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SUMMARY 19 

 20 

Human gut bacteria perform diverse metabolic functions with consequences for host 21 

health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs 22 

several unusual chemical transformations, but it does not metabolize sugars and its core 23 

growth strategy remains unclear. To obtain a comprehensive view of the metabolic 24 

network of E. lenta, we generated several complementary resources: defined culture 25 

media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic 26 

reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate 27 

as a key carbon source while catabolizing arginine to generate ATP, traits which could be 28 

recapitulated in silico by our updated metabolic model. We compared these in vitro 29 

findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, 30 

identifying shared signatures across environments and highlighting catabolism of the 31 

host signaling metabolite agmatine as an alternative energy pathway. Together, our 32 

results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. 33 

 34 
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INTRODUCTION 38 

Human gut bacteria perform diverse and specialized metabolic functions with 39 

consequences for host health. Yet the core metabolic strategies relied upon for growth 40 

by many commensal gut microbes remain unclear, which is reflected in the large 41 

number of gut taxa that remain difficult to culture (Lagkouvardos et al., 2017; 42 

Tramontano et al., 2018). The growth strategies of individual gut species and strains 43 

shape their ability to colonize a host and their potential chemical interactions with other 44 

community members and with the host (Alexander et al., 2021; Medlock et al., 2018). 45 

Efforts to describe and model the metabolism and growth of various community 46 

members have included detailed biochemical studies of resource utilization by individual 47 

model species such as members of the genus Bacteroides (Koropatkin et al., 2012) and 48 

Clostridium sporogenes (Liu et al., 2022), as well as large-scale efforts to characterize 49 

species-level metabolic activity using community multi-omic profiling (Franzosa et al., 50 
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2018; Hertel et al., 2019). However, these efforts have been most fruitful for members of 51 

the microbiota that are found at high abundance and with prior knowledge of well-52 

annotated metabolic pathways. 53 

One key group of human gut microbes whose core metabolism remains 54 

particularly unclear are those that are fully asaccharolytic; i.e. derive no growth benefit 55 

from sugars and instead may rely on a range of more unconventional nutrients. Many of 56 

these taxa are members of the family Eggerthellaceae, which are widely found in 57 

mammalian gut microbiota (Almeida et al., 2019) but rarely found in other environments. 58 

The species Eggerthella lenta is a notable example of this group. E. lenta is a gram-59 

positive facultative anaerobe found at high prevalence in human gut microbiota (Koppel 60 

et al., 2018). Although E. lenta is commonly found in healthy individuals, it can cause 61 

severe bacteremia (Gardiner et al., 2015) and is increased in abundance in the gut 62 

microbiota of patients with several autoimmune diseases (Cekanaviciute et al., 2017; 63 

Chen et al., 2016; Islam et al., 2021; Zhu et al., 2021). 64 

E. lenta has distinctive metabolic properties and a capacity for many unusual 65 

chemical transformations, but it remains unknown how these properties fit into its overall 66 

metabolic network and evolutionary strategy. E. lenta strains can metabolize varied 67 

mammalian and dietary substrates, including cardenolides, bile acids, plant lignans, and 68 

dopamine (Bess et al., 2020; Devlin and Fischbach, 2015; Haiser et al., 2013; Koppel et 69 

al., 2018; Maini Rekdal et al., 2019). However, none of these compounds except 70 

dopamine have been reported to provide a growth or fitness advantage in any 71 

conditions tested to date. Genome analysis of E. lenta has also predicted that it may be 72 

able to perform autotrophic acetogenesis (Harris et al., 2018), but this prediction has not 73 

been biochemically validated. E. lenta culture conditions typically require rich media and 74 

high levels of the amino acid L-arginine. Past studies reported little to no growth of E. 75 

lenta in minimal or chemically defined media formulations (Hylemon et al., 2018; Maini 76 

Rekdal et al., 2020; Tramontano et al., 2018), complicating mechanistic biochemical 77 

studies of its metabolism.  78 

In this study, we first developed a chemically defined media that supports strong 79 

growth of E. lenta strains and described the metabolic footprint and growth determinants 80 

of E. lenta in this environment. We used stable isotope-resolved metabolomics (SIRM) 81 
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to investigate the pathways by which E. lenta metabolizes two key nutrients, acetate 82 

and arginine. This platform allowed us to curate and interpret a genome-scale metabolic 83 

model of the E. lenta type strain to make predictions about untested growth conditions 84 

and to identify gaps in the metabolic network representing novel enzymes or pathways. 85 

Extending this approach, we further documented extensive diversity in the metabolic 86 

footprint of a collection of E. lenta strain isolates. Finally, we evaluated the relevance of 87 

these findings to a host-associated context by profiling the metabolome of E. lenta-88 

colonized gnotobiotic mice, defining shared and divergent metabolic activities between 89 

in vitro and in vivo environments. In total, we elucidate an unusual metabolic niche and 90 

lay a comprehensive foundation for future mechanistic studies of E. lenta metabolism. 91 

 92 

RESULTS 93 

Extensive metabolite footprint of Eggerthella lenta in chemically defined media 94 

To identify key nutrients and metabolic pathways required for growth of E. lenta, 95 

we first developed a custom chemically defined media formulation, referred to as 96 

Eggerthella Defined Media 1 (EDM1). We designed the initial EDM1 formulation by 97 

making several modifications to a recipe previously reported to support growth of many 98 

human gut bacterial isolates but not E. lenta (Tramontano et al., 2018). We increased 99 

the quantity of L-arginine, removed sugars, and ensured the availability of all amino 100 

acids and vitamins/cofactors with fragmented or missing biosynthetic pathways in the E. 101 

lenta DSM 2243 genome [Virtual Metabolic Human database annotations (Noronha et 102 

al., 2018), Methods, Table S1]. The resulting media is composed of compounds 103 

typically present in the mammalian gut from microbial, host, and/or dietary sources. It 104 

supported robust E. lenta growth at a level comparable with standard culture conditions 105 

(Brain Heart Infusion media supplemented with 1% arginine; Figure S1A-B).  106 

Using this platform, we sought to identify primary metabolites used and produced 107 

by E. lenta, and the underlying core metabolic pathways active in the EDM1 condition. 108 

We used untargeted metabolomics to analyze culture supernatants of the type strain E. 109 

lenta DSM 2243 across 6 time points over its 50-hour growth curve in EDM1 batch 110 

culture (Figure 1A). After dereplication of features from positive and negative ionization 111 

modes, 4,095 features were detected, of which 636 (15.6%) were not detected in sterile 112 
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control media (sample mean intensity > 3x blank sample mean, Figure 1B). 612 113 

features (14.9% of features overall) were significantly different in abundance between 114 

sterile controls and supernatants at the final time point (FDR-adjusted p<0.1, Figure 115 

1C), of which the majority (444, 72.5%) were increased in E. lenta cultures. Notably, the 116 

number of differentially abundant features at the final time point, both in total and among 117 

those assigned an identification, is substantially higher than previously reported 118 

metabolomic profiles of this species in ISP-2 and Mega media (Bisanz et al., 2020; Han 119 

et al., 2021) (Figure S1C). This increased sensitivity was expected given our use of 120 

both chemically defined culture media and untargeted metabolomics. 121 

Metabolites of diverse chemical classes are modified by E. lenta (Figure 1C-D). 122 

Compounds produced by E. lenta tended to be amino acid and nucleic acid metabolites. 123 

As expected, these included ornithine and citrulline, suggesting activity from the 124 

arginine deiminase pathway, which is highly expressed by E. lenta in the presence of 125 

arginine (Haiser et al., 2013). However, other arginine-related metabolites were also 126 

produced at lower levels, including N,N-dimethylarginine, N5-(1-iminoethyl)-ornithine, 127 

and homocitrulline, suggesting that arginine may also be metabolized via other 128 

pathways. Several other metabolites produced at lower levels appeared to be products 129 

of metabolism of other amino acids in the media, including 4-methyl-2-hydroxy-130 

pentanoic acid (from leucine), indole-3-acetate and indole-3-lactic acid (from 131 

tryptophan), and 3-phenyllactic acid (from phenylalanine), consistent with one previous 132 

report of production of indole-containing compounds and phenyl acids by E. lenta 133 

(Beloborodov et al., 2009). Other metabolites produced in supernatants included the 134 

amino acids alanine, glutamate, glutamine, histidine, and lysine; as well as several 135 

intermediates in biosynthesis of both purines and pyrimidines (inosine, orotic acid, 136 

hypoxanthine, uridine, thymidine). Overall, the set of metabolites produced by E. lenta 137 

supports its previously reported dependence on arginine catabolism, but is highly 138 

multifaceted.  139 

Of the 54 compounds in our EDM1 recipe, 22 were detected by untargeted 140 

metabolomics but just three were depleted significantly in E. lenta cultures (Figure S1D, 141 

Figure 1D): arginine, riboflavin, and EDTA (which is likely reduced due to complexing 142 

with metal ions rather than from direct uptake or metabolism). This result suggested that 143 
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most compounds were included in excess, leading us to reduce the concentration of 144 

several non-depleted amino acids for subsequent experiments (Table S1). Interestingly, 145 

5 of the identified metabolite features significantly depleted by E. lenta were not 146 

explicitly included in our defined media formulation, including guanine and five arginine 147 

dipeptides (Figure 1D). Since these compounds were found at low intensities, were 148 

annotated with high confidence, and are structurally related to intentionally included 149 

compounds, we inferred that they may be trace contaminants from commercial 150 

preparations of uracil and arginine (see Methods). Their rapid depletion indicates that 151 

their presence may influence growth and metabolic activity and reinforces the value of 152 

untargeted metabolomic profiling.  153 

We examined the dynamics of metabolite production and depletion over the 50-154 

hour growth of E. lenta in batch culture. Hierarchical clustering of metabolite trajectories 155 

indicated that among both produced and depleted features, some metabolites are 156 

produced/depleted rapidly early in growth while others shift more dramatically later as 157 

the culture approaches stationary phase (Figure 1D, Figure S1E). This observation 158 

suggests that two or more distinct growth phases may be occurring as resources are 159 

consumed from the media. Among identified metabolites, the trace guanine and 160 

arginine dipeptides are first depleted from the culture in early time points while citrulline, 161 

inosine, and indole-3-lactic acid are produced at relatively higher rates (Figure 1D). In 162 

the later phase, arginine is depleted more rapidly while alanine, 4,6-163 

dihydroxypyrimidine, and various N-acetylated amino acid metabolites are produced. 164 

To gain a better understanding of the contributions of individual nutrients to E. 165 

lenta growth, we systematically tested the effect of their removal from the media on 166 

growth of E. lenta DSM 2243 (Methods, Table S2). We collected growth curve data 167 

from EDM1 with and without each component and fit logistic growth models to the 168 

results, finding that 22 out of 41 compounds tested had a significant effect on at least 169 

one of the following growth parameters (Wilcoxon rank-sum test, FDR-adjusted p<0.2): 170 

carrying capacity (maximum density), growth rate, time to mid-exponential, and/or area 171 

under the growth curve (Figure S2A). The only compounds whose individual removal 172 

fully prevented growth of E. lenta were arginine, tryptophan, riboflavin, biotin, and 173 

magnesium (although it is plausible that other compounds are required in trace amounts 174 
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and were not fully removed by our preparation methods, particularly minerals such as 175 

iron). In general, removing amino acids most commonly tended to reduce carrying 176 

capacity, consistent with a role as carbon and/or energy sources, while removing 177 

vitamins had more varied effects on the growth curve (Figure S2B).  178 

 179 

Acetate and arginine are key carbon and energy sources for E. lenta 180 

 Surprisingly, we found that sodium acetate contributed substantially to E. lenta 181 

growth in EDM1 (Figure S2A), even though it was included at a relatively low 182 

concentration (1 mM, compared to 57 mM arginine in EDM1). Since acetate is an 183 

abundant and variable metabolic byproduct of diverse human gut microbes (van der 184 

Hee and Wells, 2021), dependence on acetate could shape the ecological interactions 185 

of E. lenta in the human gut microbiota. Although our untargeted LC-MS workflow was 186 

not able to quantify acetate, we had observed accumulation of several N-acetylated 187 

compounds in supernatant (Figure 1D), suggesting that the amount of acetate 188 

incorporated into core metabolic pathways may be relatively small. However, acetate 189 

provided a dose-dependent increase in carrying capacity for E. lenta up to a 190 

concentration of at least 10 mM in EDM1 (Figure 2A). We therefore used a targeted 191 

derivatization and LC-MS/MS method to quantify acetate levels in supernatants from 192 

three strains of E. lenta (DSM 2243, AB8n2, and Valencia) grown in EDM1 with different 193 

acetate concentrations (0, 1, or 10 mM). Acetate was depleted to approximately the limit 194 

of quantification in cultures from the 1 mM acetate group, but not the 10 mM acetate 195 

group, confirming that a relatively small quantity is required for the observed level of E. 196 

lenta growth (Figure S3A). We tested the effect of replacing acetate with equimolar 197 

amounts of 10 other small carbon compounds, finding that no tested alternative 198 

compound provided a comparable benefit (Figure 2B). Based on these results, we 199 

chose to further investigate E. lenta’s acetate utilization pathways.  200 

First, we used our untargeted LC-MS metabolomics workflow to compare 201 

metabolites in supernatant over time from the same three E. lenta strains grown in 202 

EDM1 with different acetate concentrations (E. lenta DSM 2243 shown in Figure 2C, 203 

AB8n2 and Valencia in Figure S3B-C). Using smoothing spline models, we found that 204 

many produced or depleted compounds had significantly different abundance 205 
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trajectories across the growth phase (FDR-adjusted p<0.25) depending on the presence 206 

of acetate. These included pyrimidine metabolites, N-acetylated amino acids, amino 207 

acid metabolites including indole-3-lactic acid and 2-hydroxyglutaric acid, and 423 208 

unidentified metabolite features (Figure 2C). Of the 612 features produced by E. lenta, 209 

53.4% had significantly different trajectories in the no acetate condition. Most 210 

differentially abundant compounds were associated with cell density and produced by E. 211 

lenta at higher levels when grown with higher acetate concentrations, reinforcing the 212 

general loss of biomass production in the absence of acetate.  213 

To identify the specific pathways by which acetate is metabolized by E. lenta, we 214 

next profiled metabolites in the supernatant across time during growth of the same three 215 

strain isolates of E. lenta with 13C2 acetate provided as a stable isotope-labeled 216 

substrate (DSM 2243 in Figures 2D-F, 2 additional strains in Figure S4). We detected 217 

the incorporation of 13C labeled atoms in 52 features in E. lenta supernatants at the final 218 

time point, of which 24 were previously identified as responsive to acetate 219 

concentrations (Methods, Figures 2D, S4). Acetate was incorporated into diverse 220 

products across metabolite classes, but was found at the highest enrichment levels in 221 

nucleotide and carbohydrate metabolites (Data S1).  222 

Because many core metabolites are not produced in excess or secreted during 223 

growth, we also analyzed intracellular metabolites from extracts collected at a single 224 

time point in the late-exponential growth phase. Labeled intracellular compounds 225 

included glutamate, glutamine, sugars, nucleotide metabolites, and UDP-N-acetyl-226 

glucosamine, a primary component of peptidoglycan (Figure 2E), as well as seven 227 

labeled compounds of unknown identity. The signal from carbohydrate-related 228 

compounds including glucose-6-phosphate and UDP-N-acetyl-glucosamine was almost 229 

exclusively from labeled isotopologues (97.5% in 1 mM acetate and 100% in 10 mM 230 

acetate), indicating that synthesis of these compounds using acetate may be more 231 

efficient than any alternative non-acetate-dependent pathways available to E. lenta in 232 

the EDM1 condition.  233 

Acetate-derived extracellular and intracellular metabolites were consistent across 234 

the two additional strains of E. lenta. While the overall rate of acetate incorporation 235 

differed between the three strains, the set of extracellular and intracellular labeled 236 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508335
http://creativecommons.org/licenses/by/4.0/


