were derived from the Epitope Analyzer software, part of the ViperDB webserver
723 (Montiel-Garcia et al., 2022). Structure figures were generated with UCSF Chimera and UCSF
724 ChimeraX (Pettersen et al., 2021).

725

726 *311R X-ray structure determination*

727 311R Fab was mixed with a 5-fold molar excess of NPNA₃ peptide to a final concentration of 10
728 mg/ml. Crystal screening was carried out using our robotic CrystalMation high-throughput
729 system (Rigaku, Carlsbad, CA) at The Scripps Research Institute, by vapor diffusion with 0.1 μL
730 each of protein mixture and precipitant, with 35 μL reservoir solution. 311R-NPNA₃ crystals
731 were grown in 0.04 M KH₂PO₄, 20% Glycerol, and 16% PEG3000 at 20°C and were
732 cryoprotected in 30% glycerol. X-ray diffraction data were collected at the Stanford Synchrotron
733 Radiation Lightsource (SSRL) beamline 12–1, and processed and scaled using the HKL-2000
734 package (Otwinowski & Minor, 1997) with data reduction by POINTLESS and AIMLESS (Evans,
735 2006). The structure was determined by molecular replacement using Phaser (McCoy et al.,
736 2007), with the 311-NPNA₃ X-ray structure (PDB 6AXK) as search model. Structure refinement
737 was performed using Refmac5 (Kovalevskiy et al., 2018) and iterations of refinement using
738 Coot.

739

740 *Biolayer interferometry (BLI)*

741 BLI was performed with the Octet Red96 (ForteBio) system. A basic kinetics experiment was
742 used to measure binding of Fabs to NPNA₄, NPNA₈, and rsCSP. Kinetics buffer (PBS + 0.01%
743 BSA, 0.002% Tween-20, pH7.4) was used for all dilutions, baseline measurements, and
744 reference subtractions. Biotinylated NPNA peptides were diluted to 5 µg/mL in kinetics buffer
745 (KB) and immobilized onto streptavidin BLI biosensors (Sartorius); His-tagged rsCSP was
746 diluted to ~1µg/mL in KB and loaded onto Ni-NTA biosensors. Association and dissociation
747 were monitored for 600 and 1200 seconds, respectively. All curves were fit with a 2:1 binding
748 model, as there were at least two binding sites per peptide (2 sites for NPNA₄, 4 sites for
749 NPNA₈, and 11 sites for rsCSP).

750

751 *Liver burden assay*

752 The protective efficacy of IgGs in this study was assessed by the reduction in liver burden
753 assay, as previously described (Pholcharee et al., 2021). Three separate protection
754 experiments were conducted: one to compare the efficacy of 239R, 311R, and 356R to WT 239,
755 311, and 356, and two to compare efficacy of all WT mAbs in the panel to 317. Each
756 experiment was performed under near identical conditions. Briefly, C57BL/6 mice were injected
757 IV with 75 µg/mouse (N=7) of purified IgG and sixteen hours later challenged IV with 2000
758 chimeric *P. berghei* sporozoites expressing *P. falciparum* CSP and, upon liver invasion,
759 luciferase. Forty-two hours after challenge, mice were injected with 100 µl of D-Luciferin (30
760 mg/mL), anesthetized with isoflurane and imaged with the IVIS spectrum to measure the
761 bioluminescence expressed by the chimeric parasites.

762

763 *Assessment of in vivo kinetics of IgGs*

764 Female, 6-8 week-old C57BL/6 mice were injected IV with 75µg of mAb per mouse. 16 h after
765 injection, mice were bled and plasma was isolated. In parallel, a 384 well high binding plate

766 (Corning 3700) was coated with anti-human IgG Fab antibody (Jackson ImmunoResearch 109-
767 006-097) at a dilution of 1:500 and incubated overnight at 4°C. The plate was blocked with 3%
768 BSA in PBS for 1 hr at RT. Plasma was added in a dilution series to the 384 well plate, and
769 incubated for 1 hr at RT. Detection was measured with alkaline phosphatase-conjugated goat
770 anti-human IgG Fcγ (Jackson ImmunoResearch 109-005- 008) at 1:2000 dilution in 1% BSA in
771 PBS for 1hr. The plate was then washed and developed using a phosphatase substrate
772 (Sigma-Aldrich, S0942-200TAB). Absorption was measured at 405 nm.

