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Abstract

Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is
typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause
mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here,
we aim to refine predictors and improve understanding of the epigenomic architecture of cAge and
bAge. First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of
chronological age and all-cause mortality. Next, to improve cAge prediction, we use methylation data
from 24,673 participants from the Generation Scotland (GS) study, the Lothian Birth Cohorts (LBC) of
1921 and 1936 and 8 publicly available datasets. Through the inclusion of linear and non-linear age-
CpG associations from the EWAS, feature pre-selection/dimensionality reduction in advance of elastic
net regression, and a leave-one-cohort-out (LOCO) cross validation framework, we arrive at an
improved cAge predictor (median absolute error = 2.3 years across 10 cohorts). In addition, we train a
predictor of bAge on 1,214 all-cause mortality events in GS, based on epigenetic surrogates for 109
plasma proteins and the 8 component parts of GrimAge, the current best epigenetic predictor of all-
cause mortality. We test this predictor in four external cohorts (LBC1921, LBC1936, the Framingham
Heart Study and the Women'’s Health Initiative study) where it outperforms GrimAge in its association
to survival (HRarimage = 1.47 [1.40, 1.54] with p = 1.08 x 102, and HRoage = 1.52 [1.44, 1.59] with p =
2.20 x 10°%%). Finally, we introduce MethylBrowsR, an online tool to visualize epigenome-wide CpG-age

associations.

Introduction

The development and application of epigenetic predictors for healthcare research has grown
dramatically over the last decade’. These predictors can aid disease risk stratification, and are based
on associations between CpG DNA methylation (DNAm) and age, health, and lifestyle outcomes.
DNAm is dynamic, tissue-specific and is influenced by both genetic and environmental factors. DNAm
can precisely track ageing through predictors termed "epigenetic clocks"?®. DNAm scores have also
been found to capture other components of health, such as smoking status®'?, alcohol consumption''2,

obesity'"'3, and protein levels'.
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“First generation” epigenetic ageing clocks, including those by Horvath® and Hannum et al*, were trained
on chronological age®* (cAge), with near-perfect clocks expected to arise as sample sizes grow®.
However, cAge clocks hold limited capability for tracking and quantifying age-related health status, also
termed biological age (bAge)®8. To address this, “second generation” clocks have been trained on other
age-related measures, including a phenotypic biomarker of morbidity (PhenoAge's), rate of ageing
(DunedinPoAm'®), and time to all-cause mortality (GrimAge'”). Regressing an epigenetic clock predictor
(whether trained on cAge or bAge) on chronological age within a cohort gives rise to an “age

acceleration” residual with positive values corresponding to faster biological ageing.

Penalised regression approaches such as elastic net'® are used to derive epigenetic predictors. Such
epigenetic clocks typically capture a weighted linear combination of CpGs that optimally predict an
outcome from a statistical perspective i.e. no preference is given to the location or possible biological
role of the input features. The majority consider genome-wide CpG sites as potential predictive features.
However, others have used a two-stage approach that first creates DNAm surrogates (or epigenetic
scores - EpiScores) for biomarkers (also typically via elastic net) prior to training a second elastic net
model on the phenotypic outcome or time-to-event 17, GrimAge is currently the gold-standard bAge
epigenetic clock. It is derived from age, sex, and EpiScores of smoking pack years and 7 plasma
proteins that have been associated with mortality or morbidity: adrenomedullin (ADM), beta-2-
microglobulin (B2M), cystatin C, growth differentiation factor 15 (GDF15), leptin, plasminogen activation
inhibitor 1 (PAI1), and tissue inhibitor metalloproteinase (TIMP1). Recently, a wider set of 109
EpiScores for the circulating proteome were generated by Gadd et al'*. These have not yet been

considered as potential features for the prediction of bAge.

