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Abstract 21 

Plants sense and respond to environmental cues during 24 h fluctuations in their 22 

environment. This requires the integration of internal cues such as circadian timing with 23 

environmental cues such as light and temperature to elicit cellular responses through signal 24 

transduction. The integration and transduction of circadian and environmental signals within 25 

plants growing in natural environments remain poorly understood. To gain insights into the 26 

24 h dynamics of environmental signalling in nature, we performed a field study of cell 27 

signalling in a natural population of Arabidopsis halleri. As a representative model signalling 28 

pathway, we exploited the transduction of circadian and environmental signals from the 29 

nucleus to chloroplasts, by a sigma factor, to study diel cycles of environmental signalling 30 

under natural conditions. Using dynamic linear models to interpret the data, we identified that 31 

circadian regulation and temperature are key regulators of this pathway under natural 32 

conditions. We identified potential time-delay steps between pathway components, and diel 33 

fluctuations in the response of the pathway to temperature cues that are reminiscent of the 34 

process of circadian gating. This approach allowed us to identify dynamic integration and 35 

transduction of environmental cues, in the cells of plants, under naturally fluctuating diel 36 

cycles. 37 

 38 
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Introduction 40 

Plants have sophisticated environmental sensing and signalling mechanisms that underpin 41 

their responses to the fluctuating environment. Under naturally fluctuating conditions, this 42 

requires signalling pathways that integrate dynamic, overlapping and complex environmental 43 

stimuli [1, 2]. These environmental fluctuations include the 24 h changes in environmental 44 

conditions that arise from the cycle of day and night. The 24 h environmental fluctuations 45 

have selected for the evolution of circadian clocks, which are endogenous biological 46 

oscillators that produce a cellular estimate of the time of day. Over each day, circadian 47 

rhythms structure the responses of plants to environmental fluctuations by aligning 48 

transcription, metabolism and development with the daily fluctuating environment [3-8]. In 49 

plants, environmental information including the light and temperature conditions is used to 50 

adjust the phase of the circadian oscillator, through the process of entrainment, so that the 51 

phase is aligned with the 24 h environmental cycle. This alignment between the circadian 52 

oscillator and the 24 fluctuating environment contributes to the fitness of plants [5]. 53 

Under natural conditions, circadian timing information is combined with environmental cues 54 

to establish a temporal program of gene expression [9]. For example, 97% of diel transcript 55 

profiles in field-grown rice can be predicted from meteorological data [9], and temperature 56 

cues regulate the alternative splicing of transcripts encoding circadian oscillator components 57 

in field-grown sugarcane [10]. Recent studies have provided insights into the diel 58 

organization of the transcriptome and metabolism, under field conditions, for several crops 59 

and natural plant populations [9-17]. However, the diel dynamics of environmental signalling 60 

pathways, with defined inputs and outputs, are less well understood under natural 61 

conditions. Understanding signal transduction in plants under natural conditions is a valuable 62 

part of translating laboratory studies into crop improvement. For example, this could 63 

contribute to forecasting the responses of ecosystems and crops to increasingly 64 

unpredictable climates [18]. Experiments conducted in controlled conditions that mimic 65 

components of field conditions remain unable to replicate all aspects of plant gene regulation 66 
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under natural conditions [17], so field experiments provide valuable insights into plant 67 

environmental responses. 68 

To study the integration and transduction of circadian and environmental signals under 69 

naturally fluctuating conditions, we selected a well-characterized environmental signalling 70 

pathway as an experimental model. This comprises the regulation by the circadian clock of 71 

SIGMA FACTOR 5 (SIG5), which in turn regulates the transcription of psbD (Fig. 1A). CCA1 72 

and SIG5 are nuclear encoded, and psbD is chloroplast encoded. We chose this pathway 73 

because it is relatively straightforward, consisting of three major components, each of which 74 

provides distinct regulatory points of signal transduction. Therefore, the pathway provides a 75 

relatively low level of complexity to evaluate circadian and environmental signal integration 76 

and transduction under realistic field conditions. CCA1 is a key component of the 77 

Arabidopsis circadian oscillator, and CCA1 transcript abundance can be used as a proxy for 78 

the status of the circadian oscillator (Fig. 1A). SIG5 is a nuclear-encoded regulator of 79 

chloroplast transcription, which is regulated closely by the circadian oscillator under constant 80 

conditions [20]. Based on its responses under controlled conditions [19-30], we hypothesized 81 

that under natural conditions SIG5 might integrate information concerning circadian 82 

regulation, light quantity, light quality, temperature, and abiotic stress. Therefore, SIG5 83 

transcript abundance presents a read-out several environmental signal integration processes 84 

(Fig. 1A). It is thought that SIG5 is imported into chloroplasts, and communicates the 85 

integrated environmental information to chloroplast gene expression by regulating 86 

transcription from the blue light responsive promoter of psbD (psbD BLRP) [22] that encodes 87 

the D2 protein of Photosystem II (Fig. 1A). This chloroplast transcript provides an 88 

experimental read-out of a later step in this signalling pathway (Fig. 1A) [19, 20, 22].  89 

We investigated the temporal dynamics of this signalling pathway in a natural habitat of the 90 

perennial Arabidopsis species, Arabidopsis halleri subsp. gemmifera (referred to here as A. 91 

halleri) [55]. The close-relatedness of A. halleri and A. thaliana makes it possible to identify 92 

pairs of homologous genes based on the sequence similarity (indicated by Ahg or At prefixes 93 
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to gene names) [56]. The circadian clock-SIG5-psbD BLRP pathway is present in A. thaliana 94 

and A. halleri, and well-conserved across the vascular plants [31, 32]. We obtained a 95 

number of time series, during two seasons of the year, that monitored pathway function 96 

under representative light and temperature conditions. We interpreted these data using 97 

dynamic linear models, which are a type of state space model derived from control theory. In 98 

these models, the state of the system can be predicted from the prior state of the system, 99 

onto which can be superimposed external effects. This allows the estimation of the dynamics 100 

of the system that arise from its internal dynamics and external factors (such as 101 

environmental cues). Using this approach, we identified key roles for temperature and the 102 

circadian clock in the regulation of this pathway under natural conditions, and obtained 103 

evidence for temporal gating of responses of the pathway to environmental cues. Our 104 

approaches could be applicable to the study of many circadian-regulated processes under 105 

naturally fluctuating conditions. 106 

Results 107 

Biological data underlying models of signal transduction 108 

Under controlled conditions of constant light, AtCCA1 and AtSIG5 transcript abundance are 109 

very well correlated (Fig. S1A-D; data from [20]). This correlation between AtCCA1 and 110 