773

774 *Statistical Analysis*

775 For all liver burden experiments (N=7 mice), statistical significance relative to either naïve
776 control or between experimental conditions using the measure bioluminescence flux was
777 assessed with a Mann-Whitney U-test, which does not assume the data can be modelled
778 according to a probability distribution. The data were reported as the geometric mean of the
779 total flux in the liver +/- the SD (Figure 5-6). This value was converted to percent inhibition
780 relative to the naïve control, which is considered as 100% infected. Kinetic parameters from BLI
781 experiments were derived from a non-linear regression of the reference-subtracted binding
782 response according to a 2:1 binding model, as the immobilized antigen (rsCSP, NPNA₈, or
783 NPNA₄) contained at least two binding sites. Values were averaged across at least 4
784 concentrations of Fab, and only those with R²>0.98 were considered (Table S10). Significance
785 was calculated with a student's T-test. For antibody pharmacokinetics studies in mice (N=5),
786 non-linear regression was used to analyze the ELISA data using Prism 9 software, and
787 circulating human IgG concentrations were interpolated based on a standard curve; data were
788 then reported as the geometric mean +/- the SD, in mg/mL (Figure S7).

789

790

791 **Supplemental Figure Legends**

792 **Figure S1.** Representative 2D class averages from negative stain EM of anti-NPNA Fabs in
793 complex with rsCSP. To aid visualization, individual Fabs are colored representing the first
794 (leftmost) class average of each mAb (grey).

795

796 **Figure S2.** Comparison of cryo-EM structures and previously-published Fab-peptide X-ray
797 structures. **(A-B)** Comparison of 311-rsCSP and 356-rsCSP cryo-EM structures from this study.
798 **(A)** Top (left) and side (right) views of superposition of 311 (blue) and 356 (tan) complexes. **(B)**
799 Same as in (A), showing only the rsCSP helical spiral to highlight high similarity of CSP helical
800 structures. **(C)** Superposition of a single Fab from the 311 and 356 cryo-EM structures; CSP is
801 in gold. **(D-G)** Comparison of cryo-EM structures of Fabs with X-ray crystal structures of
802 corresponding Fabs bound to NPNA peptides. **(D)** 239-rsCSP cryo-EM and 239-NPNA₂ X-ray.
803 **(E)** 356-rsCSP cryo-EM and 356-NPNA₂ X-ray. **(F)** 311-rsCSP cryo-EM and 311-NPNA₂ X-ray.
804 **(G)** 364-rsCSP cryo-EM and 364-NPNA₂ X-ray. **239, 356, 364:** Pholcharee et al. 2021. **311:**
805 Oyen et al. 2017.

806

807 **Figure S3.** Multiple sequence alignment of heavy chain and light chain variable regions of the
808 seven *IGHV3-33* mAbs in this study with inferred germline genes. **(A)** Heavy chains aligned to
809 *IGHV3-33*01*. **(B)** *IGLV1-40* light chains. **(C)** *IGKV1-5* light chains. **(D)** *IGKV3-15* light chains.

810

811

812 **Figure S4.** Buried surface area plots for primary and secondary homotypic interfaces for 239,
813 311, and 337 Fab-rsCSP cryo-EM structures. Key residues are labelled according to Kabat
814 numbering system.

815

816 **Figure S5.** Structure of the secondary homotypic interface (Interface 2). **(A)** Surface
817 representation of the five structures in the panel that contain a secondary homotypic interface,
818 which exists between Fabs separated by one helical turn (Fab i and i+x). **(B)** Cartoon
819 representation of 227 and 334, highlighting the secondary interface. rsCSP is shown as a gold
820 surface. Only Fabs i and i+3 are shown in 334 structure for clarity. The elongated oval in 227 is
821 the overall C2 symmetry axis of the complex. **(C)** Details of Interface 2 in 227, which is
822 symmetric and mediated exclusively by heavy chain framework regions (FR). Local C2 axis is
823 indicated with black oval. **(D)** Details of Interface 2 in 334 that is mediated by light chain
824 framework region 3 (LFR3) and CDRL2 with the heavy chain framework regions 1 and 3 (HFR1
825 and 3). **(E-H)** BSA plots of homotypic interface 1 and 2 for 227 (E,F) and 334 (G,H).