 

 9

compounds was fully consistent. Isotopic enrichment for two additional extracellular 237 

metabolites (malonic acid and 3-hydroxy-myristic acid) was identified in both of these 238 

strains as well as four additional intracellular metabolites in one or both strains (all of 239 

unknown identity), confirming that acetate is incorporated by E. lenta into varied 240 

biosynthetic pathways (Figure S4).  241 

Based on these results and metabolic gene annotations of the E. lenta DSM 242 

2243 genome, we hypothesized that E. lenta converts acetate to acetyl-CoA via acetate 243 

kinase (ELEN_RS08645) and phosphate acetyltransferase (ELEN_RS08640). Acetyl-244 

CoA could then be used as a carbon source via two routes: conversion to glutamate by 245 

a partial citric acid cycle, and synthesis of pyruvate by the enzyme pyruvate-ferredoxin 246 

oxidoreductase (PFOR, ELEN_RS10770) (Figure 2F). This hypothesis is consistent 247 

with the organization of the E. lenta DSM 2243 genome, as two of the three enzymes 248 

required for conversion of acetyl-CoA to glutamate are co-located (aconitate hydratase 249 

and isocitrate dehydrogenase, ELEN_RS11710, ELEN_RS11715). Genes for another 250 

partial component of the citric acid cycle—fumarate hydratase and malate 251 

dehydrogenase—are co-located in another region of the genome (ELEN_RS056[70-252 

90]), suggesting they may act in a separate functional role. Taken together, these data 253 

suggest that E. lenta uses acetate as a key carbon source for synthesis of biomass 254 

components, in tandem with ATP generation from arginine catabolism, anaerobic 255 

respiration, and/or other unknown pathways.  256 

However, we inferred that acetate is likely not the sole carbon source used by E. 257 

lenta in EDM1, given the relatively low concentration required for growth promotion and 258 

the abundance of unlabeled isotopologues detected for many produced compounds 259 

(Data S1). We wondered whether arginine or ornithine may also be substrates for 260 

synthesis of biomass components, or if arginine is exclusively catabolized to ornithine 261 

for ATP production, as suggested by one previous study in rich media (Sperry and 262 

Wilkins, 1976). We first confirmed that citrulline, but not ornithine, can replace arginine 263 

with nearly equivalent growth in EDM1, replicating a previous result in rich media 264 

[(Haiser et al., 2013), Figure S5A]. We then analyzed intracellular and extracellular 265 

metabolites from E. lenta DSM 2243 growing in EDM1, this time with 13C6 L-arginine as 266 

a stable isotope-labeled substrate. We found by far the largest composition of 13C 267 
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enriched isotopologues in ornithine, citrulline, and other closely related compounds 268 

(Figure S5B-E), indicating that arginine is predominately processed by the arginine 269 

deiminase pathway. However, we observed M+1 enrichment (i.e. incorporation of a 270 

single 13C carbon atom from arginine) in produced glutamine, orotic acid, and 271 

pyrimidines, among others (Figure S5C-D), suggesting biosynthesis from the 272 

carbamoyl phosphate intermediate. Labeled M+5 isotopologues of proline and 273 

prolinamide also appeared at low levels at later time points, likely indicating a slower 274 

flux producing these compounds from accumulated ornithine (Figure S5D-E). Yet in 275 

total, only 29/324 features were detected with 13C enrichment for five or more carbon 276 

atoms in intracellular extracts, and most appeared closely related to arginine, citrulline, 277 

and ornithine (Data S1). These results confirm that arginine is primarily an energy 278 

source and not a major biosynthetic precursor for E. lenta (Figure S5F).  279 

 280 

A genome-scale metabolic model of the E. lenta type strain recapitulates growth, 281 

metabolite, and gene expression phenotypes 282 

COnstraint-based Reconstruction and Analysis (COBRA) is a set of 283 

computational tools that has been applied to interpret -omics data and optimize 284 

metabolic activities for various microbes of importance in basic science, metabolic 285 

engineering, and medicine (Gu et al., 2019; Monk et al., 2017; Zhang et al., 2017). It 286 

has been proposed as a promising strategy to predict phenotypes and design 287 

modifications to complex host-associated microbial communities by synthesizing 288 

information about the physiology of individual members and the available nutrients into 289 

a rational framework (Chiu et al., 2014; Diener et al., 2020; Hertel et al., 2019). 290 

However, the value of such a framework is dependent on its ability to accurately 291 

describe the contributions of metabolically active community members. The 292 

reconstructions currently available for many anaerobic microbes have only been curated 293 

to a limited degree and remain minimally validated. Therefore, we used our in vitro 294 

platform to curate and analyze a genome-scale metabolic network model of E. lenta 295 

DSM 2243 growth in EDM1 and assessed the degree to which this model can explain E. 296 

lenta metabolic phenotypes across conditions.  297 
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We obtained a genome-scale metabolic reconstruction from the AGORA 298 

database version 2.0.0 (Heinken et al., 2020), which we term iEL2243_2. Initial testing 299 

indicated that the model was incapable of biomass production in EDM1 media, so we 300 

performed additional curation of model reactions and transporters (Table S3). We 301 

curated the reconstruction based on genome annotations from multiple sources (Henry 302 

et al., 2010; Pascal Andreu et al., 2021; Price et al., 2022) and added transporters for 303 

strongly depleted and produced compounds that were identified with high confidence in 304 

our metabolomics data. Throughout this process, we compared model results with 305 

experimentally observed growth in chemically defined media conditions, using these 306 

results to inform the curation process and add missing reactions where supported by 307 

experimental data. We simulated metabolic fluxes in different conditions by converting 308 

media concentrations into estimated maximum nutrient uptake rates for each 309 

compound. While these models are typically validated by comparison with gene 310 

essentiality data (Thiele and Palsson, 2010), the tools to generate such data are not yet 311 

available for E. lenta. We instead evaluated whether the model was consistent with 312 

observed metabolite utilization and production and with gene expression during 313 

exponential growth in EDM1, and whether predicted essential genes were conserved 314 

across strain genomes.  315 

This process resulted in a model with 1,244 reactions linked to 727 gene 316 

annotations and 1,218 metabolites (Figure 3A). The largest number of reactions were 317 

in the subsystems of fatty acid synthesis, extracellular transport, and 318 

glycerophospholipid biosynthesis (Figure 3B). Flux balance analysis of the final model 319 

estimated the maximum growth rate of E. lenta DSM 2243 in EDM1 to be 0.96 hr-1, 320 

higher than experimental values (median 0.32 hr-1, Figure S2B). The existence of a 321 

difference between these values is not surprising given that organisms do not 322 

necessarily grow at their theoretical maximum growth rate, and growth constraints may 323 

exist that are not encoded in the metabolic network model (Thiele and Palsson, 2010). 324 

However, the relatively large discrepancy indicates that additional modifications to the 325 

biomass equation may further improve the model. 326 

The initial model with nonzero growth in EDM1 did not recapitulate the 327 

experimentally observed dependencies on either arginine or acetate (Figure 3C). We 328 
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noticed that this lack of dependency was linked to the inclusion of Wood-Ljungdahl 329 

acetogenesis reactions in the model, previously suggested to be present in E. lenta 330 

(Harris et al., 2018; Hylemon et al., 2018). The presence of these reactions allowed the 331 

model to draw on an effectively unlimited source of acetyl-CoA from CO2 and H2. 332 

Regardless of whether the previous annotation of this pathway (which has not been 333 

biochemically validated) is correct, reductive acetogenesis may not be 334 

thermodynamically favorable during in vitro growth in our anaerobic chamber, where the 335 

H2 concentration is ≤ 5% (Smith et al., 2020). Blocking model flux through the carbon 336 

monoxide dehydrogenase reaction of this pathway increased growth dependency on 337 

uptake of both arginine and acetate, reflecting our experimental observations (Figure 338 

3C). The model also found no growth benefit from pyruvate, citrate, and other fatty acids 339 

based on a lack of annotated transporters for these compounds, consistent with 340 

experimental results.  341 

In another key curation step, required to enable biomass production by the model 342 

in EDM1, we noticed that E. lenta lacks an annotated gene for the enzyme enoyl-acyl 343 

protein carrier reductase, which performs the elongation in the typical type 2 fatty acid 344 

synthesis pathway used in bacteria. Because fatty acid biosynthesis is essential and 345 

previous studies have noted a high level of diversity in this essential step among 346 

bacterial genomes (Massengo-Tiassé and Cronan, 2009), we preserved this step in the 347 

model without any current gene annotation. This gap may indicate a novel enzyme 348 

family performing this conversion (Table S3). 349 

We applied the iEL2243_2 model to predict growth phenotypes across our leave-350 

one-out chemically defined media conditions, finding that these were generally 351 

consistent with some remaining notable exceptions (Figure 3D, overall Matthews 352 

correlation of 0.35, Fisher exact test odds ratio=9.1, p=0.06). Amino acid dependencies 353 

matched well between the model and experimental data, with the exception of cysteine, 354 

which likely provides a benefit as a reducing agent that is not accounted for by the 355 

model (Strobel, 2009). Vitamin dependencies were also generally consistent, with the 356 

notable exception of folate, which had no effect on growth despite the lack of several 357 

genes for reactions in the canonical folate biosynthesis pathway and the absence of a 358 

known dihydrofolate reductase enzyme (Rodionov et al., 2019). The phenomenon of 359 
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presumed-essential but absent folate genes in bacterial genomes has been recognized 360 

previously (de Crécy-Lagard et al., 2007; Levin et al., 2004; Rodionov et al., 2019), 361 

suggesting the possible existence of undiscovered alternative enzymes. Notably, growth 362 

was negatively affected by the removal of the folate precursor p-aminobenzoate (Figure 363 

S2A). Most of the remaining discrepancies between the model and the growth data are 364 

in conditions in which metal ions were removed, which were expected to be required by 365 

the model (Cu2+, Ca2+) but were not essential based on our experiments (Figure 3E). 366 

However, these likely reflect difficulties in fully removing trace minerals in our 367 

experiment rather than errors in the model reconstruction. 368 

While we curated the model based on growth data, we did not incorporate our 369 

metabolomics data except to add transporters for highly differentially abundant 370 

metabolites. Even so, we found that there was a high correspondence between 371 

observed metabolite shifts and the possible uptake and secretion fluxes inferred by flux 372 

variability analysis (FVA) of the model. FVA identifies the range of fluxes for each 373 

reaction that are compatible with near-maximum growth. All 37 identified metabolites 374 

present in both the model and our metabolomics data displayed experimental shifts in 375 

abundance qualitatively compatible with inferred flux ranges (Figure 3F), providing 376 

additional support for model quality.  377 

We further compared the iEL2243_2 inferred flux profile with RNA-Seq data from 378 

E. lenta growing in this condition, which was not used for model curation (Methods). 379 

71.9% of genes linked to active reactions were in the top half of metabolic genes by 380 

expression level in the EDM1 condition (> 109 transcripts per million), and 91.9% were 381 

in the top 75%. Expression level and absolute flux magnitude were highly correlated 382 

across all genes linked to metabolic reactions (Spearman rho=0.34, p<2.2x10-16, Figure 383 

3G). While we would not expect a perfect correlation between expression and metabolic 384 

flux, correspondence between the two provides support that our model has correctly 385 

identified pathways with high activity. 386 

Having established consistency with experimental data, we next examined 387 

overall reaction fluxes and key pathways in the final model. We found that fewer than 388 

half of reactions were predicted to be active in EDM1 by parsimonious flux balance 389 

analysis (pFBA, Figure 3A). In the pFBA solution, acetate is incorporated into a partial 390 
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reductive citric acid cycle via pyruvate formate oxidoreductase (PFOR), which then 391 

feeds lipid and carbohydrate biosynthesis pathways, consistent with our SIRM results 392 

and with our RNA-Seq data, where PFOR was one of the most highly expressed genes. 393 

The vast majority (99.6%) of arginine uptake flux was directed to ATP generation, and 394 

58.4% of ATP generation was sourced from the arginine deiminase pathway (which 395 

contains the 1st, 3rd, 4th, and 5th most highly expressed protein-coding genes in our 396 

RNA-Seq data, Table S4). The remainder of ATP generation in the pFBA solution was 397 

attributed to anaerobic respiration via an ATP synthase reaction, although the specific 398 

electron transport chain substrates were not clear. However, consistent with this 399 

hypothesis, genes linked to respiration were expressed at moderate levels, including 400 

ATP synthase subunits and an Rnf electron transport complex, and E. lenta is known to 401 

have a large number of poorly characterized enzymes potentially involved in electron 402 

transfer (Maini Rekdal et al., 2020; Ravcheev and Thiele, 2014). The model also 403 

identified the regeneration of NADP+ via transaminase reactions (using mainly pyruvate 404 

and/or branched chain amino acids) and glutamate dehydrogenase as a key high-flux 405 

pathway. 406 

Finally, we applied the model to predict the effects of knocking out individual 407 

reactions on growth of E. lenta. 15.3% of all reactions in iEL2243_2 were predicted to 408 

be essential in any condition and 19.4% to be essential in EDM1. These reactions 409 

tended to be involved in lipid metabolism, cell wall biosynthesis, and transport of 410 

essential metabolites (Figure S6A). Genes linked to reactions whose removal reduced 411 

growth to < 70% of wild type levels were found in a greater number of E. lenta strain 412 

genomes than other genes (Wilcoxon rank-sum test, p=0.001, Figure S6B) and were 413 

more likely to be part of the core genome (found in all strains; Fisher exact test odds 414 

ratio = 1.74, p=0.0002). Overall, while significant manual curation was required for the 415 

model to recapitulate realistic growth in EDM1, our updated model is able to predict and 416 

interpret many aspects of E. lenta growth and metabolic activity across conditions. 417 

 418 
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The strain-variable E. lenta metabolome is enriched for nucleotides and cell wall 419 

metabolites and can be linked to genome variation 420 

 Our initial efforts to characterize E. lenta core metabolism focused mainly on the 421 

type strain. However, E. lenta has an open pan-genome and established variability in 422 

secondary and xenobiotic metabolism (Bisanz et al., 2020). We therefore evaluated the 423 

extent to which the metabolic profile of this species is conserved across a larger number 424 

of strain isolates. We used untargeted metabolomics to profile stationary phase 425 

supernatants of 30 strains grown in EDM1 (Figure S7A-B) and used linear models to 426 

identify features with significant strain-associated differences in abundance. Over half of 427 

the features produced by the UCSF DSM 2243 type strain (52.8%) were variable across 428 

strains of E. lenta (Figure 4A), and 1,097 features produced by at least two other 429 

strains were not produced by the type strain. Divergence in metabolite profiles between 430 

strains was not associated with phylogenetic divergence based on an alignment of core 431 

genes (Procrustes analysis, p=0.31, Figure 4B), consistent with previous findings from 432 

untargeted metabolomics profiling of these strains in rich media with a different 433 

metabolomics platform (Bisanz et al., 2020). Overall metabolite profiles were 434 

moderately associated with presence/absence patterns of variable gene families 435 

between strains (p=0.03, Figure 4B), indicating that the presence or absence of 436 

biosynthetic genes and pathways only partly explains variation in the metabolome and 437 

that other factors like gene regulation and enzymatic activity may also play a substantial 438 

role.  439 

 While strain-variable metabolites were quite diverse, they were enriched for 440 

certain chemical classes. 92.0% of strain-variable metabolites had no identity 441 

information, a similar ratio to the total number of metabolite features (91.8% of features 442 

in the whole dataset). Among other features, organic acids (which included many amino 443 

acid metabolites) were the least likely to be strain-variably produced. In contrast, 444 

organic oxygen compounds (which included several features identified as sugars) and 445 

nucleotide metabolites were more likely to be strain-variably produced, and organic 446 

heterocyclic compounds and benzenoids were enriched for strain-variable depletion 447 

