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Abstract 1 

 2 

Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is 3 

typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause 4 

mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, 5 

we aim to refine predictors and improve understanding of the epigenomic architecture of cAge and 6 

bAge. First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of 7 

chronological age and all-cause mortality. Next, to improve cAge prediction, we use methylation data 8 

from 24,673 participants from the Generation Scotland (GS) study, the Lothian Birth Cohorts (LBC) of 9 

1921 and 1936 and 8 publicly available datasets. Through the inclusion of linear and non-linear age-10 

CpG associations from the EWAS, feature pre-selection/dimensionality reduction in advance of elastic 11 

net regression, and a leave-one-cohort-out (LOCO) cross validation framework, we arrive at an 12 

improved cAge predictor (median absolute error = 2.3 years across 10 cohorts). In addition, we train a 13 

predictor of bAge on 1,214 all-cause mortality events in GS, based on epigenetic surrogates for 109 14 

plasma proteins and the 8 component parts of GrimAge, the current best epigenetic predictor of all-15 

cause mortality. We test this predictor in four external cohorts (LBC1921, LBC1936, the Framingham 16 

Heart Study and the Women9s Health Initiative study) where it outperforms GrimAge in its association 17 

to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 x 10-52, and HRbAge = 1.52 [1.44, 1.59] with p = 18 

2.20 x 10-60). Finally, we introduce MethylBrowsR, an online tool to visualize epigenome-wide CpG-age 19 

associations.  20 

 21 

Introduction 22 

 23 

The development and application of epigenetic predictors for healthcare research has grown 24 

dramatically over the last decade1. These predictors can aid disease risk stratification, and are based 25 

on associations between CpG DNA methylation (DNAm) and age, health, and lifestyle outcomes. 26 

DNAm is dynamic, tissue-specific and is influenced by both genetic and environmental factors. DNAm 27 

can precisely track ageing through predictors termed "epigenetic clocks"2–8. DNAm scores have also 28 

been found to capture other components of health, such as smoking status9,10, alcohol consumption11,12, 29 

obesity11,13, and protein levels14.  30 
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 31 

<First generation= epigenetic ageing clocks, including those by Horvath3 and Hannum et al4, were trained 32 

on chronological age2–4 (cAge), with near-perfect clocks expected to arise as sample sizes grow5. 33 

However, cAge clocks hold limited capability for tracking and quantifying age-related health status, also 34 

termed biological age (bAge)5,8. To address this, <second generation= clocks have been trained on other 35 

age-related measures, including a phenotypic biomarker of morbidity (PhenoAge15), rate of ageing 36 

(DunedinPoAm16), and time to all-cause mortality (GrimAge17). Regressing an epigenetic clock predictor 37 

(whether trained on cAge or bAge) on chronological age within a cohort gives rise to an <age 38 

acceleration= residual with positive values corresponding to faster biological ageing.   39 

 40 

Penalised regression approaches such as elastic net18 are used to derive epigenetic predictors. Such 41 

epigenetic clocks typically capture a weighted linear combination of CpGs that optimally predict an 42 

outcome from a statistical perspective i.e. no preference is given to the location or possible biological 43 

role of the input features. The majority consider genome-wide CpG sites as potential predictive features. 44 

However, others have used a two-stage approach that first creates DNAm surrogates (or epigenetic 45 

scores - EpiScores) for biomarkers (also typically via elastic net) prior to training a second elastic net 46 

model on the phenotypic outcome or time-to-event 14,17. GrimAge is currently the gold-standard bAge 47 

epigenetic clock. It is derived from age, sex, and EpiScores of smoking pack years and 7 plasma 48 

proteins that have been associated with mortality or morbidity: adrenomedullin (ADM), beta-2-49 

microglobulin (B2M), cystatin C, growth differentiation factor 15 (GDF15), leptin, plasminogen activation 50 

inhibitor 1 (PAI1), and tissue inhibitor metalloproteinase (TIMP1). Recently, a wider set of 109 51 

EpiScores for the circulating proteome were generated by Gadd et al14. These have not yet been 52 

considered as potential features for the prediction of bAge. 53 

 54 

Here, we improve the prediction of both cAge and bAge (Figure 1). We first present large-scale 55 

epigenome-wide association studies (EWAS) of age (for both linear and quadratic CpG effects) and all-56 

cause mortality. A predictor of cAge is then generated using DNAm data from 13 cohorts, including 57 

samples from >18,000 participants of the Generation Scotland study19. We use a leave-one-cohort-out 58 

(LOCO) prediction framework, including dimensionality reduction prior to feature selection for linear and 59 

non-linear DNAm-age relationships (ascertained through the EWAS), and test it on ten external 60 
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datasets. Through data linkage to death records, we develop a bAge predictor of all-cause mortality, 61 

which we compare against the current gold-standard predictor, GrimAge, in four external cohorts. These 62 

analyses highlight the potential for large DNAm resources to generate increasingly accurate predictors 63 

of (i) cAge, with potential forensic utility, and (ii) bAge, with potential implications for risk prediction and 64 

clinical trials.  65 

 66 

Results 67 

 68 

Data overview 69 

 70 

Generation Scotland is a Scottish family-based study with over 24,000 participants recruited between 71 

2006 and 201119. Blood-based DNAm levels at 752,722 CpG sites were quantified using the Illumina 72 

MethylationEPIC array for 18,413 individuals (see Methods). Participants were aged between 18 and 73 

99 years at recruitment, with a mean age of 47.5 years (SD 14.9, Table 1). A total of 1,214 participant 74 

deaths have been recorded as of March 2022, via linkage to the National Health Service Central 75 