Here, we improve the prediction of both cAge and bAge (Figure 1). We first present large-scale
epigenome-wide association studies (EWAS) of age (for both linear and quadratic CpG effects) and all-
cause mortality. A predictor of cAge is then generated using DNAm data from 13 cohorts, including
samples from >18,000 participants of the Generation Scotland study'®. We use a leave-one-cohort-out
(LOCO) prediction framework, including dimensionality reduction prior to feature selection for linear and

non-linear DNAm-age relationships (ascertained through the EWAS), and test it on ten external
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datasets. Through data linkage to death records, we develop a bAge predictor of all-cause mortality,
which we compare against the current gold-standard predictor, GrimAge, in four external cohorts. These
analyses highlight the potential for large DNAm resources to generate increasingly accurate predictors
of (i) cAge, with potential forensic utility, and (ii) bAge, with potential implications for risk prediction and

clinical trials.

Results

Data overview

Generation Scotland is a Scottish family-based study with over 24,000 participants recruited between
2006 and 2011'°. Blood-based DNAm levels at 752,722 CpG sites were quantified using the lllumina
MethylationEPIC array for 18,413 individuals (see Methods). Participants were aged between 18 and
99 years at recruitment, with a mean age of 47.5 years (SD 14.9, Table 1). A total of 1,214 participant
deaths have been recorded as of March 2022, via linkage to the National Health Service Central

Register, provided by the National Records of Scotland.

In order to train and test a cAge predictor, data from an additional 6,260 individuals from ten external
cohorts were considered. These included the Lothian Birth Cohorts (LBC) of 1921 and 1936, and eight
publicly available Gene Expression Omnibus (GEO) datasets (see Methods, Table 1). Given that the
external datasets assessed DNAm (blood-based apart from GSE78874, which considered saliva) using
the lllumina HumanMethylation450K array, the Generation Scotland data were subset to 374,791 CpGs

that were present across all studies.

To test the bAge predictor, data from an additional 4,134 individuals (with a total of 1,653 deaths) from
six external cohorts were considered. These included both the LBC1921 and LBC1936 cohorts, as well
as the Framingham Heart Study (FHS) and the Women'’s Health Initiative (WHI) Broad Agency Award

23 (B23) study for Black, White, and Hispanic individuals (see Methods, Table 2).

Epigenome-wide association studies of cAge
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91
92 EWAS of cAge were performed in the Generation Scotland cohort, resulting in 99,832 linear and
93 137,195 quadratic CpG associations that were epigenome-wide significant (p < 3.6 x 109,
94  Supplementary Figure 1, Supplementary Table 1 and 2, see Methods). These mapped to 17,339
95 and 19,432 unique genes, respectively. There were 48,312 CpGs with both a significant linear and
96  quadratic association.
97
98  The most significant linear associations included cg16867657 and cg24724428 (ELOVL2), cg08097417
99  (KLF14), and cg12841266 (LHFPL4), all p < 1 x 10°%, (Supplementary Table 1, Supplementary
100  Figure 2). Around half of the CpGs with a significant linear association (51,213/99,832, 51.3%) showed
101 a positive association with age. The most significant quadratic associations were cg11084334 (LHFPLA4,
102  p=6.49 x 1026), cg15996534 (LOC134466, p = 8.7 x 10-'%), and cg23527621 (ECE2 and CAMK2N2,
103  p=9.95x10"®, Supplementary Table 2, Supplementary Figure 3).
104
105  The univariate associations between all 752,722 CpGs and cAge in a subset of 4,450 unrelated
106  participants (DNAm arrays processed together in a single experiment) from Generation Scotland can
107  be visualised via an online ShinyApp, MethylBrowsR (https://shiny.igmm.ed.ac.uk/MethyIBrowsRY/).
108

109 Prediction of cAge

110

111 Epigenetic clocks for cAge were created using elastic net penalised regression. Input features consisted
112  of CpG and CpG? DNAm values for sites that were epigenome-wide significant in their corresponding
113 EWAS analysis (see Methods, Figure 2). After iterating through combinations of CpG and CpG?terms
114  (ranked by EWAS p-value), the best-performing model considered the top 10,000 CpG and top 300
115  CpG?2 sites from the EWAS as potentially informative features (see Methods, Supplementary Table 3
116  and 4, Supplementary Figure 4 and 5). A single external cohort was used for this screening step
117 (GSE40279, N = 656) and model fit was based on the root mean squared error (RMSE) and median
118  absolute error (MAE) of prediction.