826

827

828 **Figure S6.** Comparison of 311 and 311R X-ray structures. **(A)** 311-NPNA₃ crystal structure
829 (PDB 6AXK). Residues that were mutated are shown, with W52 shown for reference. CSP is in
830 gold. **(B)** 311R-NPNA₃ X-ray structure (this study). **(C)** Superposition of 311 and 311R
831 structures. **(D)** Superposition of CSP structures from 6AXK (gray) and 311R (green). **(E)**
832 Sequence alignment of 311 heavy and light chain variable regions with respective germline
833 sequences. Residues mutated in 311R are shown with arrows.

834

835 **Figure S7.** Circulating concentrations of passively administered IgGs in mice, measured at time
836 of challenge. Serum titers were measured by anti-human IgG ELISA, and calculated based on
837 a standard curve. **(A)** WT and germline reverted 311, 239, and 356 IgG. **(B)** WT IgGs of 227,
838 334, 337, and 364.

839

840

841 **Figure S8.** Cryo-EM reconstructions of seven *IGHV3-33* mAbs in this study. **Left column:** top
842 and side views of final EM map, colored by local resolution; color key at right. **Middle column:**
843 representative 2D class averages. **Right column:** Fourier shell correlation for the corrected
844 (noise-substituted) reconstruction. Note that for 311-rsCSP, cryo-EM data originally published
845 in Oyen et al. (2018) were reprocessed here with cryoSPARCv2 and RELION3.0.

846

847 **References**

848 Geneva: World Health Organization (2021). World malaria report 2021. License: CC BY-NC-SA
849 3.0 IGO. pp. xv-xvi.

850 Aye, R., Sutton, H. J., Nduati, E. W., Kai, O., Mwacharo, J., Musyoki, J., Otieno, E., Wambua,
851 J., Bejon, P., Cockburn, I. A., & Ndungu, F. M. (2020). Malaria exposure drives both
852 cognate and bystander human B cells to adopt an atypical phenotype. *Eur J Immunol*,
853 50(8), 1187-1194. <https://doi.org/10.1002/eji.201948473>

854 Burton, D. R. (2017). What Are the Most Powerful Immunogen Design Vaccine Strategies?
855 Reverse Vaccinology 2.0 Shows Great Promise. *Cold Spring Harb Perspect Biol*, 9(11).
856 <https://doi.org/10.1101/cshperspect.a030262>

857 Chatterjee, D., Lewis, F. J., Sutton, H. J., Kaczmarski, J. A., Gao, X., Cai, Y., McNamara, H. A.,
858 Jackson, C. J., & Cockburn, I. A. (2021). Avid binding by B cells to the Plasmodium
859 circumsporozoite protein repeat suppresses responses to protective subdominant
860 epitopes. *Cell Rep*, 35(2), 108996. <https://doi.org/10.1016/j.celrep.2021.108996>

861 Cockburn, I. A., & Seder, R. A. (2018). Malaria prevention: from immunological concepts to
862 effective vaccines and protective antibodies. *Nat Immunol*, 19(11), 1199-1211.
863 <https://doi.org/10.1038/s41590-018-0228-6>

864 Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E., & Baker, D. (2014). Relaxation of
865 backbone bond geometry improves protein energy landscape modeling. *Protein Sci*,
866 23(1), 47-55. <https://doi.org/10.1002/pro.2389>

867 Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T.,
868 Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., & et al. (1984). Structure of the
869 gene encoding the immunodominant surface antigen on the sporozoite of the human
870 malaria parasite *Plasmodium falciparum*. *Science*, 225(4662), 593-599.
871 <https://doi.org/10.1126/science.6204383>

872 Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of
873 Coot. *Acta Crystallogr D Biol Crystallogr*, 66(Pt 4), 486-501.
874 <https://doi.org/10.1107/S0907444910007493>

