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Abstract

Plants sense and respond to environmental cues during 24 h fluctuations in their
environment. This requires the integration of internal cues such as circadian timing with
environmental cues such as light and temperature to elicit cellular responses through signal
transduction. The integration and transduction of circadian and environmental signals within
plants growing in natural environments remain poorly understood. To gain insights into the
24 h dynamics of environmental signalling in nature, we performed a field study of cell
signalling in a natural population of Arabidopsis halleri. As a representative model signalling
pathway, we exploited the transduction of circadian and environmental signals from the
nucleus to chloroplasts, by a sigma factor, to study diel cycles of environmental signalling
under natural conditions. Using dynamic linear models to interpret the data, we identified that
circadian regulation and temperature are key regulators of this pathway under natural
conditions. We identified potential time-delay steps between pathway components, and diel
fluctuations in the response of the pathway to temperature cues that are reminiscent of the
process of circadian gating. This approach allowed us to identify dynamic integration and
transduction of environmental cues, in the cells of plants, under naturally fluctuating diel

cycles.
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Introduction

Plants have sophisticated environmental sensing and signalling mechanisms that underpin
their responses to the fluctuating environment. Under naturally fluctuating conditions, this
requires signalling pathways that integrate dynamic, overlapping and complex environmental
stimuli [1, 2]. These environmental fluctuations include the 24 h changes in environmental
conditions that arise from the cycle of day and night. The 24 h environmental fluctuations
have selected for the evolution of circadian clocks, which are endogenous biological
oscillators that produce a cellular estimate of the time of day. Over each day, circadian
rhythms structure the responses of plants to environmental fluctuations by aligning
transcription, metabolism and development with the daily fluctuating environment [3-8]. In
plants, environmental information including the light and temperature conditions is used to
adjust the phase of the circadian oscillator, through the process of entrainment, so that the
phase is aligned with the 24 h environmental cycle. This alignment between the circadian

oscillator and the 24 fluctuating environment contributes to the fitness of plants [5].

Under natural conditions, circadian timing information is combined with environmental cues
to establish a temporal program of gene expression [9]. For example, 97% of diel transcript
profiles in field-grown rice can be predicted from meteorological data [9], and temperature
cues regulate the alternative splicing of transcripts encoding circadian oscillator components
in field-grown sugarcane [10]. Recent studies have provided insights into the diel
organization of the transcriptome and metabolism, under field conditions, for several crops
and natural plant populations [9-17]. However, the diel dynamics of environmental signalling
pathways, with defined inputs and outputs, are less well understood under natural
conditions. Understanding signal transduction in plants under natural conditions is a valuable
part of translating laboratory studies into crop improvement. For example, this could
contribute to forecasting the responses of ecosystems and crops to increasingly
unpredictable climates [18]. Experiments conducted in controlled conditions that mimic

components of field conditions remain unable to replicate all aspects of plant gene regulation
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under natural conditions [17], so field experiments provide valuable insights into plant

environmental responses.

To study the integration and transduction of circadian and environmental signals under
naturally fluctuating conditions, we selected a well-characterized environmental signalling
pathway as an experimental model. This comprises the regulation by the circadian clock of
SIGMA FACTOR 5 (SIG5), which in turn regulates the transcription of psbD (Fig. 1A). CCA1
and SIG5 are nuclear encoded, and psbD is chloroplast encoded. We chose this pathway
because it is relatively straightforward, consisting of three major components, each of which
provides distinct regulatory points of signal transduction. Therefore, the pathway provides a
relatively low level of complexity to evaluate circadian and environmental signal integration
and transduction under realistic field conditions. CCA1 is a key component of the
Arabidopsis circadian oscillator, and CCA1 transcript abundance can be used as a proxy for
the status of the circadian oscillator (Fig. 1A). SIG5 is a nuclear-encoded regulator of
chloroplast transcription, which is regulated closely by the circadian oscillator under constant
conditions [20]. Based on its responses under controlled conditions [19-30], we hypothesized
that under natural conditions SIG5 might integrate information concerning circadian
regulation, light quantity, light quality, temperature, and abiotic stress. Therefore, SIG5
transcript abundance presents a read-out several environmental signal integration processes
(Fig. 1A). It is thought that SIG5 is imported into chloroplasts, and communicates the
integrated environmental information to chloroplast gene expression by regulating
transcription from the blue light responsive promoter of psbD (psbD BLRP) [22] that encodes
the D2 protein of Photosystem Il (Fig. 1A). This chloroplast transcript provides an

experimental read-out of a later step in this signalling pathway (Fig. 1A) [19, 20, 22].

We investigated the temporal dynamics of this signalling pathway in a natural habitat of the
perennial Arabidopsis species, Arabidopsis halleri subsp. gemmifera (referred to here as A.
halleri) [55]. The close-relatedness of A. halleri and A. thaliana makes it possible to identify

pairs of homologous genes based on the sequence similarity (indicated by Ahg or At prefixes
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to gene names) [56]. The circadian clock-SIG5-psbD BLRP pathway is present in A. thaliana
and A. halleri, and well-conserved across the vascular plants [31, 32]. We obtained a
number of time series, during two seasons of the year, that monitored pathway function
under representative light and temperature conditions. We interpreted these data using
dynamic linear models, which are a type of state space model derived from control theory. In
these models, the state of the system can be predicted from the prior state of the system,
onto which can be superimposed external effects. This allows the estimation of the dynamics
of the system that arise from its internal dynamics and external factors (such as
environmental cues). Using this approach, we identified key roles for temperature and the
circadian clock in the regulation of this pathway under natural conditions, and obtained
evidence for temporal gating of responses of the pathway to environmental cues. Our
approaches could be applicable to the study of many circadian-regulated processes under

naturally fluctuating conditions.

