

1 **Chemokines form complex signals during inflammation and disease that can be decoded**
2 **by extracellular matrix proteoglycans**

3

4 **Authors:** Amanda JL Ridley¹, Yaqing Ou¹, Richard Karlsson², Nabina Pun¹, Holly L
5 Birchenough¹, Thomas A Jowitt¹, Craig Lawless¹, Rebecca L Miller² and Douglas P Dyer^{1,3}.

6

7 **Affiliations:**

8

9 ¹ Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and
10 Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science
11 Centre, University of Manchester, United Kingdom

12 ² Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty
13 of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N,
14 Denmark

15 ³ Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre,
16 Northern Care Alliance NHS Group, University of Manchester, Manchester, UK

17

18 **Abstract**

19

20 Chemokine driven leukocyte recruitment is a key component of the immune response and is
21 central to a wide range of diseases. However, there has yet to be a clinically successful
22 therapeutic approach that targets the chemokine system during inflammatory disease; possibly
23 due to the supposed redundancy of the chemokine system. A range of recent studies have
24 demonstrated that the chemokine system is in fact based on specificity of function. Here we
25 have generated a resource to analyse chemokine gene (ligand and receptor) expression across

26 different species, tissues and diseases; revealing complex expression patterns whereby multiple
27 chemokine ligands that mediate recruitment of the same leukocyte type are expressed in the
28 same context, e.g. the CXCR3 ligands CXCL9, 10 and 11. We use biophysical approaches to
29 show that CXCL9, 10 and 11 have very different interactions with extracellular matrix
30 glycosaminoglycans (GAGs) which is exacerbated by specific GAG sulphation. Finally, *in vivo*
31 approaches demonstrate that GAG-binding is critical for CXCL9 driven recruitment of specific
32 T cell subsets (e.g. CD4⁺) but not others (e.g. CD8⁺), independent of CXCR3 expression. Our
33 data demonstrate that chemokine expression is complex and that multiple ligands are likely
34 needed for robust leukocyte recruitment across tissues and diseases. We also demonstrate that
35 ECM GAGs facilitate decoding of these complex chemokine signals so that they are either
36 primarily presented on GAG-coated cell surfaces or remain more soluble. Our findings
37 represent a new mechanistic understanding of chemokine mediated immune cell recruitment
38 and identify novel avenues to target specific chemokines during inflammatory disease.

39

40 **Introduction**

41

42 Leukocyte migration and recruitment facilitates tissue inflammation which in turn is central to
43 a plethora of diseases such as rheumatoid arthritis, inflammatory bowel disease and cancer(1).
44 Leukocyte recruitment is itself primarily driven by chemokines (chemotactic cytokines),
45 making them key players in inflammatory based disease and prime therapeutic targets(2).
46 Chemokines are a large family of small proteins that are thought to function by binding to their
47 concomitant receptors on circulating leukocytes(3). This interaction produces integrin
48 activation, enabling firm adhesion of leukocytes to the blood vessel wall and subsequent trans-
49 endothelial migration.

50 Despite their importance the chemokine system has yet to be therapeutically targeted. The
51 reasons for this are multiple, however, a central problem has been the idea of redundancy where
52 multiple chemokine ligands bind to multiple receptors and multiple receptors bind to multiple
53 ligands(2, 4). Several recent studies have set out to determine whether redundancy is a key
54 aspect of chemokine function and have largely demonstrated the opposite, i.e., extreme
55 specificity of the chemokine system(5–10). This can be understood from a receptor perspective
56 as recent studies have demonstrated that receptor expression is fine-tuned to have specific
57 receptors on the leukocyte cell surface at each stage of its migration to facilitate specific
58 functions(9).

59 In contrast, when an unbiased analysis is undertaken during inflammatory scenarios a range of
60 different chemokines with over-lapping functions are present in the same location(8). This
61 presents a challenge to the idea of specificity of how non-redundant migratory outcomes are
62 produced when multiple ligands for the same receptor are present in the same environment.
63 One mechanistic explanation for this is biased agonism, where different ligands can produce
64 different functional outcomes via the same receptor via different interactions(11, 12). However,
65 this does not fully explain how these specialised functions of chemokines are produced since
66 the differing receptor affinities should in theory dominate which ligands are bound to a receptor
67 at any given time. One way that differential localisation and receptor-binding availability may
68 be achieved is via interactions with extracellular matrix (ECM) glycosaminoglycans
69 (GAGs)(10, 13).

70 ECM GAGs are particularly present within the glycocalyx that lines the luminal endothelial
71 surface within blood vessels but can also be found throughout tissues(14). Chemokine:GAG
72 interactions have been shown to be key for leukocyte recruitment *in vivo* as they facilitate
73 endothelial retention of chemokines on the endothelium in the presence of blood flow(15, 16)
74 and in the case of CXCL4 may directly mediate its function(17). However, specific

75 comprehension of the role of chemokine:GAG interactions on the cell surface and within
76 tissues in leukocyte recruitment is lacking.

77 Here we show that chemokine ligands and receptors are present in complex, but distinct,
78 families across tissues and disease. These families contain chemokine ligands with over-

79 lapping abilities to recruit the same leukocytes. In particular, the CXCR3 ligands CXCL9, 10
80 and 11 display over-lapping expression patterns across a wide range of tissues and diseases and
81 have differential roles in recruitment of CXCR3⁺ cells. We also demonstrate that these ligands
82 have very different interactions with ECM GAGs. These differential interactions facilitate
83 regulation of ligand localisation at the cell surface or in solution. We also found that these
84 interactions play surprisingly specific roles in CXCL9 mediated leukocyte recruitment.

85

86 **Results**

87

88 **Chemokine ligands and receptors form complex and over-lapping signals**

89

90 To better understand how chemokines co-ordinate the immune response via leukocyte
91 recruitment we undertook a systematic view of the transcriptional relationship between
92 chemokine ligands and their receptors during inflammation and disease. To do so we analysed
93 transcriptomic data that has been deposited in the EMBL-EBI expression atlas (Fig. 1)(18).

94 The database was downloaded followed by minimal “cleaning” of the data to deliberately take
95 an unbiased approach to analysis (Supp. Fig. 1). Output data was then probed using principal
96 component analysis (PCA) and correlation matrix analysis to reveal transcriptional
97 relationships between chemokine ligands and receptors across a range of tissues and diseases
98 in humans and mice (Table 1).

99 Immediate patterns emerge from this analysis in both the human (Fig. 1 and Supp. Fig. 2) and
100 mouse (Supp. Fig. 3) data, firstly separating into 3 distinct clusters. The largest group, in both
101 the human (cluster 1, Fig. 1A and B) and mouse (cluster 2, Supp. Fig. 3) data, contains a range
102 of genes that have a diverse function in the recruitment of different leukocytes. The other two
103 groups, however, contain genes with closely related functions. The first contains chemokine
104 ligands and receptors that are primarily associated with recruitment of neutrophils are present,
105 specifically CXCL1, CXCL2, CXCL3, CXCL5, CXCL6 and CXCL8 (human cluster 2) and
106 CXCL1, CXCL2, CXCL3, CXCL5 and CCL2 (mouse cluster 1)(3). These clusters also contain
107 some additional genes usually associated with recruitment of other cell types, e.g., CCL4
108 (monocyte) and CCL20 (T cell) in the human data set and CCL2, CCL3, CCL4 and CCL7
109 (monocyte) in the mouse dataset. Pointedly in both the human and mouse dataset cluster 3
110 contains CXCL9, CXCL10 and CXCL11 which all signal through CXCR3, primarily in the
111 recruitment of T cells(19).

112 These data demonstrate that chemokine gene expression is associated with specific phases of
113 the immune response so that those genes recruiting the same types of leukocyte are often
114 similarly expressed.

115

116 **Individual tissues and diseases have specific chemokine ligand and receptor expression
117 patterns**

118

119 Next we analysed patterns of chemokine ligand and receptor expression more closely by
120 separating the data into different tissues, focussing on the brain (Fig. 1C), lung (Fig. 1D) or
121 lymph node (Fig. 1E). The human (Fig. 1C) and mouse (Supp. Fig. 3) brain data demonstrated
122 clustered expression of neutrophilic chemokines. Human brain cluster 3 contains CXCL1,
123 CXCL2, CXCL3, CXCL5 and CXCL8. Mouse cluster 1 was limited to CXCL1 and CXCL2

124 alongside a number of monocytic chemokines, suggesting species-specific inflammatory
125 responses in the brain. The clusters in the human lung (Fig. 1D), mouse lung (Supp. Fig. 3C),
126 human lymph node (Fig. 1E), and mouse lymph node (Supp. Fig. 3D) were tissue-specific, but
127 again the close relatedness of the neutrophilic chemokines was maintained.

128 We next separated the data into diseases for which there were at least ten entries in the
129 expression atlas, namely Crohn's disease, ulcerative colitis, psoriasis, rheumatoid arthritis and
130 Alzheimer's disease (Fig. 2). As above, specific signatures were seen in each context with the
131 first four diseases containing a neutrophilic chemokine cluster. In contrast, the gene relatedness
132 signatures appeared very distinct in the Alzheimer's disease analysis compared to the others,
133 suggesting the chemokine system is functioning differently in this context.

134 The separation of genes into related clusters was observed across the separated tissues and
135 diseases with specific signatures, reflecting the differential nature of the inflammatory response
136 between tissues and disease. However, certain patterns were clear across these situations, with
137 strikingly consistent clustering of a range of chemokines that can all recruit neutrophils.
138 Strikingly the clustering of CXCL9, CXCL10 and CXCL11 appeared to be present across the
139 separated tissues and diseases.

140

141 **CXCR3 ligands are consistently expressed together across tissues and disease**

142

143 Our data thus present a potential example of supposed chemokine redundancy, where CXCL9,
144 10 and 11, which all bind and signal through CXCR3 (Fig. 3A), may be consistently co-
145 expressed across different inflamed tissues and diseases. To determine the degree of this co-
146 expression we specifically analysed the expression relatedness between the receptor CXCR3
147 and its ligands CXCL9, 10 and 11 (Fig. 3B and C). This approach confirmed that CXCL9, 10
148 and 11 are very closely related in expression during inflammation across a range of tissues and

149 diseases. In contrast, though closely related to each other these ligands have a much lesser
150 transcriptional relationship with their receptor CXCR3 (Fig. 3), suggesting that the ligands and
151 their receptor are usually produced at distinct sites.