Register, provided by the National Records of Scotland.  76 

 77 

In order to train and test a cAge predictor, data from an additional 6,260 individuals from ten external 78 

cohorts were considered. These included the Lothian Birth Cohorts (LBC) of 1921 and 1936, and eight 79 

publicly available Gene Expression Omnibus (GEO) datasets (see Methods, Table 1). Given that the 80 

external datasets assessed DNAm (blood-based apart from GSE78874, which considered saliva) using 81 

the Illumina HumanMethylation450K array, the Generation Scotland data were subset to 374,791 CpGs 82 

that were present across all studies.  83 

 84 

To test the bAge predictor, data from an additional 4,134 individuals (with a total of 1,653 deaths) from 85 

six external cohorts were considered. These included both the LBC1921 and LBC1936 cohorts, as well 86 

as the Framingham Heart Study (FHS) and the Women9s Health Initiative (WHI) Broad Agency Award 87 

23 (B23) study for Black, White, and Hispanic individuals (see Methods, Table 2).  88 

 89 

Epigenome-wide association studies of cAge 90 
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 91 

EWAS of cAge were performed in the Generation Scotland cohort, resulting in 99,832 linear and 92 

137,195 quadratic CpG associations that were epigenome-wide significant (p < 3.6 x 10-8, 93 

Supplementary Figure 1, Supplementary Table 1 and 2, see Methods). These mapped to 17,339 94 

and 19,432 unique genes, respectively. There were 48,312 CpGs with both a significant linear and 95 

quadratic association. 96 

 97 

The most significant linear associations included cg16867657 and cg24724428 (ELOVL2), cg08097417 98 

(KLF14), and cg12841266 (LHFPL4), all p < 1 x 10-300, (Supplementary Table 1, Supplementary 99 

Figure 2). Around half of the CpGs with a significant linear association (51,213/99,832, 51.3%) showed 100 

a positive association with age. The most significant quadratic associations were cg11084334 (LHFPL4, 101 

p = 6.49 x 10-206), cg15996534 (LOC134466, p = 8.7 x 10-194), and cg23527621 (ECE2 and CAMK2N2, 102 

p = 9.95 x 10-189, Supplementary Table 2, Supplementary Figure 3).  103 

 104 

The univariate associations between all 752,722 CpGs and cAge in a subset of 4,450 unrelated 105 

participants (DNAm arrays processed together in a single experiment) from Generation Scotland can 106 

be visualised via an online ShinyApp, MethylBrowsR (https://shiny.igmm.ed.ac.uk/MethylBrowsR/).  107 

 108 

Prediction of cAge 109 

 110 

Epigenetic clocks for cAge were created using elastic net penalised regression. Input features consisted 111 

of CpG and CpG2 DNAm values for sites that were epigenome-wide significant in their corresponding 112 

EWAS analysis (see Methods, Figure 2). After iterating through combinations of CpG and CpG2 terms 113 

(ranked by EWAS p-value), the best-performing model considered the top 10,000 CpG and top 300 114 

CpG2 sites from the EWAS as potentially informative features (see Methods, Supplementary Table 3 115 

and 4, Supplementary Figure 4 and 5). A single external cohort was used for this screening step 116 

(GSE40279, N = 656) and model fit was based on the root mean squared error (RMSE) and median 117 

absolute error (MAE) of prediction. 118 

 119 

 120 
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A LOCO framework was used to train the cAge predictor, whereby for each of the 10 external cohorts, 121 

a model was trained on data from Generation Scotland and the remaining nine external cohorts. Testing 122 

was then performed on the excluded cohort (total Ntesting = 6,260). A final model was also trained on all 123 

11 cohorts (Ntraining = 24,673).  124 

 125 

Both age and log(age) were considered as outcomes, with the latter showing better prediction results 126 

in younger individuals, reflecting the importance of considering non-linear DNAm-age associations in 127 

cAge prediction. As a result, if the initial cAge prediction was <20 years, that individual's predicted age 128 

was re-estimated using weights from the log(age) model.   129 

 130 

The combined LOCO prediction results showed a strong correlation with cAge (r = 0.96, Figure 3, Table 131 

1) and a MAE of 2.3 years. Furthermore, 24% of individuals were classified to within one year of their 132 

chronological age. The cohort with the largest prediction errors was GSE78874, in which DNAm was 133 

measured in saliva instead of blood.  134 

 135 

The elastic net model (trained in all 11 cohorts) with the lowest mean cross-validated error identified 136 

2,330 features (2,274 linear and 56 quadratic) as most predictive of age, and 1,986 features (1,931 137 

linear and 55 quadratic) as most predictive of log(age). The weights for the age model are presented in 138 

Supplementary Table 5, and for the log(age) model in Supplementary Table 6. 139 

 140 

Epigenome-wide association study of all-cause mortality 141 

 142 

To identify individual CpG loci associated with survival, an EWAS on time to all-cause mortality was 143 

performed in Generation Scotland (Ndeaths = 1,214, see Methods). This analysis identified 1,182 144 

epigenome-wide significant associations (p < 3.6 x 10-8, Supplementary Figure 6), which mapped to 145 

704 unique genes. Around a third (418/1,182 = 35.36%) of these CpGs were associated with a 146 

decreased survival time. The lead findings included CpGs mapping to smoking-related loci10,20–24 such 147 

as cg05575921 (AHRR, p = 3.01 x 10-57), cg03636183 (F2RL3, p = 6.78 x 10-44), cg19859270 (GPR15, 148 

p = 1.09 x 10-33), cg17739917 (RARA, p = 1.92 x 10-33), cg14391737 (PRSS23, p = 5.59 x 10-33), 149 

cg09935388 (GFI1, p = 3.30 x 10-31), and cg25845814 (ELMSAN1/MIR4505, p = 1.31 x 10-30) 150 
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(Supplementary Table 7). Of the non-smoking-related CpGs amongst the top 50 associations, seven 151 

mapped to genes whose methylation has been linked to various forms of cancer, including ZMIZ125, 152 