(Figure 4C). The share of strains producing any individual feature varied widely (Figure 448 
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4C), although the largest number of features (76.8%) were produced by either only a 449 

few (<4) strains or nearly all (>27) strains (Figure S7C).  450 

Given the large share of unidentified metabolites in our dataset, we evaluated 451 

whether linking strain-variable metabolites with strain-variable genes could inform 452 

metabolite annotations. We performed an association analysis between metabolite 453 

feature abundances and the presence of specific accessory gene families, applying a 454 

method developed for previous analysis of this E. lenta strain collection (Bisanz et al., 455 

2020). A full 39.0% of metabolite features were significantly associated with the 456 

presence of one or more variable gene families (FDR-adjusted p<10-4). Using stricter 457 

filtering criteria for significance, effect size, and separability, 84 metabolite features 458 

(1.3%), of which 80 had no annotation, were linked with the presence of variable genes 459 

(Table S5, Methods). Gene families linked to these features were enriched for KEGG 460 

annotations in sulfur metabolism (q = 0.00017), ABC transporters (q = 0.02), porphyrin 461 

metabolism (q = 0.03), and biosynthesis of nucleotide sugars (q = 0.049), consistent 462 

with the profile of identified variable metabolites. 463 

As a case study, we further examined two of the top hits from this analysis, two 464 

closely related but unidentified metabolite features highly associated with the presence 465 

of two adjacent gene families (Figure 4D). These gene families were annotated by 466 

Prokka (Seemann, 2014) as ribulose-5-phosphate reductase 1 (tarI) and a ribitol-5-467 

phosphate cytidylyltransferase (tarJ), which are essential enzymes in the biosynthesis 468 

of CDP-ribitol teichoic acid. Teichoic acids are an abundant component of the cell wall 469 

of gram-positive bacteria that can take multiple forms and can be synthesized with 470 

either CDP-glycerol or CDP-ribitol subunits (Brown et al., 2013; Percy and Gründling, 471 

2014; Weidenmaier and Peschel, 2008). Interestingly, the m/z value and MS2 spectrum 472 

of the linked features were consistent with an annotation as the two dominant [M+Cl]- 473 

naturally occurring isotope adducts of a 5-carbon sugar alcohol - i.e. potentially ribitol, 474 

xylitol, or a related compound.  475 

Further examination of the tar/tag biosynthetic gene cluster in which these genes 476 

are located revealed extensive strain diversity, with 10 different gene arrangements 477 

across the 30 isolates (Figure S7D), suggesting recent positive selection possibly as a 478 

form of phage defense (Buttimer et al., 2022; Soto-Perez et al., 2019) or host immune 479 
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interaction (van Dalen et al., 2020). Most genomes have one or more genes with 480 

homology to E. coli arnC genes in this region, indicating that the products may be 481 

lipoteichoic acids anchored to the cell membrane rather than wall teichoic acids (Percy 482 

and Gründling, 2014). Among E. lenta genomes without tarI and tarJ, all except the type 483 

strain have a tagD gene in the same region instead, which catalyzes the synthesis of 484 

CDP-glycerol subunits instead of CDP-ribitol (Figure S7D) and would be consistent with 485 

the absence of extracellular ribitol in those strains. Two other metabolite features were 486 

associated with the presence of other members of this gene cluster, possibly indicative 487 

of other strain-variable cell wall components (Table S5). This example illustrates that 488 

comparative multi-omics can be a powerful strategy to identify and begin to decipher the 489 

functional consequences of strain variation, even when metabolite identities are not 490 

confirmed. 491 

In addition to the unbiased association analysis above, we also assessed 492 

whether strain variation in metabolites of known identity could be predicted based on 493 

relevant gene annotations. We created genome-scale metabolic reconstructions of a 494 

subset of strains included in this experiment (n = 24, using the DEMETER pipeline), 495 

curated them using a limited version of the process applied to the type strain (Methods), 496 

and again predicted growth and reaction fluxes in EDM1 and in leave-one-out media 497 

conditions using flux balance analysis. Across the metabolic networks of E. lenta 498 

strains, most reactions were conserved, including arginine metabolism and central 499 

carbon metabolism (Table S6). Tryptophan and riboflavin auxotrophies were also 500 

predicted to be conserved across strains. Variable reactions tended to be in the 501 

subsystems of transport, fatty acid biosynthesis, cell wall biosynthesis, and nucleotide 502 

interconversion (Figure S7E). Consistent with the central role of arginine metabolism, 503 

ornithine and citrulline levels in our metabolomics dataset were very consistent across 504 

strains. Ornithine was among the least variable metabolite features (Figure 4D), and 505 

one of the most correlated with biomass (as estimated by optical density, Spearman 506 

rho=0.36, FDR-adjusted p=0.1).  507 

While the predicted effects of most compounds on growth were similar or 508 

identical across strains (Figure S7F), we noticed a clear difference in pantothenic acid 509 

dependence, as a subset of strains were predicted to be unable to grow in its absence. 510 
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These strains lack the final enzyme in the biosynthesis pathway for pantothenic acid, 511 

which is itself a precursor of coenzyme A. Pantothenic acid was depleted to varying 512 

degrees in our metabolomics data, reaching the lowest levels in strains that lack 513 

pantothenic acid synthase (Figure 4D). Notably, M+2 isotopologues of pantothenic acid 514 

were also detected in supernatants from the acetate SIRM experiment, corroborating 515 

that at least three E. lenta strains synthesize this vitamin de novo (Data S1, Figure 516 

S4B, Figure 2F). We tested growth of pantothenate synthase-lacking strains in 517 

comparison with a subset of genetically similar strains in EDM1 with or without 518 

pantothenic acid, confirming that strains without this gene family had a greatly reduced 519 

carrying capacity in the absence of pantothenic acid (Figure 4E) and highlighting the 520 

ability of curated genome-scale models to predict phenotypic differences. Overall, our 521 

analysis of strain variation in metabolite profiles is consistent with a model in which E. 522 

lenta’s distinctive central carbon and energy metabolism is a core species trait, while 523 

more peripheral biosynthetic pathways including synthesis of cofactors and cell surface 524 

components can vary freely to adapt to specific microenvironments (Monk et al., 2013).  525 

  526 

Comparison of E. lenta’s metabolic profile in vitro and in vivo identifies shared 527 

signatures and usage of a novel nutrient 528 

 Having characterized the metabolic profile of the E. lenta species in a simplified 529 

in vitro environment, we next asked how these findings compare with its metabolic 530 

activity in a host, and whether our in vitro platform could help identify metabolic 531 

processes performed by E. lenta within the gastrointestinal tract. We monocolonized 532 

germ-free (GF) mice with one of three strains of E. lenta by oral gavage, collected 533 

serum and intestinal contents after two weeks of colonization, and profiled metabolites 534 

using the same LC-MS/MS untargeted metabolomics workflow as above. We identified 535 

features that were significantly differentially abundant in E. lenta-colonized mice vs. their 536 

GF counterparts using linear mixed models and compared these features with our in 537 

vitro metabolomics datasets, identifying metabolites consistently shifted by the presence 538 

of E. lenta across environments. After data processing, quality filtering and 539 

dereplication, we obtained a dataset of 19,714 metabolite features from intestinal 540 

samples. Of these, 16.7% were significantly differentially abundant (FDR-adjusted 541 
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p<0.2) in response to colonization with at least one strain in at least one segment of the 542 

intestinal tract, indicating a substantial metabolic impact of E. lenta on the intestinal 543 

environment (Figure S8A). Interestingly, despite previous data showing colonization of 544 

E. lenta DSM 2243 at similar levels from the ileum to the colon in GF mice (Bisanz et 545 

al., 2020), only 1.6% of features were significantly shifted in the ileum, compared with 546 

11.5% in colon and 8.1% in the cecum. Additionally, only 21 features (0.41%) were 547 

differentially abundant in serum in response to any of the three strains. Overall 548 

separability of metabolite profiles between germ-free and colonized was also highest in 549 

the cecum and colon (Figure 5A). These results indicate that E. lenta’s strongest 550 

metabolic effects are restricted to the lower intestinal tract.  551 

 We assessed the extent to which metabolite features produced by E. lenta in cell 552 

culture are detectably shifted by the presence of E. lenta in mice. To do so, we 553 

integrated our processed metabolomics datasets by linking metabolite features across 554 

datasets with highly similar m/z, RT, and MS2 spectra (see Methods). Based on this 555 

analysis, 37.2% of identified metabolite features in intestinal contents and 12.2% of 556 

features overall were also detected in vitro (Figure S8B). We compared the estimated 557 

log2 fold change of each linked feature in vitro with the corresponding shifts in vivo (full 558 

set in Data S2; Figure 5B shows the comparison with the strain collection dataset in 559 

Figure 4, Figure S8C shows a comparison with the dataset in Figure 1). 202 features 560 

significantly increased by the presence of E. lenta DSM 2243 in cecal contents were 561 

also increased in one of our EDM1 in vitro datasets, providing support that they are 562 

directly produced by E. lenta in vivo. These features represented 78.9% of the set that 563 

could be linked across datasets and 20.9% of the full set of E. lenta DSM 2243-564 

increased features in cecal contents. Only 18 metabolites depleted in cecal contents 565 

were similarly depleted in vitro, but only three of the other 405 depleted features were 566 

detected in vitro at all, indicating that E. lenta likely uses a much richer set of nutrients in 567 

vivo than those available in EDM1. Overlapping produced and depleted metabolites 568 

were found in greater abundance in the cecum and colon than the ileum and serum 569 

(Figure 5B), again suggesting a greater metabolic footprint of E. lenta in the lower 570 

gastrointestinal tract relative to other sites. 571 
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Ornithine was among the most increased features across sampling sites and 572 

strains, consistent with our in vitro data (Figure 6A, Figure S9A). Other consistently 573 

increased features included 5-methyluridine, citrulline, glutamine, and lysine (Data S2). 574 

Interestingly, arginine was only significantly reduced by colonization with one of the 575 

three E. lenta strains in this experiment (Figure S9B). However, most other 576 

proteinogenic amino acids were increased in abundance in intestinal contents in 577 

colonized mice compared with GF (Figure S9C), likely due to differences in host 578 

activity, so the absence of an increase in arginine may be consistent with arginine 579 

usage by E. lenta.  580 

Given these results, we evaluated what other substrates may be used as carbon 581 

or energy sources by E. lenta in vivo. The metabolites most strongly depleted by the 582 

presence of E. lenta DSM 2243 in the intestinal tract included several fatty acids 583 

conjugated with carnitine as well as multiple other nitrogen-containing metabolites:  584 

saccharopine and agmatine (Figure 6A). We chose to investigate agmatine usage 585 

further for several reasons: its chemical similarity to arginine, the presence of known 586 

agmatine utilization genes in the E. lenta type strain genome, evidence of a consistent 587 

decrease across all three strain colonization groups (Figure S9A), and its multiple roles 588 

as a microbial metabolite and a host metabolite involved in regulation of cell division 589 

and neural signaling (Piletz et al., 2013). The E. lenta DSM 2243 genome contains two 590 

complete and two partial operons encoding genes for the agmatine deiminase pathway. 591 

This pathway operates analogously to the arginine deiminase pathway, with ATP 592 

production via carbamate kinase as the final step (Figure 6B). Despite this similarity, 593 

the agmatine deiminase enzyme family is highly structurally distinct from arginine 594 

deiminase (Llácer et al., 2007). Presence of this pathway is conserved across strains, 595 

as other E. lenta genomes contain anywhere between one and four copies of the key 596 

genes for agmatine deiminase and putrescine carbamoyltransferase (KEGG, Table 597 

S7A). Additionally, a transcriptional regulator found adjacent to this operon in some 598 

strains was previously associated with E. lenta competitive fitness in vivo (Bisanz et al., 599 

2020).  600 

Based on these observations, we predicted that E. lenta may be able to grow in 601 

the absence of arginine if it is supplied with agmatine as an alternative energy source. A 602 
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flux balance analysis simulation of E. lenta in agmatine-based EDM1 predicted a 603 

somewhat reduced maximum growth rate (0.54 vs. 0.96 hr-1) in this condition, with 604 

arginine synthesized for protein via its annotated biosynthetic pathway from glutamate. 605 

Indeed, we found that replacing arginine with agmatine introduced a growth lag but 606 

resulted in a slightly higher final carrying capacity than the equivalent amount of 607 

arginine (Figure 6C). We additionally investigated agmatine-responsive genes using 608 

RNA-Seq. We grew E. lenta DSM 2243 in a formulation of EDM1 with 70% of the 609 

standard levels of arginine and acetate, treated cultures with either concentrated 610 

agmatine solution or water, and extracted RNA for sequencing. The genes most 611 

strongly induced by treatment with agmatine were two copies of putrescine 612 

carbamoyltransferase, one copy of agmatine deiminase, and a transporter in the same 613 

operon (Figure 6D and Table S7B). Genes in the second complete agmatine 614 

deiminase operon (ELEN_RS110[05-15]) were not differentially expressed, suggesting 615 

that the annotation of this second operon may be incorrect and/or may be involved in 616 

metabolism of a related compound. Interestingly, the most strongly downregulated 617 

genes were two transport-related genes adjacent to the energy-conserving 618 

hydrogenase (Ech) complex (ELEN_RS078[45-50]), one of which has structural 619 

homology to the arginine-ornithine antiporter found in the arginine deiminase operon 620 

(ELEN_RS09745, 27.6% identity). These results indicate that E. lenta can generate 621 

ATP from agmatine as a distinct alternative to arginine both in vitro and in vivo and has 622 

extensive genetic machinery to efficiently and specifically use each of these 623 

compounds.  624 

 625 

DISCUSSION 626 

In this study, we used custom growth media and untargeted metabolomics to 627 

profile the metabolism of a poorly understood gut microbe at a systems level. Although 628 