AtSIG5 transcript abundance is absent under light/dark cycles (Fig. S1E, F), suggesting that 111 

the integration of light and dark cues alters the diel regulation of AtSIG5 transcript 112 

accumulation [19, 20]. We acquired time-series of transcript abundance during spring 113 

(March) and autumn/fall (September), close to the spring or autumn equinox (Fig. 1B-K; Fig. 114 

S2). Although both the spring and autumn equinoxes share 12-h photoperiods, they provide 115 

contrasting temperature regimes (cool and warm, respectively) (Fig. 1B, C; Fig. S2A, B), with 116 

irradiance levels determined by weather conditions (Fig. 1D, E; Fig. S2C, D). This allowed us 117 

to investigate temperature, light and seasonal influences upon SIG5-mediated signalling to 118 

chloroplasts, because the pathway is known to be affected by light and temperature in A. 119 
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thaliana [19, 21, 22, 26, 31]. We obtained data from areas with open sky and with 120 

vegetational shade, to include within our models the transcriptional responses to a wider 121 

range of irradiance levels (Fig. 1D, E; Fig. S3). The “sun” and “shade” sampling sites were 122 

chosen by measurement of the ratio of red to far-red light (R:FR) (Fig. S3C, D) and 123 

availability of plant patches, because A. halleri does not grow in deep shade at this location. 124 

The total light intensity at the sun sampling site was 5 to 10-fold greater during March 2015 125 

than during September 2015, depending on the time of day, due to weather differences (Fig. 126 

1D, E). During March 2015, the study site temperature at both sun and shade sites ranged 127 

from 0 °C to 17 °C (Fig. 1B, C). The temperature was often above 20 °C during September 128 

2015, with greater diel fluctuations at the sun site (Fig. 1B, C). 129 

We compared the pathway dynamics between the spring and autumn sampling periods by 130 

using a smooth trend model, and identified differences in pathway regulation (Fig. 1F-K and 131 

Fig. S2E-J). We estimated the parameters of a smooth trend model by Bayesian inference to 132 

visualize the differences in transcript abundance between the spring and autumn sampling. 133 

The morning peak accumulation of transcripts encoding the circadian clock component 134 

AhgCCA1 was significantly greater during the autumn sampling compared with the spring, 135 

under both light conditions tested (Fig. 1F, G). During both sampling seasons, AhgSIG5 136 

transcripts reached peak abundance between the middle and end of the photoperiod (Fig. 137 

1H, I). This differs from the phase of AtSIG5 transcript accumulation under square-wave 138 

light/dark cycles under controlled conditions, where AtSIG5 transcript abundance peaks 139 

around dawn [20]. The peak of the diel fluctuation of AhgSIG5 was significantly greater 140 

during the March sampling period than during the September sampling period (Fig. 1H, I). 141 

Furthermore, the pre-dawn accumulation of AhgSIG5 transcripts occurred at an earlier time 142 

during the dark period during September than during March (Fig. 1H, I). This delay in pre-143 

dawn transcript accumulation might be due to weaker circadian control during the spring 144 

sampling period, as suggested by the significantly decreased peak height of AhgCCA1 145 

transcript oscillations during March compared with September (Fig. 1F, G). Transcripts 146 
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encoding the SIG5 regulatory target AhgpsbD BLRP (Fig. 1A) had a significantly greater 147 

peak of accumulation during the September sampling season compared with the March 148 

season, but only under the shade light conditions (Fig. 1J, K).  149 

AhgCCA1 transcript abundance was significantly greater under shade conditions during the 150 

photoperiod, during both sampling seasons (Fig. S2E, F). This is reminiscent of the greater 151 

AtCCA1 promoter activity that occurs directly after dawn under controlled conditions of far 152 

red light compared with red light [33]. We did not identify the diminished AtCCA1 oscillation 153 

that occurs under constant light with a very low R:FR [34] or on the shaded western side of 154 

crop fields around dawn [16]. As with AhgCCA1, AhgSIG5 transcript abundance was 155 

significantly greater under shade than sun conditions, with this difference restricted to the 156 

end of the photoperiod (Fig. S2G, H). AhgpsbD BLRP transcript levels were unaltered by the 157 

two light environments (Fig. S2I, J).  158 

Time delays between signalling pathway components 159 

We assumed that SIG5-mediated signalling to chloroplasts involves a hierarchically-160 

organized pathway, whereby AhgCCA1 is positioned upstream from the regulation of 161 

AhgSIG5 transcript accumulation, and AhgpsbD BLRP is positioned downstream of 162 

AhgSIG5 activity (Fig. 1A). We also assumed that environmental signals might influence 163 

AhgCCA1, AhgSIG5 and AhgpsbD BLRP transcript accumulation independently (Fig. 1A) 164 