119

120
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121 A LOCO framework was used to train the cAge predictor, whereby for each of the 10 external cohorts,
122  amodel was trained on data from Generation Scotland and the remaining nine external cohorts. Testing
123  was then performed on the excluded cohort (total Neesting = 6,260). A final model was also trained on all
124 11 cohorts (Ntraining = 24,673).

125

126 Both age and log(age) were considered as outcomes, with the latter showing better prediction results
127  in younger individuals, reflecting the importance of considering non-linear DNAm-age associations in
128  cAge prediction. As a result, if the initial cAge prediction was <20 years, that individual's predicted age
129  was re-estimated using weights from the log(age) model.

130

131 The combined LOCO prediction results showed a strong correlation with cAge (r = 0.96, Figure 3, Table
132 1) and a MAE of 2.3 years. Furthermore, 24% of individuals were classified to within one year of their
133  chronological age. The cohort with the largest prediction errors was GSE78874, in which DNAm was
134  measured in saliva instead of blood.

135

136  The elastic net model (trained in all 11 cohorts) with the lowest mean cross-validated error identified
137 2,330 features (2,274 linear and 56 quadratic) as most predictive of age, and 1,986 features (1,931
138 linear and 55 quadratic) as most predictive of log(age). The weights for the age model are presented in
139  Supplementary Table 5, and for the log(age) model in Supplementary Table 6.

140

141 Epigenome-wide association study of all-cause mortality

142

143  To identify individual CpG loci associated with survival, an EWAS on time to all-cause mortality was
144 performed in Generation Scotland (Ngeatns = 1,214, see Methods). This analysis identified 1,182
145  epigenome-wide significant associations (p < 3.6 x 108, Supplementary Figure 6), which mapped to
146 704 unique genes. Around a third (418/1,182 = 35.36%) of these CpGs were associated with a
147  decreased survival time. The lead findings included CpGs mapping to smoking-related loci'®2°-24 such
148  as cg05575921 (AHRR, p = 3.01 x 10°7), cg03636183 (F2RL3, p = 6.78 x 10**), cg19859270 (GPR15,
149  p=1.09 x 10%3), cg17739917 (RARA, p = 1.92 x 102%), cg14391737 (PRSS23, p = 5.59 x 10%),

150 909935388 (GFI1, p = 3.30 x 103"), and cg25845814 (ELMSAN1/MIR4505, p = 1.31 x 10°%)
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151 (Supplementary Table 7). Of the non-smoking-related CpGs amongst the top 50 associations, seven
152  mapped to genes whose methylation has been linked to various forms of cancer, including ZMIZ 15,
153  SOCS3%-28, ZMYND8? and CHD5*%-%2, Another probe mapped to FKBP5, a gene whose methylation
154 is involved in the regulation of the stress response, and which has been linked to increased
155  cardiometabolic risk through accelerated ageing®:. Finally, one top probe mapped to SKI, whose
156 methylation has been linked to age-related macular degeneration®4. All associations remained after
157  adjusting for relatedness in the Generation Scotland cohort (see Methods, Supplementary Table 8).
158

159  There was a high correlation of the Z-score effect sizes across the 200 sites that overlapped between
160  our study and the 257 epigenome-wide significant findings from a recent large (N = 12,300, Ngeaths =
161 2,561) meta-analysis of all-cause mortality (r = 0.58, Supplementary Figure 7). All 200 sites were
162  significant at a nominal p < 0.05 threshold and 25 were epigenome-wide significant at p < 3.6 x 108,
163