E. lenta is found at > 50% prevalence in gut microbiota of North American adults 629 

(Koppel et al., 2018) and linked to acute and chronic disease (Alexander et al., 2021), 630 

very little is known about its core metabolic properties. We documented an unusual set 631 

of carbon sources, nutrient dependencies, and secreted metabolites, and incorporated 632 

these into a genome-scale metabolic model that accurately recapitulated pathway 633 
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activity and response to new environments. We further identified core and strain-634 

variable properties across a large collection of strain isolates. Finally, we evaluated the 635 

extent to which these in vitro and in silico findings can inform our understanding of the 636 

host-associated in vivo metabolic activity of this organism. This broad strategy 637 

uncovered several specific new findings on E. lenta’s role in the gut microbial 638 

ecosystem and its potential effects on human hosts.  639 

We first analyzed E. lenta’s metabolic footprint in a sensitive chemically defined 640 

environment using untargeted metabolomics. The extent and variety of compounds 641 

produced by E. lenta across multiple growth phases is consistent with previous 642 

experimental and theoretical work on “costless” metabolite secretions by diverse 643 

microbes (Chodkowski and Shade, 2020; Dunphy et al., 2021; Pacheco et al., 2019). In 644 

particular, many nucleotides and nucleic acid intermediates are synthesized by E. lenta 645 

and secreted without any apparent cost to growth. Secretion of these broadly useful 646 

metabolites may contribute to a previously observed outsized impact of E. lenta on the 647 

composition of synthetic communities (Venturelli et al., 2018). Interestingly, several 648 

small molecules produced by E. lenta in EDM1 and in mice are known to impact host 649 

immune signaling, including indole-3-acetate (Roager and Licht, 2018) and inosine (Li et 650 

al., 2021; Mager et al., 2020). Notably, the relative level of production of these 651 

metabolites and others varied widely across E. lenta strain isolates. Teichoic acids, 652 

identified here as another strain-variable feature, are also key targets of host innate 653 

immunity, with differential responses depending on their composition (van Dalen et al., 654 

2020). While much focus has been deservedly paid to individual specialized 655 

immunomodulatory transformations performed by E. lenta (Alexander et al., 2021; Paik 656 

et al., 2022), our results suggest that E. lenta’s effects on host immunity may be 657 

multifaceted.  658 

We elucidated the roles of three common gut metabolites in the metabolic 659 

network of E. lenta: arginine, acetate, and agmatine. First, we confirmed that conversion 660 

of arginine to ornithine is a core property of the E. lenta species. Production of ornithine 661 

was the most consistent metabolic feature across strains and environments. Our stable 662 

isotope analysis indicated that ornithine is primarily an end product of growth and is 663 

relatively inaccessible as a carbon source for E. lenta. However, ornithine is a favorable 664 
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carbon and/or energy source for numerous other gut microbes (Noronha et al., 2018), 665 

including as a substrate for Stickland metabolism by gut bacteria including 666 

Clostridioides difficile (Girinathan et al., 2021; Liu et al., 2022; Pruss et al., 2022). 667 

Therefore, production of ornithine by E. lenta may promote the growth of other 668 

proteolytic bacteria in the surrounding gut ecosystem.  669 

We also found that the presence of acetate has a dramatic effect on E. lenta 670 

growth and metabolism in vitro. Acetate is a ubiquitous microbial metabolite in the 671 

mammalian gut that varies in concentration (van der Hee and Wells, 2021). Previous 672 

studies have speculated that E. lenta may produce acetate via autotrophic acetogenesis 673 

(Harris et al., 2018; Hylemon et al., 2018). While our study does not resolve the 674 

question of whether E. lenta has a functional acetogenic Wood-Ljungdahl pathway, we 675 

found that environmental acetate is an important biosynthetic precursor for E. lenta, 676 

incorporated partially via a distinctive bifurcated citric acid cycle (Amador-Noguez et al., 677 

2010; Huynen et al., 1999). If E. lenta is in fact an acetate consumer in vivo, as we have 678 

observed in vitro, this role may have ecological consequences. For example, E. lenta 679 

may compete for cross-fed acetate with other gut microbes, including the abundant, 680 

health-linked members of the Firmicutes that metabolize acetate to butyrate at high 681 

rates (Duncan et al., 2002; Muñoz-Tamayo et al., 2011). However, while we did not 682 

identify any compound that can replace the role of acetate in E. lenta’s metabolic 683 

network, the observation that E. lenta can grow to high carrying capacities in rich media 684 

and in germ-free mice presumably lacking acetate indicates that other undetermined 685 

compounds may be able to serve as equivalent carbon sources.  686 

Finally, we identified agmatine as an alternate energy source for E. lenta in vivo. 687 

Agmatine is a host metabolite with multiple roles as a neurotransmitter, regulator of 688 

nitric oxide synthesis, and regulator and precursor of polyamine metabolism (Piletz et 689 

al., 2013). Although agmatine can be synthesized at low levels by the host, particularly 690 

in the brain, the gastrointestinal tract is thought to be a major source of systemic 691 

agmatine (Haenisch et al., 2008)—sourced either directly from the diet and/or from 692 

microbial metabolism. Dietary sources of agmatine include a variety of plant and animal 693 

products, with the highest known levels in fermented foods and alcoholic beverages 694 

(Galgano et al., 2012). Altered agmatine levels have been associated with a range of 695 
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diseases, including depression and diabetes (Piletz et al., 2013). Notably, reduced 696 

agmatine levels in the gut have been linked to cell proliferation and cancer (Molderings 697 

et al., 2004). Therefore, depletion of gastrointestinal agmatine by gut microbes including 698 

E. lenta has the potential to impact host health and disease. Further work is needed to 699 

clarify the roles of both production and degradation by gut microbes in regulation of host 700 

agmatine metabolism.  701 

Overall, our analysis of E. lenta nutrient dependencies revealed that this species 702 

occupies a metabolic niche that is distinct from canonically described roles in the gut 703 

ecosystem, such as primary and secondary carbohydrate degraders or conventional 704 

methanogens and acetogens. E. lenta relies heavily on ATP generation from arginine 705 

and/or agmatine catabolism, uses acetate as a key carbon source, and likely performs 706 

anaerobic respiration with unknown and potentially diverse substrates. The carbon and 707 

energy sources and auxotrophies that we identified were highly conserved across the E. 708 

lenta species, with the exception of pantothenate. Knowledge of these conserved 709 

metabolic dependencies may be an important tool in future therapeutic attempts to 710 

engineer or modify E. lenta abundance, metabolic activity, and community interactions. 711 

In addition, the resources described here, together with the development of tools for 712 

genetic manipulation of E. lenta, may provide a basis for further investigation of the 713 

biochemical and physiological mechanisms underlying its distinctive metabolic strategy.  714 

Another resource generated by this study is a curated constraint-based genome 715 

scale metabolic model of E. lenta. Constraint-based modeling is a promising approach 716 

for predicting community interactions and ecosystem engineering (Heinken et al., 717 

2021a), but to date, community metabolic modeling tools have been difficult to validate 718 

and have generated relatively limited insights beyond what could be obtained with 719 

simpler annotation methods. Our analysis highlights the importance of phenotype-based 720 

curation of individual reconstructions. Specifically, the initial semi-curated AGORA 721 

model of E. lenta did not support any growth in EDM1 and lacked a complete version of 722 

the agmatine deiminase pathway. Yet analysis of the more fully curated reconstruction 723 

enabled us to confirm key reactions during growth with arginine and agmatine in vitro, 724 

identify gaps representing potential novel enzymes, and uncover strain differences in 725 

vitamin dependence. These results suggest that the quality and predictive power of 726 
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community metabolic models of the gut microbiota could be greatly improved by 727 

systematic data generation and refinement of reconstructions for a metabolically diverse 728 

sample of common taxa. Comparisons with growth in defined media conditions, -omics 729 

data, and strain conservation can assist with model validation even when genetic tools 730 

are not available. 731 

Our approach combining untargeted metabolomics, genome-driven media 732 

development, computational modeling, and gnotobiotic experiments may be a useful 733 

strategy for accelerating scientific understanding of the biology of other understudied 734 

microbes. Each of these model systems and data types produced a broadly useful 735 

resource that partially supported findings from the others while also revealing novel 736 

facets of E. lenta metabolism. Together, our study sheds light on the unusual metabolic 737 

profile of an important member of the human gut microbiota, establishes a foundation 738 

for future mechanistic studies of this organism, and demonstrates a generalizable 739 

multidisciplinary approach to decipher the metabolic strategies of understudied 740 

microbes.  741 

 742 

  743 
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FIGURE TITLES AND LEGENDS 768 

Figure 1. Production and depletion of diverse metabolites by Eggerthella lenta 769 

DSM 2243 in chemically defined media. A) Number of metabolite features detected 770 

by tandem LC-MS in culture samples at each time point. Features are considered 771 

present if their average peak height in supernatant is greater than 3x the average peak 772 

height in blank samples. Using both positive and negative ionization modes, an 773 

increasing number of features not found in controls appear in culture supernatants over 774 

time. B) Number of differentially abundant metabolite features compared with sterile 775 

control media at each time point, based on FDR-adjusted t-tests of log-transformed 776 

peak heights. C) Volcano plot of differentially abundant metabolite features at the final 777 

time point (50 hours) compared with sterile controls. p-values shown on the y-axis are 778 

based on Welch’s t-tests comparing values at the final time point vs. sterile controls 779 

(Benjamini-Hochberg adjusted). D) Heatmap of individual metabolite trajectories in 780 

cultures of E. lenta DSM 2243 grown in EDM1 batch culture. Features shown are those 781 

whose abundance was significantly different from controls (FDR-adjusted p<0.1 and 782 

absolute log2 fold change>0.75) at the final time point. Identified metabolites are 783 

labeled; the number in parentheses indicates the Metabolomics Standards Initiative 784 

confidence level for that identification (with 1 as highest confidence, see Methods). 785 

Values shown are average log-transformed peak heights, scaled for each feature. The 786 

gray heatmap at the top indicates the average batch culture density at each time point 787 

of Eggerthella lenta DSM 2243 in EDM1 (normalized OD600). See also Figure S1-2, 788 

Table S1-2. 789 

 790 

Figure 2. E. lenta uses acetate for nucleotide and peptidoglycan biosynthesis. A) 791 

Growth of E. lenta DSM 2243 in EDM1 media with varying concentrations of sodium 792 

acetate. B) Growth of E. lenta DSM 2243 in EDM1 media in which 1 mM sodium 793 

acetate is replaced with other small carbon compounds. C) Trajectories of identified 794 

metabolite features responsive to acetate concentration in E. lenta EDM1 batch 795 

cultures. Values are scaled average log-transformed peak heights from untargeted 796 

metabolomics profiling of supernatants. Labels show metabolite identity and MSI 797 

confidence level in parentheses. Metabolites shown are those that were assigned an 798 
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identity and that had significantly different trajectories in the 0 mM vs. 1 mM acetate 799 

group based on spline regression comparison with the R package santaR (FDR-800 

adjusted p<0.25). D) Stable isotope-resolved metabolomics profiling of E. lenta DSM 801 

2243 in EDM1 media with 13C2 labeled acetate. The number of compounds with labeled 802 

isotopologues detected at a peak area > 105 is shown for each sample group and time 803 

point, indicating incorporation of acetate into varied metabolites by E. lenta. E) Mass 804 

isotopologue distributions (MIDs) of intracellular metabolites. Each barplot shows the 805 

average isotopologue distribution in 1 mM and 10 mM acetate cultures. Compounds 806 

shown are those with an average labeled MID > 0.15 and a total peak area from labeled 807 

isotopologues of at least 104 in at least one E. lenta DSM 2243 labeled acetate 808 

condition. F) Hypothesized pathways for incorporation of acetate into E. lenta central 809 

carbon metabolism and into biosynthetic pathways to produce labeled metabolites. 810 

Circles indicate the number of carbon atoms in selected compounds and are colored 811 

green to indicate incorporation of 13C isotopes from external acetate. Compound names 812 

in bold were detected with the observed labeling patterns in either intracellular 813 

metabolite extracts or culture supernatants. Corresponding enzymes are annotated in 814 

the E. lenta DSM 2243 genome for all reactions shown, and labeled in gray with the 815 

NCBI locus tag number. For pathways shown at a summary level (gluconeogenesis, 816 

pentose phosphate pathway, purine and pyrimidine biosynthesis, peptidoglycan 817 

biosynthesis), only the first enzyme in the pathway is labeled on the plot. See also 818 

Figure S3-5, Data S1.  819 

 820 

Figure 3. A curated genome-scale metabolic model of E. lenta DSM 2243 partly 821 

explains growth phenotypes across conditions. A) Summary of the curated 822 

reconstruction of E. lenta DSM 2243 indicating the number of genes, reactions, and 823 

metabolites in the original and curated models, and the share of those required to be 824 

active for growth in EDM1 based on parsimonious flux balance analysis (pFBA). B) 825 

Summary of the total number of reactions by subsystem, and the share of each 826 

subsystem predicted to be active in EDM1 (only the top 20 subsystems are shown). C) 827 

Acetate and L-arginine uptake dependencies inferred by the model. In the final curated 828 

model (red lines), the maximum growth rate decreases with decreasing availability of 829 
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both L-arginine and acetate, qualitatively consistent with experimental data. A previous 830 

model incorporating a carbon monoxide dehydrogenase reaction based on (Harris et al, 831 

2018) (blue lines) failed to recapitulate the expected dependencies. D) Confusion matrix 832 

summarizing a comparison of growth/no growth between the iEL2243_2 model vs. 833 

experimental observations for leave-one-out media conditions. E) Full set of quantitative 834 

comparisons underlying panel D. Each column shows the FBA-inferred maximum 835 

growth rate in the EDM1 condition with a media component removed, paired with the 836 

experimentally observed area under the empirical growth curve for that condition. A 837 

gray tile indicates zero growth. F) Comparison of shifts in metabolomics data with 838 

uptake and secretion rate ranges inferred for the same compounds by flux variability 839 

analysis (FVA). Metabolites that can only be imported according to FVA were 840 

decreased in metabolomics data, while those with potential for being produced were 841 

indeed produced. G) Comparison of absolute fluxes inferred by pFBA with gene 842 

expression of linked enzymes of E. lenta DSM 2243 during exponential growth in 843 

EDM1. Within flux quantiles (on the x-axis), genes are expressed at a wide range of 844 

levels, but genes linked to reactions with the highest fluxes are generally highly 845 

expressed. See also Figure S6, Table S3-4. 846 

 847 

Figure 4. Extensive within-species variation in E. lenta metabolites can be linked 848 

to variable gene families. A) Volcano plot of metabolite features detected in stationary 849 

phase supernatants of E. lenta DSM 2243 (UCSF lab strain) vs. sterile controls. P-850 

values are based on Benjamini-Hochberg corrected Welch’s t-tests. Features are 851 

colored based on whether their classification as significantly produced or depleted 852 

(increased or decreased with FDR-adjusted p-value<0.1 and log2FC>0.5) is consistent 853 

across 28 other E. lenta isolates and one isolate of Eggerthella sinensis profiled in the 854 

same experiment. B) Procrustes analysis of overall metabolite profiles compared with 855 

genome features. The upper plot shows a rotated Procrustes superimposition of 856 

average metabolite profiles for each isolate (red points) and the phylogenetic distance 857 

between them based on an alignment of core genes (blue points). The lower plot shows 858 

a superimposition of metabolite profiles and profiles based on the presence/absence of 859 

variable gene clusters (purple points). C) The left-hand panel shows the distribution of 860 
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strain-variable features in various ClassyFire chemical superclasses, based on Feature-861 

based Molecular Networking with GNPS. The number in parentheses for each class 862 

indicates the total number of features with that assignment. The right-hand panel shows 863 

the number of strains producing a given feature, among features produced by any 864 