875 Enea, V., Ellis, J., Zavala, F., Arnot, D. E., Asavanich, A., Masuda, A., Quakyi, I., &
876 Nussenzweig, R. S. (1984). DNA cloning of *Plasmodium falciparum* circumsporozoite
877 gene: amino acid sequence of repetitive epitope. *Science*, 225(4662), 628-630.
878 <https://doi.org/10.1126/science.6204384>

879 Evans, P. (2006). Scaling and assessment of data quality. *Acta Crystallogr D Biol Crystallogr*,
880 62(Pt 1), 72-82. <https://doi.org/10.1107/S0907444905036693>

881 Flores-Garcia, Y., Herrera, S. M., Jhun, H., Perez-Ramos, D. W., King, C. R., Locke, E.,
882 Raghunandan, R., & Zavala, F. (2019). Optimization of an in vivo model to study
883 immunity to *Plasmodium falciparum* pre-erythrocytic stages. *Malar J*, 18(1), 426.
884 <https://doi.org/10.1186/s12936-019-3055-9>

885 Foquet, L., Hermsen, C. C., van Gemert, G. J., Van Braeckel, E., Weening, K. E., Sauerwein,
886 R., Meuleman, P., & Leroux-Roels, G. (2014). Vaccine-induced monoclonal antibodies

887 targeting circumsporozoite protein prevent *Plasmodium falciparum* infection. *J Clin*
888 *Invest*, 124(1), 140-144. <https://doi.org/10.1172/JCI70349>

889 Gaudinski, M. R., Berkowitz, N. M., Idris, A. H., Coates, E. E., Holman, L. A., Mendoza, F.,
890 Gordon, I. J., Plummer, S. H., Trofymenko, O., Hu, Z., Campos Chagas, A., O'Connell,
891 S., Basappa, M., Douek, N., Narpala, S. R., Barry, C. R., Widge, A. T., Hicks, R., Awan,
892 S. F., . . . Team, V. R. C. S. (2021). A Monoclonal Antibody for Malaria Prevention. *N*
893 *Engl J Med*, 385(9), 803-814. <https://doi.org/10.1056/NEJMoa2034031>

894 Gordon, D. M., McGovern, T. W., Krzych, U., Cohen, J. C., Schneider, I., LaChance, R.,
895 Heppner, D. G., Yuan, G., Hollingdale, M., Slaoui, M., & et al. (1995). Safety,
896 immunogenicity, and efficacy of a recombinantly produced *Plasmodium falciparum*
897 circumsporozoite protein-hepatitis B surface antigen subunit vaccine. *J Infect Dis*,
898 171(6), 1576-1585. <https://doi.org/10.1093/infdis/171.6.1576>

899 Guy, A. J., Irani, V., MacRaild, C. A., Anders, R. F., Norton, R. S., Beeson, J. G., Richards, J.
900 S., & Ramsland, P. A. (2015). Insights into the Immunological Properties of Intrinsically
901 Disordered Malaria Proteins Using Proteome Scale Predictions. *PLoS One*, 10(10),
902 e0141729. <https://doi.org/10.1371/journal.pone.0141729>

903 Hollingdale, M. R., Nardin, E. H., Tharavanij, S., Schwartz, A. L., & Nussenzweig, R. S. (1984).
904 Inhibition of entry of *Plasmodium falciparum* and *P. vivax* sporozoites into cultured cells;
905 an in vitro assay of protective antibodies. *J Immunol*, 132(2), 909-913.
906 <https://www.ncbi.nlm.nih.gov/pubmed/6317752>

907 Hollingdale, M. R., Zavala, F., Nussenzweig, R. S., & Nussenzweig, V. (1982). Antibodies to the
908 protective antigen of *Plasmodium berghei* sporozoites prevent entry into cultured cells. *J*
909 *Immunol*, 128(4), 1929-1930. <https://www.ncbi.nlm.nih.gov/pubmed/7037957>

910 Imkeller, K., Scally, S. W., Bosch, A., Marti, G. P., Costa, G., Triller, G., Murugan, R., Renna, V.,
911 Jumaa, H., Kremsner, P. G., Sim, B. K. L., Hoffman, S. L., Mordmuller, B., Levashina, E.
912 A., Julien, J. P., & Wardemann, H. (2018). Antihomotypic affinity maturation improves
913 human B cell responses against a repetitive epitope. *Science*, 360(6395), 1358-1362.
914 <https://doi.org/10.1126/science.aar5304>