164 A gene-set enrichment analysis considering genes to which epigenome-wide significant CpGs mapped
165  toreturned 198 significantly enriched (FDR p < 0.05) GO biological processes (see Methods, full FUMA
166  gene-set enrichment results in Supplementary Table 9). The most significantly enriched GO terms
167  included processes relating to neurogenesis/neuron differentiation and development, positive immune
168  system regulation and development, cell motility and organization, and regulation of protein
169 modification/phosphorylation. Other significantly enriched sets included sites bound by FOXP3, ETS2,
170 and the PML-RARA fusion protein.

171

172 Prediction of bAge

173

174  Amongst the second generation epigenetic clocks, GrimAge is the current best predictor of lifespan
175 (time to death)'. In an effort to improve the prediction of bAge, an elastic net Cox model was trained
176  on all-cause mortality in Generation Scotland (Nita = 18,365, Ngeatns = 1,214, see Methods). The
177  GrimAge components (age, sex, and EpiScores for smoking and 7 plasma proteins) and Gadd et al's
178 109 protein EpiScores'* were considered as potentially-informative features (Figure 4).

179
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180  The elastic net Cox model identified a weighted sum of 35 features as most predictive of all-cause
181 mortality in Generation Scotland. These included age and the GrimAge smoking EpiScore, along with
182  5/7 protein EpiScores from GrimAge (B2M, cystatin C, GDF15, PAI1, and TIMP1), and 28/109 protein
183  EpiScores from Gadd et al™*. Amongst these were EpiScores for C-reactive protein (CRP), the growth
184  hormone receptor (GHR) protein, and numerous cytokines (CCL11, CCL23, CCL18, CXCL10, CXCLS9,
185  CXCL11, and HGF). The weights for the linear predictor are presented in Supplementary Table 10.
186

187  The bAge predictor was regressed on age to obtain a measure of epigenetic age acceleration
188  (bAgeAccel). The epigenetic age acceleration residuals showed significant associations with all-cause
189  mortality across four test cohorts of differing ancestries (Table 2, Supplementary Table 11, Figure 5).
190  The bAge measure showed slightly stronger associations than GrimAge (also regressed on age, termed
191 GrimAgeAccel) in fixed effects meta-analyses (Hazard Ratio and 95% Confidence Interval per SD
192  difference of GrimAgeAccel and bAgeAccel: HR = 1.47 [1.40, 1.54] with p=1.08 x 102, and HR = 1.52
193  [1.44, 1.59] with p = 2.20 x 10, respectively.

194

195  Discussion

196

197  Accurate predictors of cAge and bAge have major implications for biomedical science and healthcare
198  through risk prediction and preventative medicine. Here, we present improved DNAm-based predictors
199  of age and lifespan.

200

201 Epigenetic cAge prediction is expected to reach near-perfect estimates as sample sizes grow®. Making
202 use of Generation Scotland, a very large single-cohort DNAm resource, we derived a cAge predictor
203  with a MAE of 2.3 years, tested in over 6,000 external samples. Our predictor has potential forensic
204  applications, although ethical caveats exist®. In addition, despite the high correlations and low RMSE
205 and MAE estimates at the population level, there are still several individuals with inaccurate predictions
206  (e.g. > 20 years between predicted and actual age, Figure 3), though this could also reflect sample
207 mix-ups or data entry errors.

208
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209  cAge prediction was improved when accounting for non-linear relationships between DNAm and age.
210  Whilst generally understudied, non-linear patterns have been found at numerous CpG sites, where
211 DNAm is found to increase rapidly in early ages and stabilize in adulthood, potentially reflecting
212  developmental processes®. Similarly, stable DNAm levels followed by rapid methylation/demethylation
213 have also been described in later life®8, which could offer insight into aging-specific processes. Given
214 the number of samples from individuals aged 20 or under in the training of our predictor (N=574/24,674=
215  2.4%), we may not have captured the full extent of DNAm-based ageing patterns in the younger
216  population. Future studies could also consider sex-specific models as diverging non-linear patterns
217  between males and females have been shown in previous studies® . Interactions between CpGs along
218  with higher order polynomial terms and spline-based models might better capture some of these non-
219 linear changes.