Eggerthella isolate. Each point represents a single feature, and its position on the x-axis 865 

indicates the number of strains for which that feature was significantly increased (FDR-866 

adjusted p-value < 0.1 and log2 fold change > 0.5) in supernatants compared with 867 

controls. Superclasses (y-axis labels) are the same as in panel C. E) Feature 868 

abundances of example metabolites across strains. The first two panels show two 869 

strain-variable unidentified features associated with the presence of specific strain-870 

variable gene families - putatively identified as the two dominant naturally occurring 871 

isotopes of an [M+Cl-] adduct of the teichoic acid component ribitol. The points indicate 872 

the log-transformed abundances of these features for each strain. The dotted line in 873 

each panel indicates the average level of that feature in sterile controls. Points in dark 874 

blue represent strains whose genomes contain genes for a ribitol-5-phosphate 875 

cytidylyltransferase (tarJ) and ribulose-5-phosphate reductase (tarI) not found in other 876 

genomes. The third and fourth panels show a highly conserved identified metabolite 877 

(ornithine) compared with a strain-variable identified metabolite (pantothenic acid). 878 

Points in white in the pantothenic acid panel indicate strains whose genome lacks the 879 

final step in the biosynthetic pathway for this metabolite. Points are shown as mean and 880 

standard error across three replicates. The order of strains on the y-axis matches their 881 

phylogeny, shown in Figure S7A. F) Strains lacking a gene annotated as pantothenate 882 

synthetase deplete pantothenic acid completely from media (previous panel) and have a 883 

substantial growth defect when grown in the absence of pantothenic acid (left panel). 884 

Closely related strains that do possess this gene are unaffected by removal of 885 

pantothenic acid (right panel). Carrying capacity is estimated based on  a logistic growth 886 

model fit by the R package growthcurver. See also Figure S7, Table S5-6.  887 

 888 

Figure 5. Comparison between E. lenta’s metabolic footprint in vivo and in vitro 889 

reveals shared metabolite signatures. A) Principal component analysis of untargeted 890 

metabolomics profiles of intestinal contents and of serum. B) Comparison of the effect 891 
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of E. lenta on metabolite features detected in both EDM1 cultures and monocolonized 892 

mice. Each point represents a metabolite feature detected in both datasets. The x-axis 893 

indicates the log2 fold change of each feature in supernatants compared with sterile 894 

controls, compared with the estimated log2 fold change of that feature in monocolonized 895 

mice compared with germ-free mice. Points are colored green if the feature is 896 

significantly differentially abundant in gnotobiotic mice and is shifted in the same 897 

direction by the corresponding strain in the stationary phase in vitro experiment. See 898 

also Figure S8, Data S2.  899 

 900 

Figure 6. Agmatine can replace arginine as an energy source for E. lenta. A) 901 

Identified metabolite features with the highest estimated effects in E. lenta DSM 2243-902 

colonized mice compared with germ-free. Each point indicates the effect size of that 903 

feature in a particular sample site (denoted by shape). B) Model of the agmatine 904 

deiminase ATP-generating pathway (Llácer et al., 2007). Three copies of an operon 905 

containing genes for all three of the labeled proteins are annotated in the E. lenta DSM 906 

2243 genome. C) Growth of E. lenta DSM 2243 in EDM1 where arginine has been fully 907 

or partially replaced with agmatine sulfate. Curves show mean ± standard error for four 908 

replicates. D) Induction of the agmatine deiminase pathway in E. lenta DSM 2243 909 

cultures in response to the addition of agmatine. The volcano plot shows the log2 fold 910 

change and FDR-adjusted p-values of agmatine-treated cultures compared to vehicle 911 

(as estimated by negative binomial differential abundance models with DESeq2). See 912 

also Figure S9, Table S7.  913 

 914 

  915 
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STAR METHODS 916 

RESOURCE AVAILABILITY 917 

Lead contact 918 

Further information and requests for resources and reagents should be directed to the 919 

Lead Contact Peter Turnbaugh (Peter.Turnbaugh@ucsf.edu). 920 

 921 

Materials availability 922 

This study does not contain newly generated materials.  923 

 924 

Data and code availability 925 

RNA sequencing data has been deposited in NCBI GEO and are publicly 926 

available as of the date of publication. Metabolomics datasets have been deposited in 927 

Metabolomics Workbench and are publicly available as of the date of publication. 928 

Processed metabolomics datasets, growth data, and metabolic reconstructions are 929 

available from Zenodo and are publicly available as of the date of publication. 930 

Accession numbers and DOIs are listed in the key resources table. 931 

All original code has been deposited at Zenodo and GitHub 932 

(https://github.com/turnbaughlab/2022_Noecker_ElentaMetabolism) and is publicly 933 

available as of the date of publication. DOIs are listed in the key resources table. 934 

Any additional information required to reanalyze the data reported in this paper is 935 

available from the lead contact upon request. 936 

 937 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 938 

Mouse husbandry and experiments 939 

Mouse samples analyzed in this study were collected and described previously in 940 

(Alexander et al., 2021). The mouse experiment was approved by the University of 941 

California San Francisco Institutional Animal Care and Use Committee. The mice were 942 

housed at temperatures ranging from 67-74°F and humidity ranging from 30-70% 943 

light/dark cycle 12hr/12hr. LabDiet 5021 chow was used. No mice were involved in 944 

previous procedures before experiments were performed. Mice were assigned to 945 

groups to achieve similar age distribution between groups.  946 
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C57BL/6J mice (males, ages 4-8 weeks) were obtained from the University of 947 

California, San Francisco Gnotobiotics core facility (gnotobiotics.ucsf.edu) and housed 948 

in Iso positive cages (Tecniplast). Mice were colonized via oral gavage with E. lenta 949 

monocultures (109 CFU/mL, 200 μl gavage) and colonization was confirmed via 950 

anaerobic culturing and/or qPCR for an E. lenta specific marker (elnmrk1) (Bisanz et al., 951 

2020; Koppel et al., 2018). Mice were colonized for 2 weeks prior to sacrifice and 952 

sample collection. 953 

 954 

Bacterial strains 955 

Strain isolates analyzed in this work are described in (Bisanz et al., 2020). All 956 

experiments were performed in an anaerobic chamber with 2-5% hydrogen gas, 20% 957 

carbon dioxide, and the balance nitrogen, with growth in a 37°C incubator. Standard 958 

BHI media (VWR 90003-040) supplemented with 1% L-arginine (referred to below as 959 

BHI+) was used for culturing outside of defined media experiments.  960 

 961 

METHOD DETAILS 962 

Defined media formulations and preparation 963 

Standard composition of the EDM1 media and related formulations are provided 964 

in Table S1. As specified in Table S1, some experiments were performed using the 965 

initial formulation of the media, and others using a simplified form based on the results 966 

of leave-one-out growth experiments. For most components, 30-1000x stock solutions 967 

were prepared following (Zhang et al., 2009). Stock solutions were sterilized with a 0.22 968 

μm syringe filter and stored at -20°C. Amino acids were typically added together directly 969 

from powder into a combined 2x stock solution which was then filter sterilized with a 970 

0.22 μm vacuum filter, except when preparing individual leave-one-out amino acid 971 

growth experiments. Most versions used ATCC Trace Mineral and Vitamin Mix 972 

Supplements (MD-TMS and MD-VS), except for experiments to test leaving out 973 

individual components of these mixes. Individual replacement components are specified 974 

in Table S1. Media formulations were allowed to equilibrate in an anaerobic chamber 975 

(Coy) for at least 24 hours prior to use. 976 

 977 
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Bacterial culture and growth assays 978 

For growth and metabolomics experiments, glycerol stocks were first streaked on 979 

BHI+ agar plates and incubated at 37°C for 2-3 days. Individual colonies were 980 

inoculated into 3-4 mL liquid BHI+ and incubated at 37°C for 40-48 hours, or until 981 

approximately early stationary phase. Culture optical density (600 nm wavelength 982 

absorbance, OD600) was measured using a Hach DR1900 spectrophotometer. 1 mL 983 

samples of BHI starter cultures were then centrifuged at 1,568 rcf for 4 minutes in a 984 

microcentrifuge (ThermoScientific mySpin 12) in the anaerobic chamber and 985 

resuspended in 1 mL sterile phosphate-buffered saline (PBS). For leave-one-out 986 

experiments, the resuspended cells were washed by centrifuging and resuspending in 987 

PBS again. The resulting suspension was vortexed and diluted to an approximate 988 

OD600 of 0.1, and used as inoculum into defined experimental conditions. 989 

Growth assays were performed in standard 96-well microplates (Corning) at 990 

37°C with a microplate reader (Biotek Eon or PowerWave). 180 μL of defined media 991 

were pipetted into each well, followed by 20 μL of inoculum. All experiments included at 992 

least three sterile control wells for each condition, into which 20 μL of sterile PBS was 993 

pipetted to establish consistent background OD600 measurements. Replicate wells 994 

were distributed pseudorandomly across the plate to control for plate layout effects, and 995 

inoculated wells were always paired with an adjacent control well of the same condition. 996 

3-6 replicates were included for each condition. Plates were sealed with a transparent 997 

Breathe-Easy sealing gas exchange membrane (RPI). Every 30 minutes, plates were 998 

shaken at medium speed for 40 seconds, after which OD600 readings were performed.  999 

After large metabolomics and RNA-Seq experiments (see below), culture purity 1000 

was checked by plating and 16S rRNA gene Sanger sequencing, using standard 1001 

primers (8F AGAGTTTGATCCTGGCTCAG and 1542R 1002 

AAGGAGGTGATCCAGCCGCA). 1003 

 1004 

Sample collection for metabolomics 1005 

Time course experiments were conducted in tubes in the anaerobic chamber in a 1006 

37°C incubator. For all metabolomics experiments, three independent culture replicates 1007 

were included for each condition, with an equal number of uninoculated control tubes. 1008 
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Starter cultures and inocula were prepared as described above for growth assays. 5mLs 1009 

of defined media was added to VWR glass culture tubes (53283-800) with screw caps. 1010 

The PBS-washed inoculum was added to culture tubes to obtain an approximate 1011 

starting OD600 of 0.001. A preliminary growth assay was conducted to define time 1012 

points spanning the exponential growth phase in the tested conditions. At each time 1013 

point, OD600 measurements of all inoculated tubes were first measured using a Hach 1014 

DR1900 spectrophotometer, with a paired control tube to normalize for the background. 1015 

100 μL from each tube were then transferred into a 96-well microplate, which was 1016 

sealed and removed from the anaerobic chamber. Plates were centrifuged at 1,928 rcf 1017 

at 4°C for 8 minutes, after which supernatants were collected into fresh polypropylene 1018 

tubes or plates, sealed, and flash-frozen in liquid nitrogen.  1019 

 Two time course experiments were carried out with stable isotope-labeled 1020 

substrates. Experimental groups included conditions in which sodium acetate in the 1021 

defined media was replaced with 13C2 labeled sodium acetate (Sigma-Aldrich 282014), 1022 

along with a matched experimental group with the same concentration of unlabeled 1023 

substrate. The same procedure was followed for the arginine labeling experiment, using 1024 
13C6 labeled L-arginine HCl (Sigma-Aldrich 643440).  1025 

 For the comparative strain metabolomics experiment, 96-well polypropylene 1026 

deep well plates were prepared with 800μL of fresh media in each well. Starter cultures 1027 

and inocula for 29 isolates of Eggerthella lenta and 1 isolate of Eggerthella sinensis 1028 

(Bisanz et al., 2020) were prepared as described above for growth assays, except 1029 

without final dilution, and 80 μL was used to inoculate wells, leaving a blank well in 1030 

between every culture well to prevent cross-contamination. After 72 hours, OD600 1031 

measurements were taken, plates were centrifuged, and supernatants were collected as 1032 

described above. 1033 

 1034 

Targeted quantification of acetate 1035 

A subset of unlabeled supernatant samples from the acetate labeling time course 1036 

were shipped to Stanford University on dry ice for targeted quantification of acetate.  1037 

Samples (20 μL) were first mixed with an internal standard solution (30 μL; 1 mM 1038 

phenylpropionate-d9) in a V-bottomed, poly(propylene), 96-well plate, and extracted by 1039 
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mixing with 3 sample volumes of extraction solution (75% acetonitrile:25% methanol). 1040 

The plate was covered with a lid and centrifuged at 5,000 rcf for 15�min at 4�°C. 1041 

Supernatant was collected for derivatization before subjecting to LC–MS analysis. 1042 

Samples were processed using a derivatization method targeting compounds 1043 

containing a free carboxylic acid. Extracted samples were mixed with 3-1044 

nitrophenylhydrazine (NPH; 200�mM in 50% acetonitrile) and N-(3-1045 

dimethylaminopropyl)-N′-ethylcarbodiimide (120�mM in 6% pyridine) at a 2:1:1 ratio. 1046 

The plate was sealed with a plastic sealing mat (Thermo Fisher Scientific, #AB-0566) 1047 

and incubated at 40�°C, 600�rpm in a thermomixer for 60�min to derivatize the 1048 

carboxylate-containing compounds. The reaction mixture was quenched with 0.02% 1049 

formic acid in 10% acetonitrile:water before LC–MS. 1050 

Samples were injected via refrigerated autosampler into mobile phase and 1051 

chromatographically separated by an Agilent 1290 Infinity II UPLC and detected using 1052 

an Agilent 6545XT Q-TOF (quadrupole time of flight) mass spectrometer equipped with 1053 

a dual jet stream electrospray ionization source, operating under extended dynamic 1054 

range (1,700�m/z). Chromatographic separation was performed using an ACQUITY 1055 

Bridged Ethylene Hybrid (BEH) C18 column 2.1 x 100 mm, 1.7-micron particle size, 1056 

(Waters Corp. Milford, MA), using chromatographic conditions published elsewhere (Liu 1057 

et al., 2022). MS1 spectra were collected in centroid mode, and peak assignments in 1058 

samples were made based on comparisons of retention times and accurate masses 1059 

from authentic standards using MassHunter Quantitative Analysis v.10.0 software from 1060 

Agilent Technologies. Acetate was quantified from calibration curves constructed with 1061 

acetate-d4 as a standard using isotope-dilution MS with phenylpropionate-d9 as the 1062 

internal standard. Calibration curves were performed in a modified base form of EDM1 1063 

lacking amino acids and other carboxylic acids. A background level of 1.05mM of 1064 

acetate was subtracted to obtain the final quantities. 1065 

A plate layout error for supernatant samples from time points 4-7 in this 1066 

experiment was noted based on the resulting acetate concentrations and corrected 1067 

across datasets.  1068 

 1069 
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Untargeted metabolomics 1070 

Bacterial culture supernatant and sterile media, used in culture, were thawed on 1071 

wet ice. Once thawed, samples were homogenized by inversion five times. Extracellular 1072 

culture supernatant samples were prepared as follows: 20 μL of culture supernatant 1073 

were extracted using 80 μL of a chilled extraction solvent at -20oC (1:1 1074 

acetonitrile:methanol, 5% water containing stable isotope-labeled internal standards). 1075 

Samples were homogenized via pipette action, incubated for 1 hour at -20oC, 1076 

centrifuged at 4oC at 6000 rcf for 5 min. The supernatant was transferred to a new plate 1077 

and immediately sealed and kept at 4oC prior to prompt analysis via LC-MS/MS.    1078 

Intestinal samples (colon, cecum, ileum) were prepared individually using a 1079 

single protocol as follows. Samples were kept frozen on dry ice and massed to at least 1080 

10 mg. Four microliters of -20oC extraction solvent (2:2:1 methanol:acetonitrile:water + 1081 

stable isotope labeled internal standards) were added per milligram of intestinal sample. 1082 