SOCS326–28, ZMYND829 and CHD530–32. Another probe mapped to FKBP5, a gene whose methylation 153 

is involved in the regulation of the stress response, and which has been linked to increased 154 

cardiometabolic risk through accelerated ageing33. Finally, one top probe mapped to SKI, whose 155 

methylation has been linked to age-related macular degeneration34. All associations remained after 156 

adjusting for relatedness in the Generation Scotland cohort (see Methods, Supplementary Table 8). 157 

 158 

There was a high correlation of the Z-score effect sizes across the 200 sites that overlapped between 159 

our study and the 257 epigenome-wide significant findings from a recent large (N = 12,300, Ndeaths = 160 

2,561) meta-analysis of all-cause mortality (r = 0.58, Supplementary Figure 7). All 200 sites were 161 

significant at a nominal p < 0.05 threshold and 25 were epigenome-wide significant at p < 3.6 x 10-8.  162 

 163 

A gene-set enrichment analysis considering genes to which epigenome-wide significant CpGs mapped 164 

to returned 198 significantly enriched (FDR p < 0.05) GO biological processes (see Methods, full FUMA 165 

gene-set enrichment results in Supplementary Table 9). The most significantly enriched GO terms 166 

included processes relating to neurogenesis/neuron differentiation and development, positive immune 167 

system regulation and development, cell motility and organization, and regulation of protein 168 

modification/phosphorylation. Other significantly enriched sets included sites bound by FOXP3, ETS2, 169 

and the PML-RARA fusion protein.  170 

 171 

Prediction of bAge 172 

 173 

Amongst the second generation epigenetic clocks, GrimAge is the current best predictor of lifespan 174 

(time to death)17. In an effort to improve the prediction of bAge, an elastic net Cox model was trained 175 

on all-cause mortality in Generation Scotland (Ntotal = 18,365, Ndeaths = 1,214, see Methods). The 176 

GrimAge components (age, sex, and EpiScores for smoking and 7 plasma proteins) and Gadd et al9s 177 

109 protein EpiScores14 were considered as potentially-informative features (Figure 4).  178 

 179 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.507115doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507115
http://creativecommons.org/licenses/by/4.0/


 8 

The elastic net Cox model identified a weighted sum of 35 features as most predictive of all-cause 180 

mortality in Generation Scotland. These included age and the GrimAge smoking EpiScore, along with 181 

5/7 protein EpiScores from GrimAge (B2M, cystatin C, GDF15, PAI1, and TIMP1), and 28/109 protein 182 

EpiScores from Gadd et al14. Amongst these were EpiScores for C-reactive protein (CRP), the growth 183 

hormone receptor (GHR) protein, and numerous cytokines (CCL11, CCL23, CCL18, CXCL10, CXCL9, 184 

CXCL11, and HGF). The weights for the linear predictor are presented in Supplementary Table 10. 185 

 186 

The bAge predictor was regressed on age to obtain a measure of epigenetic age acceleration 187 

(bAgeAccel). The epigenetic age acceleration residuals showed significant associations with all-cause 188 

mortality across four test cohorts of differing ancestries (Table 2, Supplementary Table 11, Figure 5). 189 

The bAge measure showed slightly stronger associations than GrimAge (also regressed on age, termed 190 

GrimAgeAccel) in fixed effects meta-analyses (Hazard Ratio and 95% Confidence Interval per SD 191 

difference of GrimAgeAccel and bAgeAccel: HR = 1.47 [1.40, 1.54] with p = 1.08 x 10-52, and HR = 1.52 192 

[1.44, 1.59] with p = 2.20 x 10-60, respectively. 193 

 194 

Discussion 195 

 196 

Accurate predictors of cAge and bAge have major implications for biomedical science and healthcare 197 

through risk prediction and preventative medicine. Here, we present improved DNAm-based predictors 198 

of age and lifespan. 199 

 200 

Epigenetic cAge prediction is expected to reach near-perfect estimates as sample sizes grow5. Making 201 

use of Generation Scotland, a very large single-cohort DNAm resource, we derived a cAge predictor 202 

with a MAE of 2.3 years, tested in over 6,000 external samples. Our predictor has potential forensic 203 

applications, although ethical caveats exist8. In addition, despite the high correlations and low RMSE 204 

and MAE estimates at the population level, there are still several individuals with inaccurate predictions 205 

(e.g. > 20 years between predicted and actual age, Figure 3), though this could also reflect sample 206 

mix-ups or data entry errors. 207 

 208 
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cAge prediction was improved when accounting for non-linear relationships between DNAm and age. 209 

Whilst generally understudied, non-linear patterns have been found at numerous CpG sites, where 210 

DNAm is found to increase rapidly in early ages and stabilize in adulthood, potentially reflecting 211 

developmental processes35. Similarly, stable DNAm levels followed by rapid methylation/demethylation 212 

have also been described in later life36, which could offer insight into aging-specific processes. Given 213 

the number of samples from individuals aged 20 or under in the training of our predictor (N=574/24,674= 214 

2.4%), we may not have captured the full extent of DNAm-based ageing patterns in the younger 215 

population. Future studies could also consider sex-specific models as diverging non-linear patterns 216 

between males and females have been shown in previous studies37. Interactions between CpGs along 217 

with higher order polynomial terms and spline-based models might better capture some of these non-218 

linear changes.  219 

 220 

The development of the cAge predictor highlighted the advantages of feature pre-selection ahead of 221 

penalised elastic net regression. Compared to a model with all possible features in the training set (r = 222 

0.93, RMSE = 5.25, MAE = 3.43, pre-selection greatly improved performance (r = 0.96, RMSE = 3.92, 223 