[35]. To understand the dynamics of this process, we first considered the temporal 165 

relationship between AhgCCA1, AhgSIG5 and AhgpsbD BLRP transcript accumulation 166 

under natural conditions (t1, t2; Fig. 1A). The abundance of each of these related transcripts 167 

was monitored at each timepoint, but their responses to each other might not be 168 

instantaneous. For example, in A. thaliana under controlled square-wave light/dark cycle 169 

conditions, AtCCA1 transcript abundance peaks at dawn, AtSIG5 approximately 3 h after 170 

dawn, and AtpsbD BLRP approximately 6 hours after dawn [20]. Comparable dynamics are 171 

present in our field data, whereby AhgCCA1 peaks at or after solar dawn (Fig. 1F, G), 172 
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AhgSIG5 mid-photoperiod (Fig. 1H, I), and AhgpsbD BLRP towards the end of the 173 

photoperiod under those conditions where it is rhythmic (Fig. 1J, K). Therefore, we reasoned 174 

that there would be a time lag in the regulation of AhgSIG5 by AhgCCA1 (t1 in Fig. 1A), and 175 

in the regulation of AhgpsbD BLRP by AhgSIG5 (t2 in Fig. 1A). 176 

We were interested to quantify these time lags, and use the information arising to construct 177 

models that assess the regulation of the pathway by specific environmental variables. We 178 

developed dynamic linear models that predict the abundance of AhgSIG5 from AhgCCA1 179 

transcript abundance, and predict AhgpsbD BLRP from AhgSIG5 transcript abundance, 180 

together with temperature and irradiance as explanatory variables. In these models, we used 181 

the transcript abundance of the upstream component as an explanatory variable, and the 182 

transcript abundance of the target component as a response variable within this analysis. 183 

Therefore, AhgSIG5 is the response variable in the first model with AhgCCA1 as the 184 

explanatory variable, whilst in the second model, AhgSIG5 is used as the explanatory 185 

variable for AhgpsbD. We tested the quality of model fit for a range of time delays (lags) 186 

between the genes in the pathway (Fig. 1A). For this, we compared three model selection 187 

parameters to estimate the time delay that provides the best estimation of the downstream 188 

transcript (response variable). For a prediction of AhgSIG5 from AhgCCA1, a model 189 

containing a 6 h time lag produced the best model fit, according to three model selection 190 

parameters (Fig. 2A, B, C). For a prediction of AhgpsbD BLRP from AhgSIG5, a model 191 

containing a 4 h time lag produced the best model fit for two out of three model selection 192 

parameters (Fig. 2D, E, F). 193 

We detected differences between the two sampling seasons in the time lags that produced 194 

the best model selection parameters (Fig. S4). During the March sampling season, the best 195 

prediction of either AhgSIG5 or AhgpsbD BLRP arose when time lags of 6-8 h (AhgSIG5 196 

prediction from AhgCCA1) and 4-8 h (AhgpsbD BLRP prediction from AhgSIG5) were tested 197 

(Fig. S4A-F). This was relatively longer than during the September sampling season, when 198 

time lags of 0 or 4 h (AhgSIG5 prediction from AhgCCA1) and 4 h (AhgpsbD BLRP 199 
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prediction from AhgSIG5) produced the best model fit estimates (Fig. S4G-L). This suggests 200 

that the low temperature in March delays the speed of signal transduction. Taken together, 201 

these analyses suggest that time delays in signalling pathways are detectable under field 202 

conditions, and that environmental conditions (seasonal differences in temperature, or 203 

seasonal regulation) might affect the speed of signal transduction. 204 

Dynamics of environmental regulation of signalling pathway 205 

Environmental fluctuations are complex, noisy, and occur in simultaneous combinations. 206 

This presents a challenge for interpreting time-series transcript data from the field within the 207 

context of environmental signalling. We elaborated upon our modelling approach to 208 

investigate the relationship between key environmental variables and SIG5-mediated 209 

signalling to chloroplasts under field conditions. We used statistical models, rather than 210 

models of biochemical kinetics [36], because this provides an effective tool for interpreting 211 

diel and seasonal transcriptome dynamics [9, 12, 37, 38]. Comparable approaches have 212 

allowed the investigation of diel and seasonal changes of transcriptome dynamics in A. 213 

halleri [12, 37, 38] and rice [9]. 214 

We represented the behaviour of the pathway components using dynamic linear models, into 215 

which the time delays that produced the best model fit were incorporated (Fig. 2). The output 216 

of the Bayesian estimation reproduced well the essential dynamics of the observed 217 

AhgCCA1 transcript level (Fig. 3A, B). The model estimated a significant positive relationship 218 

between ambient temperature and AhgCCA1 transcript abundance between midnight and 219 

midday, with no effect of temperature at other times (Fig. 3C). There was no significant effect 220 

of irradiance upon the estimation of AhgCCA1 transcript abundance (Fig. 3D). 221 

Diel fluctuations of AhgSIG5 transcript abundance were reproduced well by the model (Fig. 222 

3E, F). We identified a significant negative correlation between ambient temperature and 223 

AhgSIG5 transcript level towards the end of the light period (Fig. 3G), whereas there was no 224 
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significant effect of irradiance upon the prediction of AhgSIG5 transcript abundance (Fig. 225 

3H). AhgSIG5 is regulated by the circadian clock, and we included within the model 226 

AhgCCA1 transcript abundance as a proxy for circadian clock dynamics. There was a 227 

significant positive coefficient of regression between AhgCCA1 and AhgSIG5 during the dark 228 

period, and around the middle of the photoperiod (Fig. 3I). 229 

Diel fluctuations of chloroplast psbD BLRP transcript abundance were also predicted well 230 

(Fig. 3J, K). In this case, there was a significant positive coefficient of regression between 231 

ambient temperature and psbD BLRP transcript abundance, which was restricted to the light 232 

period (Fig. 3L). There was no significant coefficient of regression between irradiance and 233 

psbD BLRP transcript abundance (Fig. 3M). psbD BLRP transcript accumulation is regulated 234 

in A. thaliana by SIG5 [22], and within our model, there was a significant positive coefficient 235 

of regression between AhgSIG5 and AhgpsbD BLRP transcript levels during part of the light 236 

period (Fig. 3N). 237 

Together, this analysis identifies that the ambient temperature, rather than the irradiance, 238 

was important for predicting the dynamics of all pathway components under naturally 239 

fluctuating conditions. In addition, the effect of the circadian clock (AhgCCA1) contributed to 240 

the prediction of AhgSIG5 transcript abundance (Fig. 3I), and the effect of SIG5 contributed 241 

to the prediction of AhgpsbD BLRP transcript abundance (Fig. 3N). A feature within these 242 

predictions was the restriction to specific times of day of significant coefficients of regression 243 

between transcripts abundance and certain variables (such as for temperature in the 244 

prediction of AhgCCA1 (Fig. 3C) and AhgSIG5 (Fig. 3G)). These 24-h fluctuations in the 245 

coefficient of regression are suggestive of the concept of circadian gating, which is the 246 

process whereby the circadian clock constrains certain biological processes to specific times 247 

in the 24 h cycle [39]. In plants, this often takes the form of a circadian rhythm in the 248 

magnitude of the response to identical environmental stimuli given at different times of day 249 