152 This close transcriptional relatedness between ligands but not their receptor is also evident in
153 other families, for example, CXCR1 and 2 and their ligands, where CXCR1 and 2 are also
154 closely transcriptionally related, demonstrating their co-operative function in co-ordinating
155 leukocyte recruitment (Supp. Fig. 4). In contrast, CXCR5, CXCR6, CCR1, CCR4, CCR6,
156 CCR10 are more closely transcriptionally related to their ligands (Supp. Fig. 4-6). Whilst
157 CCR7 and CCR8 have a close transcriptional relationship to one ligand (CCL19 and CCL1,
158 respectively) but not the other (Supp. Fig. 6). These differing relationships may reflect function
159 in local leukocyte positioning, where receptors and ligands would be closely transcriptionally
160 related, versus long range leukocyte recruitment, where they would not be closely related.

161

162 **CXCL9, 10 and 11 have specific functions *in vivo***

163

164 The numerous examples of overlapping expression of CXCL9, 10 and 11 suggests that each is
165 required and thus plays a specific role during the recruitment of CXCR3⁺ cells. We next
166 confirmed this relatedness at the protein level *in vivo* in the mouse carrageenan inflamed air
167 pouch recruitment model (Fig. 4A and B). The air pouch *in vivo* leukocyte recruitment model
168 was then chosen to determine whether the CXCR3 ligands have a differential function in
169 leukocyte recruitment *in vivo*. We injected equimolar amounts of CXCL9, 10 and 11 into the
170 air pouch (Fig. 4A), allowing analysis of a wide range of leukocytes (Fig. 4C and D and Supp.
171 Fig. 7 and 8). None of the ligands produced statistically significant changes in overall (CD45⁺)
172 leukocyte recruitment (Fig. 4E) or in the number of neutrophils, macrophages, or eosinophils
173 (Supp. Fig. 9). However, CXCL9 did produce a significant increase in the number of T cells

174 (TCR β^+) in contrast to CXCL10 and 11 (Fig. 3E) (flow cytometric gating strategy Supp. Fig.
175 7 and 8). This demonstrates that CXCL9, 10 and 11 do not have the same effect on leukocyte
176 recruitment *in vivo*, supporting previous findings that they each play a specific role in
177 recruitment of T cells(11, 19).

178

179 **Interactions with ECM GAGs decodes CXCL9, 10 and 11 signals**

180

181 The data above demonstrate that CXCL9, 10 and 11 are produced in over-lapping combinations
182 and play different roles in T cell recruitment *in vivo*. Therefore, we next sought to understand
183 how these complex chemokine signals could be decoded to allow each to play its specific
184 biological role. We hypothesised that differential interactions with GAG side chains on ECM
185 proteoglycans (Fig. 5A) may produce differential localisation of these ligands within the ECM
186 and on the cell surface.

187 We utilised bio-layer interferometry (BLI) biophysical analysis to study the interaction
188 between these ligands and isolated GAG sugar models (heparin dp8). BLI demonstrates that
189 CXCL9 (24 ± 12 nM), CXCL10 (253 ± 50 nM) and CXCL11 (520 ± 194 nM) have significantly
190 different GAG affinity estimates (Fig. 5B and C). To analyse chemokine:GAG interactions in
191 a cellular context, binding of labelled CXCL9, CXCL10, and CXCL11 to WT Chinese hamster
192 ovary (CHO) or human embryonic kidney (HEK) cells was performed using flow cytometry
193 (Fig. 5D). In both cases the order of binding (demonstrated by MFI signal) was
194 CXCL9>CXCL10>CXCL11, in agreement with the BLI studies.

195 To determine which GAGs are responsible for this cellular chemokine binding we used
196 genetically engineered cells that express distinct types of chondroitin sulfate (CS) and heparan
197 sulfate (HS) GAG chains(20, 21). We first compared chemokine binding to WT, CS/HS knock
198 out (KO), CS KO, and HS KO cells derived from CHO and HEK293 cell lines (Fig. 5E).

199 CXCL9, 10 and 11 all bound to HS on CHO cells since its removal reduced binding, but neither
200 bound to CS since binding was not reduced in its absence. CXCL10 and CXCL11 bound to HS
201 on HEK cells, in contrast CXCL9 binding is only reduced when both HS and CS are removed
202 from HEK cells, suggesting that CXCL9 can bind to both in a potentially redundant fashion.
203 Oligomerisation has been shown to be key to differential chemokine:GAG interactions (22,
204 23). Therefore, we next determined the differential oligomerisation of CXCL9, 10 and 11 in
205 the absence and presence of the heparin dp8 GAG using analytical ultracentrifugation (AUC)
206 (Fig. 5F). All three primarily exist as monomers when alone in solution. In the presence of dp8
207 (ratio 1:2, chemokine:GAG) CXCL9 remains primarily monomeric, CXCL10 becomes 50%
208 dimeric and CXCL11 remains primarily monomeric.
209 Together these results show that CXCL9, CXCL10 and CXCL11 have a very different ability
210 to bind and be retained on cell surface proteoglycans and will thus be differently distributed
211 within a tissue or on cell surfaces *in vivo*.

212

213 **GAG fine structure facilitates specificity of binding to CXCL9, CXCL10 and CXCL11**

214

215 GAG sulphation has previously been shown to drive interaction specificity with other
216 chemokines, e.g. CCL2 and CXCL4(17, 24). We, therefore, hypothesised that GAG sulphation
217 points could produce further differentiation in binding to CXCL9, 10 or 11. GAG sulphation
218 patterns are primarily produced during GAG synthesis by a wide range of different
219 sulfotransferases. Acting on HS are the NDSTs, HS2ST1, HS6STs and HS3STs responsible
220 for N-, 2-O, 6-O, and 3-O sulphation respectively (Fig. 6A)(25). Together these modifications
221 can achieve incredible sequence specificity.

222 In order to dissect their differential contribution to CXCL9, 10 and 11 binding we utilised the
223 recently developed GAGOme cell library, which is a large panel of CHO cells genetically

224 engineered to display distinct GAG features on the cell surfaces (Fig. 6A)(20, 26). Flow
225 cytometry studies revealed that the biggest contributor to HS binding in this context for all
226 three ligands was N-sulfation by NDST1 and 2, unsurprising given that this is the first step in
227 the biosynthetic pathway and essential for priming and modification of different sulfation
228 patterns (Fig. 6B). The effect of HS2ST1 (2-O sulphation) and GLCE (epimerase enhancing
229 levels of 2-O sulphation) removal reduced binding comparably across all three ligands.
230 Combined removal of HS6ST1/2/3 (6-O sulphation) had a much greater effect in reduction of
231 relative binding to CXCL10 and CXCL11 than CXCL9 (Fig. 6B). When absolute rather than
232 relative signal is analysed this difference is exacerbated, in the absence of HS 6-O sulphation
233 the cell surface GAGs have 3 times the capacity to bind CXCL9 compared to CXCL10 and
234 CXCL11 (Fig. 6C).

235 Using the GAGOme approach we also determined the relative effect of 3-O sulphation of HS
236 on binding by using CHO cells in which the different HS3ST isoenzymes responsible for this
237 modification have been knocked-in (KI) (Fig. 6D and E). Adding in 3-O sulphation largely
238 reduced CXCL9 binding, had no significant effect in CXCL10 binding and in some cases
239 reduced CXCL11 binding. There is again evidence of specificity; HS3ST1, HS3ST2,
240 HS3ST3A and HS3ST3B KI cells all have significantly lower binding signal for CXCL9
241 compared to CXCL10 and CXCL11.

242 Given the ability of the GAG sulphation genes to regulate differential binding to chemokines
243 we next sought to determine whether there was a transcriptional relationship between them.
244 We analysed the human expression atlas database from all human tissues pooled for the
245 different GAG synthesis and sulphation genes (Supp. Fig. 10-12). Specifically, analysis of the
246 transcriptional relationship between CXCL9, CXCL10, CXCL11 and the different enzymes
247 that facilitate HS sulphation suggests no positive correlation with the genes facilitating N-, 2-
248 O or 6-O sulphation (Fig. 6F). This may suggest that the chemokine ligands are produced at

249 distinct times/locations from these sulphation enzymes. In contrast, analysis of the
250 transcriptional relationship between the 3-O sulphation genes and CXCL9, 10 and 11 reveals
251 reasonable correlation of transcription between HS3ST3A and HS3ST3B and these chemokine
252 ligands (Fig. 6F). This suggests that these genes can be expressed at the same time/location
253 and may collaborate to produce specific presentation of CXCL9, CXCL10 and CXCL11.

254 Global comparison for the GAG synthesis, modification and proteoglycan protein core genes
255 demonstrated less discrete clustering than is the case with chemokine ligand and receptor genes
256 when analysing pooled tissues and diseases (Supp. Fig. 11 and 12). However, more discrete
257 clusters become apparent when the data is separated into specific tissues in both humans and
258 mice.

259 These data show that in addition to the general interactions with GAGs specific sulphation
260 types can add an additional layer of specificity to these interactions to facilitate differential
261 geographical localisation of ligands that bind to the same receptor.

262

263 **Interactions with ECM GAGs have a specific role in CXCL9 function *in vivo***

264

265 Given the ability of ECM GAGs to bind to CXCL9 and preferentially retain it on the cell
266 surface we next sought to determine whether this interaction is important to its' function *in*
267 *vivo* (Fig. 6). We first determined which of the cells would be recruited by CXCL9 due to their
268 CXCR3 expression (Fig. 7A and Supp. Fig. 7 and 8). As expected, CXCR3 was present on a
269 number of T cell subsets. Pre-incubation of CXCL9 with purified GAG, to block interaction
270 with endogenous cell surface GAG, inhibited CXCL9 mediated recruitment of CD4⁺ T cells
271 and possibly TCR γ δ cells, but not NK cells or CD8⁺ cells (Fig. 7B).

272 These surprisingly specific effects of blocking CXCL9 binding to endogenous GAG suggests
273 that the interaction between CXCL9 and cell surface GAGs plays a vital yet differential role in
274 the recruitment of individual CXCR3⁺ T cells *in vivo*.

275

276 **Discussion**

277

278 Here we show that complex signals of chemokines with over-lapping function can be decoded
279 by ECM GAGs to facilitate specific chemokine localisation during inflammatory disease (Fig.
280 8). We hypothesise that this differential localisation is critical to the specific function of
281 individual chemokine ligands that has been demonstrated in recent studies(10). Alongside these
282 studies, our data may further challenge the classic theory of chemokine redundancy that has
283 been thought to preclude therapeutic targeting of the chemokine system in inflammatory
284 disease(10).