MAE = 2.32). Several DNAm studies of age and age-related phenotypes have used pre-selection 224 

methods (e.g., filtering by magnitude of correlation or strength of association) instead of, or in addition 225 

to elastic net38–45. Whereas the feature pre-selection here required arbitrary decisions on thresholds, 226 

other studies have found that feature reduction via PCA optimises DNAm predictors46,47. 227 

 228 

Feature pre-selection may have aided cAge predictions by screening out CpGs with low intra-sample 229 

variability due to technical variance48,49. One previous study47 observed that CpGs with stronger cAge 230 

associations were more reliable. A limitation of our approach to feature pre-selection was that it was 231 

biased towards the Generation Scotland cohort in which the age EWAS were conducted. We also note 232 

that pre-selection introduces statistical challenges associated to post-selection inference50. 233 

Furthermore, our penalised regression modelling strategy for cAge only incorporated additive effects. 234 

Non-additive tree ensemble methods and other machine learning frameworks may improve predictions 235 

further51. Finally, as our predictor has been mainly trained and tested on blood data, it may not 236 

generalise to other tissues.  237 

 238 
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Whilst a single DNAm predictor of cAge is of interest, the selected CpG features are unlikely to identify 239 

all epigenome-wide patterns related to ageing. Our EWAS of chronological age identified 99,832 linear 240 

and 137,195 quadratic CpG-age associations. The sample size was more than double that of the largest 241 

study reported on the EWAS Catalog52 - our previous Generation Scotland analysis53. In addition to 242 

refining our previously described DNAm-age linear associations, we have extended previous small-243 

scale approaches to highlight non-linear patterns36,37. As shown here, these findings can aid the 244 

predictive performance of epigenetic clocks, and may additionally improve our understanding of 245 

epigenetic changes during development and ageing-related decline in later life.  246 

 247 

Recent work has shifted focus from the prediction of cAge to bAge, with more expansive clinical 248 

applications. Our new bAge predictor of all-cause mortality had a greater effect size and was more 249 

statistically significant than GrimAge in the external test set meta-analysis. GrimAge is already being 250 

used as an end-point for clinical trials54 and studies of rejuvenation55,56. The bAge predictor included 251 

EpiScores for CRP and numerous cytokines, which reflect inflammation and predict overall and 252 

cardiovascular mortality57–59. Chronic inflammation can lead to several diseases, including 253 

cardiovascular disease and exacerbates the ageing process60,61. In addition, the growth hormone 254 

receptor (GHR) protein EpiScore was selected; both the receptor and its corresponding protein have 255 

been linked to longevity in mouse models62–66. 25/28 of the selected EpiScores from Gadd et al14 have 256 

been associated to multiple diseases, including diabetes, chronic obstructive pulmonary disease, 257 

ischaemic heart disease, lung cancer, Alzheimer9s, rheumatoid arthritis, stroke, and depression 258 

(Supplementary Table 10). As sample sizes for cause-specific mortality outcomes increase, a more 259 

granular suite of lifespan predictors can be developed. 260 

 261 

Whereas the cAge predictions translated into external cohorts with minimal calibration issues, 262 

individual-level bAge predictions were highly variable. Future work for these (and all) DNAm array-263 

based predictors should consider the limitations of signatures that lack absolute thresholds/cut-points 264 

for risk prediction in a new individual selected at random from the population.  265 

 266 

A total of 1,182 epigenome-wide significant associations were identified in our EWAS of all-cause 267 

mortality. The most significant probes mapped to genes previously associated with smoking, such as 268 
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AHRR, F2RL3, and GPR1567. Hypomethylation at probes nearby these genes has been previously 269 

linked to increased mortality risk, be that all-cause or disease specific (e.g., cancer or, cardiovascular-270 

related mortality)20,68–70. Other, non-smoking related, lead probes mapped to genes whose methylation 271 

has been linked to various forms of cancer, increased cardiometabolic risk, and age-related macular 272 

degeneration25–34. There was moderate agreement (correlation of 0.58 between Z scores) between our 273 

findings and the significant results from a previous EWAS meta-analysis of survival. However, different 274 

covariates and ancestries were considered across these studies. An enrichment analysis highlighted 275 

links to neurodevelopment and immune regulation, as well as to sites bound by FOXP3, ETS2, and the 276 

PML-RARA fusion protein. FOXP3 is a transcriptional regulator involved in the development and 277 

inhibitory function of regulatory T-cells71. ETS2 and PML-RARA are a protooncogene and a protein 278 

resulting from a chromosomal translocation that resulting in an oncofusion protein, respectively, having 279 

both been linked to acute myeloid leukemia72,73. This finding may be influenced by the large number of 280 

cancer-related deaths in Generation Scotland (N = 509). Further work is needed to disentangle the role 281 

of methylation/demethylation at these sites with survival. Future EWAS on specific mortality causes will 282 

highlight mechanisms underlying age- and disease-related decline.  283 

 284 

The integration of multiple large datasets and new approaches to feature selection has facilitated 285 

improvements to the blood-based epigenetic prediction of biological and chronological age. The 286 

inclusion of multiple protein EpiScore features and consideration of quadratic DNAm effects may also 287 

be relevant for other EWAS and prediction studies. Together, this can improve our biological 288 

understanding of complex traits and the prediction of adverse health outcomes.  289 

 290 

Methods 291 

 292 

Generation Scotland 293 

 294 

Cohort description 295 

 296 

Generation Scotland: Scottish Family Health Study is a population-based cohort study that includes 297 

~7,000 families from across Scotland19. Study recruitment took place between 2006 and 2011 when 298 
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participants were aged between 17 and 99 years (Table 1). In addition to completing health and lifestyle 299 

questionnaires, participants donated blood or saliva samples for biomarker and omics analyses. The 300 

majority of participants also provided consent for linkage to their electronic medical records, yielding 301 

retrospective and prospective information on primary and secondary disease outcomes as well as 302 

prescription data.  303 

 304 

Data linkage to death records 305 

 306 

Information on mortality and cause of death is routinely updated via linkage to the National Health 307 