220

221 The development of the cAge predictor highlighted the advantages of feature pre-selection ahead of
222  penalised elastic net regression. Compared to a model with all possible features in the training set (r =
223  0.93, RMSE = 5.25, MAE = 3.43, pre-selection greatly improved performance (r = 0.96, RMSE = 3.92,
224  MAE = 2.32). Several DNAm studies of age and age-related phenotypes have used pre-selection
225  methods (e.g., filtering by magnitude of correlation or strength of association) instead of, or in addition
226  to elastic net®®*5, Whereas the feature pre-selection here required arbitrary decisions on thresholds,
227  other studies have found that feature reduction via PCA optimises DNAm predictors*647.

228

229 Feature pre-selection may have aided cAge predictions by screening out CpGs with low intra-sample
230  variability due to technical variance*®4°. One previous study*” observed that CpGs with stronger cAge
231 associations were more reliable. A limitation of our approach to feature pre-selection was that it was
232  Dbiased towards the Generation Scotland cohort in which the age EWAS were conducted. We also note
233  that pre-selection introduces statistical challenges associated to post-selection inference®°.
234 Furthermore, our penalised regression modelling strategy for cAge only incorporated additive effects.
235  Non-additive tree ensemble methods and other machine learning frameworks may improve predictions
236  further®'. Finally, as our predictor has been mainly trained and tested on blood data, it may not
237  generalise to other tissues.

238
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239  Whilst a single DNAm predictor of cAge is of interest, the selected CpG features are unlikely to identify
240  all epigenome-wide patterns related to ageing. Our EWAS of chronological age identified 99,832 linear
241 and 137,195 quadratic CpG-age associations. The sample size was more than double that of the largest
242  study reported on the EWAS Catalog® - our previous Generation Scotland analysis®. In addition to
243  refining our previously described DNAm-age linear associations, we have extended previous small-
244  scale approaches to highlight non-linear patterns®¢3’. As shown here, these findings can aid the
245  predictive performance of epigenetic clocks, and may additionally improve our understanding of
246  epigenetic changes during development and ageing-related decline in later life.

247

248  Recent work has shifted focus from the prediction of cAge to bAge, with more expansive clinical
249 applications. Our new bAge predictor of all-cause mortality had a greater effect size and was more
250 statistically significant than GrimAge in the external test set meta-analysis. GrimAge is already being
251  used as an end-point for clinical trials®* and studies of rejuvenation%®%. The bAge predictor included
252 EpiScores for CRP and numerous cytokines, which reflect inflammation and predict overall and
253  cardiovascular mortality®’-%°. Chronic inflammation can lead to several diseases, including
254  cardiovascular disease and exacerbates the ageing process®8'. In addition, the growth hormone
255  receptor (GHR) protein EpiScore was selected; both the receptor and its corresponding protein have
256  been linked to longevity in mouse models®2-5¢, 25/28 of the selected EpiScores from Gadd et al'# have
257  been associated to multiple diseases, including diabetes, chronic obstructive pulmonary disease,
258 ischaemic heart disease, lung cancer, Alzheimer’s, rheumatoid arthritis, stroke, and depression
259  (Supplementary Table 10). As sample sizes for cause-specific mortality outcomes increase, a more
260  granular suite of lifespan predictors can be developed.

261

262  Whereas the cAge predictions translated into external cohorts with minimal calibration issues,
263 individual-level bAge predictions were highly variable. Future work for these (and all) DNAm array-
264  based predictors should consider the limitations of signatures that lack absolute thresholds/cut-points
265  for risk prediction in a new individual selected at random from the population.