285 Whilst individual papers have presented data showing the presence of multiple chemokine
286 ligands that recruit the same leukocyte, we are not aware of previous unbiased and
287 comprehensive analyses to better define the expression relationship between all chemokine
288 ligands and receptors. Our findings of specific clusters of chemokines and receptors with over-
289 lapping function confirm assumptions that are made about the immune response, which
290 previously have little data to support them. Specifically, given that the early inflammatory
291 response is primed to recruit neutrophils it may not be surprising that we consistently find
292 distinct clusters across tissues and diseases that contain chemokines associated with neutrophil
293 recruitment. Similarly, the consistent overlapping production of the CXCR3 ligands, CXCL9,
294 10 and 11 may also be unsurprising as there will be distinct stages of the immune response
295 where CXCR3⁺ T cells are required to fight infection/disease. The fact that in multiple instances
296 chemokines are produced at the same time with supposedly redundant functions supports the

297 idea that each actually performs a specific function in leukocyte recruitment and that multiple
298 chemokine ligands are required to mediate recruitment of a given cell type.

299 The data we present herein of consistently overlapping expression of the CXCR3 ligands
300 presents a fundamental problem to our understanding of chemokine biology. Namely, how
301 would a migrating CXCR3⁺ T cell be able to interpret a complex signal containing all 3 ligands
302 in the same environment to achieve recruitment and positioning? Our data evidencing the role
303 of ECM GAGs in mediating differential immobilisation of these chemokines on ECM GAGs
304 on the cell surface, and potentially within tissues, may solve this problem. Our data may also
305 explain any potential differences in GAG-mediated protection of chemokines from proteolytic
306 degradation(27) and support the idea of targeting GAGs to inhibit CXCL9 function in disease
307 (16, 28, 29). Overall our data suggest that a CXCR3⁺ cell is unlikely to encounter these ligands
308 in the same geographical location even with their close transcriptional relationship due to
309 differential GAG binding. This also overcomes the problem whereby if all 3 ligands were
310 present in their soluble form then CXCL11 would dominate binding to CXCR3 due to its much
311 higher affinity for the receptor compared to CXCL9 and 10(11).

312 Furthermore, our data revealed that GAG sulphation can add additional layers of specificity to
313 the chemokine:GAG interaction with 6-O sulphation particularly differentiating HS
314 interactions with CXCL9, 10 and 11. The role of HS 3-O sulphation in biology is much less
315 understood than for N-, 2-O or 6-O sulphation due to the problems associated with its
316 analysis(30). Strikingly we found that 3-O sulphation mediates differentiation in binding to the
317 CXCR3 ligands and its presence actually reduces binding to CXCL9. Excitingly these data
318 generate the hypothesis that cells and/or tissues may tune their sulphation pattern, e.g. during
319 inflammation, on their ECM GAGs to selectively bind and present certain chemokines over
320 others.

321 Our study enhances the wider understanding of the co-ordinated role of the chemokine system
322 during inflammation and disease across specific tissues. We also reveal a role for ECM GAGs
323 in decoding the complex chemokine signals that are produced in these contexts to facilitate the
324 specificity of the chemokine system during leukocyte recruitment.

325

326 **Materials and methods**

327

328 **Materials**

329

330 Up to 4 mice were housed in cages of up to four in a 12 hr light/dark cycle, with free access to
331 food and water. All experiments were carried out following ethical approval from The
332 University of Manchester and University of Glasgow and under licence from the UK Home
333 Office (Scientific Procedures Act 1986). All chemokines were purchased from Protein
334 Foundry and dp8 and heparin GAGs were purchased from Iduron.

335

336 **Bioinformatic Analysis**

337

338 **Dataset Construction**

339 To explore gene co-expression, complete microarray and RNA-sequencing differential
340 expression results were downloaded from Expression Atlas in December 2020(18). In total,
341 807 projects (2,450 assays) that operated in *Homo sapiens* and 894 projects (2,431 assays) that
342 operated in *Mus musculus* were selected. Then, accessory description files were used to filter
343 out all tumour-related projects and identify related tissues. In this study, brain, lung, spleen and
344 lymph node were selected.

345

346 Assay Integration

347 According to literature and preliminary studies, we selected 136 genes that potentially play
348 important roles in chemokine activities during the immune response (3). Those 136 genes were
349 categorised into five groups: chemokine ligands (44 genes), chemokine receptors (23 genes),
350 matrix (glycosaminoglycan) synthesis genes (17 genes), matrix metalloproteinase (24 genes),
351 and proteoglycan synthesis (28 genes).

352

353 All analytics results of these 136 genes from tumour-free assays were then collected and
354 concatenated together into one data frame. If the research was forced on a specific organ, only
355 relevant assays were selected. Later, a four-step filtration was carried out to minimise the
356 missing value of each assay but to keep more genes in the data. Firstly, genes that were missed
357 in more than 70% of assays were removed. Secondly, in the output data frame from the last
358 step, assays that contained less than 90% of genes were filtered out. Then, all assays with
359 missing values were cleared. The final output data frame would then be ready for further
360 investigations.

361

362 Co-expression Exploration

363 In order to figure out co-expression relationships between chemokine-related genes, correlation
364 matrixes and principal component analysis (PCA) were plotted. In the correlation matrix,
365 Pearson correlation coefficients between each pair of genes were calculated and visualised as
366 a heatmap using Complex Heatmap package in R (Version 4.1.0)(31, 32). PCA plots were
367 drawn using autoplot package(33). Gene cluster results are computed by Clustering Large
368 Applications (CLARA) algorithm(34). All plots and correlation tables are available at
369 <https://shiny.its.manchester.ac.uk/mqbpryo2/ChemoInt>.

370

371 ***In vivo* leukocyte recruitment assay analysis**

372

373 Air pouch formation

374 Air pouches were formed by three subcutaneous injections of 3 ml of sterile air under the dorsal
375 mouse skin every 48 hrs. One day after the final injection the chemokine or carrageenan (1%
376 w/v, Simga-Aldrich) was injected into the air pouch. 24 hrs after injection mice were culled
377 and the air pouch flushed with PBS containing 1% FCS and 1 mM EDTA (two occasions of 3
378 ml) and analysed for cellular and protein content as below.

379

380 Flow cytometry analysis

381 Post cell isolation, cells were plated at 1×10^6 cells per well in v-bottom Nunclon Delta treated
382 96-well plates (Thermo Fisher Scientific) and washed twice with 100 μ l ice-cold 1X PBS to
383 remove proteins in the supernatant before being pelleted by centrifugation at 500 $\times g$ for 2 min
384 at 4 °C. Cells were then incubated with a Live/Dead amine reactive viability dye (Zombie
385 ultraviolet (UV) dye) (BioLegend) diluted 1:2000 in 10 μ l 1X PBS for 15 min at RT in the dark
386 to facilitate dead cell exclusion. Incubation steps were performed in the dark to prevent
387 fluorochrome bleaching.

388 To prevent non-specific binding of antibodies via Fc receptors on the cell surface, all samples
389 were incubated with FcR block (5 μ g ml⁻¹ α CD16/CD32 (2.4G2; BD Biosciences)) in 50 μ l
390 flow buffer (PBS containing 1% FCS) for 10 min at 4 °C. After blocking, cells were centrifuged
391 at 500 $\times g$ for 2 min at 4 °C before pelleted cells were resuspended in 50 μ l flow buffer
392 containing surface marker antibodies at the dilutions shown in Table 1 for 30 min at 4 °C.
393 Following incubation, cells were washed in 150 μ l flow buffer and pelleted by centrifugation
394 at 500 $\times g$ for 2 min at 4 °C. This wash step was then repeated with a further 200 μ l flow buffer.
395 After washing, cells were resuspended in 1% paraformaldehyde (PFA) (Sigma-Aldrich) for 10

396 min at RT in the dark to prevent the dissociation of antibodies from their target molecules.

397 Cells were then centrifuged at 500 x g for 2 min at 4 °C before being resuspended in 200 µl

398 flow buffer ready for acquisition. Cells were stored at 4 °C prior to analysis. In some instances,

399 after blocking, cells were incubated with CXCR3 (1:200) or an IgG isotype control (1:200) in

400 50 µl flow buffer for 15 min at 37 °C before being washed twice and stained with surface

401 marker antibodies as described above.

402 To calculate cell counts in some experiments, CountBright Absolute Counting Beads (Thermo

403 Fisher Scientific) were used. Before acquisition of BAL samples on the flow cytometer, 15 µl

404 beads were added per sample. During analysis, beads were identified based on their high side

405 scatter (SSC) and low forward scatter (FSC) phenotype. To calculate absolute cell count, the

406 total number of beads added along with the number of bead events acquired was compared to

407 the volume of cells added and total number of cell events acquired, as per the manufacturers

408 protocol.

409 tSNE and FlowSOM analysis were performed in R (Version 4.1.3) using CD4, CD8, F4/80,

410 Ly6C, Ter119, CD3, TCRβ, CXCR3, Ly6G, CD11c, B220, CD11b, CD64, Siglec F, NK1.1

411 and TCRγδ.