Service Central Register, provided by the National Records of Scotland. The data used here were 308 

correct as of March 2022, with a total of 1,214 deaths and 18,365/18,413 samples with non-missing 309 

and non-negative time-to-death/event (TTE) values. Average TTE amongst deaths was 7.79 (SD 3.54) 310 

years. Leading causes of death included malignant neoplasms (509), ischaemic heart disease (134), 311 

cerebrovascular disease (69), other forms of heart disease (44), chronic lower respiratory disease (42), 312 

mental disorders including dementia (36), and other degenerative diseases of the nervous system (35).  313 

 314 

DNA methylation in Generation Scotland 315 

 316 

DNA methylation in blood was quantified for 18,413 Generation Scotland participants across three 317 

separate sets (NSet1 = 5,087, NSet2 = 4,450, NSet3 = 8,876) using the Illumina MethylationEPIC (850K) 318 

array. Individuals in Set 1 included a mixture of related and unrelated individuals. Set 2 comprised 319 

individuals unrelated to each other and also to those in Set 1. Set 3 contained a mix of related individuals 320 

– both to each other and to those in Sets 1 and 2 – and included all remaining samples available for 321 

analysis.  322 

 323 

Quality control details have been reported previously53,74. Briefly, probes were removed based on (i) 324 

outliers from visual inspection of the log median intensity of the methylated versus unmethylated signal 325 

per array, (ii) a bead count < 3 in more than 5% of samples, (iii) ≥ 5% of samples having a detection p-326 

value > 0.05, (iv) if they pertained to the sex chromosomes, (v) if they overlapped with SNPs, and/or 327 

(vi) if present in potential cross-hybridizing locations75. Samples were removed (i) if there was a 328 
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mismatch between their predicted sex and recorded sex, (ii) if ≥ 1% of CpGs had a detection p-value 329 

> 0.05, (iii) if sample was not blood-based, and/or (iv) if participant responded <yes= to all self-reported 330 

diseases in questionnaires. Dasen normalisation76 was carried out per set (for cAge training) or across 331 

all individuals (for EWAS). A total of 752,722 CpGs remained after QC. To maximise the generalisability 332 

of the predictors across different versions of Illumina arrays, we subset the content to the intersection 333 

of sites on the EPIC and 450k arrays, as well as to those present across all cohorts considered in the 334 

study (Table 1), totalling 374,791 CpGs. 335 

 336 

External datasets 337 

 338 

To test the cAge predictor, we considered DNA methylation for a total of 6,260 external samples, from 339 

eight publicly available datasets from the Gene Expression Omnibus (GEO) resource and repeated 340 

measures (up to four time points) from two cohorts of blood-based DNAm, the Lothian Birth Cohorts 341 

(LBC) of 1936 and 1921 (Table 1)4,77–82. The baseline samples from the LBC cohorts, along with the 342 

Framingham Heart Study (FHS) and the Women9s Health Initiative (WHI) study, were also used for the 343 

testing of our bAge predictor (Table 2).   344 

 345 

Lothian Birth Cohorts 346 

 347 

LBC1921 and LBC1936 are longitudinal studies of ageing on individuals born in 1921 and 1936, 348 

respectively77. Study participants completed the Scottish Mental Surveys of 1932 and 1947 at 349 

approximately age 11 years old and were living in the Lothian area of Scotland at the time of recruitment 350 

in later life. Blood samples considered here were collected at around age 79 for LBC1921, and at around 351 

age 70 for LBC1936. DNA methylation was quantified using the Illumina HumanMethylation450 array, 352 

for a total of 692 (up to 3 repeated measurements from 469 individuals) and 2,795 (up to 4 repeated 353 

measurements from 1,043 individuals) samples from LBC1921 and LBC1936 respectively. Quality 354 

control details have been reported previously5,83. Briefly, probes were removed (i) if they presented a 355 

low (< 95%) detection rate with p-value < 0.01, and/or (ii) if they presented inadequate hybridization, 356 

bisulfite conversion, nucleotide extension, or staining signal, as assessed by manual inspection. 357 

Samples were removed (i) if they presented a low call rate (<450,000 probes detected at p-value < 358 
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0.01) and/or (ii) if predicted sex did not match reported sex. Finally, as stated previously, probes were 359 

filtered down to the 374,791 common across all datasets (Table 1). Missing values were mean imputed. 360 

 361 

A total of 421 and 895 samples from LBC1921 and LBC1936 respectively, corresponding to the first 362 

wave of each study (thus aged around 79 and 70 at time of sampling for each cohort respectively), were 363 

used in our bAge analysis (Table 2). All-cause mortality was assessed via linkage to the National Health 364 

Service Central Register, provided by the National Records of Scotland. The data used here are correct 365 

as of January, 2022, with a total of 421 and 367 deaths in LBC1921 and LBC1936 respectively.  366 

 367 

Gene Expression Omnibus (GEO) datasets 368 

 369 

DNAm and age information for 2,773 individuals from a total of 8 datasets was downloaded from the 370 

public domain (Gene Expression Omnibus, GEO). DNAm was quantified with Illumina9s 371 

HumanMethylation450 chip. QC information can be found in each pertaining publication (Table 1), and 372 

CpGs were filtered down to the 374,791 common across all datasets. Missing values were mean 373 

imputed.  374 

 375 

Framingham Heart Study (FHS) 376 

 377 

The FHS cohort is a large-scale longitudinal study started in 1948, initially investigating the common 378 

factors of characteristics that contribute to cardiovascular disease (CVD)84. The study at first enrolled 379 

participants living in the town of Framingham, Massachusetts, who were free of overt symptoms of 380 