[8]. 250 
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Temporal gating of temperature regulation of SIG5-mediated signalling to 251 

chloroplasts under natural conditions 252 

Our dynamic linear modelling analysis suggested that under natural conditions, greater 253 

ambient temperatures upregulate AhgCCA1 and AhgpsbD BLRP transcript levels, whereas 254 

lower ambient temperatures upregulate AhgSIG5 transcript levels (Fig. 3C, G, L). We tested 255 

this hypothesis by applying moderate temperature manipulations to adjacent patches of A. 256 

halleri plants, in the field, using custom-designed equipment (Fig. 4A; Fig. S5). We collected 257 

24-h time-series of RNA samples from these plant patches, and interpreted the data with 258 

smooth trend models. The moderate temperature increase caused a small significant 259 

upregulation of AhgCCA1 transcript abundance after dawn relative to the control, whereas 260 

the temperature reduction treatment was without effect (Fig. 4B). The moderate temperature 261 

increase was without effect upon AhgSIG5 transcript abundance, whereas the temperature 262 

reduction treatment upregulated AhgSIG5 transcripts significantly immediately after dawn, 263 

relative to the control, and caused a significant reduction in transcript abundance during the 264 

afternoon (Fig. 4C). This is consistent with the negative coefficient of regression between 265 

AhgSIG5 and temperature under naturally fluctuating conditions (Fig. 3G), and with the 266 

upregulation of A. thaliana SIG5 by a short cold treatment under laboratory conditions [22]. 267 

The restriction of the response of AhgSIG5 transcripts to the moderate temperature 268 

reduction (Fig. 4C) is consistent with the 24-h cycle of the magnitude of the coefficient of 269 

regression of temperature for AhgSIG5 transcript abundance (Fig. 3G). This further supports 270 

the notion of temporal gating of the influence of temperature upon this pathway under 271 

naturally fluctuating conditions. 272 

Transcripts for the chloroplast target of SIG5, AhgpsbD BLRP, were also altered by 273 

temperature manipulation. The moderate temperature elevation significantly increased 274 

AhgpsbD BLRP transcript levels relative to the control, whereas the moderate temperature 275 

reduction significantly reduced AhgpsbD BLRP transcripts relative to the control. These 276 

significant alterations were restricted to the photoperiod, which might be because chloroplast 277 
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DNA binding and transcription by PEP generally requires light [40-44]. Furthermore, the 278 

positive regulation of AhgpsbD BLRP transcript abundance by the temperature 279 

manipulations (Fig. 4D) is consistent with the coefficient of regression between AhgpsbD 280 

BLRP transcript abundance and temperature under naturally fluctuating conditions (Fig. 3L).  281 

Discussion 282 

We established that circadian regulation and ambient temperature are potential regulators of 283 

AhgSIG5-mediated signalling to chloroplasts, in a natural population of A. halleri. Our 284 

analysis identified a significant regulation of AhgSIG5 by AhgCCA1 from midnight to morning 285 

(Fig. 3I), and significant regulation of AhgpsbD BLRP by AhgSIG5 towards the end of the 286 

photoperiod (Fig. 3N). These significant relationships suggest that under natural conditions, 287 

a signal is communicated from the circadian oscillator (using AhgCCA1 as a proxy) to the 288 

signalling pathway output of AhgpsbD BLRP. One interpretation is that the pathway couples 289 

the circadian oscillator and temperature response processes to chloroplast gene 290 

transcription under naturally fluctuating conditions.  291 

We identified seasonal differences in the maximum accumulation of AhgCCA1, AhgSIG5 292 

and AhgpsbD BLRP. AhgCCA1 and AhgpsbD BLRP had significantly lower peak 293 

accumulation during the spring sampling period compared with the autumn sampling 294 

season. In comparison, AhgSIG5 had significantly greater peak accumulation during the 295 

spring compared with the autumn sampling season. The difference in AhgCCA1 dynamics 296 

between these sampling seasons likely reflects the decreased amplitude of the circadian 297 

oscillator that occurs under lower temperature conditions, in both controlled environments 298 

and the field [12, 45-47]. The difference in dynamics of AhgSIG5 compared with AhgCCA1 299 

suggests that an additional temperature input into this pathway occurs between the circadian 300 

oscillator and AhgSIG5. In A. thaliana, SIG5 transcripts are upregulated by short cold 301 

temperature treatments [22] and in our field experiment, AhgSIG5 transcript accumulation 302 

had a negative coefficient of regression with the temperature (Fig. 3G, Fig. 4C). This 303 
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negative coefficient of regression predicts that under lower temperature conditions, AhgSIG5 304 

transcript abundance will increase. Therefore, the lower temperatures of the spring sampling 305 

season compared with the autumn sampling season (Fig. 1A, B) might explain the greater 306 

levels of AhgSIG5 transcript accumulation during the spring. 307 

Because we considered AhgpsbD BLRP to represent the ultimate output from the signalling 308 

pathway (Fig. 1A), our analysis suggests that environmental inputs occurred within at least 309 

three positions in the pathway; first, in the regulation of AhgCCA1 transcript accumulation by 310 

the season or temperature, second, in the regulation of AhgSIG5 transcript accumulation by 311 

temperature, and, a third environmental input occurring downstream of AhgSIG5 transcript 312 

accumulation for the regulation of AhgpsbD BLRP. This is evidenced by the differences in 313 

temperature responses of AhgCCA1 (positive relationship), AhgSIG5 (negative relationship), 314 

and AhgpsbD BLRP (positive relationship) (Fig. 3C, G, L). These environmental inputs might 315 

occur through biologically independent processes, such as temperature inputs to the 316 

circadian clock mediated by temperature-responsive components such as the evening 317 

complex [48, 49]. One of these mechanisms could be the regulation of AhgSIG5 by HY5, 318 

which is a known regulator of SIG5 that participates in low-temperature gene regulation [22, 319 