Six to eight 1mm zirconia silica beads were added to each sample followed by prompt 1083 

bead beating (15 Hz, for 10 minutes). Following a 1 hour incubation in the -20oC 1084 

freezer, samples were centrifuged at 4oC at 18,407 rcf for 5 minutes. Supernatant was 1085 

collected and stored at -20oC prior to centrifugal plate filtration (0.2 micron 1086 

polyvinylidene difluoride (PVDF) Agilent Technologies, Santa Clara CA) at 4oC at 4,122 1087 

rcf for 3 min. Collection plate was sealed and maintained at 4oC prior to prompt 1088 

analysis. 1089 

Serum samples were first thawed on wet ice. 20 μL of serum was extracted with 1090 

4 volumes of methanol, containing stable isotope labeled internal standards. Samples 1091 

were homogenized by vortexing for 20 seconds and placed in a -20oC for 1 hour to 1092 

maximize protein precipitation. After freezer incubation, samples were centrifuged at 1093 

4oC at 18,407 rcf for 5 minutes. Supernatant was removed and dried under vacuum via 1094 

centrivap (Labconco Corp.). Dried samples were then resuspended in 30 μL of 80% 1095 

acetonitrile in water containing exogenous standard CUDA at 60 ng/mL. Samples were 1096 

maintained at 4oC prior to prompt analysis. 1097 

Within each analysis batch, a small amount of each sample was removed and 1098 

combined to create multiple technical replicate ‘pools’ which were analyzed 1099 

intermittently throughout the analysis. These pools were used as external standards to 1100 
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ensure instrument stability across the batch. Additionally, method blanks were created 1101 

using LC-MS grade water in place of supernatant,  sterile media, serum, or intestinal 1102 

contents. These blanks were used to ensure that reported metabolites were not 1103 

inadvertently added during sample preparation. 1104 

Samples, sterile media, pools, and blanks were promptly added to a Thermo 1105 

Vanquish Autosampler at 4°C in a Vanquish UHPLC (Thermo Fisher Scientific, 1106 

Waltham, MA). Chromatographic separation was performed using an ACQUITY Bridged 1107 

Ethylene Hybrid (BEH) Amide column 2.1 x 150 mm, 1.7-micron particle size, (Waters 1108 

Corp. Milford, MA), using chromatographic conditions published elsewhere (Lai et al., 1109 

2018). Samples were analyzed on a Thermo Q-Exactive HF orbitrap mass spectrometer 1110 

operated utilizing data dependent acquisition of MS2. Data was acquired independently 1111 

in positive and negative modes via subsequent injections. 1112 

 1113 

SIRM metabolomics 1114 

 Intracellular extract samples were prepared with the following procedure, which 1115 

was optimized for lysis of thick gram-positive cell walls: 600 μL of culture was 1116 

transferred to an Eppendorf tube in anaerobic conditions and subsequently centrifuged 1117 

at 10,000rcf for three minutes at 4°C, after which the supernatant was removed and the 1118 

samples were immediately flash frozen to quench metabolites. 300 μL of cold methanol 1119 

was then added to each pellet, followed by sonication on ice for 5 minutes and then 1120 

shaking at 4°C for 4-12 hours. Samples were then centrifuged at 4°C at 15,000 rcf for 8 1121 

minutes, after which 120 μL of supernatant was transferred to fresh tubes and stored at 1122 

-80°C until analysis. Prior to analysis, intracellular samples were dried at room 1123 

temperature via Centrivap Benchtop Concentrator (Labconco Corp.). Samples were re-1124 

suspended in 60 μL of a chilled solution of 1:1 methanol and acetonitrile, with 24% 1125 

water at -20oC containing the internal standards CUDA and VAL-TYR-VAL each at 60 1126 

ng/mL. Samples were centrifuged at 4°C, 4,122 rcf for 5 minutes and the supernatant 1127 

transferred to a vial and immediately capped for LC-MS analysis. 1128 

 Extracellular supernatant extraction for SIRM metabolomics was performed as 1129 

described above (Untargeted metabolomics section) with one modification. In SIRM 1130 

samples, deuterated internal standards were replaced with CUDA and Val-Tyr-Val to 1131 
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enable untargeted enrichment analysis. LC-MS/MS analysis conditions for SIRM 1132 

metabolomics were identical to those used for standard untargeted metabolomics.  1133 

 1134 

Untargeted metabolomics data processing 1135 

 Untargeted metabolomics datasets were processed using MS-DIAL version 4.60 1136 

(Tsugawa et al., 2015). Metabolite features with intensity not greater than 3-fold 1137 

elevated in samples compared to mean blank intensity were removed. Annotations were 1138 

assigned using both local (Han et al., 2021) and global (Mass Bank of North America) 1139 

tandem mass spectral libraries. Annotation confidence scores were assigned based on 1140 

Metabolomics Standards Initiative (MSI) best practices (Fiehn et al., 2007; Schymanski 1141 

et al., 2014). Briefly; MSI level 1 denotes library matches of accurate mass (m/z), 1142 

retention time (RT) and tandem mass spectra (MS2). MSI level 2 follows the same rules 1143 

as MSI 1, but allows for partial matching of MS2 spectra - as is prone to occur when 1144 

experimental spectra are convoluted. MSI level 3 denotes a high scoring and visually 1145 

confirmed match of MS2 spectra. MSI level 4 is assigned when exact stereospecificity 1146 

cannot be determined by MS2 and chromatographic separation. MSI level 4 is often 1147 

assigned to sugars, lipids, and polyphenols. MSI levels 1 and 2 could only be assigned 1148 

to metabolites in our local library, for which authentic standards have been analyzed in 1149 

the same chromatographic conditions as the samples being annotated. Post processing 1150 

was performed using MS-FLO (DeFelice et al., 2017) for removal of erroneous features. 1151 

Processed datasets were further analyzed using Feature-based Molecular 1152 

Networking and MolNetEnhancer in the GNPS web platform (Djoumbou Feunang et al., 1153 

2016; Ernst et al., 2019; Nothias et al., 2020; Wang et al., 2016), which assigned 1154 

ClassyFire chemical classes to features based on molecular networking, independently 1155 

of whether they were assigned a library identity.  1156 

To merge positive and negative ionization mode datasets from the same 1157 

samples, duplicate features across datasets were identified as those with an expected 1158 

mass difference of less than 0.02, a retention time difference of less than 0.1, and a 1159 

Pearson correlation across samples of at least 0.7. If one or both members of a pair of 1160 

duplicate features were assigned an identification, the feature with lower (more 1161 
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confident) MSI score was retained in the merged dataset. Otherwise, the positive mode 1162 

feature was retained. The other feature was removed for downstream analysis.   1163 

Prior to statistical analysis, initial untargeted metabolomics feature tables were 1164 

filtered to remove features with a high coefficient of variation across replicate samples 1165 

(> 50%) and to remove potential technical outlier samples where the total signal from all 1166 

features differed from the assay median by > 50%. Log10-transformed intensities were 1167 

used for most statistical analysis, with the exceptions of SIRM datasets and the 1168 

comparative strains dataset (for which values were approximately normally distributed 1169 

without transformation). A pseudocount equal to 0.25 times the minimum non-zero 1170 

value was added to the peak intensities for each feature before log transformation. 1171 

Heatmaps of metabolite abundances were generated using the ComplexHeatmap 1172 

package (Gu et al., 2016). 1173 

 1174 

SIRM data processing 1175 

 Intra- and extracellular untargeted data generated from SIRM experiments was 1176 

analyzed separately using Compound Discoverer version 3.3 (Thermo Scientific, 1177 

Bremen, Germany). Samples treated with labeled compounds were always paired with 1178 

matched samples treated with unlabeled compounds in order to correct for naturally 1179 

occurring isotope abundances. Unlabeled samples were used for compound detection 1180 

and formula assignment via isotope pattern-based prediction, spectral library matches, 1181 

or mass lists matches. The isotope patterns and formulas from the sample files then 1182 

served as a reference for the  detection of potential isotopologues per compound in the 1183 

labeled sample type.  1184 

Specifically, the workflow consisted of the following nodes in Compound 1185 

Discoverer: Input Files→ Select Spectra→ Align Retention Times (ChromAlign)→ 1186 

Detect Compounds (Legacy) → Group Compounds→ Predict Compositions→ Search 1187 

Mass Lists→ Search mzCloud→ Mark Background Compounds→ Assign Compound 1188 

Annotations→ Analyze Labeled Compounds→ Descriptive Statistics→ Differential 1189 

analysis. 1190 

The default settings from the “Stable Isotope Labeling w Metabolika Pathways 1191 

and ID using Online Databases” workflow were used, with the following modifications: 1192 
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(1) Detect Compounds (Legacy): General– Min.Peak Intensity: 10000; Ions: 1193 

[M+H]+1 or [M-H]-1 for positive and negative mode experiments respectively. 1194 

(2) Group Compounds: Peak Rating Filter– Peak Rating Threshold: 4; Number of 1195 

Files: 3. 1196 

(3) Search Mass Lists: Search Settings– Mass Lists: Combined Hilic Mass mzRT 1197 

library; Use Retention Time: True; RT Tolerance: 0.3 min; Mass Tolerance: 5 1198 

ppm. 1199 

(4) Search mzCloud: DDA Search– Match Factor Threshold: 85 1200 

(5) Mark Background Compounds: General– Max. Sample/Blank: 3 1201 

(6) Assign Compound Annotations: Data Sources– Data Source #1: mzCloud 1202 

Search; Data Source #2: MassList Search; Data Source #3: Predicted 1203 

Compositions. 1204 

(7) Analyze Labeled Compounds: Pattern Analysis– Intensity Threshold [%]: 2 1205 

 1206 

Positive and negative polarity files were analyzed initially as separate studies 1207 

with the following study definitions: Study factors including strain, replicate, substrate 1208 

concentration, sample type, and time point were assigned. Sample types were assigned 1209 

as either sample (unlabeled), labeled, or blank. These study factors interfaced with 1210 

several nodes to reduce undesirable features and maximize reporting of quality high 1211 

intensity peaks with potential for accurate measurement of 13C incorporation.  1212 

Results were filtered for non-blank formula assignment and absence in 1213 

background samples. The MSI levels and labeling status for persisting entries were 1214 

manually inspected for each compound and annotated onboard via custom tags. MSI 1215 

levels were assigned based on the criteria previously described to match MS-Dial 1216 

output. The mass isotopologue distributions were plotted to ensure reproducibility 1217 

between replicates of various time points and detect anomalous labeling trends. The 1218 

absence of reported enrichment in control samples processed as labeled samples was 1219 

verified. A minimum threshold of 3% combined enrichment across all isotopologues 1220 

other than M+0 was applied. This threshold was necessary for less abundant peaks 1221 

where the 13C natural isotopic abundance correction introduces uncertainty in the M+1 1222 

and M+2 isotopologues. 1223 
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A specification of the full Compound Discoverer workflow is available at 1224 

https://github.com/turnbaughlab/2022_Noecker_ElentaMetabolism.  1225 

 1226 

RNA-Seq 1227 

E. lenta DSM 2243 glycerol stocks were plated on BHI+ and incubated 1228 

anaerobically at 37°C for three days. A single colony was then inoculated into 5mLs of 1229 

BHI+ liquid culture and incubated at 37°C for 48 hours. 1 mL of the resulting culture was 1230 

then centrifuged, washed once, and resuspended in equal volume PBS; all in anaerobic 1231 

conditions. 220 μL of this inoculum were transferred into culture flasks containing 20 mL 1232 

of EDM1 (70% carbon source reduced version, see Table S1) to obtain a starting 1233 

OD600 of 0.01. After 20 hours of growth (early or mid-exponential phase), these 1234 

cultures were treated with an additional 1.9 mL of sterile water or filter-sterilized solution 1235 

containing either L-arginine (to reach a final concentration of 86 mM), sodium acetate 1236 

(final concentration of 14.5 mM), or agmatine sulfate (final concentration of 30 mM). 1237 

After 18 more hours (late exponential phase), 7.5 mL of each culture was collected into 1238 

15 mL conical tubes containing 5 mL of Qiagen Bacterial RNA-Protect (#76506). 1239 

Cultures were centrifuged at 2,800 rcf at 4°C for 10 minutes, after which the supernatant 1240 

was carefully removed. Pellets were extracted directly using the Qiagen RNeasy Mini kit 1241 

(#74104) with modifications for difficult-to-lyse Gram positive bacteria. Samples were 1242 

maintained on ice throughout the protocol. Briefly, 200 μL of TE buffer containing 1243 

lysozyme (15mg/mL, #L4919) and 20 μL of Qiagen Proteinase K (#19131) were added 1244 

to each pellet, vortexed gently, and incubated at room temperature for 10 minutes with 1245 

shaking on an Eppendorf ThermoMixer at 900 rpm. 700 μL of Buffer RLT was then added 1246 

to each tube and vortexed, after which the full contents were transferred to MP 1247 

Biomedical Lysing Matrix E tubes (#116914500) and disrupted mechanically in a 1248 

BioSpec Mini-Beadbeater-96 for 50 seconds. After disruption, tubes were centrifuged 1249 

for three minutes at 15,000rcf and 850 μL of supernatant was transferred to fresh tubes. 1250 

590 μL of 80% ethanol was added to each sample and mixed by pipetting, after which 1251 

lysates were transferred to Qiagen RNeasy spin columns and washed, following the 1252 

RNeasy Mini kit QuickStart protocol including a single on-column DNase digestion 1253 

(DNase #79254). After purification, RNA was eluted twice into 30 μL of nuclease-free 1254 
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water. RNA integrity was checked using an Agilent TapeStation 4150 and stored at -1255 

80°C. 1256 

 RNA library preparation and sequencing was performed by the Microbial 1257 

Genome Sequencing Center/SeqCenter. Samples were DNase treated with Invitrogen 1258 

DNase (RNAse free, #AM2222). Library preparation was performed using Illumina’s 1259 

Stranded Total RNA Prep Ligation with Ribo-Zero Plus kit (#20040529) and 10bp IDT 1260 

for Illumina indices. Supplementary oligonucleotide probes specific to E. lenta rRNA and 1261 

other highly expressed noncoding RNAs were incorporated during Ribo-Zero depletion 1262 

(Table S10). Sequencing was done on a NextSeq 2000 with 2x50bp reads. 1263 

Demultiplexing, quality control, and adapter trimming was performed with bcl-convert 1264 

v3.9.3. 1265 

 Reads were trimmed and quality filtered using fastp v0.20.0 (Chen et al., 2018) 1266 

with the following parameters: --trim_poly_g --cut_front --cut_tail --cut_window_size 4  --1267 

cut_mean_quality 20 --length_required 15. The Hisat2 aligner v2.2.1 (Kim et al., 2019) 1268 

was used to map reads to the E. lenta DSM 2243 reference genome, downloaded from 1269 

NCBI RefSeq (GCF_000024265.1). Gene-level read counts were obtained using the 1270 

corresponding NCBI annotations and the featureCounts function in the R package 1271 

Rsubread v2.6.4 (Liao et al., 2019), with the minimum quality score set to 1.  1272 

 1273 

Construction, curation, and analysis of metabolic reconstructions 1274 

Genome-scale metabolic reconstructions were created from genome sequences 1275 

of 25 E. lenta strains (Bisanz et al., 2020) using the DEMETER pipeline (Heinken et al., 1276 