CVD, heart attack or stroke at enrolment. In 1971, the study established the FHS Offspring Cohort to 381 

enrol a second generation of the original participants9 adult children and their spouses for conducting 382 

similar examinations85. Participants from the FHS Offspring Cohort were eligible for our study if they 383 

attended both the seventh and eighth examination cycles and consented to having their molecular data 384 

used for study. We used data pertaining to a total of 711 individuals which had not been used in the 385 

training of GrimAge, and for which DNAm data and death records were available. Peripheral blood 386 

samples were obtained on the eight examination cycle, and DNAm data was measured using the 387 
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Illumina Infinium HumanMethylation450 array, with QC details are described elsewhere17. Deaths 388 

recorded are accurate as of 1st January 2013, with a total of 100 recorded. 389 

 390 

Women’s Health Initiative (WHI) 391 

 392 

The WHI study enrolled postmenopausal women aged 50-79 years into the clinical trials (CT) or 393 

observational study (OS) cohorts between 1993 and 1998. We included 2,107 women from <Broad 394 

Agency Award 23= (WHI BA23). WHI BA23 focuses on identifying miRNA and genomic biomarkers of 395 

coronary heart disease (CHD), integrating the biomarkers into diagnostic and prognostic predictors of 396 

CHD and other related phenotypes. This cohort is divided into three datasets, pertaining to three 397 

different ancestries: White, Black, and Hispanic, with 998, 676, and 433 participants respectively. Blood-398 

derived DNAm data was available for participants. DNAm data was measured using the Illumina 399 

Infinium HumanMethylation450 array, QC details described elsewhere17. Deaths recorded are accurate 400 

as March 1st, 2017, with a total of 418, 229, and 118 recorded for White, Black, and Hispanic ancestries 401 

respectively.  402 

 403 

EWAS of chronological age  404 

 405 

We conducted an EWAS to identify CpG sites that had linear or quadratic associations with 406 

chronological age, using Generation Scotland data (N = 18,413, CpGs = 752,722). Linear regression 407 

analyses were carried out which included both linear and quadratic CpG M-values as predictor variables 408 

and age as the dependent variable (Age ~ CpG and Age ~ CpG + CpG2, respectively). Fixed effect 409 

covariates included estimated white blood cell (WBC) proportions (basophils, eosinophils, natural killer 410 

cells, monocytes, CD4T, and CD8T cells) calculated in the minfi R package (version 1.36.0)86 using the 411 

Houseman method87, sex, DNAm batch/set, smoking status (current, gave up in the last year, gave up 412 

more than a year ago, never, or unknown), smoking pack years, and 20 methylation based principal 413 

components (PCs) to correct for unmeasured confounders. Age was centered by its mean, and CpG 414 

and CpG2 M-values were scaled to mean zero and variance one. Epigenome-wide significance was set 415 

at p-value < 3.6 x 10-8, as per Saffari et al88.  416 

 417 
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Prediction of chronological age  418 

 419 

Elastic net regression (with α = 0.5 as the L1, L2 mixing parameter) was used to derive a predictor of 420 

chronological age from the 374,791 CpG sites common across all cohorts considered in cAge training 421 

(description of cohorts in Table 1). The biglasso R package (version 1.5.1) was used89, with 25-fold 422 

cross validation (CV) to select the shrinkage parameter (λ) that minimised the mean cross-validated 423 

error. This resulted in randomly assigned folds of ~1,000 individuals. A sensitivity analysis was 424 

performed, assigning individuals from the same methylation set and cohort to individual folds, which 425 

returned highly similar results.  426 

 427 

Leave-one-cohort-out (LOCO) 428 

 429 

The cAge predictor was created and tested using a leave-one-cohort-out (LOCO) framework, where 430 

the model was trained in 10 cohorts and tested on the excluded external cohort (Figure 2). The final 431 

reported model was trained using all 11 sets described here. Pearson correlations (r) with reported age 432 

were calculated along with the root mean square error (RMSE) and median absolute error (MAE).  433 

 434 

Log(age) 435 

 436 

In addition to training on chronological age, models were also trained on the natural logarithm of 437 

chronological age, log(age). The age of our test samples was predicted using the model fit on 438 

chronological age, and, if the predicted age returned was 20 years or younger, a new prediction was 439 

obtained making use of the model fit on log(age). This approach parallels that in Horvath9s 2013 clock, 440 

which log-transforms chronological age in under 20s prior to training3.  441 

 442 

Feature pre-selection 443 

 444 

Several studies have highlighted the benefits of feature pre-selection for elastic net46,47. Here, we 445 

performed preliminary analyses, including differently sized subsets of CpG sites as features in elastic 446 

net. We considered sites that were epigenome-wide significant at p < 3.6 x 10-8 and then ranked CpGs 447 
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in ascending order of p-value (most significant ranked first), before defining subsets of varying sizes 448 

(from 1,000 to 300,000 CpGs). Our training cohort was Generation Scotland, whilst our test set was 449 

GSE40279, one of the largest external datasets with the widest age range. Our analyses showed that 450 

the 10,000 most significant loci (age - CpG associations) yielded the test set predictions with the highest 451 

r and lowest RMSE (Supplementary Table 3, Supplementary Figure 4). In addition to these sites, 452 

subsets of CpGs with a significant quadratic relationship to age were explored, with subset sizes varying 453 

from 100 to 20,000. These features were included in training as CpG2 beta values, and, when not 454 

already present in the model, in their linear form as well. In addition to the top 10,000 age-associated 455 

CpGs, the top 300 quadratic sites from our EWAS yielded the best performing model (Supplementary 456 