25, 50] and binds the SIG5 promoter in A. thaliana [51]. Furthermore, there might be direct 320 

effects of light upon sigma factor activity in chloroplasts through, for example, redox 321 

regulation [52] or light- and temperature-regulation of chloroplast protein import. We did not 322 

consider here the long history of light or temperature conditions upon leaves prior to 323 

experimentation [53], or other biotic or abiotic factors such as water availability, relative 324 

humidity, and atmospheric CO2 concentration. 325 

Statistical modelling of the transcriptome of field-grown Oryza sativa (rice) concluded that 326 

the main environmental driver of OsSIG5 (Os05g0586600) transcript accumulation is 327 

temperature [9]. In this case, the temperature had a negative regression coefficient with 328 

OsSIG5 [9]. This is consistent with our finding of a negative coefficient of regression 329 

between temperature and AhgSIG5. The study of the rice transcriptome in the field [9] did 330 
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not monitor chloroplast-encoded transcripts, so a direct comparison between AhgpsbD 331 

BLRP and our data is not possible. 332 

A key finding from our work is the detection of a 24 h fluctuation in the coefficient of 333 

regression between the three genes and temperature (Fig. 3C, G, L). One interpretation of 334 

this is that there is a diel cycle of sensitivity of these pathway components to temperature 335 

cues, with their response to temperature restricted to certain times of day. This is 336 

reminiscent of circadian gating, which is the phenomenon whereby the circadian oscillator 337 

restricts the response to a stimulus to certain times of day [39]. These findings are 338 

corroborated by laboratory experiments, which demonstrate that the circadian oscillator 339 

gates its own response to temperature [54], and the response of AhgSIG5 to blue light is 340 

gated by the circadian oscillator [20]. This is important, because it suggests that processes 341 

of circadian gating might operate under naturally fluctuating conditions to modulate the 342 

environmental responses of plants. 343 

Our investigation provides insights into molecular aspects of signal transduction in plants 344 

under field conditions. This represents a relatively under-studied topic, and we developed 345 

new quantitative approaches to interpret transcript data collected under complex fluctuating 346 

environments, to investigate a specific pathway. This allowed us to identify potential time-347 

delay steps within a signalling mechanism, multiple positions of environmental inputs, and 348 

temporal gating of a response to temperature. The approaches used provide a framework to 349 

study environmental signal integration in plants and other organisms under field conditions, 350 

which might be valuable to understanding rhythmic biological responses within an 351 

increasingly unpredictable climate. 352 
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Materials and Methods 353 

Field site and plant material 354 

Our experiments used a naturally-occurring population of Arabidopsis halleri subsp. 355 

gemmifera (Matsum.) growing beside a forested stream in Hyogo Prefecture, Japan 356 

(Omoide-gawa site; 35°06’ N, 134°55’ E, elevation 190–230 m) [12, 37, 55] (Fig. 1B, C). We 357 

selected A. halleri as an experimental model for several reasons [56]. First, it has a high 358 

nucleotide sequence identity and good synteny with A. thaliana [57]. Second, unlike A. 359 

thaliana, the perennial life history of A. halleri allows investigation of transcriptional 360 

responses across the seasons [2, 55]. Many individuals are clones because the species 361 

propagates by producing clonal rosettes as well as by seeds, which allows repeated 362 

sampling from single genotypes. Furthermore, A. halleri is metal tolerant and occurs in 363 

natural habitats that are relatively free from other vegetation due to contamination by heavy 364 

metals, which provides experimentally-convenient sites enriched with many A. halleri plants 365 

[58]. Arabidopsis halleri subsp. gemmifera at this site was previously identified by 366 

examination of museum and herbarium specimens, and a nearby population provided 367 

material for sequencing the A. halleri genome [55, 57]. Sampling occurred during 24 – 26 368 

March 2015, 15 – 17 September 2015, and 13 - 14 September 2016, where March and 369 

September correspond to spring and autumn (fall) at the field site, respectively. 370 

The A. halleri homologs of the A. thaliana genes CCA1 and SIG5 are loci g25274 (AhgSIG5) 371 

and g097040 (AhgCCA1), respectively. These were identified from A. halleri genome 372 

Version Ahal2.2 [57]. AhgSIG5 has 94.9% coding sequence identity and 95.0% protein 373 

sequence identity with the A. thaliana homolog. AhgCCA1 has 94.8% coding sequence 374 

identity and 93.3% protein sequence identity with the A. thaliana homolog. Chloroplast-375 

encoded psbDC is not annotated within Version Ahal2.2 of the A. halleri genome, and we 376 

identified this instead within scaffold 2 of an A. halleri reference transcriptome [59]. The 377 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.09.10.507414doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.10.507414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

AhgpsbD BLRP promoter region, which was our focus, has a 100% sequence identity with 378 

psbD BLRP of A. thaliana [41]. 379 

Sampling under natural and manipulated conditions 380 

The first sets of samples were obtained under natural conditions without environmental 381 

manipulation. For this, we sampled during two different seasons, March 2015 and 382 

September 2015, on dates that were close to the spring and autumn equinox. We exploited 383 

variations in environmental conditions across the field site, and sampled leaves from the 384 

locations nominated as “sun” and “shade” sites. At “sun” locations, plants received direct 385 

sunlight during the day, and at “shade” locations plants received sunlight filtered by 386 

surrounding vegetation for most of the day with the sites identified by measurement of the 387 

ratio of red to far red light (Fig. S3; R:FR calculated as the photon irradiance from 660 to 388 