Results

Biological data underlying models of signal transduction

Under controlled conditions of constant light, AACCA1 and AtSIG5 transcript abundance are
very well correlated (Fig. S1A-D; data from [20]). This correlation between AtCCA1 and
AtSIG5 transcript abundance is absent under light/dark cycles (Fig. S1E, F), suggesting that
the integration of light and dark cues alters the diel regulation of AtSIG5 transcript
accumulation [19, 20]. We acquired time-series of transcript abundance during spring
(March) and autumn/fall (September), close to the spring or autumn equinox (Fig. 1B-K; Fig.
S2). Although both the spring and autumn equinoxes share 12-h photoperiods, they provide
contrasting temperature regimes (cool and warm, respectively) (Fig. 1B, C; Fig. S2A, B), with
irradiance levels determined by weather conditions (Fig. 1D, E; Fig. S2C, D). This allowed us
to investigate temperature, light and seasonal influences upon SIG5-mediated signalling to

chloroplasts, because the pathway is known to be affected by light and temperature in A.
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thaliana [19, 21, 22, 26, 31]. We obtained data from areas with open sky and with
vegetational shade, to include within our models the transcriptional responses to a wider
range of irradiance levels (Fig. 1D, E; Fig. S3). The “sun” and “shade” sampling sites were
chosen by measurement of the ratio of red to far-red light (R:FR) (Fig. S3C, D) and
availability of plant patches, because A. halleri does not grow in deep shade at this location.
The total light intensity at the sun sampling site was 5 to 10-fold greater during March 2015
than during September 2015, depending on the time of day, due to weather differences (Fig.
1D, E). During March 2015, the study site temperature at both sun and shade sites ranged
from 0 °C to 17 °C (Fig. 1B, C). The temperature was often above 20 °C during September

2015, with greater diel fluctuations at the sun site (Fig. 1B, C).

We compared the pathway dynamics between the spring and autumn sampling periods by
using a smooth trend model, and identified differences in pathway regulation (Fig. 1F-K and
Fig. S2E-J). We estimated the parameters of a smooth trend model by Bayesian inference to
visualize the differences in transcript abundance between the spring and autumn sampling.
The morning peak accumulation of transcripts encoding the circadian clock component
AhgCCA1 was significantly greater during the autumn sampling compared with the spring,
under both light conditions tested (Fig. 1F, G). During both sampling seasons, AhgSIG5
transcripts reached peak abundance between the middle and end of the photoperiod (Fig.
1H, ). This differs from the phase of AtSIG5 transcript accumulation under square-wave
light/dark cycles under controlled conditions, where AtSIG5 transcript abundance peaks
around dawn [20]. The peak of the diel fluctuation of AhgSIG5 was significantly greater
during the March sampling period than during the September sampling period (Fig. 1H, I).
Furthermore, the pre-dawn accumulation of AhgSIG5 transcripts occurred at an earlier time
during the dark period during September than during March (Fig. 1H, I). This delay in pre-
dawn transcript accumulation might be due to weaker circadian control during the spring
sampling period, as suggested by the significantly decreased peak height of AhgCCAl

transcript oscillations during March compared with September (Fig. 1F, G). Transcripts
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encoding the SIG5 regulatory target AhgpsbD BLRP (Fig. 1A) had a significantly greater
peak of accumulation during the September sampling season compared with the March

season, but only under the shade light conditions (Fig. 1J, K).

AhgCCA1 transcript abundance was significantly greater under shade conditions during the
photoperiod, during both sampling seasons (Fig. S2E, F). This is reminiscent of the greater
AtCCA1 promoter activity that occurs directly after dawn under controlled conditions of far
red light compared with red light [33]. We did not identify the diminished AtCCAL1 oscillation
that occurs under constant light with a very low R:FR [34] or on the shaded western side of
crop fields around dawn [16]. As with AhgCCA1, AhgSIG5 transcript abundance was
significantly greater under shade than sun conditions, with this difference restricted to the
end of the photoperiod (Fig. S2G, H). AhgpsbD BLRP transcript levels were unaltered by the

two light environments (Fig. S2I, J).

Time delays between signalling pathway components

We assumed that SIG5-mediated signalling to chloroplasts involves a hierarchically-
organized pathway, whereby AhgCCALl is positioned upstream from the regulation of
AhgSIG5 transcript accumulation, and AhgpsbD BLRP is positioned downstream of
AhgSIG5 activity (Fig. 1A). We also assumed that environmental signals might influence
AhgCCA1, AhgSIG5 and AhgpsbD BLRP transcript accumulation independently (Fig. 1A)
[35]. To understand the dynamics of this process, we first considered the temporal
relationship between AhgCCA1, AhgSIG5 and AhgpsbD BLRP transcript accumulation
under natural conditions (t1, t2; Fig. 1A). The abundance of each of these related transcripts
was monitored at each timepoint, but their responses to each other might not be
instantaneous. For example, in A. thaliana under controlled square-wave light/dark cycle
conditions, AtCCAL transcript abundance peaks at dawn, AtSIG5 approximately 3 h after
dawn, and AtpsbD BLRP approximately 6 hours after dawn [20]. Comparable dynamics are

present in our field data, whereby AhgCCAL peaks at or after solar dawn (Fig. 1F, G),
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AhgSIG5 mid-photoperiod (Fig. 1H, I), and AhgpsbD BLRP towards the end of the
photoperiod under those conditions where it is rhythmic (Fig. 1J, K). Therefore, we reasoned
that there would be a time lag in the regulation of AhgSIG5 by AhgCCA1 (t1 in Fig. 1A), and

in the regulation of AhgpsbD BLRP by AhgSIG5 (t2 in Fig. 1A).