412

413 **Table 1. Flow cytometry antibodies to surface and intracellular markers used to**

414 **characterize murine samples.**

Antigen	Fluorochrome	Clone	Manufacturer	Working Dilution
CXCR3	BV421	CXCR3-173	BioLegend	1:200
IgG Isotype	BV421	HTK88	BioLegend	1:200
CD4	FITC	GK1.5	BD Biosciences	1:200
CD8	PerCP/Cy5.5	53-6.7	BioLegend	1:800

F4/80	APC	BM8	eBioscience	1:200
Ly6C	Af700	HK1.4	BioLegend	1:200
Ter119	APC/ef780	TER-119	eBioscience	1:200
CD3	APC/ef780	17A2	eBioscience	1:100
TCR β	APC/ef780	H57-597	eBioscience	1:200
Ly6G	BV510	1A8	Biolegend	1:100
CD11c	BV605	N418	BioLegend	1:200
B220	BV650	RA3-6B2	BioLegend	1:100
CD11b	BV711	M1/70	BioLegend	1:800
CD45	BV785	30-F11	BioLegend	1:200
CD64	PE	X54-5/7.1	BioLegend	1:100
SiglecF	PE/CF594	E50-2440	BD Biosciences	1:400
NK1.1	PE/Cy5	PK136	BioLegend	1:200
TCR $\gamma\delta$	PE/Cy7	eBioGL3 (GL-3, GL3)	eBioscience	1:200

415

416

417 ELISA and Luminex analysis of air pouch fluid

418

419 Air-pouch fluid contents were obtained as described in (8). Specific concentrations of CXCL9

420 were measured by enzyme-linked immunosorbent assay (ELISA), using the mouse CXCL9

421 ELISA kit (R&D Systems) in a 96-well high binding ELISA plate following the manufacturer's

422 instructions. Plates were read on a VersaMax Microplate Reader (Marshall Scientific) at 450

423 nm. The samples were also analysed using a Bio-Plex Pro Mouse Chemokine Panel, 31- Plex

424 Assay (Bio-Rad, UK). Samples were read and the data was acquired on a Bio-Plex ManagerTM
425 (Software version 6.2).

426

427 **Chemokine:GAG interaction analysis**

428

429 Bio-layer interferometry (BLI)

430 An Octet Red96 system (Sartorius AG, Goettingen, Germany) was used with a methodology
431 adapted from (22). GAGs had biotin attached at their reducing end with a previously described
432 approach (35) before immobilisation to High Precision Streptavidin (SAX) biosensors
433 (Sartorius AG, Goettingen, Germany). To achieve this SAX biosensors were hydrated for 10
434 mins in assay buffer (10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 0.05% Tween-20, pH 7.4).

435 Immobilisation of heparin dp8 GAG (0.078 μ g/ml) was done in assay buffer until an
436 immobilisation level of approx. 0.1 nm was reached. Sensors were subsequently washed with
437 regeneration buffer (0.1 M Glycine, 1 M NaCl, 0.1% Tween, pH 9.5) and re-equilibrated in
438 assay buffer. Blank reference or GAG coated sensors were then dipped into 200 μ L of assay
439 buffer containing chemokines at the indicated concentrations for at least 180 sec (association)
440 before being transferred to assay buffer containing wells (dissociation) for at least 180s before
441 a regeneration buffer wash step. The binding signal was recorded throughout and the signal
442 from binding of chemokine to blank (no immobilised GAG) sensors and by GAG immobilised
443 sensors in assay buffer alone was subtracted. As well as a signal over time, the maximum signal
444 during the association phase of the interaction was recorded and used to generate K_D value
445 estimates in the Octet analysis software. Data were acquired at 5 Hz and analysed using the
446 Octet HT 10.0 analysis programme.

447

448

449 Analytical ultra-centrifugation
450 CXCL9, CXCL10 or CXCL11 were re-suspended in PBS to a final concentration of 50 μ g/ml
451 either alone or in the presence of heparin dp8 at a ratio of 1:2 (chemokine:GAG). Samples were
452 loaded into 2-sector cells with PBS as a reference and centrifuged at 50,000 rpm in a 4-hole
453 An60Ti rotor monitoring the absorbance at 230 nm until sedimentation was reached. The time-
454 resolved sedimenting boundaries were analysed using Sedfit (36). The resulting profiles are
455 shown in Gussi (37).

456

457 Cell surface GAG binding
458 This analysis was performed as previously (20), using libraries of CHO Glutamine synthetase
459 (GS) -/- or HEK293 6e cells genetically engineered by CRISPR/Cas9 for KO and Zinc finger
460 nucleases for KI of genes(20, 21, 26). 1×10^5 cells were washed in PBS before incubation with
461 biotinylated recombinant human CXCL9, CXCL10 or CXCL11 (10 μ g/mL) (Protein Foundry
462 LLC) in assay buffer (PBS + 1% FBS) for 30 min at 4 °C. Cells were washed with assay buffer
463 followed by incubation with Alexa Fluor 488-streptavidin (1:2000 in assay buffer) (S32354,
464 Invitrogen) for 30 min at 4 °C. Cell were again washed and then re-suspended in assay buffer
465 and fluorescence intensity was analysed using a SA3800 spectral cell analyzer (SONY). All
466 experiments were performed a minimum of three times using triplicate samples.

467

468 Statistics

469 Statistical analysis were performed using Prism (GraphPad). Experiments containing two
470 groups were analysed using an unpaired T-test and data containing more than two groups were
471 analysed using a one-way ANOVA with a post-hoc multiple comparison test. $P < 0.05$ was
472 considered to be statistically significant.

473

474 1. S. Nourshargh, R. Alon, Leukocyte migration into inflamed tissues. *Immunity*. 41, 694–
475 707 (2014).

476 2. T. J. Schall, A. E. I. Proudfoot, Overcoming hurdles in developing successful drugs
477 targeting chemokine receptors. *Nat Rev Immunol*. 11, 355–363 (2011).

478 3. F. Bachelerie, A. Ben-Baruch, A. M. Burkhardt, C. Combadière, J. M. Farber, G. J.
479 Graham, R. Horuk, A. H. Sparre-Ulrich, M. Locati, A. D. Luster, A. Mantovani, K.
480 Matsushima, P. M. Murphy, R. Nibbs, H. Nomiyama, C. A. Power, A. E. I. Proudfoot, M. M.
481 Rosenkilde, A. Rot, S. Sozzani, M. Thelen, O. Yoshie, A. Zlotnik, International Union of
482 Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of
483 chemokine receptors and introducing a new nomenclature for atypical chemokine receptors.
484 *Pharmacological Reviews*. 66, 1–79 (2014).

485 4. A. E. I. Proudfoot, P. Bonvin, C. A. Power, Targeting chemokines: Pathogens can, why
486 can't we? *Cytokine*. 74, 259–267 (2015).

487 5. J. R. Groom, J. Richmond, T. T. Murooka, E. W. Sorensen, J. H. Sung, K. Bankert, U. H.
488 von Andrian, J. J. Moon, T. R. Mempel, A. D. Luster, CXCR3 chemokine receptor-ligand
489 interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. *Immunity*. 37,
490 1091–1103 (2012).

491 6. T. Girbl, T. Lenn, L. Perez, L. Rolas, A. Barkaway, A. Thiriot, C. del Fresno, E. Lynam, E.
492 Hub, M. Thelen, G. Graham, R. Alon, D. Sancho, U. H. von Andrian, M.-B. Voisin, A. Rot,
493 S. Nourshargh, Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and
494 the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis.
495 *Immunity* (2018), doi:10.1016/j.jimmuni.2018.09.018.

496 7. C. Coombs, A. Georgantzoglou, H. A. Walker, J. Patt, N. Merten, H. Poplimont, E. M.
497 Busch-Nentwich, S. Williams, C. Kotsi, E. Kostenis, M. Sarris, Chemokine receptor
498 trafficking coordinates neutrophil clustering and dispersal at wounds in zebrafish. *Nat
499 Commun*. 10, 5166–17 (2019).

500 8. D. P. Dyer, L. Medina-Ruiz, R. Bartolini, F. Schuette, C. E. Hughes, K. Pallas, F. Vidler,
501 M. K. L. Macleod, C. J. Kelly, K. M. Lee, C. A. H. Hansell, G. J. Graham, Chemokine
502 Receptor Redundancy and Specificity Are Context Dependent. *Immunity*. 50, 378–389.e5
503 (2019).

504 9. L. Medina-Ruiz, R. Bartolini, G. J. Wilson, D. P. Dyer, F. Vidler, C. E. Hughes, F.
505 Schuette, S. Love, M. Pingen, A. J. Hayes, J. Fu, A. F. Stewart, G. J. Graham, Analysis of
506 combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice.
507 *Elife*. 11, e72418 (2022).

508 10. D. P. Dyer, Understanding the mechanisms that facilitate specificity, not redundancy, of
509 chemokine mediated leukocyte recruitment. *Immunology*. 290, 21292 (2020).

510 11. M. Metzemaekers, V. Vanheule, R. Janssens, S. Struyf, P. Proost, Overview of the
511 Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible
512 CXC Chemokine Receptor 3 Ligands. *Front Immunol*. 8, 1970 (2017).

513 12. A. Steen, O. Larsen, S. Thiele, M. M. Rosenkilde, Biased and g protein-independent
514 signaling of chemokine receptors. *Front Immunol.* 5, 277 (2014).

515 13. T. M. Handel, D. P. Dyer, Perspectives on the Biological Role of
516 Chemokine:Glycosaminoglycan Interactions. *J Histochem Cytochem*, 22155420977971
517 (2020).

518 14. A. L. Gray, N. Pun, A. J. L. Ridley, D. P. Dyer, Role of extracellular matrix
519 proteoglycans in immune cell recruitment. *Int J Exp Pathol* (2022), doi:10.1111/iep.12428.

520 15. A. E. I. Proudfoot, T. M. Handel, Z. Johnson, E. K. Lau, P. LiWang, I. Clark-Lewis, F.
521 Borlat, T. N. C. Wells, M. H. Kosco-Vilbois, Glycosaminoglycan binding and
522 oligomerization are essential for the in vivo activity of certain chemokines. *Proc Natl Acad
523 Sci USA*. 100, 1885–1890 (2003).

524 16. H. Crijns, V. Vanheule, P. Proost, Targeting Chemokine—Glycosaminoglycan
525 Interactions to Inhibit Inflammation. *Front Immunol.* 11, 907 (2020).

526 17. A. L. Gray, R. Karlsson, A. R. Roberts, A. J. Ridley, N. Pun, C. Hughes, L. Medina-Ruiz,
527 H. L. Birchenough, C. L. Salanga, E. A. Yates, J. E. Turnbull, T. M. Handel, G. J. Graham,
528 T. A. Jowitt, I. Schiessl, R. P. Richter, R. L. Miller, D. P. Dyer, Chemokine CXCL4
529 interactions with extracellular matrix proteoglycans mediate wide-spread non-receptor
530 mediated immune cell recruitment. *Biorxiv*, in press, doi:10.1101/2022.07.10.499282.

531 18. R. Petryszak, M. Keays, Y. A. Tang, N. A. Fonseca, E. Barrera, T. Burdett, A. Füllgrabe,
532 A. M.-P. Fuentes, S. Jupp, S. Koskinen, O. Mannion, L. Huerta, K. Megy, C. Snow, E.
533 Williams, M. Barzine, E. Hastings, H. Weisser, J. Wright, P. Jaiswal, W. Huber, J.
534 Choudhary, H. E. Parkinson, A. Brazma, Expression Atlas update—an integrated database of
535 gene and protein expression in humans, animals and plants. *Nucleic Acids Res.* 44, D746–
536 D752 (2016).