670nm divided by the photon irradiance from 725 to 735nm [60]). In each case, sampling 389 

occurred for at least 24 h. During March 2015, plants received more direct sunlight, whereas 390 

during September 2015 the light was scattered through sky overcast with clouds. 391 

We expanded the range of environmental conditions by manipulating the temperature 392 

conditions around patches of plants (September 2016). In addition to control plants that were 393 

not manipulated (Fig. S5A), we applied two temperature treatments. These were (1) a 394 

continuous temperature increase (Fig. S5B), whereby plants were covered with clear plastic 395 

horticultural domes to block air currents and trap warm air; (2) a continuous temperature 396 

reduction, using a custom device that passed air through a duct within a heat-exchanging 397 

ice-filled polystyrene box and expelled the chilled air into a clear horticultural dome covering 398 

the plants, with chilling augmented by small ice packs within the dome (Fig. S5C). 399 

Field sampling for transcript analysis 400 

Across all experimental conditions, the same sampling and RNA isolation procedures were 401 

used. At 2 h intervals, a fully expanded rosette leaf was excised with dissecting scissors 402 
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from 6 replicate plants for each condition. The time-courses using naturally occurring sun 403 

and shade conditions each comprised 13 sampling timepoints over a total of 26 hours, and 404 

the time-courses involving artificial temperature manipulations comprised 15 sampling 405 

timepoints over a total of 30 hours. Sampled leaves were placed immediately into individual 406 

microtubes containing at least 400 µL RNALater (Invitrogen). Scissors and forceps were 407 

cleaned with 70% (w/v) ethanol between samples. After sampling, tubes were placed 408 

temporarily on dry ice for up to 2 hours, at -40 °C for 3 days in a portable freezer during 409 

transfer to the laboratory, and then at -80 °C until RNA isolation. During hours of darkness, 410 

sampling occurred using green-filtered head torches. Each sampling timepoint was from the 411 

same set of replicate plants. We obtained a separate reference standard for all RT-qPCR 412 

experiments in the study, by pooling RNA from 10 leaves sampled at midday during March 413 

2015 from healthy plants located randomly across the study site. This provided a reference 414 

cDNA sample against which all RT-qPCR analyses from all sampling seasons were 415 

normalized, to allow comparability between all datasets. This reference RNA sample was 416 

collected during March 2015. In all experiments, dawn and dusk were defined as the 417 

astronomical (solar) time of sunrise and sunset. 418 

RNA isolation and RT-qPCR 419 

Frozen samples containing RNALater were defrosted in a cold room for 4 hours, the 420 

RNALater was removed, and leaf tissue was transferred to new dry tubes and frozen in 421 

liquid nitrogen. Frozen tissue was ground with a TissueLyzer and total RNA was isolated 422 

from the powdered plant material using Macherey-Nagel Nucleospin II RNA extraction kits 423 

(Thermo-Fisher). cDNA was synthesized using a High Capacity cDNA Reverse Transcription 424 

Kit (Applied Biosystems) supplemented with RNAase inhibitor, as described previously [19, 425 

20]. RNA concentrations were determined using a Nanodrop spectrophotometer (Thermo 426 

Scientific). cDNA was synthesized using an ABI High Capacity cDNA Reverse Transcription 427 

Kit (Applied Biosystems) according to the manufacturer’s instructions, using random primers 428 

for the cDNA synthesis reaction. 1:500 cDNA dilutions were analysed using Brilliant III Ultra-429 
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Fast SYBR Green QPCR master mix (Agilent Technologies) and required primer pairs 430 

(Table S2). Primers were designed using the PrimerQuest™ Tool from Integrated DNA 431 

Technologies. Results were normalized using the ∆∆Ct method to AhgACTIN2 [19, 20]. 432 

AhgACTIN2 is encoded in A. halleri by locus g21632 [57] and has 97.8% coding sequence 433 

identity with A. thaliana ACTIN2 (At3g18780). Statistical comparisons within transcript 434 

abundance data were conducted using the SPSS software package. 435 

Environmental monitoring 436 

The temperature and irradiance were measured beside the plants during sampling. The 437 

temperature at each location, for each environmental manipulation, was monitored with EL-438 

USB-2 data loggers (Lascar Electronics) at 5-minute intervals. Temperature loggers were 439 

wrapped in aluminium foil to prevent surface heating by solar radiation. Irradiance was 440 

measured using a CC-3-UV-S cosine corrector connected to a USB2000+ spectrometer with 441 

a QP400-2-UV-VIS fibre optic cable (Ocean Optics). Ambient light spectra (200 nm to 442 

900 nm) were collected every 5 minutes over the 14 hours of light during each day of 443 

sampling using OceanView software (Ocean Optics) on a laptop PC, controlled by a custom 444 

script. The spectrometer and computer were powered using portable lithium battery packs 445 

(Powertraveller, Hampshire, UK). 446 

Smooth trend model analysis 447 

The smooth trend model (STM) to analyze the difference in transcript abundance between 448 

March and September under sun and shade conditions (Fig. 1) was defined by the 449 

equations: 450 

��,� ~ �����	
2��,��� � ��,���, ���
� �, (1) 

�� ~ ������
����, ��
��, (2) 
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��,� � ��,� � �� , (3) 

��,� ~ �����	
��,� , ����, (4) 

��,� ~ �����	
��,� , ����, (5) 

where �� and �� are the smooth trend components in March and September in 2015, 451 

respectively, �� is the time-varying difference between the two seasons, and �� and �� are 452 

the observed transcript abundance in the two seasons. � � 
1, 2, � , 13� is the time point at 453 

two-hour intervals. The same STM was used to analyze the difference in transcript 454 

abundance between sun and shade conditions in March and September (Fig. S1). 455 

The parameters of the models were estimated by Bayesian inference. The statistical models 456 

were written in the Stan language and the programs were called by the rstan package (using 457 

version 2.21.0 of R). After 2,000 warm-up steps, 1,000 Markov Chain Monte Carlo (MCMC) 458 

samples were obtained by thinning out 6,000 MCMC samples for each of four parallel 459 

chains. Thus, 4,000 MCMC samples were obtained in total. 460 

For the models of the three (ambient, warm and chill) conditions in the local environment 461 

manipulation experiment, additional �, � and � were considered: 462 

��,� ~ ������
��,���, ���
� �, (6) 