We were interested to quantify these time lags, and use the information arising to construct
models that assess the regulation of the pathway by specific environmental variables. We
developed dynamic linear models that predict the abundance of AhgSIG5 from AhgCCA1l
transcript abundance, and predict AhgpsbD BLRP from AhgSIG5 transcript abundance,
together with temperature and irradiance as explanatory variables. In these models, we used
the transcript abundance of the upstream component as an explanatory variable, and the
transcript abundance of the target component as a response variable within this analysis.
Therefore, AhgSIG5 is the response variable in the first model with AhgCCAL1 as the
explanatory variable, whilst in the second model, AhgSIG5 is used as the explanatory
variable for AhgpsbD. We tested the quality of model fit for a range of time delays (lags)
between the genes in the pathway (Fig. 1A). For this, we compared three model selection
parameters to estimate the time delay that provides the best estimation of the downstream
transcript (response variable). For a prediction of AhgSIG5 from AhgCCA1, a model
containing a 6 h time lag produced the best model fit, according to three model selection
parameters (Fig. 2A, B, C). For a prediction of AhgpsbD BLRP from AhgSIG5, a model
containing a 4 h time lag produced the best model fit for two out of three model selection

parameters (Fig. 2D, E, F).

We detected differences between the two sampling seasons in the time lags that produced
the best model selection parameters (Fig. S4). During the March sampling season, the best
prediction of either AhgSIG5 or AhgpsbD BLRP arose when time lags of 6-8 h (AhgSIG5
prediction from AhgCCALl) and 4-8 h (AhgpsbD BLRP prediction from AhgSIG5) were tested
(Fig. S4A-F). This was relatively longer than during the September sampling season, when

time lags of 0 or 4 h (AhgSIGS5 prediction from AhgCCA1) and 4 h (AhgpsbD BLRP
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prediction from AhgSIG5) produced the best model fit estimates (Fig. S4G-L). This suggests
that the low temperature in March delays the speed of signal transduction. Taken together,
these analyses suggest that time delays in signalling pathways are detectable under field
conditions, and that environmental conditions (seasonal differences in temperature, or

seasonal regulation) might affect the speed of signal transduction.

Dynamics of environmental regulation of signalling pathway

Environmental fluctuations are complex, noisy, and occur in simultaneous combinations.
This presents a challenge for interpreting time-series transcript data from the field within the
context of environmental signalling. We elaborated upon our modelling approach to
investigate the relationship between key environmental variables and SIG5-mediated
signalling to chloroplasts under field conditions. We used statistical models, rather than
models of biochemical kinetics [36], because this provides an effective tool for interpreting
diel and seasonal transcriptome dynamics [9, 12, 37, 38]. Comparable approaches have
allowed the investigation of diel and seasonal changes of transcriptome dynamics in A.

halleri [12, 37, 38] and rice [9].

We represented the behaviour of the pathway components using dynamic linear models, into
which the time delays that produced the best model fit were incorporated (Fig. 2). The output
of the Bayesian estimation reproduced well the essential dynamics of the observed
AhgCCA1 transcript level (Fig. 3A, B). The model estimated a significant positive relationship
between ambient temperature and AhgCCAL1 transcript abundance between midnight and
midday, with no effect of temperature at other times (Fig. 3C). There was no significant effect

of irradiance upon the estimation of AhgCCAL transcript abundance (Fig. 3D).

Diel fluctuations of AhgSIG5 transcript abundance were reproduced well by the model (Fig.
3E, F). We identified a significant negative correlation between ambient temperature and

AhgSIG5 transcript level towards the end of the light period (Fig. 3G), whereas there was no


https://doi.org/10.1101/2022.09.10.507414
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.10.507414; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

available under aCC-BY-NC-ND 4.0 International license.

significant effect of irradiance upon the prediction of AhgSIG5 transcript abundance (Fig.
3H). AhgSIGS5 is regulated by the circadian clock, and we included within the model
AhgCCAL1 transcript abundance as a proxy for circadian clock dynamics. There was a
significant positive coefficient of regression between AhgCCA1 and AhgSIG5 during the dark

period, and around the middle of the photoperiod (Fig. 3l).

Diel fluctuations of chloroplast psbD BLRP transcript abundance were also predicted well
(Fig. 3J, K). In this case, there was a significant positive coefficient of regression between
ambient temperature and psbD BLRP transcript abundance, which was restricted to the light
period (Fig. 3L). There was no significant coefficient of regression between irradiance and
psbD BLRP transcript abundance (Fig. 3M). psbD BLRP transcript accumulation is regulated
in A. thaliana by SIG5 [22], and within our model, there was a significant positive coefficient
of regression between AhgSIG5 and AhgpsbD BLRP transcript levels during part of the light

period (Fig. 3N).