266

267 A total of 1,182 epigenome-wide significant associations were identified in our EWAS of all-cause

268  mortality. The most significant probes mapped to genes previously associated with smoking, such as

10
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269  AHRR, F2RL3, and GPR15%. Hypomethylation at probes nearby these genes has been previously
270  linked to increased mortality risk, be that all-cause or disease specific (e.g., cancer or, cardiovascular-
271 related mortality)?%68-70, Other, non-smoking related, lead probes mapped to genes whose methylation
272 has been linked to various forms of cancer, increased cardiometabolic risk, and age-related macular
273  degeneration®-34. There was moderate agreement (correlation of 0.58 between Z scores) between our
274  findings and the significant results from a previous EWAS meta-analysis of survival. However, different
275  covariates and ancestries were considered across these studies. An enrichment analysis highlighted
276  links to neurodevelopment and immune regulation, as well as to sites bound by FOXP3, ETS2, and the
277  PML-RARA fusion protein. FOXP3 is a transcriptional regulator involved in the development and
278  inhibitory function of regulatory T-cells”’. ETS2 and PML-RARA are a protooncogene and a protein
279  resulting from a chromosomal translocation that resulting in an oncofusion protein, respectively, having
280  both been linked to acute myeloid leukemia’?73. This finding may be influenced by the large number of
281 cancer-related deaths in Generation Scotland (N = 509). Further work is needed to disentangle the role
282  of methylation/demethylation at these sites with survival. Future EWAS on specific mortality causes will

283  highlight mechanisms underlying age- and disease-related decline.

284

285  The integration of multiple large datasets and new approaches to feature selection has facilitated
286  improvements to the blood-based epigenetic prediction of biological and chronological age. The
287  inclusion of multiple protein EpiScore features and consideration of quadratic DNAm effects may also
288  be relevant for other EWAS and prediction studies. Together, this can improve our biological
289 understanding of complex traits and the prediction of adverse health outcomes.

290

291  Methods

292

293 Generation Scotland

294

295  Cohort description

296

297  Generation Scotland: Scottish Family Health Study is a population-based cohort study that includes

298  ~7,000 families from across Scotland'. Study recruitment took place between 2006 and 2011 when

11
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299  participants were aged between 17 and 99 years (Table 1). In addition to completing health and lifestyle
300 questionnaires, participants donated blood or saliva samples for biomarker and omics analyses. The
301 majority of participants also provided consent for linkage to their electronic medical records, yielding
302  retrospective and prospective information on primary and secondary disease outcomes as well as
303 prescription data.

304

305  Data linkage to death records

306

307 Information on mortality and cause of death is routinely updated via linkage to the National Health
308  Service Central Register, provided by the National Records of Scotland. The data used here were
309  correct as of March 2022, with a total of 1,214 deaths and 18,365/18,413 samples with non-missing
310 and non-negative time-to-death/event (TTE) values. Average TTE amongst deaths was 7.79 (SD 3.54)
311 years. Leading causes of death included malignant neoplasms (509), ischaemic heart disease (134),
312  cerebrovascular disease (69), other forms of heart disease (44), chronic lower respiratory disease (42),
3183  mental disorders including dementia (36), and other degenerative diseases of the nervous system (35).
314

315  DNA methylation in Generation Scotland

316

317  DNA methylation in blood was quantified for 18,413 Generation Scotland participants across three
318  separate sets (Nsett = 5,087, Nsetz = 4,450, Nsetz = 8,876) using the lllumina MethylationEPIC (850K)
319  array. Individuals in Set 1 included a mixture of related and unrelated individuals. Set 2 comprised

320 individuals unrelated to each other and also to those in Set 1. Set 3 contained a mix of related individuals

321 — both to each other and to those in Sets 1 and 2 — and included all remaining samples available for
322  analysis.
323