�	,� � ��,� � ��,�, (7) 

�	,� ~ �����	��	,�, ����. (8) 

Dynamic linear model 463 

The dynamic linear model (DLM) to analyze the time-varying effect of environmental 464 

variables on transcript abundance (Fig. 2) was defined by the equations: 465 
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��  ~ �����	
����, ����, (9) 

��
��,� ~ �����	
��
��,���, �
�
��
� �, (10) 

������,�  ~ �����	
������,���, �
�����
� �, (11) 

�������,� � �� � ��
��,� · �!�"������,� � ������,� · 	#$��������,�, (12) 

��������
,� � �� � ��
��,� · �!�"�������
,� � ������,� · 	#$���������
,�, (13) 

��
����,� � �� � ��
��,� · �!�"�
����,� � ������,� · 	#$���
����,� , (14) 

��
�����
,� � �� � ��
��,� · �!�"�
�����
,� � ������,� · 	#$���
�����
,�, (15) 

�������,� ~ �����	
�������,� , ����, (16) 

��������
,� ~ �����	
��������
,� , ����, (17) 

��
����,�  ~ �����	
��
����,� , ����, (18) 

��
�����
,� ~ �����	
��
�����
,�, ����, (19) 

where � is the trend component, � is the time-varying regression coefficient, � is the true 466 

state of transcript abundance, � is the observed transcript abundance, and �� is the 467 

variance. The subscripts, �!�", 	#$��, %��, &!", &�' and &��(! represent temperature, 468 

irradiance, March, September, sun condition and shade condition, respectively. � �469 


1, 2, � , 13� is the time point at two-hour intervals. 470 

In the AhgSIG5 and AhgpsbD BLRP models, the effects of the upstream genes (i.e., 471 

AhgCCA1 in the AhgSIG5 model and AhgSIG5 in the AhgpsbD BLRP model) were 472 

additionally considered. Thus, the equations of � are modified as follows: 473 
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�������,� � �� � ��
��,� · �!�"������,� � ������,� · 	#$��������,� � ��
�
,� ·

$!'!������,�, 

(20) 

��������
,� � �� � ��
��,� · �!�"�������
,� � ������,� · 	#$���������
,� � ��
�
,� ·

$!'!�������
,�, 

(21) 

��
����,� � �� � ��
��,� · �!�"�
����,� � ������,� · 	#$���
����,� � ��
�
,� ·

$!'!�
����,�, 

(22) 

��
�����
,� � �� � ��
��,� · �!�"�
�����
,� � ������,� · 	#$���
�����
,� � ��
�
,� ·

$!'!�
�����
,�, 

(23) 

where $!'! is the mean transcript abundance of the upstream genes, and the other symbols 474 

are the same as above. The lagged effects of the upstream genes were tested by using 475 

values at previous time points (e.g., using $!'!������,���, $!'!������,���, $!'!������,��	 or 476 

$!'!������,��� for �������,�). The same DLM was used in Fig. 2 and S4. 477 

The parameters of the models were estimated by Bayesian inference. The statistical models 478 

were written in the Stan language and the programs were compiled using CmdStan (version 479 

2.24). To operate CmdStan, the cmdstanr package (version 0.4.0) of R was used. After 480 

3,000 warm-up steps, 1,000 MCMC samples were obtained for each of the four parallel 481 

chains, and thus 4,000 MCMC samples were obtained in total. 482 
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Figure legends 501 

Fig. 1. Components of a circadian signalling pathway have diel fluctuations in a natural plant 502 

population. (A) Potential architecture of a signal transduction pathway underlying SIG5-503 

mediated signalling to chloroplasts, with environmental inputs occurring at several positions. 504 

t1 and t2 represent the time taken for signal transduction between each pathway component. 505 

(B-E) Diel fluctuations in (B, C) ambient temperature and (D, E) total irradiance detected 506 

(200-900 nm), measured at 5-minute intervals. (F-K) Bayesian estimation of smooth trend 507 

model (STM) for March and September 2015. The output of STM for (F, G) AhgCCA1, (H, I) 508 

AhgSIG5 and (J, K) AhgpsbD BLRP. In F-K, the upper graphs show the predicted relative 509 

transcript abundance for March (pink) and September (brown) with the mean of observed 510 

values (dots), and the lower graphs represent the differences in transcript abundance 511 

between March and September. The solid line and the shaded region are the median and 512 
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the 95% credible interval of the posterior distribution. When the 95% credible interval of the 513 

difference between March and September does not contain zero, the difference is 514 

considered significant.  515 

Fig. 2. Time-delay steps are predicted within this signalling pathway under naturally-516 

fluctuating conditions. Lagged effects of variables in Bayesian estimation of dynamic linear 517 

models (DLM) for transcript levels during March and September 2015. (A, B, C) RMSE, log-518 

likelihood and correlation of the models to predict AhgSIG5 against the observed values, 519 

incorporating time lags of the upstream AhgCCA1. (D, E, F) RMSE, log-likelihood and 520 

correlation of the models to predict AhgpsbD BLRP against the observed values, 521 

incorporating time lags of the upstream AhgSIG5. The time lags of temperature and 522 

irradiance are set to 0. Asterisks represent (A, D) the lowest RMSE, (B, E) the highest log-523 

likelihood and (C, F) the highest correlation. Error bars represent the 95% Bayesian credible 524 

intervals. 525 

Fig. 3. The circadian clock and ambient temperature are key regulators of SIG5-mediated 526 

signalling to chloroplasts under naturally-fluctuating conditions. Bayesian estimation of the 527 

dynamic linear model (DLM) for March and September 2015. (A-D) The output of DLM for 528 