Together, this analysis identifies that the ambient temperature, rather than the irradiance,
was important for predicting the dynamics of all pathway components under naturally
fluctuating conditions. In addition, the effect of the circadian clock (AhgCCAL1) contributed to
the prediction of AhgSIG5 transcript abundance (Fig. 3l), and the effect of SIG5 contributed
to the prediction of AhgpsbD BLRP transcript abundance (Fig. 3N). A feature within these
predictions was the restriction to specific times of day of significant coefficients of regression
between transcripts abundance and certain variables (such as for temperature in the
prediction of AhgCCAL (Fig. 3C) and AhgSIG5 (Fig. 3G)). These 24-h fluctuations in the
coefficient of regression are suggestive of the concept of circadian gating, which is the
process whereby the circadian clock constrains certain biological processes to specific times
in the 24 h cycle [39]. In plants, this often takes the form of a circadian rhythm in the

magnitude of the response to identical environmental stimuli given at different times of day

[8].

10
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Temporal gating of temperature regulation of SIG5-mediated signalling to

chloroplasts under natural conditions

Our dynamic linear modelling analysis suggested that under natural conditions, greater
ambient temperatures upregulate AhgCCA1 and AhgpsbD BLRP transcript levels, whereas
lower ambient temperatures upregulate AhgSIG5 transcript levels (Fig. 3C, G, L). We tested
this hypothesis by applying moderate temperature manipulations to adjacent patches of A.
halleri plants, in the field, using custom-designed equipment (Fig. 4A; Fig. S5). We collected
24-h time-series of RNA samples from these plant patches, and interpreted the data with
smooth trend models. The moderate temperature increase caused a small significant
upregulation of AhgCCAL transcript abundance after dawn relative to the control, whereas
the temperature reduction treatment was without effect (Fig. 4B). The moderate temperature
increase was without effect upon AhgSIG5 transcript abundance, whereas the temperature
reduction treatment upregulated AhgSIG5 transcripts significantly immediately after dawn,
relative to the control, and caused a significant reduction in transcript abundance during the
afternoon (Fig. 4C). This is consistent with the negative coefficient of regression between
AhgSIG5 and temperature under naturally fluctuating conditions (Fig. 3G), and with the
upregulation of A. thaliana SIG5 by a short cold treatment under laboratory conditions [22].
The restriction of the response of AhgSIG5 transcripts to the moderate temperature
reduction (Fig. 4C) is consistent with the 24-h cycle of the magnitude of the coefficient of
regression of temperature for AhgSIG5 transcript abundance (Fig. 3G). This further supports
the notion of temporal gating of the influence of temperature upon this pathway under

naturally fluctuating conditions.

Transcripts for the chloroplast target of SIG5, AhgpsbD BLRP, were also altered by
temperature manipulation. The moderate temperature elevation significantly increased
AhgpsbD BLRP transcript levels relative to the control, whereas the moderate temperature
reduction significantly reduced AhgpsbD BLRP transcripts relative to the control. These

significant alterations were restricted to the photoperiod, which might be because chloroplast

11
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DNA binding and transcription by PEP generally requires light [40-44]. Furthermore, the
positive regulation of AhgpsbD BLRP transcript abundance by the temperature
manipulations (Fig. 4D) is consistent with the coefficient of regression between AhgpsbD

BLRP transcript abundance and temperature under naturally fluctuating conditions (Fig. 3L).

Discussion

We established that circadian regulation and ambient temperature are potential regulators of
AhgSIG5-mediated signalling to chloroplasts, in a natural population of A. halleri. Our
analysis identified a significant regulation of AhgSIG5 by AhgCCA1 from midnight to morning
(Fig. 3I), and significant regulation of AhgpsbD BLRP by AhgSIG5 towards the end of the
photoperiod (Fig. 3N). These significant relationships suggest that under natural conditions,
a signal is communicated from the circadian oscillator (using AhgCCA1 as a proxy) to the
signalling pathway output of AhgpsbD BLRP. One interpretation is that the pathway couples
the circadian oscillator and temperature response processes to chloroplast gene

transcription under naturally fluctuating conditions.

We identified seasonal differences in the maximum accumulation of AhgCCA1, AhgSIG5
and AhgpsbD BLRP. AhgCCA1 and AhgpsbD BLRP had significantly lower peak
accumulation during the spring sampling period compared with the autumn sampling
season. In comparison, AhgSIG5 had significantly greater peak accumulation during the
spring compared with the autumn sampling season. The difference in AhgCCA1 dynamics
between these sampling seasons likely reflects the decreased amplitude of the circadian
oscillator that occurs under lower temperature conditions, in both controlled environments
and the field [12, 45-47]. The difference in dynamics of AhgSIG5 compared with AhgCCA1l
suggests that an additional temperature input into this pathway occurs between the circadian
oscillator and AhgSIG5. In A. thaliana, SIG5 transcripts are upregulated by short cold
temperature treatments [22] and in our field experiment, AhgSIG5 transcript accumulation

had a negative coefficient of regression with the temperature (Fig. 3G, Fig. 4C). This
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negative coefficient of regression predicts that under lower temperature conditions, AhgSIG5
transcript abundance will increase. Therefore, the lower temperatures of the spring sampling
season compared with the autumn sampling season (Fig. 1A, B) might explain the greater

levels of AhgSIG5 transcript accumulation during the spring.