2020, 2021b). Briefly, DEMETER performs systematic refinement of a draft genome-1277 

scale reconstruction, in this case generated through KBase (Arkin et al., 2018). Based 1278 

on manually gathered experimental data, gap-filling solutions that had been manually 1279 

determined in a subset of reconstructions are propagated by DEMETER to newly 1280 

reconstructed strains. Moreover, DEMETER ensures correct reconstruction structure 1281 

through use of a curated reaction and metabolite database and removes futile cycles 1282 

resulting in unrealistically high ATP production. A test suite ensures agreement with the 1283 

input experimental data and verifies model features such as mass and charge balance 1284 

and feasible ATP production. The Eggerthella lenta DSM 2243 reconstruction 1285 
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underwent additional refinement of reactions and gene annotations against manually 1286 

performed comparative genomics analyses (Heinken et al., 2020).  1287 

Reconstructions were analyzed using the Cobra Toolbox version 3.0 (Heirendt et 1288 

al., 2019) in Matlab version 2018b, with the IBM Cplex solver version 128. Defined 1289 

media concentrations were mapped from compound names to BiGG metabolite IDs 1290 

(King et al., 2016) and converted to cell uptake rates over the duration of E. lenta’s 1291 

exponential growth phase in batch culture (Table S1) using the concToCellRate 1292 

function in the Cobra Toolbox and an approximate cell dry weight of 3.3x10-13 g, 1293 

calculated based on colony forming units and dry biomass quantification from two 1294 

aliquots of a late-exponential phase EDM1 culture. Additional compounds detected in 1295 

sterile culture media with high confidence based on untargeted metabolomics were 1296 

included in the simulation media with a fixed maximum uptake rate of 1 mM/gDW/hr.  1297 

The collection of E. lenta strain reconstructions included two reconstructions of 1298 

the type strain: the DSM 2243 reconstruction which had undergone additional 1299 

comparative genomics curation with PubSeed (Overbeek et al., 2014), and a slightly 1300 

smaller and less refined reconstruction included in the AGORA2 collection (Heinken et 1301 

al., 2020) based on genome resequencing of the ATCC 25559 version of the type 1302 

strain. Neither reconstruction initially displayed nonzero growth in EDM1 using flux 1303 

balance analysis. In order to facilitate interpretation of FBA results and avoid excess 1304 

gap-filled reactions, we used the simpler E. lenta ATCC 25559 type strain 1305 

reconstruction as the basis for subsequent curation and analysis. We transferred 1306 

reactions present in the DSM 2243 reconstruction into this version if they were 1307 

supported by genome annotations from other sources (Prokka (Seemann, 2014), 1308 

GapMind (Price et al., 2022)) and/or by experimental growth or metabolomics data. We 1309 

also performed several additional custom curations. Transporters were added for 1310 

metabolites identified with high confidence (Metabolomics Standards Initiative level 1) 1311 

and detected as secreted or depleted with a log2 fold change greater than 2 in the 1312 

stationary phase strain collection metabolomics dataset (Figure 4). Several pathways 1313 

were also modified based on growth assay results and/or pathway annotation software 1314 

(Price et al., 2022) and (Pascal Andreu et al., 2021)). Curations were checked for viable 1315 

growth in EDM1 using flux balance analysis. Reconstructions for the other 23 strains 1316 
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were only curated to ensure growth in EDM1 and to allow import/export based on 1317 

metabolomics data, but not based on genome analysis with GapMind (Price et al., 1318 

2022) or the results of leave-one-out growth experiments, since those were only 1319 

performed using the type strain. A complete summary of all curation steps is found in 1320 

Table S3.  1321 

Flux balance analysis (FBA), parsimonious flux balance analysis (pFBA), and flux 1322 

variability analysis (FVA) were performed using the Cobra Toolbox functions 1323 

optimizeCbModel, minimizeModelFlux, and fastFVA, respectively. Flux variability ranges 1324 

are reported for 99% of the maximum growth rate. 1325 

Metabolite uptake and secretion ranges estimated by FVA were compared with 1326 

the stationary phase strain collection metabolomics dataset (shown in Figure 4). To 1327 

compare metabolite data with FVA estimates, identified metabolites were first mapped 1328 

from InChIKey metabolite IDs to KEGG IDs using the CTS Convert utility (Wohlgemuth 1329 

et al., 2010) implemented in the R package webchem (Szöcs et al., 2020). KEGG IDs 1330 

were then mapped to BiGG IDs using the BiGG database (King et al., 2016) and 1331 

manually checked for consistency with compound IDs in the AGORA models. For 1332 

purposes of this analysis, metabolites were considered produced if they had a log2 fold 1333 

change greater than 0.5 in supernatants from at least one of the three type strain 1334 

isolates included in the experiment (E. lenta DSM 2243 - UCSF, E. lenta ATCC 25559, 1335 

and E. lenta DSM 2243 - DSMZ), and depleted if the log2 fold change was less than -1336 

0.5. 1337 

To compare gene expression values with model flux estimates, we first ran pFBA 1338 

and FVA for the modified EDM1 condition used for RNA-Seq (with 70% of the standard 1339 

levels of arginine and acetate). We obtained the set of genes linked to reactions in the 1340 

iEL2243_2 reconstruction, using NCBI BLASTn to map genes between different sets of 1341 

annotations. Genes linked to multiple reactions were counted multiple times for each 1342 

reaction, and vice versa. Only genes linked to reactions in the original ATCC 25559 1343 

reconstruction were included. 1344 

Similarly, to compare reaction knock-out predictions with strain variation, genes 1345 

linked to reactions in the original ATCC 25559 reconstruction were mapped to 1346 

annotations used in a previous pan-genome analysis of 31 non-clonal E. lenta genomes 1347 
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(Bisanz et al., 2020). In this previous analysis, amino acid sequence families were 1348 

clustered across genomes using ProteinOrtho (Lechner et al., 2011) with cutoffs of 60% 1349 

identity and 80% coverage. This analysis was then used to determine the number of 1350 

strains in which each gene family in the ATCC 25559 reconstruction was present, and 1351 

compare that distribution with the effects predicted by knockout analysis of the 1352 

unconstrained model. 1353 

 1354 

Strain comparative metabolomics analysis 1355 

 Metabolites were classified as strain-variably produced/depleted if they were 1356 

differentially increased/decreased (FDR-adjusted p<0.1 and absolute log2 fold 1357 

change>0.5) in supernatants from at least 1 isolate strain but fewer than 29 (of the 30 1358 

isolates included in this experiment).  1359 

 The phylogenetic and comparative genomics analyses used in this study were 1360 

previously reported, including a core gene phylogenetic tree (Phylophlan), gene family 1361 

clustering across strains (ProteinOrtho) and Prokka and GhostKoala annotation of all 1362 

genomes (Bisanz et al., 2020). 1363 

 Procrustes analysis was performed using the R package vegan v2.6-2, with 1364 

evaluation of significance using the protest function (Oksanen et al., 2022). The E. 1365 

sinensis isolate was excluded from Procrustes analysis to avoid skewing the distribution 1366 

of phylogenetic distances. 1367 

The gene-metabolite association analysis was performed as described previously 1368 

(Bisanz et al., 2020), with different cutoffs for prioritization. Briefly, all observed patterns 1369 

of gene family presence-absence (based on clusters of 60% identity and 80% coverage) 1370 

were enumerated across the collection of genomes. Log-transformed metabolite 1371 

intensities were then tested for association with each presence-absence pattern using 1372 

Welch’s t-tests. Using an initial cutoff of an FDR-adjusted p-value of 10-4, 39.0% of 1373 

metabolite features were significantly associated with a gene cluster by this method. To 1374 

further restrict results to those features most likely to depend on the presence of a gene, 1375 

we filtered gene-metabolite links using two additional separability criteria. First, the 1376 

difference in median log10 metabolite values between strain samples with and without 1377 

the gene was required to be at least 0.4. Secondly, the 10th percentile log10 metabolite 1378 
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value for strains with the gene was required to be at least 0.4 above the maximum value 1379 

in controls, and the 90th percentile value for strains without the gene was required to be 1380 

lower than that value. Finally, only the highest association for each metabolite feature 1381 

was retained. This additional filtering resulted in the final table of 84 gene family-1382 

metabolite links. KEGG pathway enrichment analysis of the final gene set was 1383 

performed using clusterProfiler v4.0.5 (Wu et al., 2021) with a p-value cutoff of 0.1.  1384 

 1385 

Cross-dataset untargeted metabolomics analysis 1386 

 As described above, untargeted metabolomics datasets from supernatant, 1387 

mouse intestinal contents, and serum were collected using the same chromatography 1388 

and mass spectrometry methods. Pairs of features were compared across these 1389 

datasets and linked if they were within 0.007 m/z, 0.5 minutes retention time, and had a 1390 

cosine similarity of at least 0.205 between their MS2 spectra for positive ionization 1391 

mode and 0.251 for negative ionization mode. Features for which MS2 spectra were not 1392 

collected were linked to other features within 0.001 m/z and 0.2 retention time. Linked 1393 

feature pairs were also required to be annotated as the same adduct. These m/z and 1394 

retention time thresholds were chosen based on examination of the distributions of 1395 

pairwise differences between features. The cosine similarity cutoffs were chosen as the 1396 

99.5th percentile of cosine similarity between a large sample of unrelated feature pairs:  1397 

specifically, all pairwise comparisons of two sets of 200 randomly sampled features with 1398 

retention times differing by at least 1 and m/z differing by at least 0.01. This procedure 1399 

was repeated separately for positive and negative ionization mode datasets. Under 1400 

these criteria, only approximately 0.5% of linked features assigned an identity were 1401 

linked to features with a conflicting identity. Linked pairs of features were merged into 1402 

shared metabolite IDs that were carried forward for cross-dataset analysis and 1403 

comparison. 1404 

 1405 

QUANTIFICATION AND STATISTICAL ANALYSIS 1406 

All statistical analyses were performed in R v4.1.1, with data visualizations 1407 

generated using the ggplot2 package (Wickham, 2016). Statistical tests, sample size 1408 

and standard error are reported in the figures and figure legends. Benjamini-Hochberg 1409 
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false discovery rate (FDR) correction was used to adjust for multiple comparisons in all 1410 

cases. 1411 

 1412 

Untargeted metabolomics statistical analysis 1413 

Differential trajectories across time series datasets were assessed using spline 1414 

models implemented in the santaR package (Wolfer, 2022). Differential abundance 1415 

analysis between supernatant samples and sterile controls at the final time point was 1416 

performed using Welch’s t-tests after checking assumptions of normality. In one case 1417 

where cross-contamination of sterile control tubes occurred at later time points, features 1418 

at those time points were compared with control samples from the last uncontaminated 1419 

time point.  1420 

Differential abundance analysis for the comparative strains dataset was 1421 

performed using linear models with each strain identity as a covariate. Differential 1422 

abundance analysis for the gnotobiotic mouse intestinal dataset was performed using 1423 

linear mixed models with the R package lmerTest (Kuznetsova et al., 2017), 1424 

incorporating fixed effects for intestinal site, colonization group, and the interaction 1425 

between them; and nested random effects for cage and animal. The difflsmeans 1426 

function with Benjamini-Hochberg multiple hypothesis adjustment was used to evaluate 1427 

the statistical significance of differences of each colonization group vs. germ-free under 1428 

this model. 1429 

 1430 

Statistical analysis of growth curves 1431 

 Growth curves were normalized based on average time-matched readings from 1432 

blank control wells. Normalized values were used to fit logistic growth models for each 1433 

well using the R package growthcurver (Sprouffske and Wagner, 2016). Low-quality 1434 

model fits (sigma > 0.1) were removed prior to calculation of summarized parameter 1435 

values.  1436 

 1437 

Targeted metabolomics statistical analysis 1438 

Differential abundance analysis was performed using a linear model with terms 1439 

for time point, strain, and their interaction. Differences from controls under the resulting 1440 
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model were estimated using Dunnett’s method as implemented in the package 1441 

emmeans v1.7.5 (Lenth, 2022). 1442 

 1443 

RNA-Seq statistical analysis 1444 

Differential expression analysis was performed using negative binomial 1445 

generalized linear models implemented in the DESeq2 package v1.32.0 (Love et al., 1446 

2014).  1447 

  1448 

 1449 

  1450 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 1451 

 1452 

Supplemental Figures 1453 

Figure S1. EDM1 chemically defined media supports robust growth of Eggerthella 1454 

lenta and enables sensitive metabolomics profiling. Related to Figure 1. A) 1455 

Summary of the composition of EDM1 media. The number in parentheses indicates the 1456 

number of specific compounds in each category. B) Growth of E. lenta DSM 2243 in two 1457 

commonly used media conditions (Brain Heart Infusion supplemented with L-arginine, 1458 

and ISP-2 media supplemented with L-arginine), compared with three initial defined 1459 

media formulations. C) Comparison of total number of differentially abundant features 1460 

and identified differentially abundant features in this experiment compared to previous 1461 

metabolomics profiling of E. lenta. The combination of chemically defined culture media 1462 

and untargeted metabolomics methods used in this experiment allowed for greater 1463 

detection of metabolites produced by E. lenta. D) Metabolomics profiling of compounds 1464 

known to be present in the chemically defined media formulation EDM1. 22 media 1465 

compounds were detected, most of which were not significantly depleted in E. lenta 1466 

cultures over time. E) Hierarchical clustering of metabolite trajectories reveals distinct 1467 

growth phases. Scaled average metabolite intensities across time points during growth 1468 

in EDM1 were hierarchically clustered with complete linkage and cut into discrete 1469 

clusters with a height of 1.6, distinguishing early-, mid- and late-produced and depleted 1470 

metabolites. Cluster order is arbitrary. Annotated metabolites are listed below each 1471 

cluster along with their Metabolomics Standards Initiative confidence level. Colors 1472 

indicate ClassyFire metabolite classes as assigned by GNPS. Only clusters with at least 1473 

1 identified metabolite and at least 5 total features are shown. 1474 

 1475 

Figure S2. Effects of individual media components on growth of E. lenta DSM 1476 

2243. Related to Figure 1. A) Growth curves for E. lenta DSM2243 growth in EDM1 1477 

media with individual media components removed. Gray curves indicate growth in full 1478 

EDM1 media in the same experiment. Curves are shown as mean +/- standard error. 1479 

Blue text indicates the growth parameters with significantly different values with and 1480 

without the compound (Wilcoxon rank-sum test, FDR-adjusted p < 0.2; r - growth rate k 1481 
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- carrying capacity, tmid - time to mid-exponential, auc - area under the empirical curve). 1482 