Table 4, Supplementary Figure 5). This final list of features was then trained and tested using a LOCO 457 

framework, as described above. 458 

 459 

While this involves substantial overfitting in the training data, the test sets (other than GSE40279) 460 

remained completely independent prior to the prediction analyses.  461 

 462 

EWAS of all-cause mortality  463 

 464 

An EWAS was conducted to identify CpG sites (from a total of 752,722 loci) that were associated with 465 

time to all-cause mortality in Generation Scotland. Cox Proportional Hazards (Cox PH) regression 466 

models were fit for each CpG site as predictor of interest using the coxph function from the survival R 467 

package (version 3.3.1), with time-to-death or censoring as the survival outcome. Fixed effect 468 

covariates included those used in our cAge EWAS (age at baseline, sex, set/batch, smoking status, 469 

smoking pack years, WBC estimates, and top 20 methylation PCs). Epigenome-wide significance was 470 

set at p-value < 3.6 x 10-8.    471 

 472 

To assess whether relatedness in the cohort influenced the results, a Cox PH model with a kinship 473 

matrix was fit for each significantly associated CpG, using the coxme R package (version 2.2.16). All 474 

associations were replicated at p < 3.6 x 10-8 (Supplementary Table 8). 475 

 476 

Prediction of survival (biological age) 477 
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 478 

Training in Generation Scotland 479 

 480 

To train a bAge predictor, component scores for GrimAge were estimated for all Generation Scotland 481 

samples via Horvath9s online calculator17 (http://dnamage.genetics.ucla.edu/new). These included 482 

DNAm estimates of smoking and seven proteins – DNAm ADM, DNAm B2M, DNAm cystatin C, DNAm 483 

GDF15, DNAm leptin, DNAm PAI1, and DNAm TIMP1. Each variable was then standardised to have a 484 

mean of zero and variance of one. We also considered DNAm EpiScores for 109 proteins as described 485 

by Gadd et al14. The 109 EpiScores were projected into Generation Scotland via the MethylDetectR90 486 

Shiny App (https://shiny.igmm.ed.ac.uk/MethylDetectR/) before being standardised to have a mean of 487 

zero and variance of one. 488 

 489 

This resulted in 116 protein EpiScores, a smoking EpiScore, plus chronological age and sex as features 490 

for an elastic net Cox PH model (R package glmnet version 4.1.4). 20-fold CV was performed (with 491 

approximately 1,000 individuals per fold), with individuals from the same batch/set included in the same 492 

fold, and with Harrell9s C index used to evaluate the optimal λ value.  493 

 494 

Testing in LBC, FHS, and WHI 495 

 496 

The association between bAgeAccel (the residual of bAge regressed on chronological age to obtain 497 

measure of accelerated epigenetic ageing) and mortality was assessed in six datasets from four 498 

external studies: LBC1921 and LBC1936, FHS, and the WHI studies for White, Black, and Hispanic 499 

ancestries (Table 2). After generating the bAge predictors in the external datasets, Cox proportional 500 

hazards models, adjusting for age and sex, were used to compare associations with all-cause mortality 501 

for GrimAgeAccel and bAgeAccel. We examined Schoenfeld residuals in the LBC models to check the 502 

proportional hazards assumption at both global and variable-specific levels using the cox.zph function 503 

from the R survival package (version 3.3.1). We restricted the TTE period by each year of possible 504 

follow-up, from 5 to 21 years, and found minimal differences in the bAgeAccel-survival HRs between 505 

follow-up periods that did not violate the assumption and those that did (Supplementary Table 12). 506 

 507 
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Enrichment analyses 508 

 509 

A gene set enrichment analysis was performed using the Functional Mapping and Annotation (FUMA) 510 

GENE2FUNC tool91, which employs a hypergeometric test. Background genes employed included all 511 

unique genes tagged by CpGs in the EPIC array. FDR p-value threshold was set at 0.05, and the 512 

minimum number of overlapping genes within gene sets was set to 2.  513 
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Number: 20-ES-0021), providing generic ethical approval for a wide range of uses within medical 

research.  

 

Ethical approval for the LBC1921 and LBC1936 studies was obtained from the Multi-Centre Research 

Ethics Committee for Scotland (MREC/01/0/56) and the Lothian Research Ethics committee 

(LREC/1998/4/183; LREC/2003/2/29). In both studies, all participants provided written informed 

consent. These studies were performed in accordance with the Helsinki declaration. 

 

Availability of data and material 

 

According to the terms of consent for Generation Scotland participants, access to data must be 

reviewed by the Generation Scotland Access Committee. Applications should be made to 

access@generationscotland.org.  

 

Lothian Birth Cohort data are available on request from the Lothian Birth Cohort Study, University of 

Edinburgh (https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration). Lothian Birth Cohort 

data are not publicly available due to them containing information that could compromise participant 

consent and confidentiality.  

 

All custom R (version 4.0.3), Python (version 3.9.7), and bash code is available with open access at 

the following GitHub repository: https://github.com/elenabernabeu/cage_bage 

 

EWAS summary statistics will be submitted to the EWAS catalog upon acceptance. They are currently 

available for open access on Edinburgh DataShare: https://datashare.ed.ac.uk/handle/10283/4496 
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cAge predictions can be obtained using MethylDetectR (https://shiny.igmm.ed.ac.uk/MethylDetectR/) 

or via a standalone script:  

https://github.com/elenabernabeu/cage_bage/tree/main/cage_predictor 

 

As the CpG weights for the GrimAge components are not publicly available, bAge predictions first 

require users to generate GrimAge estimates from the following online calculator 

(http://dnamage.genetics.ucla.edu/new). bAge can then be estimated via the following standalone 

script: https://github.com/elenabernabeu/cage_bage/tree/main/bage_predictor 

 

Visualization of CpG-age relationships can be viewed using MethylBrowsR: 

https://shiny.igmm.ed.ac.uk/MethylBrowsR/ 
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Table 1. Age profile and test set prediction accuracy of cohorts used in cAge predictor training 

and testing. External cohort information taken from Zhang et al5. r column states Pearson correlation, 

RMSE the root mean squared error, and MAE the median absolute error. 