Because we considered AhgpsbD BLRP to represent the ultimate output from the signalling
pathway (Fig. 1A), our analysis suggests that environmental inputs occurred within at least
three positions in the pathway; first, in the regulation of AhgCCAL transcript accumulation by
the season or temperature, second, in the regulation of AhgSIG5 transcript accumulation by
temperature, and, a third environmental input occurring downstream of AhgSIG5 transcript
accumulation for the regulation of AhgpsbD BLRP. This is evidenced by the differences in
temperature responses of AhgCCAL (positive relationship), AhgSIG5 (nhegative relationship),
and AhgpsbD BLRP (positive relationship) (Fig. 3C, G, L). These environmental inputs might
occur through biologically independent processes, such as temperature inputs to the
circadian clock mediated by temperature-responsive components such as the evening
complex [48, 49]. One of these mechanisms could be the regulation of AhgSIG5 by HY5,
which is a known regulator of SIG5 that participates in low-temperature gene regulation [22,
25, 50] and binds the SIG5 promoter in A. thaliana [51]. Furthermore, there might be direct
effects of light upon sigma factor activity in chloroplasts through, for example, redox
regulation [52] or light- and temperature-regulation of chloroplast protein import. We did not
consider here the long history of light or temperature conditions upon leaves prior to
experimentation [53], or other biotic or abiotic factors such as water availability, relative

humidity, and atmospheric CO, concentration.

Statistical modelling of the transcriptome of field-grown Oryza sativa (rice) concluded that
the main environmental driver of OsSIG5 (0s05g0586600) transcript accumulation is
temperature [9]. In this case, the temperature had a negative regression coefficient with
OsSIG5 [9]. This is consistent with our finding of a hegative coefficient of regression

between temperature and AhgSIG5. The study of the rice transcriptome in the field [9] did
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not monitor chloroplast-encoded transcripts, so a direct comparison between AhgpsbD

BLRP and our data is not possible.

A key finding from our work is the detection of a 24 h fluctuation in the coefficient of
regression between the three genes and temperature (Fig. 3C, G, L). One interpretation of
this is that there is a diel cycle of sensitivity of these pathway components to temperature
cues, with their response to temperature restricted to certain times of day. This is
reminiscent of circadian gating, which is the phenomenon whereby the circadian oscillator
restricts the response to a stimulus to certain times of day [39]. These findings are
corroborated by laboratory experiments, which demonstrate that the circadian oscillator
gates its own response to temperature [54], and the response of AhgSIG5 to blue light is
gated by the circadian oscillator [20]. This is important, because it suggests that processes
of circadian gating might operate under naturally fluctuating conditions to modulate the

environmental responses of plants.

Our investigation provides insights into molecular aspects of signal transduction in plants
under field conditions. This represents a relatively under-studied topic, and we developed
new quantitative approaches to interpret transcript data collected under complex fluctuating
environments, to investigate a specific pathway. This allowed us to identify potential time-
delay steps within a signalling mechanism, multiple positions of environmental inputs, and
temporal gating of a response to temperature. The approaches used provide a framework to
study environmental signal integration in plants and other organisms under field conditions,
which might be valuable to understanding rhythmic biological responses within an

increasingly unpredictable climate.
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Materials and Methods

Field site and plant material

Our experiments used a naturally-occurring population of Arabidopsis halleri subsp.
gemmifera (Matsum.) growing beside a forested stream in Hyogo Prefecture, Japan
(Omoide-gawa site; 35°06' N, 134°55’ E, elevation 190-230 m) [12, 37, 55] (Fig. 1B, C). We
selected A. halleri as an experimental model for several reasons [56]. First, it has a high
nucleotide sequence identity and good synteny with A. thaliana [57]. Second, unlike A.
thaliana, the perennial life history of A. halleri allows investigation of transcriptional
responses across the seasons [2, 55]. Many individuals are clones because the species
propagates by producing clonal rosettes as well as by seeds, which allows repeated
sampling from single genotypes. Furthermore, A. halleri is metal tolerant and occurs in
natural habitats that are relatively free from other vegetation due to contamination by heavy
metals, which provides experimentally-convenient sites enriched with many A. halleri plants
[58]. Arabidopsis halleri subsp. gemmifera at this site was previously identified by
examination of museum and herbarium specimens, and a nearby population provided
material for sequencing the A. halleri genome [55, 57]. Sampling occurred during 24 — 26
March 2015, 15 — 17 September 2015, and 13 - 14 September 2016, where March and

September correspond to spring and autumn (fall) at the field site, respectively.

The A. halleri homologs of the A. thaliana genes CCA1 and SIG5 are loci g25274 (AhgSIG5)
and g097040 (AhgCCAL1), respectively. These were identified from A. halleri genome
Version Ahal2.2 [57]. AhgSIG5 has 94.9% coding sequence identity and 95.0% protein
sequence identity with the A. thaliana homolog. AhgCCA1 has 94.8% coding sequence
identity and 93.3% protein sequence identity with the A. thaliana homolog. Chloroplast-
encoded psbDC is not annotated within Version Ahal2.2 of the A. halleri genome, and we

identified this instead within scaffold 2 of an A. halleri reference transcriptome [59]. The
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AhgpsbD BLRP promoter region, which was our focus, has a 100% sequence identity with

psbD BLRP of A. thaliana [41].

Sampling under natural and manipulated conditions

The first sets of samples were obtained under natural conditions without environmental
manipulation. For this, we sampled during two different seasons, March 2015 and
September 2015, on dates that were close to the spring and autumn equinox. We exploited
variations in environmental conditions across the field site, and sampled leaves from the
locations nominated as “sun” and “shade” sites. At “sun” locations, plants received direct
sunlight during the day, and at “shade” locations plants received sunlight filtered by
surrounding vegetation for most of the day with the sites identified by measurement of the
ratio of red to far red light (Fig. S3; R:FR calculated as the photon irradiance from 660 to
670nm divided by the photon irradiance from 725 to 735nm [60]). In each case, sampling
occurred for at least 24 h. During March 2015, plants received more direct sunlight, whereas

during September 2015 the light was scattered through sky overcast with clouds.