915 Julien, J. P., & Wardemann, H. (2019). Antibodies against *Plasmodium falciparum* malaria at
916 the molecular level. *Nat Rev Immunol*, 19(12), 761-775. <https://doi.org/10.1038/s41577-019-0209-5>

918 Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A., & Murshudov, G. N. (2018). Overview of
919 refinement procedures within REFMAC5: utilizing data from different sources. *Acta*
920 *Crystallogr D Struct Biol*, 74(Pt 3), 215-227.
921 <https://doi.org/10.1107/S2059798318000979>

922 Kratochvil, S., Shen, C. H., Lin, Y. C., Xu, K., Nair, U., Da Silva Pereira, L., Tripathi, P., Arnold,
923 J., Chuang, G. Y., Melzi, E., Schon, A., Zhang, B., Dillon, M., Bonilla, B., Flynn, B. J.,
924 Kirsch, K. H., Kisalu, N. K., Kiyuka, P. K., Liu, T., . . . Batista, F. D. (2021). Vaccination in
925 a humanized mouse model elicits highly protective PfCSP-targeting anti-malarial
926 antibodies. *Immunity*, 54(12), 2859-2876 e2857.
927 <https://doi.org/10.1016/j.jimmuni.2021.10.017>

928 Kucharska, I., Thai, E., Srivastava, A., Rubinstein, J. L., Pomes, R., & Julien, J. P. (2020).
929 Structural ordering of the *Plasmodium berghei* circumsporozoite protein repeats by
930 inhibitory antibody 3D11. *Elife*, 9. <https://doi.org/10.7554/elife.59018>

931 Lander, G. C., Stagg, S. M., Voss, N. R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C.,
932 Irving, C., Mulder, A., Lau, P. W., Lyumkis, D., Potter, C. S., & Carragher, B. (2009).
933 Appion: an integrated, database-driven pipeline to facilitate EM image processing. *J*
934 *Struct Biol*, 166(1), 95-102. <https://doi.org/10.1016/j.jsb.2009.01.002>

935 Langowski, M. D., Khan, F. A., Bitzer, A. A., Genito, C. J., Schrader, A. J., Martin, M. L., Soto,
936 K., Zou, X., Hadiwidjojo, S., Beck, Z., Matyas, G. R., Livingstone, M. C., Batchelor, A. H.,
937 & Dutta, S. (2020). Optimization of a *Plasmodium falciparum* circumsporozoite protein

938 repeat vaccine using the tobacco mosaic virus platform. *Proc Natl Acad Sci U S A*,
939 117(6), 3114-3122. <https://doi.org/10.1073/pnas.1911792117>

940 McCall, M. B. B., Kremsner, P. G., & Mordmuller, B. (2018). Correlating efficacy and
941 immunogenicity in malaria vaccine trials. *Semin Immunol*, 39, 52-64.
942 <https://doi.org/10.1016/j.smim.2018.08.002>

943 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J.
944 (2007). Phaser crystallographic software. *J Appl Crystallogr*, 40(Pt 4), 658-674.
945 <https://doi.org/10.1107/S0021889807021206>

946 McNamara, H. A., Idris, A. H., Sutton, H. J., Vistein, R., Flynn, B. J., Cai, Y., Wiehe, K., Lyke, K.
947 E., Chatterjee, D., Kc, N., Chakravarty, S., Lee Sim, B. K., Hoffman, S. L., Bonsignori,
948 M., Seder, R. A., & Cockburn, I. A. (2020). Antibody Feedback Limits the Expansion of B
949 Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral
950 Response. *Cell Host Microbe*, 28(4), 572-585 e577.
951 <https://doi.org/10.1016/j.chom.2020.07.001>

952 Montiel-Garcia, D., Rojas-Labra, O., Santoyo-Rivera, N., & Reddy, V. S. (2022). Epitope-
953 Analyzer: A structure-based webtool to analyze broadly neutralizing epitopes. *J Struct
954 Biol*, 214(1), 107839. <https://doi.org/10.1016/j.jsb.2022.107839>