537 19. J. R. Groom, A. D. Luster, CXCR3 ligands: redundant, collaborative and antagonistic
538 functions. *Immunol Cell Biol.* 89, 207–215 (2011).

539 20. Y.-H. Chen, Y. Narimatsu, T. M. Clausen, C. Gomes, R. Karlsson, C. Steentoft, C. B.
540 Spliid, T. Gustavsson, A. Salanti, A. Persson, A. Malmström, D. Willén, U. Ellervik, E. P.
541 Bennett, Y. Mao, H. Clausen, Z. Yang, The GAGOme: a cell-based library of displayed
542 glycosaminoglycans. *Nat Methods.* 15, 881–888 (2018).

543 21. Y. Narimatsu, H. J. Joshi, R. Nason, J. V. Coillie, R. Karlsson, L. Sun, Z. Ye, Y.-H.
544 Chen, K. T. Schjoldager, C. Steentoft, S. Furukawa, B. A. Bensing, P. M. Sullam, A. J.
545 Thompson, J. C. Paulson, C. Büll, G. J. Adema, U. Mandel, L. Hansen, E. P. Bennett, A.
546 Varki, S. Y. Vakhrushev, Z. Yang, H. Clausen, An Atlas of Human Glycosylation Pathways
547 Enables Display of the Human Glycome by Gene Engineered Cells. *Mol Cell.* 75, 394–407.e5
548 (2019).

549 22. D. P. Dyer, C. L. Salanga, B. F. Volkman, T. Kawamura, T. M. Handel, The dependence
550 of chemokine-glycosaminoglycan interactions on chemokine oligomerization. *Glycobiology.*
551 26, 312–326 (2016).

552 23. D. P. Dyer, E. Migliorini, C. L. Salanga, D. Thakar, T. M. Handel, R. P. Richter,
553 Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine
554 oligomerization. *Open Biol.* 7, 160286 (2017).

555 24. R. L. Miller, A. B. Dykstra, W. Wei, C. Holsclaw, J. E. Turnbull, J. A. Leary, Enrichment
556 of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte
557 Chemoattractant Protein-1. *Anal. Chem.* 88, 11551–11558 (2016).

558 25. D. Xu, J. D. Esko, Demystifying heparan sulfate-protein interactions. *Annu. Rev.*
559 *Biochem.* 83, 129–157 (2014).

560 26. R. Karlsson, P. Chopra, A. Joshi, Z. Yang, S. Y. Vakhrushev, T. M. Clausen, C. D.
561 Painter, G. P. Szekeres, Y.-H. Chen, D. R. Sandoval, L. Hansen, J. D. Esko, K. Pagel, D. P.
562 Dyer, J. E. Turnbull, H. Clausen, G.-J. Boons, R. L. Miller, Dissecting structure-function of
563 3-O-sulfated heparin and engineered heparan sulfates. *Sci Adv.* 7, eabl6026 (2021).

564 27. M. Metzemaekers, A. Mortier, R. Janssens, D. Boff, L. Vanbrabant, N. Lamoen, J. V.
565 Damme, M. M. Teixeira, I. D. Meester, F. A. Amaral, P. Proost, Glycosaminoglycans
566 Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl
567 Peptidase IV/CD26 and Interference with Receptor Signaling. *Int J Mol Sci.* 18, 1513 (2017).

568 28. V. Vanheule, D. Boff, A. Mortier, R. Janssens, B. Petri, E. Kolaczkowska, P. Kubes, N.
569 Berghmans, S. Struyf, A. J. Kungl, M. M. Teixeira, F. A. Amaral, P. Proost, CXCL9-Derived
570 Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with
571 Glycosaminoglycan Interactions. *Front Immunol.* 8 (2017), doi:10.3389/fimmu.2017.00530.

572 29. V. Vanheule, R. Janssens, D. Boff, N. Kitic, N. Berghmans, I. Ronsse, A. J. Kungl, F. A.
573 Amaral, M. M. Teixeira, J. V. Damme, P. Proost, A. Mortier, The positively charged
574 COOH-terminal glycosaminoglycan binding CXCL9(74-103) peptide inhibits CXCL8-
575 induced neutrophil extravasation and monosodium urate crystal-induced gout in mice. *J Biol*
576 *Chem.*, in press, doi:10.1074/jbc.m115.649855.

577 30. B. E. Thacker, D. Xu, R. Lawrence, J. D. Esko, Heparan sulfate 3-O-sulfation: a rare
578 modification in search of a function. *Matrix Biol.* 35, 60–72 (2014).

579 31. J. Benesty, J. Chen, Y. Huang, I. Cohen, Noise Reduction in Speech Processing. *Springer*
580 *Top Signal Process*, 1–4 (2009).

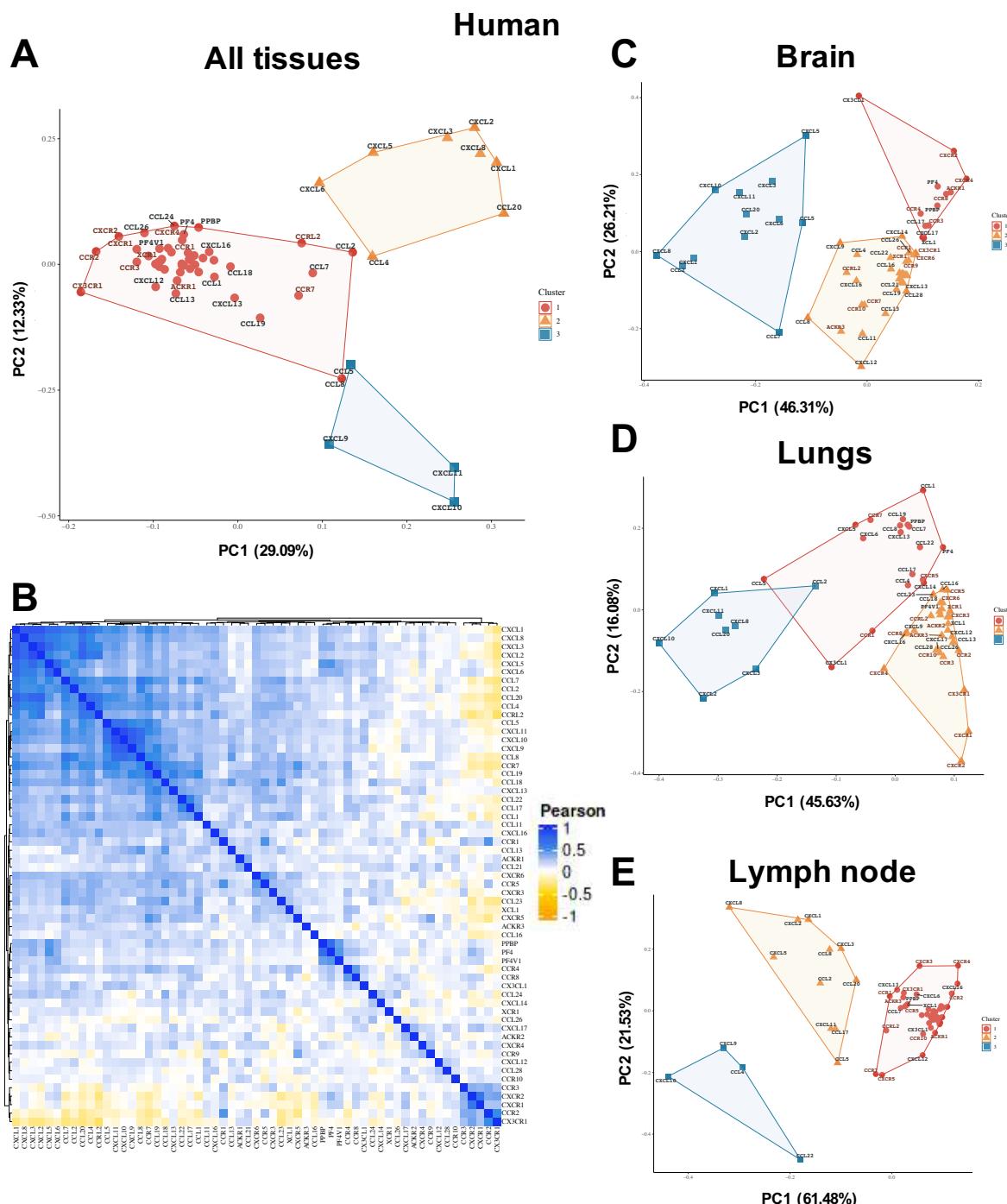
581 32. Z. Gu, R. Eils, M. Schlesner, Complex heatmaps reveal patterns and correlations in
582 multidimensional genomic data. *Bioinformatics*. 32, 2847–2849 (2016).

583 33. Y. Tang, M. Horikoshi, W. Li, ggfortify: Unified Interface to Visualize Statistical Results
584 of Popular R Packages. *R J.* 8, 474 (2016).

585 34. L. Kaufman, P. J. Rousseeuw, Finding Groups in Data. *Wiley Ser Probab Statistics*
586 (2018), doi:10.1002/9780470316801.