We expanded the range of environmental conditions by manipulating the temperature
conditions around patches of plants (September 2016). In addition to control plants that were
not manipulated (Fig. S5A), we applied two temperature treatments. These were (1) a
continuous temperature increase (Fig. S5B), whereby plants were covered with clear plastic
horticultural domes to block air currents and trap warm air; (2) a continuous temperature
reduction, using a custom device that passed air through a duct within a heat-exchanging
ice-filled polystyrene box and expelled the chilled air into a clear horticultural dome covering

the plants, with chilling augmented by small ice packs within the dome (Fig. S5C).

Field sampling for transcript analysis

Across all experimental conditions, the same sampling and RNA isolation procedures were

used. At 2 h intervals, a fully expanded rosette leaf was excised with dissecting scissors
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from 6 replicate plants for each condition. The time-courses using naturally occurring sun
and shade conditions each comprised 13 sampling timepoints over a total of 26 hours, and
the time-courses involving artificial temperature manipulations comprised 15 sampling
timepoints over a total of 30 hours. Sampled leaves were placed immediately into individual
microtubes containing at least 400 uL RNALater (Invitrogen). Scissors and forceps were
cleaned with 70% (w/v) ethanol between samples. After sampling, tubes were placed
temporarily on dry ice for up to 2 hours, at -40 °C for 3 days in a portable freezer during
transfer to the laboratory, and then at -80 °C until RNA isolation. During hours of darkness,
sampling occurred using green-filtered head torches. Each sampling timepoint was from the
same set of replicate plants. We obtained a separate reference standard for all RT-qgPCR
experiments in the study, by pooling RNA from 10 leaves sampled at midday during March
2015 from healthy plants located randomly across the study site. This provided a reference
cDNA sample against which all RT-gPCR analyses from all sampling seasons were
normalized, to allow comparability between all datasets. This reference RNA sample was
collected during March 2015. In all experiments, dawn and dusk were defined as the

astronomical (solar) time of sunrise and sunset.

RNA isolation and RT-gPCR

Frozen samples containing RNALater were defrosted in a cold room for 4 hours, the
RNALater was removed, and leaf tissue was transferred to new dry tubes and frozen in
liquid nitrogen. Frozen tissue was ground with a TissueLyzer and total RNA was isolated
from the powdered plant material using Macherey-Nagel Nucleospin Il RNA extraction kits
(Thermo-Fisher). cDNA was synthesized using a High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems) supplemented with RNAase inhibitor, as described previously [19,
20]. RNA concentrations were determined using a Nanodrop spectrophotometer (Thermo
Scientific). cDNA was synthesized using an ABI High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems) according to the manufacturer’s instructions, using random primers

for the cDNA synthesis reaction. 1:500 cDNA dilutions were analysed using Brilliant Ill Ultra-
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430 Fast SYBR Green QPCR master mix (Agilent Technologies) and required primer pairs
431  (Table S2). Primers were designed using the PrimerQuest™ Tool from Integrated DNA
432  Technologies. Results were normalized using the AACt method to AhgACTIN2 [19, 20].
433  AhgACTINZ2 is encoded in A. halleri by locus g21632 [57] and has 97.8% coding sequence
434  identity with A. thaliana ACTIN2 (At3g18780). Statistical comparisons within transcript

435 abundance data were conducted using the SPSS software package.
436  Environmental monitoring

437  The temperature and irradiance were measured beside the plants during sampling. The

438 temperature at each location, for each environmental manipulation, was monitored with EL-
439  USB-2 data loggers (Lascar Electronics) at 5-minute intervals. Temperature loggers were
440  wrapped in aluminium foil to prevent surface heating by solar radiation. Irradiance was

441  measured using a CC-3-UV-S cosine corrector connected to a USB2000+ spectrometer with
442  a QP400-2-UV-VIS fibre optic cable (Ocean Optics). Ambient light spectra (200 nm to

443 900 nm) were collected every 5 minutes over the 14 hours of light during each day of

444  sampling using OceanView software (Ocean Optics) on a laptop PC, controlled by a custom
445  script. The spectrometer and computer were powered using portable lithium battery packs

446  (Powertraveller, Hampshire, UK).
447  Smooth trend model analysis

448  The smooth trend model (STM) to analyze the difference in transcript abundance between
449  March and September under sun and shade conditions (Fig. 1) was defined by the

450 equations:
e ~ Normal(2py o1 — l1,e—2, 0',%1): (1)

6; ~ Cauchy(6;_4, a§), (2)

18


https://doi.org/10.1101/2022.09.10.507414
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.10.507414; this version posted September 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

U = U1 + O, 3
Y1t ~ Normal(uy U;)v 4)
Yo, ~ Normal(uy,, 0y), (5)

451  where p, and p, are the smooth trend components in March and September in 2015,

452  respectively, &, is the time-varying difference between the two seasons, and y, and y, are
453  the observed transcript abundance in the two seasons. t = (1,2,---,13) is the time point at
454  two-hour intervals. The same STM was used to analyze the difference in transcript

455  abundance between sun and shade conditions in March and September (Fig. S1).

456  The parameters of the models were estimated by Bayesian inference. The statistical models
457  were written in the Stan language and the programs were called by the rstan package (using
458  version 2.21.0 of R). After 2,000 warm-up steps, 1,000 Markov Chain Monte Carlo (MCMC)
459  samples were obtained by thinning out 6,000 MCMC samples for each of four parallel

460 chains. Thus, 4,000 MCMC samples were obtained in total.