AhgCCA1 where relative transcript abundance for (A) sun condition and (B) shade condition, 529 

with the coefficient of regression for (C) temperature and (D) irradiance. (E-I) The output of 530 

DLM for AhgSIG5, where (I) the coefficient of regression for AhgCCA1 is shown, with other 531 

plots the same as (A-D). (J-N) The output of DLM for AhgpsbD BLRP, where (N) is the 532 

coefficient of regression for AhgSIG5 is shown, with other plots the same as (A-D). The 533 

predicted relative transcript abundance for March (orange) and September (blue) are shown 534 

with the mean of observed values (dots). In each graph, the solid line and the shaded region 535 

are the median and the 95% credible interval of the posterior distribution. 536 

Fig. 4. Prediction of diel rhythms of gating of temperature response in a natural plant 537 

population. Bayesian estimation of smooth trend model (STM) for temperature manipulation 538 
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experiments in September 2016. (A) Temperature changes during the study period in each 539 

condition. (B-D) The output of STM for (B) AhgCCA1, (C) AhgSIG5 and (D) AhgpsbD BLRP. 540 

In each panel, the upper graphs show the predicted relative transcript abundance for 541 

ambient (black), warm (red) and cool (light blue) conditions with the mean of observed 542 

values (dots), and the lower graphs represent the differences in transcript abundance 543 

against the ambient condition. In each graph, the solid line and the shaded region are the 544 

median and the 95% credible interval of the posterior distribution. When the 95% credible 545 

interval of the difference between conditions does not contain zero, the difference is 546 

considered significant. 547 

Fig. S1. Close relationship between AtCCA1 and AtSIG5 transcript abundance under free-548 

running conditions in A. thaliana under controlled conditions. (A-D) Relationship between 549 

AtCCA1 and AtSIG5 transcript abundance under conditions of constant light, from the 550 

transcriptome studies of (A) [3] (B) [53], (C) [4], (D) [6]. (E, F) Relationship between AtCCA1 551 

and AtSIG5 transcript abundance under light/dark cycles with (E) long and (F) short 552 

photoperiods, from the transcriptome study of [54]. Blue lines indicate a regression line. 553 

Pearson’s correlation coefficient (R) with p-values testing for the likelihood of a chance 554 

correlation are shown for each plot. 555 

Fig. S2. Components of a circadian signalling pathway have diel fluctuations in a natural 556 

plant population. Bayesian estimation of smooth trend model (STM) comparing sun and 557 

shade conditions, sampled during 2015. (A-D) Diel fluctuations in total irradiance detected 558 

(A, B; 200-900 nm) and (C, D) ambient temperature, measured at 5-minute intervals. (E-J) 559 

The output of STM for (E, F) AhgCCA1, (G, H) AhgSIG5 and (I, J) AhgpsbD BLRP. In E-J, 560 

the upper graphs show the predicted relative transcript abundance for sun (orange) and 561 

shade (light grey) conditions, with the mean of observed values (dots). The lower graphs 562 

represent the differences in transcript abundance between sun and shade conditions. The 563 

solid line and the shaded region are the median and the 95% credible interval of the 564 
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posterior distribution. When the 95% credible interval of the difference between sun and 565 

shade conditions does not contain zero, the difference is considered significant. 566 

Fig. S3. Effects of the ratio of red to far-red light upon A. halleri plants in the field, during 567 

March and September sampling seasons. (A, B) Examples of rosette-stage plants growing 568 

under (A) sun and (B) shade conditions during the September sampling season. (C, D) 569 

Comparison of the ratio of red to far-red light received by plants under the sun- and shade 570 

conditions during (C) March 2015 and (D) September 2015 sampling seasons. The R:FR 571 

varied during the photoperiod during both sampling seasons, and the effect of shade on 572 

R:FR was ameliorated by heavy cloud cover. 573 

Fig. S4. The nature of the time-delay steps within this signalling pathway depends on the 574 

sampling season. Lagged effects of variables in Bayesian estimation of the dynamic linear 575 

model (DLM) for March and September separately in 2015. (A, D, G, J) RMSE, (B, E, H, K) 576 

log-likelihood and (C, F, I, L) correlation of the models to predict AhgSIG5 in March against 577 

the observed values, incorporating time lags of AhgCCA1. (D-F) RMSE, log-likelihood and 578 

correlation of the models to predict AhgpsbD BLRP in March against the observed values, 579 

incorporating time lags of AhgSIG5. (G-I) RMSE, log-likelihood and correlation of the models 580 

to predict AhgSIG5 in September against the observed values, incorporating time lags of 581 

AhgCCA1. (J-L) RMSE, log-likelihood and correlation of the models to predict AhgpsbD 582 

BLRP in September against the observed values, incorporating time lags of AhgSIG5. Time 583 

lags of temperature and irradiance are set to 0. Asterisks represent the lowest RMSE (A, D, 584 

G, J), the highest log-likelihood (B, E, H, K) and the highest correlation (C, F, I, L). Error bars 585 

represent the 95% Bayesian credible intervals. 586 

Fig. S5. Moderate temperature manipulations to adjacent patches of A. halleri plants, in the 587 

field, using custom-designed equipment. (A) The representative appearance of plant patches 588 

under naturally fluctuating conditions. (B) Plants covered with a plastic dome to raise 589 

temperature. (C) Plants covered with plastic dome undergoing temperature reduction with a 590 
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custom chilling device. In this device, cool air is introduced to enclosed plant patches after 591 

being driven slowly through a heat exchanger, positioned within an expanded polystyrene 592 

box filled with ice. 593 

Fig. S6. Location of field sampling. Photographs of (A) upstream and (B) downstream views 594 

of Omoide river site, which has naturally occurring populations of A. halleri. The majority of 595 

plants at ground level on the stony river banks are A. halleri.   596 
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