587 35. D. Thakar, E. Migliorini, L. Coche-Guerente, R. Sadir, H. Lortat-Jacob, D. Boturyn, O.
588 Renaudet, P. Labbe, R. P. Richter, A quartz crystal microbalance method to study the

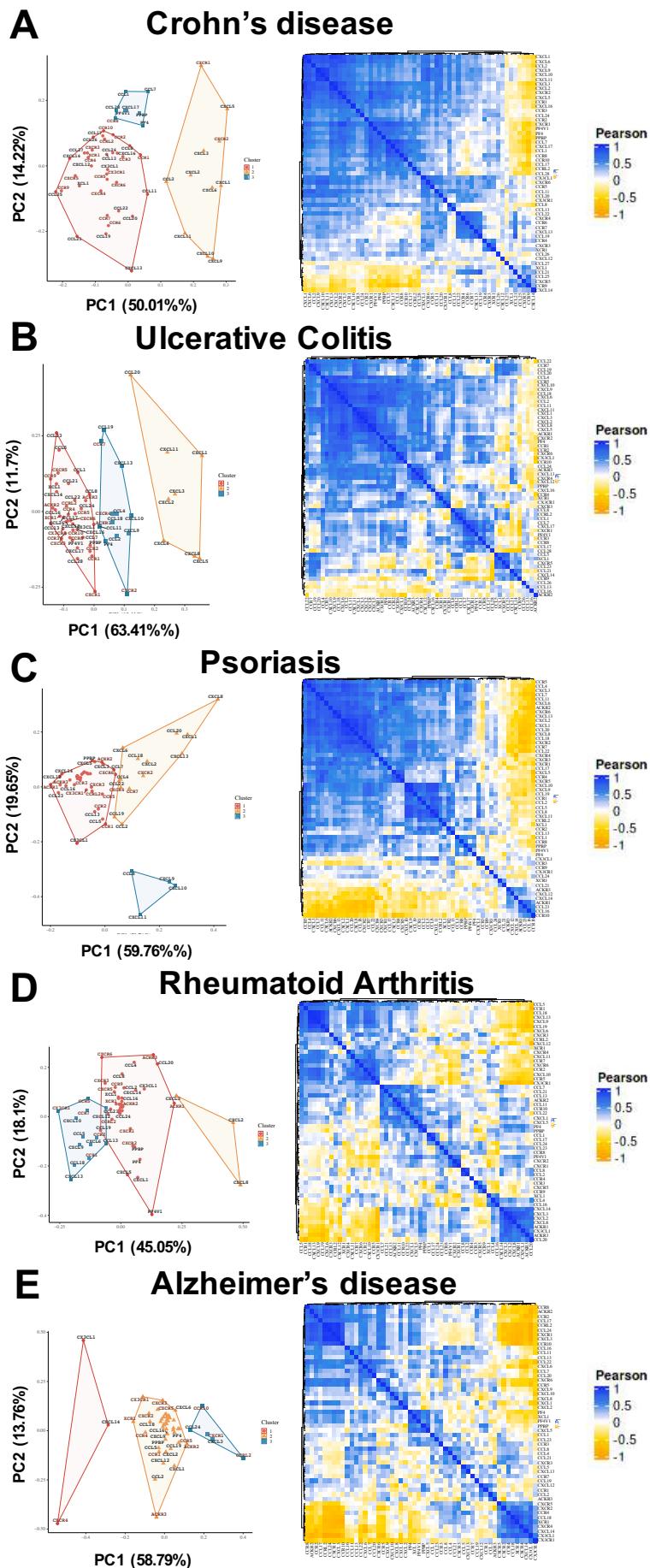
589 terminal functionalization of glycosaminoglycans. *Chem. Commun. (Camb.)*. 50, 15148–
590 15151 (2014).


591 36. P. Schuck, Size-distribution analysis of macromolecules by sedimentation velocity
592 ultracentrifugation and lamm equation modeling. *Biophys J.* 78, 1606–1619 (2000).

593 37. C. A. Brautigam, Calculations and Publication-Quality Illustrations for Analytical
594 Ultracentrifugation Data. *Meth Enzymol.* 562, 109–133 (2015).

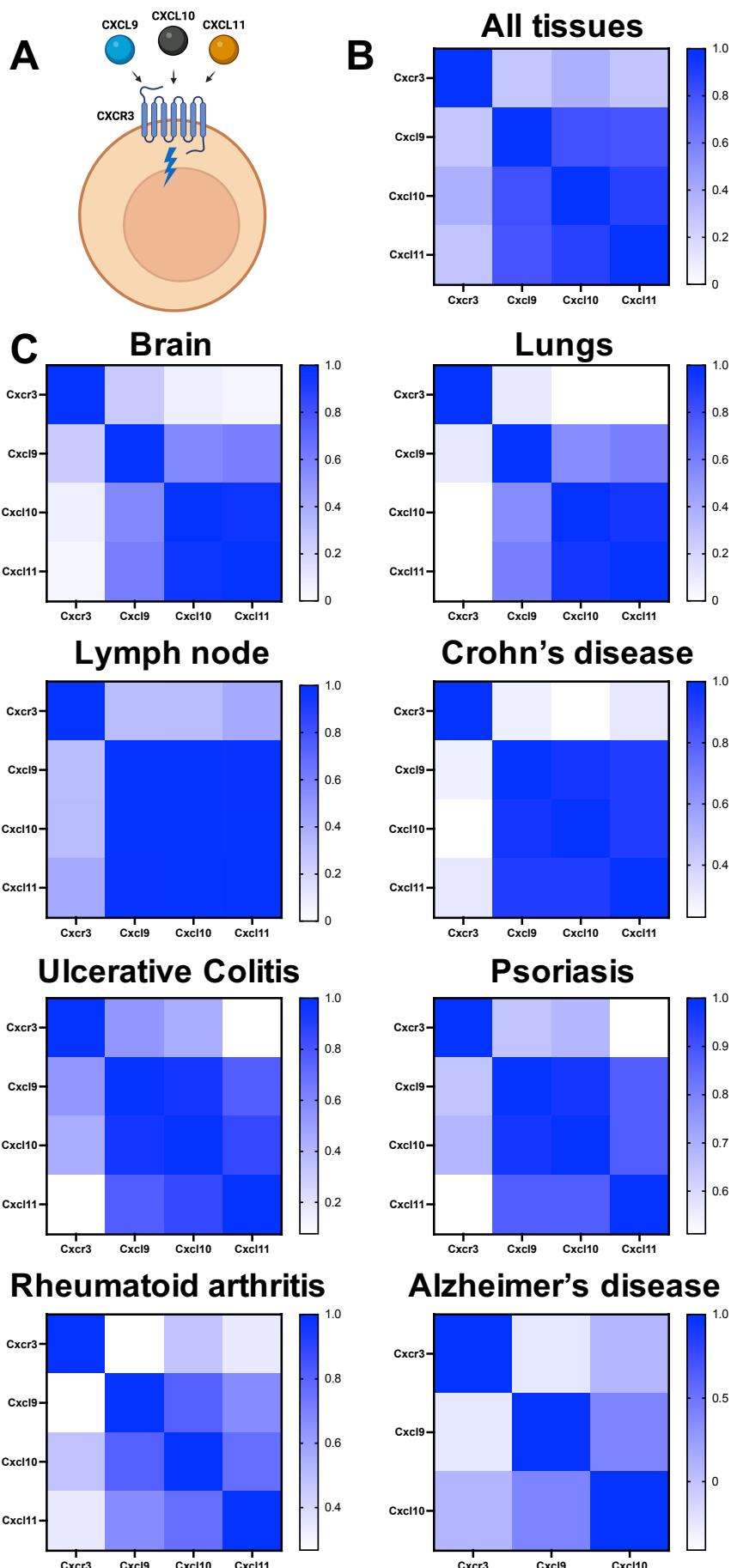
595

596


Figure. 1

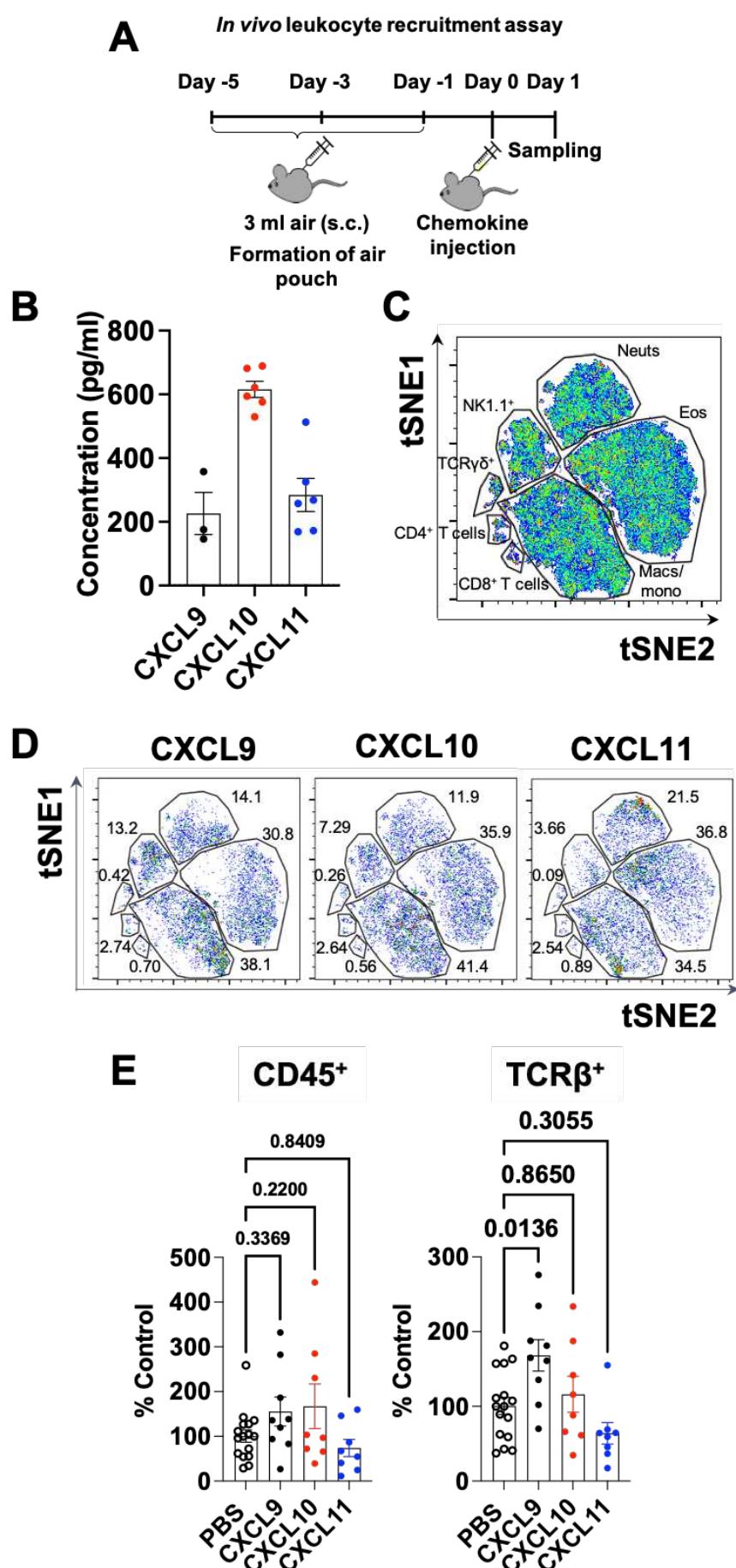
599 **Figure 1. Chemokine receptors and ligands are present in complex and tissue specific**
600 **patterns during inflammation.** The EMBL-ELI expression atlas was analysed for relatedness
601 on expression of all chemokine ligands and receptors in human data from (A) PCA analysis,
602 (B) heat map analysis of all data pooled or separated into PCA analysis of (C) brain, (D) lungs
603 or (E) lymph node.