 

    
 

 
Prediction Accuracy 

Cohort  N Mean Age (SD) Age Range NFemales (%) Tissue r RMSE MAE 

GS 18,413 47.5 (14.9) [17.1, 98.5] 10,833 (58.8%) Blood - - - 

LBC192177,78 692 82.3 (4.3) [77.8,90.6] 401 (57.9%) Blood 0.659 4.050 2.466 

LBC1936 2,795 73.6 (3.7) [67.7,80.9] 1,356 (48.5%) Blood 0.685 3.311 2.099 

GSE7277579 335 70.2 (10.3) [36.5, 90.5] 138 (41.2%) Blood 0.949 3.275 1.843 

GSE7887479 259 68.8(9.7) [36.0, 88.0] 113 (43.6%) Saliva 0.875 6.826 4.333 

GSE7277379 310 65.6 (13.9) [35.1, 91.9] 150 (48.4%) Blood 0.945 4.611 2.068 

GSE7277779 46 14.7 (10.4) [2.2, 35.0] 31 (67.4%) Blood 0.942 4.211 2.505 

GSE41169a,80 95 31.6 (10.3) [18.0, 65.0] 28 (29.5%) Blood 0.975 2.869 1.947 

GSE402794 656 64.0 (14.7) [19.0, 101.0] 338 (51.5%) Blood 0.969 3.697 2.074 

GSE42861a,81 689 51.9 (11.8) [18.0, 70.0] 492 (71.4%) Blood 0.972 4.498 3.563 

GSE53740a,82 383 67.8(9.6) [34.0, 93.0] 155 (40.5%) Blood 0.921 4.443 2.797 

 

a Some cohorts contain case/control data. GSE41169: Schizophrenia 62, control 33; GSE42861: Rheumatoid 

arthritis 354, control 335; GSE53740: Alzheimer9s disease 15, corticobasal degeneration 1, frontotemporal 
dementia (FTD) 121, FTD/MND 7, progressive supranuclear palsy 43, control 193, unknown 4. 
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Table 2. Cox Proportional Hazards output for GrimAgeAccel and bAgeAccel in the test datasets. 

Hazard ratios are presented per standard deviation of the GrimAgeAccel and bAgeAccel variables. 

Further details in Supplementary Table 11. *The FHS cohort used here was the same as the test set 

from the original GrimAge paper. 

Cohort N  N deaths 

GrimAgeAccel 

Hazard Ratio (95% CI) 

bAgeAccel 

Hazard Ratio (95% CI) 

LBC1936 895 367 1.74 (1.57, 1.94) 1.73 (1.56, 1.91) 

LBC1921 421 421 1.33 (1.20, 1.47) 1.44 (1.29, 1.59) 

FHS* 711 100 1.72 (1.35, 2.19) 1.77 (1.40, 2.25) 

WHI B23 White 998 418 1.44 (1.31, 1.58) 1.45 (1.32, 1.60) 

WHI B23 Black 676 229 1.35 (1.19, 1.53) 1.42 (1.24, 1.62) 

WHI B23 Hispanic 433 118 1.41 (1.18, 1.68) 1.44 (1.21, 1.72) 
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Figure 1. Study overview. Using the Generation Scotland cohort as our main data source, we explored 

the relationship between the epigenome and age/survival via EWAS, which also informed on genes of 

interest and potentially enriched pathways. We further characterised epigenome-wide CpG ~ age 

trajectories, which can be visualized in a new Shiny app, MethylBrowsR 

(https://shiny.igmm.ed.ac.uk/MethylBrowsR/). Finally, we refined epigenetic prediction of both cAge and 

bAge. Calculation of cAge can be performed either using a standalone script 

(https://github.com/elenabernabeu/cage_bage/tree/main/cage_predictor) or by uploading DNAm data 

to our MethylDetectR shiny app (https://shiny.igmm.ed.ac.uk/MethylDetectR/). As the weights for 

GrimAge and its component parts are not publicly available, bAge can only be calculated by using our 

standalone script (https://github.com/elenabernabeu/cage_bage/tree/main/bage_predictor), after 

obtaining GrimAge estimates from an external online calculator 

(http://dnamage.genetics.ucla.edu/new).   
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Figure 2. Flowchart for the creation of the cAge predictor. First, DNAm data originating from 

Generation Scotland and 10 external datasets was pre-processed. Next, CpGs were pre-selected 

based on the Generation Scotland EWAS for genome-wide significant linear and quadratic CpG-age 

associations. Elastic net models were then trained and tested on the remaining features using a LOCO 

framework with 25-fold cross validation, with training on both age and log(age) as outcomes.   

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.08.507115doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.08.507115
http://creativecommons.org/licenses/by/4.0/


 31 

Figure 3. cAge predictor performance on 10 external testing datasets, (a) across all datasets 

considered, and (b) per cohort. Performance metrics shown include Pearson correlation (r), root mean 

squared error (RMSE), and median absolute error (MAE). Metrics also included in Table 1.  
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Figure 4. Flowchart for the creation of the bAge predictor. First, DNAm data originating from 

Generation Scotland and six external datasets was pre-processed. GrimAge components and 109 

protein EpiScores were generated within each cohort. A Cox proportional hazards elastic net regression 

model of all-cause mortality (with 20-fold cross validation) was trained in Generation Scotland with the 

GrimAge components and EpiScores as possible features. The model that maximised Harrell9s C index 

was tested on the six external datasets.  
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Figure 5. Forest plots of bAge/GrimAge predictors, applied to all-cause mortality in LBC1921, 

LBC1936, FHS, and WHI. Predictors regressed on age. Hazard ratios are presented per standard 

deviation of the GrimAgeAccel and bAgeAccel variables, along with 95% confidence intervals. Cox 

models are adjusted for age at DNAm sampling and sex. 
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