955 Murugan, R., Buchauer, L., Triller, G., Kreschel, C., Costa, G., Pidelaserra Marti, G., Imkeller,
956 K., Busse, C. E., Chakravarty, S., Sim, B. K. L., Hoffman, S. L., Levashina, E. A.,
957 Kremsner, P. G., Mordmuller, B., Hofer, T., & Wardemann, H. (2018). Clonal selection
958 drives protective memory B cell responses in controlled human malaria infection. *Sci
959 Immunol*, 3(20). <https://doi.org/10.1126/sciimmunol.aap8029>

960 Murugan, R., Scally, S. W., Costa, G., Mustafa, G., Thai, E., Decker, T., Bosch, A., Prieto, K.,
961 Levashina, E. A., Julien, J. P., & Wardemann, H. (2020). Evolution of protective human
962 antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. *Nat
963 Med*, 26(7), 1135-1145. <https://doi.org/10.1038/s41591-020-0881-9>

964 Otwinowski, Z., & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation
965 mode. *Methods Enzymol*, 276, 307-326.
966 <https://www.ncbi.nlm.nih.gov/pubmed/27754618>

967 Oyen, D., Torres, J. L., Cottrell, C. A., Richter King, C., Wilson, I. A., & Ward, A. B. (2018).
968 Cryo-EM structure of *P. falciparum* circumsporozoite protein with a vaccine-elicited
969 antibody is stabilized by somatically mutated inter-Fab contacts. *Sci Adv*, 4(10),
970 eaau8529. <https://doi.org/10.1126/sciadv.eaau8529>

971 Oyen, D., Torres, J. L., Wille-Reece, U., Ockenhouse, C. F., Emerling, D., Glanville, J.,
972 Volkmut, W., Flores-Garcia, Y., Zavala, F., Ward, A. B., King, C. R., & Wilson, I. A.
973 (2017). Structural basis for antibody recognition of the NANP repeats in Plasmodium
974 falciparum circumsporozoite protein. *Proc Natl Acad Sci U S A*, 114(48), E10438-
975 E10445. <https://doi.org/10.1073/pnas.1715812114>

976 Patra, A. P., Sharma, S., & Ainavarapu, S. R. (2017). Force Spectroscopy of the Plasmodium
977 falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically
978 Pliable Repeat Region. *J Biol Chem*, 292(6), 2110-2119.
979 <https://doi.org/10.1074/jbc.M116.754796>

980 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., &
981 Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and
982 analysis. *J Comput Chem*, 25(13), 1605-1612. <https://doi.org/10.1002/jcc.20084>

983 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J.
984 H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers,
985 educators, and developers. *Protein Sci*, 30(1), 70-82. <https://doi.org/10.1002/pro.3943>

986 Philip, V., Harris, J., Adams, R., Nguyen, D., Spiers, J., Baudry, J., Howell, E. E., & Hinde, R. J.
987 (2011). A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in

988 the protein data bank: searching for anion-pi pairs. *Biochemistry*, 50(14), 2939-2950.
989 <https://doi.org/10.1021/bi200066k>

990 Pholcharee, T., Oyen, D., Flores-Garcia, Y., Gonzalez-Paez, G., Han, Z., Williams, K. L.,
991 Volkmut, W., Emerling, D., Locke, E., Richter King, C., Zavala, F., & Wilson, I. A.
992 (2021). Structural and biophysical correlation of anti-NANP antibodies with in vivo
993 protection against *P. falciparum*. *Nat Commun*, 12(1), 1063.
994 <https://doi.org/10.1038/s41467-021-21221-4>

995 Pholcharee, T., Oyen, D., Torres, J. L., Flores-Garcia, Y., Martin, G. M., Gonzalez-Paez, G. E.,
996 Emerling, D., Volkmut, W., Locke, E., King, C. R., Zavala, F., Ward, A. B., & Wilson, I.
997 A. (2020). Diverse Antibody Responses to Conserved Structural Motifs in *Plasmodium*
998 *falciparum* Circumsporozoite Protein. *J Mol Biol*, 432(4), 1048-1063.
999 <https://doi.org/10.1016/j.jmb.2019.12.029>