604


Figure. 2

606 **Figure 2. Chemokine receptors and ligands are present in disease specific patterns.** The
607 EMBL-ELI expression atlas was analysed for relatedness on expression of all chemokine
608 ligands and receptors in human data from (A) Crohn's disease (B) ulcerative colitis, (C)
609 psoriasis, (D) rheumatoid arthritis and (E) Alzheimer's disease.

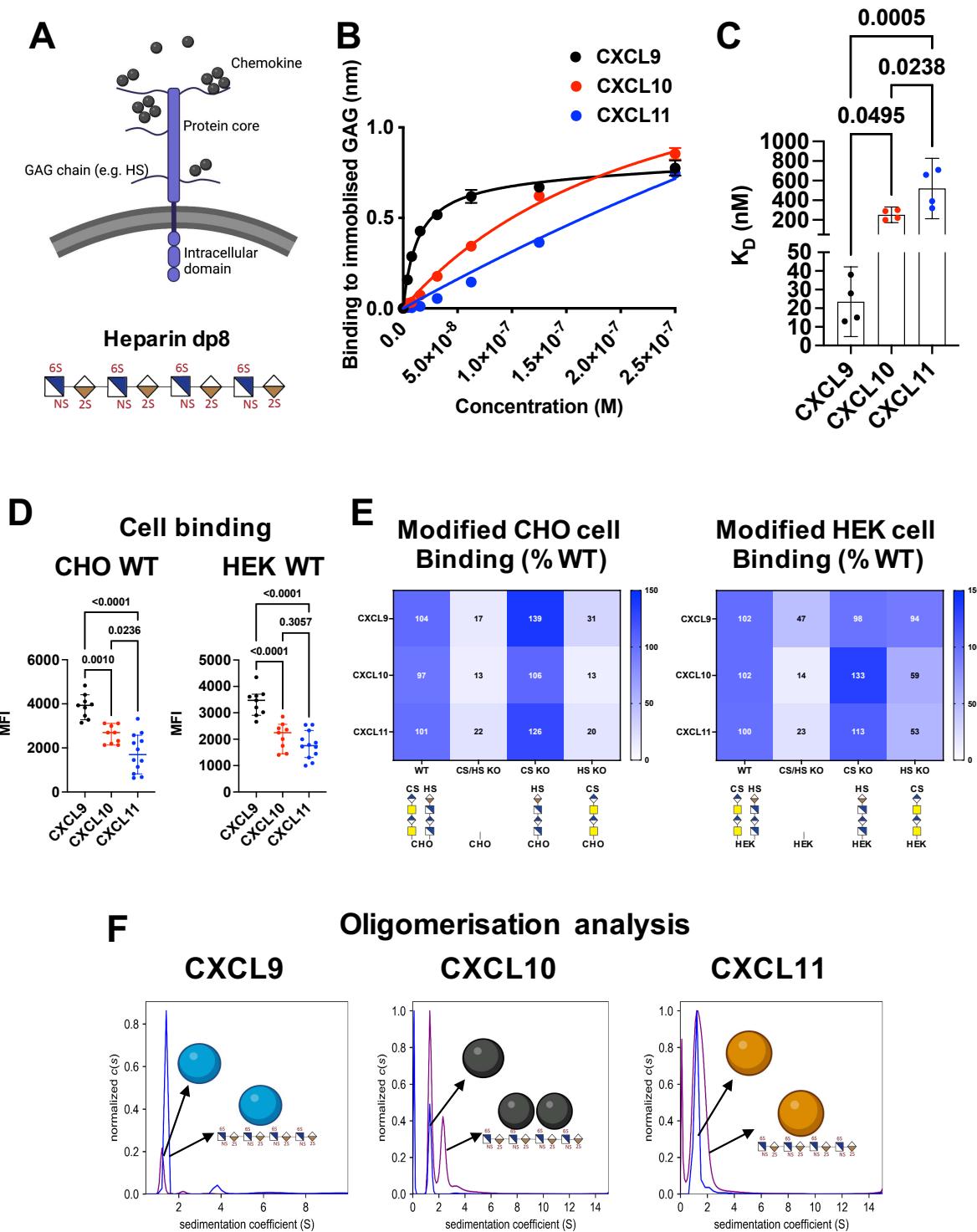
610


Figure. 3

612 **Figure 3. The CXCR3 ligands CXCL9, 10 and 11 are expressed in over-lapping patterns**
613 **across tissues and disease.** (A) CXCL9, 10 and 11 can all bind and signal through the
614 chemokine receptor CXCR3 that is typically found on T cells. (B) The EMBL-ELI expression
615 atlas (human) was analysed for relatedness in expression of CXCR3 and its' ligands CXCL9,
616 10 and 11 across all tissues or (C) in distinct tissues and diseases.

617

Figure. 4

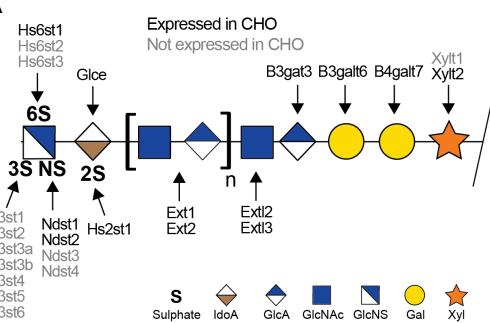


619 **Figure 4. CXCL9, 10 and 11 have different abilities to mediate cell recruitment *in vivo*.**

620 (A) Schematic of the *in vivo* air pouch leukocyte recruitment model. (B) Analysis of chemokine
621 concentration in the carrageenan inflamed air pouch. (C) Representative tSNE of all murine
622 cells gated on live, single, CD45⁺ and built on CD4, CD8, F4/80, Ly6C, Ter119, CD3, TCR β ,
623 CXCR3, Ly6G, CD11c, B220, CD11b, CD64, Siglec F, NK1.1 and TCR $\gamma\delta$. FlowSOM clusters
624 are illustrated by gates. (D) tSNE analysis of air pouches injected with equimolar amounts of
625 CXCL9, 10 and 11. (E) Quantification of all leukocytes (CD45⁺) and T cells within the air
626 pouch following injection of CXCL9, 10 or 11. E analysed using a one-way ANOVA.

627

Figure. 5



630 **Figure 5. CXCL9, 10 and 11 have different affinity interactions with ECM GAGs. (A)**
631 GAGs are sugar side chains found on cell surface and ECM proteoglycans and purified dp8
632 can be used as a model GAG. (B) Immobilised dp8 binding to chemokines in BLI equilibrium
633 signal is plotted against chemokine concentration. (C) BLI data in B was analysed for steady
634 state affinity (K_D) estimates. (D) Binding of biotin-labelled chemokines to WT CHO and
635 HEK293 cells quantified by mean fluorescent intensity (MFI) detected using flow cytometry.
636 (E) Binding of biotin-labelled chemokines to genetically modified CHO cells with KO of
637 B4galt7 (CS/HS KO), CSgalnact1/2/Chsy1 (CS KO) and Extl3 (HS KO), and HEK293 cells
638 with KO of B4GALT7 (CS/HS KO), CHSY1/3 (CS KO), and EXTL3 (HS KO). All data was
639 normalized to MFI for WT. (F) AUC analysis of chemokine oligomerization state in the
640 absence and presence of heparin dp8 GAG. Data plotted \pm SEM. (B) is representative of two
641 separate experiments, (C) is pooled data from two separate experiments, (D) contains data from
642 three separate pooled experiments, (E) is the mean of three separate pooled experiments and
643 (F) is representative of two separate experiments. C and D analysed using a one-way ANOVA.

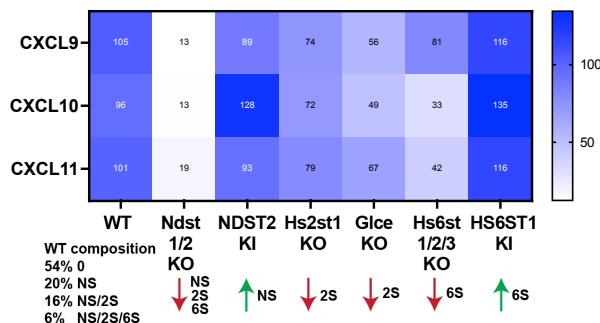
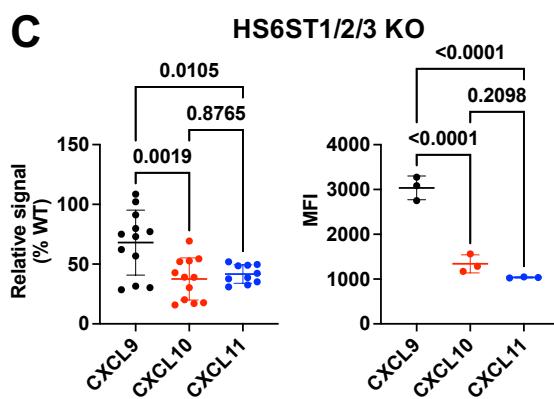
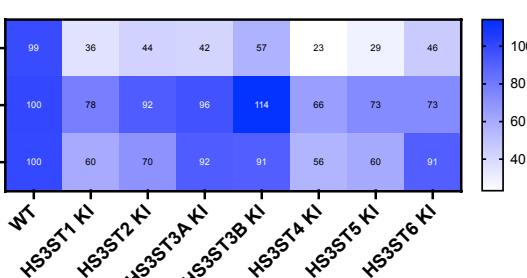
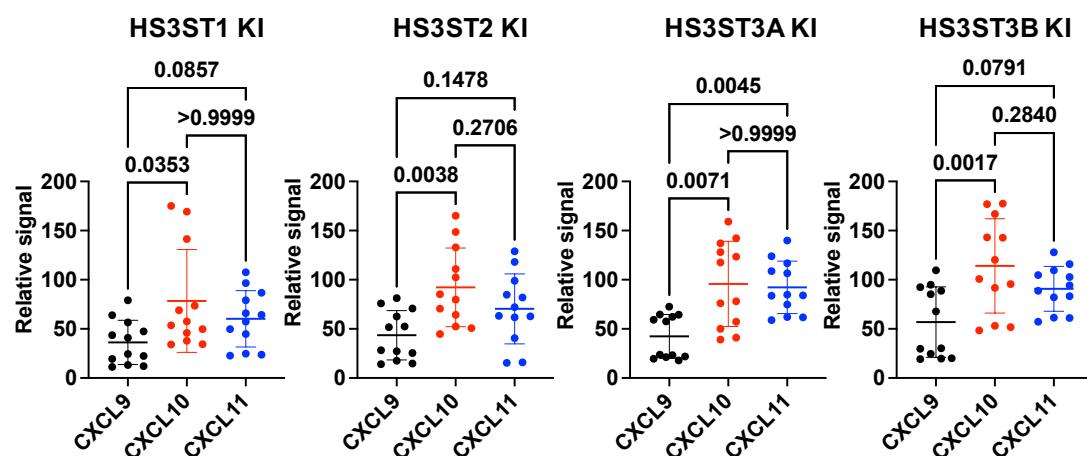