461  For the models of the three (ambient, warm and chill) conditions in the local environment

462  manipulation experiment, additional &, ¢ and y were considered:

830 ~ Cauchy(8,,_1, 05,), (6)
Ui = U1+ 0o, (7)
Ya. ~ Normal(us,, o). (8)

463  Dynamic linear model

464  The dynamic linear model (DLM) to analyze the time-varying effect of environmental

465  variables on transcript abundance (Fig. 2) was defined by the equations:
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pe ~ Normal(u,_4, 0)7), )

Brempr ~ Normal(Beemp,t-1, O'ﬁgtemp)v (10)
Bugne.e ~ Normal(Bugne.—1, Thiighe)s (11)
Amarsune = Ut + Bremp,: - t€MPrarsunt T Buight,t * g tmarsun,ts (12)
Amarshade,r = Ut + Bremp,t - t€MPmarshadet T Blight,t * L9Mtyarshade s (13)
Asepsunt = He + ﬂtemp,t - lempPsepsunt + :Bli,ght,t : lightSepSun,tv (14)
Asepshadet = He T :Btemp,t - leMpPsepshader T :Blight,t : lightSepShade,t- (15)
YMarsune ~ Normal(@yarsun ir U;), (16)
Ymarshade,s ~ Normal(@yarshade,t ‘73%)- (17)
Ysepsunt ~ N Ormal(aSepSun,t: 03% ) (18)
Vsepshade,t ~ Normal(@sepshade,tr 033 ) (19)

where p is the trend component, g is the time-varying regression coefficient, « is the true
state of transcript abundance, y is the observed transcript abundance, and o2 is the
variance. The subscripts, temp, light, Mar, Sep, Sun and Shade represent temperature,
irradiance, March, September, sun condition and shade condition, respectively. t =

(1,2,---,13) is the time point at two-hour intervals.

In the AhgSIG5 and AhgpsbD BLRP models, the effects of the upstream genes (i.e.,
AhgCCAL1 in the AhgSIG5 model and AhgSIG5 in the AhgpsbD BLRP model) were

additionally considered. Thus, the equations of « are modified as follows:
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Apmarsun,t = Ut + ﬁtemp,t . tempMarSun,t + ﬂlight,t . lightMarSun,t + Bgene,t . (20)

geneparsun,ts

XMarShade,t = Mt + ﬂtemp,t . tempMarShade,t + ﬁlighc,t . lightMarShade,t + ﬂgene,t ) (21)

gEeNeparshade,t:

Asepsun,t = He + Btemp,t . tempSEpSun,t + :Blight,t . lightSepSun,t + ﬁgene,t ‘ (22)

geneSepSun,t:

aSepShade,t =y + :Btemp,t . tempSepShade,t + :Blight,t . lightSepShade,t + :Bgene,t : (23)

geneSepSh.ade,t!

where gene is the mean transcript abundance of the upstream genes, and the other symbols
are the same as above. The lagged effects of the upstream genes were tested by using
values at previous time points (e.g., Using geneyq,sun.t—1» 9Meymarsunt—2» 9€NCyarsun,c—3 OF

geneyarsun.c—a fOr Aparsun,e)- The same DLM was used in Fig. 2 and S4.

The parameters of the models were estimated by Bayesian inference. The statistical models
were written in the Stan language and the programs were compiled using CmdStan (version
2.24). To operate CmdStan, the cmdstanr package (version 0.4.0) of R was used. After
3,000 warm-up steps, 1,000 MCMC samples were obtained for each of the four parallel

chains, and thus 4,000 MCMC samples were obtained in total.
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Figure legends

Fig. 1. Components of a circadian signalling pathway have diel fluctuations in a natural plant
population. (A) Potential architecture of a signal transduction pathway underlying SIG5-
mediated signalling to chloroplasts, with environmental inputs occurring at several positions.
t1 and t2 represent the time taken for signal transduction between each pathway component.
(B-E) Diel fluctuations in (B, C) ambient temperature and (D, E) total irradiance detected
(200-900 nm), measured at 5-minute intervals. (F-K) Bayesian estimation of smooth trend
model (STM) for March and September 2015. The output of STM for (F, G) AhgCCA1, (H, )
AhgSIG5 and (J, K) AhgpsbD BLRP. In F-K, the upper graphs show the predicted relative
transcript abundance for March (pink) and September (brown) with the mean of observed
values (dots), and the lower graphs represent the differences in transcript abundance

between March and September. The solid line and the shaded region are the median and
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513 the 95% credible interval of the posterior distribution. When the 95% credible interval of the
514  difference between March and September does not contain zero, the difference is

515  considered significant.

516 Fig. 2. Time-delay steps are predicted within this signalling pathway under naturally-

517 fluctuating conditions. Lagged effects of variables in Bayesian estimation of dynamic linear
518 models (DLM) for transcript levels during March and September 2015. (A, B, C) RMSE, log-
519 likelihood and correlation of the models to predict AhgSIG5 against the observed values,
520 incorporating time lags of the upstream AhgCCAL. (D, E, F) RMSE, log-likelihood and

521  correlation of the models to predict AhgpsbD BLRP against the observed values,

522  incorporating time lags of the upstream AhgSIG5. The time lags of temperature and

523 irradiance are set to 0. Asterisks represent (A, D) the lowest RMSE, (B, E) the highest log-
524  likelihood and (C, F) the highest correlation. Error bars represent the 95% Bayesian credible

525 intervals.