1000 Plassmeyer, M. L., Reiter, K., Shimp, R. L., Jr., Kotova, S., Smith, P. D., Hurt, D. E., House, B.,
1001 Zou, X., Zhang, Y., Hickman, M., Uchime, O., Herrera, R., Nguyen, V., Glen, J.,
1002 Lebowitz, J., Jin, A. J., Miller, L. H., MacDonald, N. J., Wu, Y., & Narum, D. L. (2009).
1003 Structure of the *Plasmodium falciparum* circumsporozoite protein, a leading malaria
1004 vaccine candidate. *J Biol Chem*, 284(39), 26951-26963.
1005 <https://doi.org/10.1074/jbc.M109.013706>

1006 Punjani, A., Rubinstein, J. L., Fleet, D. J., & Brubaker, M. A. (2017). cryoSPARC: algorithms for
1007 rapid unsupervised cryo-EM structure determination. *Nat Methods*, 14(3), 290-296.
1008 <https://doi.org/10.1038/nmeth.4169>

1009 Punjani, A., Zhang, H., & Fleet, D. J. (2020). Non-uniform refinement: adaptive regularization
1010 improves single-particle cryo-EM reconstruction. *Nat Methods*, 17(12), 1214-1221.
1011 <https://doi.org/10.1038/s41592-020-00990-8>

1012 Raghunandan, R., Mayer, B. T., Flores-Garcia, Y., Gerber, M. W., Gottardo, R., Jhun, H.,
1013 Herrera, S. M., Perez-Ramos, D. W., Locke, E., King, C. R., & Zavala, F. (2020).
1014 Characterization of two in vivo challenge models to measure functional activity of
1015 monoclonal antibodies to *Plasmodium falciparum* circumsporozoite protein. *Malar J*,
1016 19(1), 113. <https://doi.org/10.1186/s12936-020-03181-0>

1017 Regules, J. A., Cicatelli, S. B., Bennett, J. W., Paolino, K. M., Twomey, P. S., Moon, J. E.,
1018 Kathcart, A. K., Hauns, K. D., Komisar, J. L., Qabar, A. N., Davidson, S. A., Dutta, S.,
1019 Griffith, M. E., Magee, C. D., Wojnarski, M., Livezey, J. R., Kress, A. T., Waterman, P.
1020 E., Jongert, E., . . . Vekemans, J. (2016). Fractional Third and Fourth Dose of
1021 RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria
1022 Parasite Infection and Immunogenicity Study. *J Infect Dis*, 214(5), 762-771.
1023 <https://doi.org/10.1093/infdis/jiw237>

1024 Rohou, A., & Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
1025 electron micrographs. *J Struct Biol*, 192(2), 216-221.
1026 <https://doi.org/10.1016/j.jsb.2015.08.008>

1027 RTSS Clinical Trials Partnership (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine
1028 with or without a booster dose in infants and children in Africa: final results of a phase 3,
1029 individually randomised, controlled trial. *Lancet*, 386(9988), 31-45.
1030 [https://doi.org/10.1016/S0140-6736\(15\)60721-8](https://doi.org/10.1016/S0140-6736(15)60721-8)

1031 RTSS Clinical Trials Partnership, Agnandji, S. T., Lell, B., Soulanoudjingar, S. S., Fernandes, J.
1032 F., Abossolo, B. P., Conzelmann, C., Methogo, B. G., Doucka, Y., Flamen, A.,
1033 Mordmuller, B., Issifou, S., Kremsner, P. G., Sacarlal, J., Aide, P., Lanaspa, M., Aponte,
1034 J. J., Nhamuave, A., Quelhas, D., . . . Vansadia, P. (2011). First results of phase 3 trial
1035 of RTS,S/AS01 malaria vaccine in African children. *N Engl J Med*, 365(20), 1863-1875.
1036 <https://doi.org/10.1056/NEJMoa1102287>

1037 Scheres, S. H. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure
1038 determination. *J Struct Biol*, 180(3), 519-530. <https://doi.org/10.1016/j.jsb.2012.09.006>

1039 Schwenk, R., DeBot, M., Porter, M., Nikki, J., Rein, L., Spaccapelo, R., Crisanti, A., Wightman,
1040 P. D., Ockenhouse, C. F., & Dutta, S. (2014). IgG2 antibodies against a clinical grade
1041 Plasmodium falciparum CSP vaccine antigen associate with protection against
1042 transgenic sporozoite challenge in mice. *PLoS One*, 9(10), e111020.
1043 <https://doi.org/10.1371/journal.pone.0111020>