644

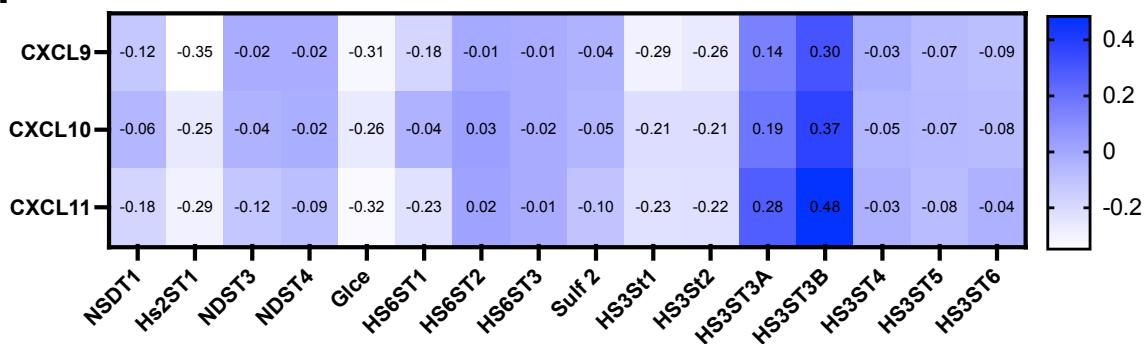
Figure. 6


A


B Modified CHO cell Binding (% WT)


C

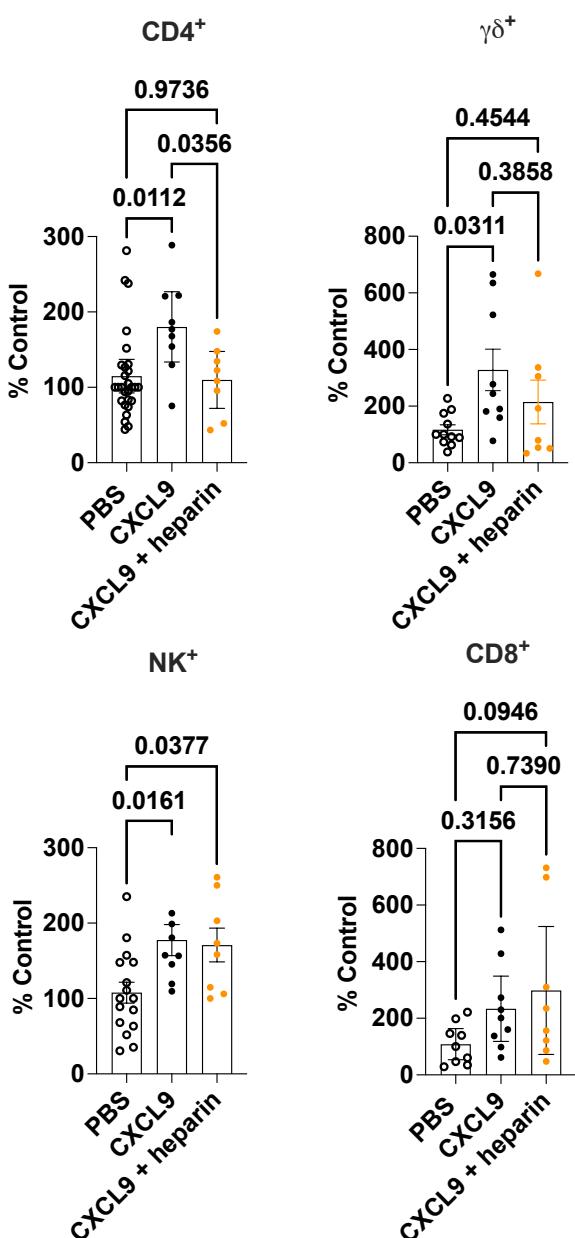
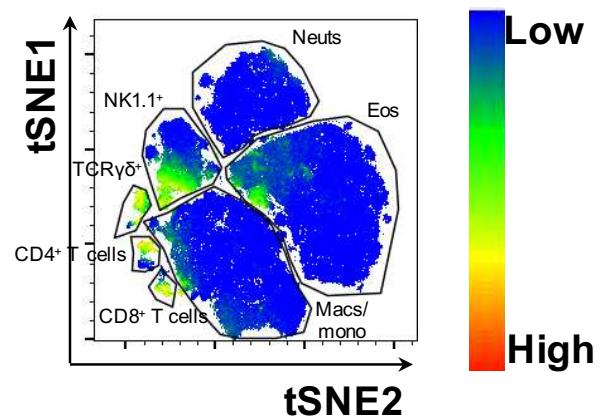
D Modified CHO cell Binding (% WT)



E

F

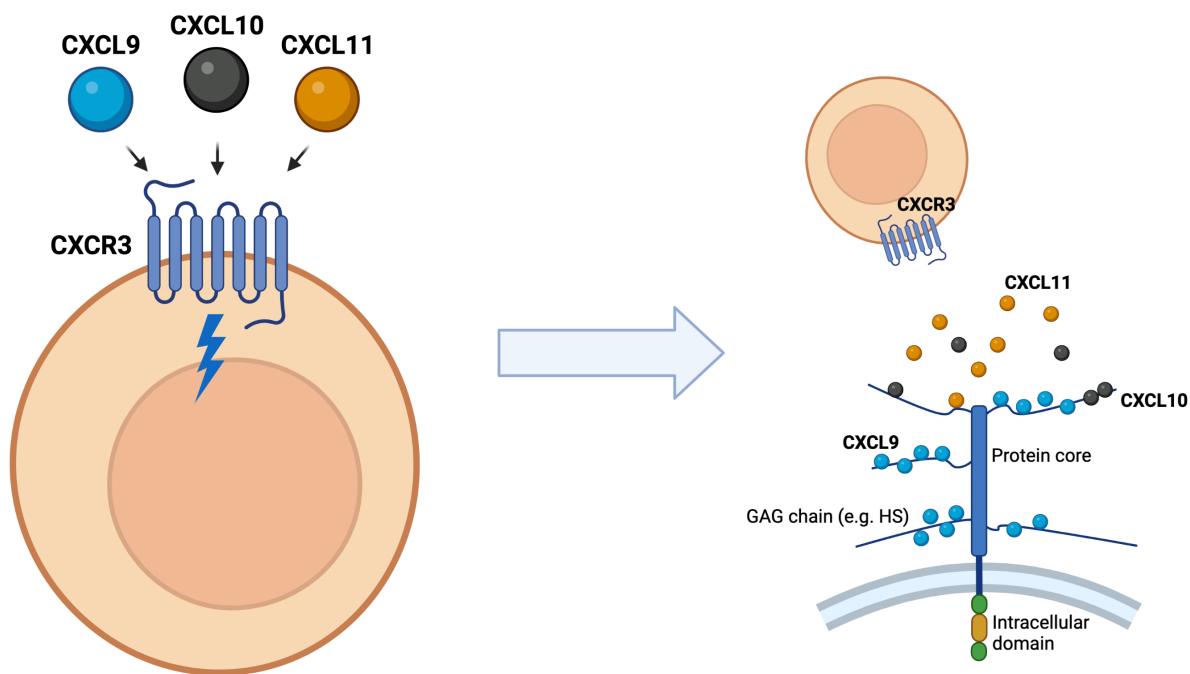
Expression correlation analysis (Pearson coefficient)

646 **Figure 6. ECM GAG sulphation mediates differentiation of binding to CXCL9, 10 and**
647 **11.** (A) Schematic of HS GAG structure, including sulphation points and the enzymes that
648 produce them. (B) Normalised (relative to wild type) binding of labelled CXCL9, 10 or 11 to
649 genetically modified CHO cells. (C) Normalised and absolute binding of CXCL9, 10 and 11
650 to CHO cells in which KS^{AST1/2/3} have been genetically removed. (D and E) Normalised
651 binding of CXCL9, 10 and 11 to CHO cells genetically engineered to express the enzymes
652 regulating 3-O GAG sulphation. (F) EMBL-ELI expression atlas analysis of
653 relatednessCXCL9, 10 and 11 and GAG sulphation gene expression. B and D, data plotted as
654 mean from three separate pooled experiments. C and E data plotted as mean \pm SEM from three
655 separate pooled experiments and analysed using a one-way ANOVA.

656

Figure. 7


CXCR3 expression

658 **Figure 7. CXCL9:GAG interaction plays specific roles in mediating recruitment of**
659 **different CXCR3⁺ cells.** (A) Representative tSNE analysis of CXCR3 expression of
660 chemokine recruited leukocytes gated on live, single, CD45⁺ and built on CD4, CD8, F4/80,
661 Ly6C, Ter119, CD3, TCR β , CXCR3, Ly6G, CD11c, B220, CD11b, CD64, Siglec F, NK1.1
662 and TCR $\gamma\delta$. (B) Normalised leukocyte counts of air pouches injected with the indicated
663 solutions. (B) Data expressed \pm SEM from three pooled separate experiments analysed using a
664 one-way ANOVA.

665

Figure. 8

666

667 **Figure 8. Complex chemokine signals are “decoded” via interactions with ECM GAGs.**

668 (A) CXCL9, 10 and 11 all bind to the same receptor with different affinities and biased
669 signalling outcomes and are found in over-lapping expression patterns during inflammation
670 and disease. (B) Differential GAG interactions means that CXCL9 is more likely to be retained
671 on GAGs on the cell surface or within the ECM, with CXCL10 and CXCL11 being more likely
672 to be present in their soluble state.

673

674