526  Fig. 3. The circadian clock and ambient temperature are key regulators of SIG5-mediated
527  signalling to chloroplasts under naturally-fluctuating conditions. Bayesian estimation of the
528 dynamic linear model (DLM) for March and September 2015. (A-D) The output of DLM for
529  AhgCCALl where relative transcript abundance for (A) sun condition and (B) shade condition,
530 with the coefficient of regression for (C) temperature and (D) irradiance. (E-I) The output of
531 DLM for AhgSIG5, where (l) the coefficient of regression for AhgCCAL is shown, with other
532 plots the same as (A-D). (J-N) The output of DLM for AhgpsbD BLRP, where (N) is the

533  coefficient of regression for AhgSIG5 is shown, with other plots the same as (A-D). The

534  predicted relative transcript abundance for March (orange) and September (blue) are shown
535  with the mean of observed values (dots). In each graph, the solid line and the shaded region

536  are the median and the 95% credible interval of the posterior distribution.

537  Fig. 4. Prediction of diel rhythms of gating of temperature response in a natural plant

538 population. Bayesian estimation of smooth trend model (STM) for temperature manipulation
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experiments in September 2016. (A) Temperature changes during the study period in each
condition. (B-D) The output of STM for (B) AhgCCAL1, (C) AhgSIG5 and (D) AhgpsbD BLRP.
In each panel, the upper graphs show the predicted relative transcript abundance for
ambient (black), warm (red) and cool (light blue) conditions with the mean of observed
values (dots), and the lower graphs represent the differences in transcript abundance
against the ambient condition. In each graph, the solid line and the shaded region are the
median and the 95% credible interval of the posterior distribution. When the 95% credible
interval of the difference between conditions does not contain zero, the difference is

considered significant.

Fig. S1. Close relationship between AtCCA1 and AtSIG5 transcript abundance under free-
running conditions in A. thaliana under controlled conditions. (A-D) Relationship between
AtCCA1 and AtSIG5 transcript abundance under conditions of constant light, from the
transcriptome studies of (A) [3] (B) [53], (C) [4], (D) [6]. (E, F) Relationship between AtCCA1l
and AtSIG5 transcript abundance under light/dark cycles with (E) long and (F) short
photoperiods, from the transcriptome study of [54]. Blue lines indicate a regression line.
Pearson’s correlation coefficient (R) with p-values testing for the likelihood of a chance

correlation are shown for each plot.

Fig. S2. Components of a circadian signalling pathway have diel fluctuations in a natural
plant population. Bayesian estimation of smooth trend model (STM) comparing sun and
shade conditions, sampled during 2015. (A-D) Diel fluctuations in total irradiance detected
(A, B; 200-900 nm) and (C, D) ambient temperature, measured at 5-minute intervals. (E-J)
The output of STM for (E, F) AhgCCA1, (G, H) AhgSIG5 and (I, J) AhgpsbD BLRP. In E-J,
the upper graphs show the predicted relative transcript abundance for sun (orange) and
shade (light grey) conditions, with the mean of observed values (dots). The lower graphs
represent the differences in transcript abundance between sun and shade conditions. The

solid line and the shaded region are the median and the 95% credible interval of the
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posterior distribution. When the 95% credible interval of the difference between sun and

shade conditions does not contain zero, the difference is considered significant.

Fig. S3. Effects of the ratio of red to far-red light upon A. halleri plants in the field, during
March and September sampling seasons. (A, B) Examples of rosette-stage plants growing
under (A) sun and (B) shade conditions during the September sampling season. (C, D)
Comparison of the ratio of red to far-red light received by plants under the sun- and shade
conditions during (C) March 2015 and (D) September 2015 sampling seasons. The R:FR
varied during the photoperiod during both sampling seasons, and the effect of shade on

R:FR was ameliorated by heavy cloud cover.

Fig. S4. The nature of the time-delay steps within this signalling pathway depends on the
sampling season. Lagged effects of variables in Bayesian estimation of the dynamic linear
model (DLM) for March and September separately in 2015. (A, D, G, J) RMSE, (B, E, H, K)
log-likelihood and (C, F, I, L) correlation of the models to predict AhgSIG5 in March against
the observed values, incorporating time lags of AhgCCALl. (D-F) RMSE, log-likelihood and
correlation of the models to predict AhgpsbD BLRP in March against the observed values,
incorporating time lags of AhgSIG5. (G-I) RMSE, log-likelihood and correlation of the models
to predict AhgSIG5 in September against the observed values, incorporating time lags of
AhgCCALl. (J-L) RMSE, log-likelihood and correlation of the models to predict AhgpsbD
BLRP in September against the observed values, incorporating time lags of AhgSIG5. Time
lags of temperature and irradiance are set to 0. Asterisks represent the lowest RMSE (A, D,
G, J), the highest log-likelihood (B, E, H, K) and the highest correlation (C, F, I, L). Error bars

represent the 95% Bayesian credible intervals.

Fig. S5. Moderate temperature manipulations to adjacent patches of A. halleri plants, in the
field, using custom-designed equipment. (A) The representative appearance of plant patches
under naturally fluctuating conditions. (B) Plants covered with a plastic dome to raise

temperature. (C) Plants covered with plastic dome undergoing temperature reduction with a
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custom chilling device. In this device, cool air is introduced to enclosed plant patches after
being driven slowly through a heat exchanger, positioned within an expanded polystyrene

box filled with ice.

Fig. S6. Location of field sampling. Photographs of (A) upstream and (B) downstream views
of Omoide river site, which has naturally occurring populations of A. halleri. The majority of

plants at ground level on the stony river banks are A. halleri.
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