1044 Song, Y., DiMaio, F., Wang, R. Y., Kim, D., Miles, C., Brunette, T., Thompson, J., & Baker, D.
1045 (2013). High-resolution comparative modeling with RosettaCM. *Structure*, 21(10), 1735-
1046 1742. <https://doi.org/10.1016/j.str.2013.08.005>

1047 Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.
1048 S., & Carragher, B. (2005). Automated molecular microscopy: the new Leginon system.
1049 *J Struct Biol*, 151(1), 41-60. <https://doi.org/10.1016/j.jsb.2005.03.010>

1050 Tan, Y. C., Blum, L. K., Kongpachith, S., Ju, C. H., Cai, X., Lindstrom, T. M., Sokolove, J., &
1051 Robinson, W. H. (2014). High-throughput sequencing of natively paired antibody chains
1052 provides evidence for original antigenic sin shaping the antibody response to influenza
1053 vaccination. *Clin Immunol*, 151(1), 55-65. <https://doi.org/10.1016/j.clim.2013.12.008>

1054 Vanderberg, J. P. (1974). Studies on the motility of Plasmodium sporozoites. *J Protozool*, 21(4),
1055 527-537. <https://doi.org/10.1111/j.1550-7408.1974.tb03693.x>

1056 Wahl, I., & Wardemann, H. (2022). How to induce protective humoral immunity against
1057 Plasmodium falciparum circumsporozoite protein. *J Exp Med*, 219(2).
1058 <https://doi.org/10.1084/jem.20201313>

1059 White, M. T., Verity, R., Griffin, J. T., Asante, K. P., Owusu-Agyei, S., Greenwood, B., Drakeley,
1060 C., Gesase, S., Lusingu, J., Ansong, D., Adjei, S., Agbenyega, T., Ongutu, B., Otieno, L.,
1061 Otieno, W., Agnandji, S. T., Lell, B., Kremsner, P., Hoffman, I., . . . Ghani, A. C. (2015).
1062 Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of
1063 vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial.
1064 *Lancet Infect Dis*, 15(12), 1450-1458. [https://doi.org/10.1016/S1473-3099\(15\)00239-X](https://doi.org/10.1016/S1473-3099(15)00239-X)

1065 Wicht, K. J., Mok, S., & Fidock, D. A. (2020). Molecular Mechanisms of Drug Resistance in
1066 Plasmodium falciparum Malaria. *Annu Rev Microbiol*, 74, 431-454.
1067 <https://doi.org/10.1146/annurev-micro-020518-115546>

1068 Wu, R. L., Idris, A. H., Berkowitz, N. M., Happe, M., Gaudinski, M. R., Buettner, C., Strom, L.,
1069 Awan, S. F., Holman, L. A., Mendoza, F., Gordon, I. J., Hu, Z., Campos Chagas, A.,
1070 Wang, L. T., Da Silva Pereira, L., Francica, J. R., Kisalu, N. K., Flynn, B. J., Shi, W., . . .
1071 Team, V. R. C. S. (2022). Low-Dose Subcutaneous or Intravenous Monoclonal Antibody
1072 to Prevent Malaria. *N Engl J Med*, 387(5), 397-407.
1073 <https://doi.org/10.1056/NEJMoa2203067>

1074 Zavala, F., Cochrane, A. H., Nardin, E. H., Nussenzweig, R. S., & Nussenzweig, V. (1983).
1075 Circumsporozoite proteins of malaria parasites contain a single immunodominant region
1076 with two or more identical epitopes. *J Exp Med*, 157(6), 1947-1957.
1077 <https://doi.org/10.1084/jem.157.6.1947>

1078 Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y., & Agard, D. A. (2017).
1079 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
1080 microscopy. *Nat Methods*, 14(4), 331-332. <https://doi.org/10.1038/nmeth.4193>

1081 Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E., & Scheres, S.
1082 H. (2018). New tools for automated high-resolution cryo-EM structure determination in
1083 RELION-3. *eLife*, 7. <https://doi.org/10.7554/eLife.42166>

1084