B) Distribution of median effects of removal of all tested compounds on growth 1483 

parameters estimated by a logistic model. The dotted line indicates the median 1484 

parameter estimate for the full EDM1 media across all experiments. Parameters were 1485 

fitted with a logistic model implemented by the R package growthcurver.  1486 

 1487 

Figure S3. Environmental acetate concentrations affect growth and metabolite 1488 

production of three E. lenta strains. Related to Figure 2. A) Targeted quantification 1489 

of acetate depletion in E. lenta EDM1 cultures. Acetate was measured at 2-3 time points 1490 

in supernatant samples from three E. lenta strains during growth in EDM1 as well as 1491 

sterile controls. Quantification was performed using a method for derivatization of 1492 

carboxylic acids with 3-nitrophenylhydrazine and N-(3-dimethylaminopropyl)-N′-1493 

ethylcarbodiimide followed by targeted LC-MS/MS. Error bars show mean +/- standard 1494 

error. Linear models of acetate concentration versus strain and time point were inferred 1495 

for each media group, and differences from controls under the resulting model were 1496 

estimated using Dunnett’s method. * indicates p<0.05, *** indicates p<0.001. B) Growth 1497 

of three E. lenta strain isolates in EDM1 with 0, 1, or 10 mM sodium acetate. Mean +/- 1498 

standard error across three replicates is shown. C) Acetate-responsive metabolites in 1499 

supernatants from E. lenta AB8n2 and E. lenta Valencia. Metabolites shown are those 1500 

that were assigned an identification, were differentially abundant compared with sterile 1501 

controls (FDR-adjusted p<0.2), and had significantly different trajectories over time in 1502 

the presence vs absence of acetate in either strain (based on smoothing spline 1503 

regression with the R package santaR, FDR-adjusted p<0.25). Values shown are scaled 1504 

log-transformed peak heights. The number in parentheses indicates the Metabolomics 1505 

Standards Initiative confidence level for each metabolite annotation (see Methods). 1506 

 1507 

Figure S4. Consistent incorporation of acetate across three E. lenta strains based 1508 

on stable isotope-resolved metabolomics. Related to Figure 2. A) Growth of E. 1509 

lenta strains in EDM1 with varying levels of sodium acetate (either stable isotope-1510 

labeled 13C2 or unlabeled). Optical density measurements were taken and supernatant 1511 

samples were collected at each indicated time point. Mean +/- standard error across 1512 
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three replicates is shown. B) Average trajectories of labeled extracellular metabolites in 1513 

three different strains of E. lenta. Metabolites shown are those with > 50% and > 5x104 1514 

average peak area from labeled isotopologues in at least one time point in the 10 mM 1515 

labeled acetate group. For metabolites detected in both positive and negative ionization 1516 

mode, only positive mode is shown. The value in parentheses indicates the 1517 

Metabolomics Standards Initiative annotation confidence level for each metabolite. C) 1518 

Labeled metabolites of known identity in intracellular extracts across three strains of E. 1519 

lenta (data for DSM 2243 matches Figure 2E). Each panel shows the average mass 1520 

isotopologue distribution across three replicates for a single metabolite in intracellular 1521 

extracts from time point 5 (39 hours, late exponential phase). Metabolites are labeled 1522 

with the compound name and Metabolomics Standards Initiative annotation confidence 1523 

level in parentheses. Metabolites included are those with > 15% and > 104 average 1524 

peak area from labeled isotopologues in either the 1 mM or 10 mM labeled acetate 1525 

group. N-acetylated amino acids are excluded for space and reported in Data S1. The 1526 

isotopologue color legend is the same as in panel B. D) Labeled metabolites of 1527 

unknown identity across three strains of E. lenta. Each panel shows the average mass 1528 

isotopologue distribution (across three replicates) for a single metabolite in intracellular 1529 

extracts from time point 5 (39 hours, late exponential phase). Metabolites are labeled 1530 

with their estimated exact mass, retention time, and ionization mode. Metabolites 1531 

included are those with > 15% and > 104 average peak area from labeled isotopologues 1532 

in either the 1 mM or 10 mM labeled acetate group. The isotopologue color legend is 1533 

the same as in panels B and C. 1534 

 1535 

Figure S5. Stable isotope profiling of E. lenta arginine metabolism confirms that 1536 

arginine is primarily converted to ornithine as an energy source. Related to 1537 

Figure 2. A) Citrulline, but not ornithine, has a similar effect as L-arginine on E. lenta 1538 

growth. Growth curves of E. lenta grown in EDM1 media where the 1% L-arginine (red) 1539 

has been replaced with an equimolar quantity of either L-citrulline (blue) or L-ornithine 1540 

(green). Curves show mean +/- standard error across four replicates. B) In E. lenta 1541 

DSM 2243 cultures grown with 1% 13C6 labeled arginine, correspondingly labeled 1542 

citrulline and ornithine accumulate in supernatants over the course of growth. Curves 1543 
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show mean +/- standard error across three replicates. C) Mass isotopologue 1544 

distributions of extracellular metabolites. Each barplot shows the isotopologue mean 1545 

peak areas for each feature over time. Compounds shown are those of known identity 1546 

that increase by a factor of at least 24, have at least one isotopologue with a peak area 1547 

of greater 106 in at least one time point, and have a labeled isotopologue with >3% 1548 

abundance in at least one time point. D) Mass isotopologue distributions of intracellular 1549 

metabolites. Each barplot shows the mean peak areas of isotopologues for each feature 1550 

at two time points. Compounds shown are those of known identity with an average 1551 

labeled MID > 0.1 and a total peak area from labeled isotopologues of at least 105 in at 1552 

least one time point. The isotopologue color legend is the same as in panel C. E) 1553 

Distribution of total signal of extracellular metabolites across labeling patterns. While 1554 

signal from numerous unlabeled compounds is detected over time (left panel), 1555 

compounds with M+5 labeling patterns are mainly restricted to ornithine, citrulline, and a 1556 

compound of unknown identity (middle panel), and compounds found with high signal 1557 

as M+6 isotopologues are mainly arginine and citrulline (right-hand panel). Compounds 1558 

shown are those with the highest peak areas at the final time point in positive ionization 1559 

mode. F) Hypothesized pathways for metabolism of L-arginine by E. lenta. Circles 1560 

indicate the number of carbon atoms in selected compounds and are colored blue to 1561 

indicate incorporation of 13C isotopes from external arginine. Compound names in bold 1562 

were detected with the observed labeling patterns in either intracellular metabolite 1563 

extracts or culture supernatants.  1564 

 1565 

Figure S6. Single-reaction knockout analysis of iEL2243_2 identifies conserved 1566 

genes across metabolic subsystems. Related to Figure 3. A) Predicted effects of 1567 

knocking out reactions in the top 20 largest subsystems on growth of E. lenta, according 1568 

to pFBA analysis of the iEL2243_2 model. Reactions designated “Has effect” are those 1569 

for which the knockout has a predicted maximum growth rate less than wild-type but 1570 

greater than 0. Essential reactions are those that reduced biomass flux to 0 when 1571 

removed from the model. B) Reactions linked to more conserved gene families are 1572 

more likely to have substantial effects on growth when removed. Each point represents 1573 

a reaction, separated on the x-axis by whether the model without that reaction grew at > 1574 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508335
http://creativecommons.org/licenses/by/4.0/


 

 54

70% of the wildtype model. The y-axis indicates the fraction of E. lenta strain genomes 1575 

in which gene families (defined using ProteinOrtho clustering) linked to that reaction 1576 

were present. 1577 

 1578 

Figure S7. Within-species variation in E. lenta metabolic profiles across genomes 1579 

and metabolomes. Related to Figure 4. A) Phylogeny of 30 Eggerthella strains 1580 

analyzed in this study. This phylogeny was previously constructed based on core gene 1581 

alignments using Phylophlan (Bisanz et al., 2020). B) Principal components analysis 1582 

(PCA) of log-transformed metabolite intensity profiles of stationary phase supernatants 1583 

from 30 Eggerthella isolates in EDM1. The right panel shows the largest feature 1584 

loadings for the PCA and their corresponding chemical classes as assigned by GNPS, 1585 

where available. Dereplicated metabolite features with an average value > 105 in at 1586 

least one strain were included. C) Distribution of the number of strains producing or 1587 

depleting each metabolite feature. Features included are those that were significantly 1588 

modified by at least one Eggerthella isolate in this experiment (FDR-adjusted p-1589 

value<0.1 and log2 fold change>0.5). D) Map of the teichoic acid biosynthesis region of 1590 

the genome of representative Eggerthella strains. Genes outlined in bold are the gene 1591 

families associated with the unidentified metabolite features shown in Figure 4E. Gene 1592 

regions were defined in each genome based on the location of the genes annotated as 1593 

tagG and tagH by Prokka. E) Distribution of core and accessory reactions across 1594 

subsystems, based on comparative analysis of metabolic reconstructions of 24 E. lenta 1595 

strain genomes. F) Predicted maximum growth rate inferred by flux balance analysis of 1596 

each of the 24 E. lenta strain reconstructions in 52 leave-one-out media conditions 1597 

based on EDM1. Gray tiles indicate predicted cases of zero growth.     1598 

 1599 

Figure S8. Differential abundance analysis of intestinal and serum metabolites of 1600 

E. lenta-monocolonized mice compared to germ-free. Related to Figure 5. A) 1601 

Volcano plots of differential abundance analysis of metabolite features in intestinal 1602 

contents and serum of gnotobiotic mice monocolonized with one of three E. lenta 1603 

strains. Effect sizes and significance are estimated from group comparisons based on 1604 

linear mixed models of log-transformed metabolite abundances, accounting for animal 1605 
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and cage random effects. B) Total number of untargeted metabolomics features in 1606 

intestinal contents and serum of gnotobiotic mice that could be linked to features in 1607 

either of two in vitro EDM1 metabolomics datasets, based on high similarity of m/z, 1608 

retention time, and MS2 spectra. C) Comparison of the effect of E. lenta DSM 2243 on 1609 

metabolites detected in both EDM1 cultures in the untargeted time course experiment 1610 

and monocolonized mice. Each point represents a metabolite feature detected in both 1611 

datasets. The x-axis indicates the log2 fold change of each feature in supernatants from 1612 

the E. lenta DSM 2243 time course experiment compared with sterile controls, 1613 

compared with the covariate-adjusted log2 fold change of that feature in monocolonized 1614 

mice compared with germ-free mice. Points are colored green if the feature is 1615 

significantly differentially abundant in gnotobiotic mice and is shifted in the same 1616 

direction by the corresponding strain in the time course in vitro experiment.  1617 

 1618 

Figure S9. Shifts in intestinal amino acid metabolites of E. lenta-monocolonized 1619 

mice compared to germ-free. Related to Figure 6. A) Annotated metabolites with the 1620 

largest shifts in intestinal contents of E. lenta-colonized mice compared with germ-free. 1621 

Metabolites are shown if they were identified based on library comparison and were 1622 

among the most 600 strongly shifted features in any individual site or colonization 1623 

group, based on linear mixed models. Each point shows the effect size in a single site, 1624 

and color indicates chemical class where available (assigned using feature-based 1625 

molecular networking with GNPS). B) Abundance of arginine and agmatine-related 1626 

metabolites in gnotobiotic mice. Arginine is only slightly depleted by E. lenta, although 1627 

its expected products, ornithine and citrulline, are greatly increased. Agmatine is 1628 

significantly depleted, while its expected product, putrescine, is not significantly 1629 

increased. ‘.’ indicates Benjamini-Hochberg adjusted p<0.1, *p<0.05, **p<0.01, 1630 

***p<0.001.  C) Volcano plots illustrating shifts in the abundance of proteinogenic amino 1631 

acids in E. lenta-colonized mice. Arginine is colored in green. Effect sizes and 1632 

significance are estimated from group comparisons based on linear mixed models of 1633 

log-transformed metabolite abundances, accounting for animal and cage random 1634 

effects.  1635 

  1636 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508335
http://creativecommons.org/licenses/by/4.0/


 

 56

Supplemental Tables 1637 

 1638 
Table S1. Chemically defined media formulations used in this study. Related to 1639 

Figure 1 and STAR Methods. Recipes used for preparation of chemically defined 1640 

media used for experiments in this study. The first two columns indicate the 1641 

manufacturer information for each compound and the concentration of working solution 1642 

prepared for that compound. Unless otherwise specified, reference to EDM1 indicates 1643 

that the “Standard EDM1” preparation was used.  1644 

 1645 

Table S2. Summarized results of media leave-one-out growth experiments. 1646 

Related to Figure 1. Parameters were fit by logistic growth models using the R 1647 

package growthcurver. A separate model was fit for each replicate in each experiment, 1648 

and the average and standard deviation for each parameter across replicates are 1649 

reported. Average growth rate r was calculated as a harmonic mean. 1650 

 1651 

Table S3. Curation steps applied to E. lenta DSM 2243 AGORA reconstruction. 1652 

Related to Figure 3. Summary of curation steps, supporting data, and gene 1653 

annotations for each reaction added or modified in the iEL2243_2 reconstruction. 1654 

 1655 

Table S4. Most highly expressed genes by E. lenta DSM 2243 during growth in 1656 

EDM1. Related to Figure 3. Locus tags, gene annotation, and average and standard 1657 

deviation of the 100 most highly expressed transcripts during E. lenta growth in the 1658 

baseline EDM1 condition.  1659 

 1660 

Table S5. Metabolite features associated with variable E. lenta gene families 1661 

across strains. Related to Figure 4. Results of association analysis linking patterns of 1662 

strain-variable genes with strain-variable metabolite features. Associations listed are 1663 

those that met the strictest significance and separability criteria (see Methods). Gene 1664 

annotations are listed for association patterns with 20 or fewer candidate gene families. 1665 

 1666 
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Table S6. Summary of conserved and strain-variable reactions by subsystem in E. 1667 

lenta strain metabolic reconstructions. Related to Figure 4. Statistics on the 1668 

distribution of core and accessory reactions across E. lenta strain metabolic 1669 

reconstructions. 1670 

 1671 

Table S7. Genes linked to agmatine utilization by E. lenta. Related to Figure 6. A) 1672 

KEGG annotations of gene families in the agmatine deiminase pathway in E. lenta 1673 

genomes, as previously obtained using GhostKoala. B) E. lenta DSM 2243 genes with 1674 

differential expression in response to agmatine sulfate treatment (FDR-adjusted p<0.1 1675 

and absolute log2 fold change>1), as estimated by DESeq2. 1676 

 1677 

Table S8. Supplementary oligonucleotide probes used for depletion of highly 1678 

abundant E. lenta noncoding RNAs. Related to STAR Methods. Probes designed 1679 

for depletion of E. lenta ribosomal RNA and highly abundant ssrA and rnpB noncoding 1680 

RNAs, used in Illumina Ribo-Zero library preparation. 1681 

 1682 

Supplemental Datasets 1683 

 1684 

Data S1. Labeled features detected in stable isotope experiments. Related to 1685 

Figure 2. Summary of labeled isotopologues detected by untargeted metabolomics. 1686 

Each tab includes data for a single experiment and sample type: extracellular 1687 

metabolites with labeled acetate, intracellular metabolites with labeled acetate, 1688 

extracellular metabolites with labeled arginine, and intracellular metabolites with labeled 1689 

arginine. In addition to basic properties of each compound/feature, the average peak 1690 

area, standard error in peak area, and average fractional distribution are reported for 1691 

each detected isotopologue. Compounds were filtered based on the same criteria as in 1692 

Figures 2, S6, and S7. 1693 

 1694 

Data S2. Differentially abundant features across in vivo and in vitro untargeted 1695 

metabolomics datasets. Related to Figure 5. Each tab lists the set of untargeted 1696 

metabolomics features that were differentially abundant (linear mixed effects models, 1697 
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absolute log2 fold change estimate > 1 and FDR-adjusted p-value < 0.2) in at least at 1698 

least one intestinal site between E. lenta-colonized and GF mice, and that were also 1699 

detected in in vitro untargeted metabolomics experiments, separated by strain and by 1700 

feature annotation status (identified/unknown). For each feature, the corresponding log2 1701 

fold change and significance in the in vitro dataset(s) are listed for comparison. 1702 

Features are ordered by their effect size in cecal contents.  1703 
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