324  Quality control details have been reported previously®374. Briefly, probes were removed based on (i)
325  outliers from visual inspection of the log median intensity of the methylated versus unmethylated signal
326 per array, (i) a bead count < 3 in more than 5% of samples, (iii) 25% of samples having a detection p-
327  value >0.05, (iv) if they pertained to the sex chromosomes, (v) if they overlapped with SNPs, and/or

328  (vi) if present in potential cross-hybridizing locations’>. Samples were removed (i) if there was a
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329  mismatch between their predicted sex and recorded sex, (ii) if 21% of CpGs had a detection p-value
330 >0.05, (iii) if sample was not blood-based, and/or (iv) if participant responded “yes” to all self-reported
331 diseases in questionnaires. Dasen normalisation’® was carried out per set (for cAge training) or across
332  allindividuals (for EWAS). A total of 752,722 CpGs remained after QC. To maximise the generalisability
333 of the predictors across different versions of lllumina arrays, we subset the content to the intersection
334  of sites on the EPIC and 450k arrays, as well as to those present across all cohorts considered in the
335  study (Table 1), totalling 374,791 CpGs.

336

337 External datasets

338

339  To test the cAge predictor, we considered DNA methylation for a total of 6,260 external samples, from
340 eight publicly available datasets from the Gene Expression Omnibus (GEO) resource and repeated
341 measures (up to four time points) from two cohorts of blood-based DNAm, the Lothian Birth Cohorts
342  (LBC) of 1936 and 1921 (Table 1)*77-82. The baseline samples from the LBC cohorts, along with the
343  Framingham Heart Study (FHS) and the Women’s Health Initiative (WHI) study, were also used for the
344  testing of our bAge predictor (Table 2).

345

346  Lothian Birth Cohorts

347

348 LBC1921 and LBC1936 are longitudinal studies of ageing on individuals born in 1921 and 1936,
349  respectively”’. Study participants completed the Scottish Mental Surveys of 1932 and 1947 at
350  approximately age 11 years old and were living in the Lothian area of Scotland at the time of recruitment
351 in later life. Blood samples considered here were collected at around age 79 for LBC1921, and at around
352  age 70 for LBC1936. DNA methylation was quantified using the lllumina HumanMethylation450 array,
353  for a total of 692 (up to 3 repeated measurements from 469 individuals) and 2,795 (up to 4 repeated
354  measurements from 1,043 individuals) samples from LBC1921 and LBC1936 respectively. Quality
355  control details have been reported previously®#. Briefly, probes were removed (i) if they presented a
356 low (< 95%) detection rate with p-value < 0.01, and/or (ii) if they presented inadequate hybridization,
357  bisulfite conversion, nucleotide extension, or staining signal, as assessed by manual inspection.

358  Samples were removed (i) if they presented a low call rate (<450,000 probes detected at p-value <
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359  0.01) and/or (ii) if predicted sex did not match reported sex. Finally, as stated previously, probes were
360 filtered down to the 374,791 common across all datasets (Table 1). Missing values were mean imputed.
361

362 A total of 421 and 895 samples from LBC1921 and LBC1936 respectively, corresponding to the first
363  wave of each study (thus aged around 79 and 70 at time of sampling for each cohort respectively), were
364 used in our bAge analysis (Table 2). All-cause mortality was assessed via linkage to the National Health
365  Service Central Register, provided by the National Records of Scotland. The data used here are correct
366  as of January, 2022, with a total of 421 and 367 deaths in LBC1921 and LBC1936 respectively.

367

368 Gene Expression Omnibus (GEO) datasets

369

370 DNAm and age information for 2,773 individuals from a total of 8 datasets was downloaded from the
371 public domain (Gene Expression Omnibus, GEO). DNAm was quantified with Illumina’s
372 HumanMethylation450 chip. QC information can be found in each pertaining publication (Table 1), and
373  CpGs were filtered down to the 374,791 common across all datasets. Missing values were mean
374  imputed.

375

376  Framingham Heart Study (FHS)

377

378  The FHS cohort is a large-scale longitudinal study started in 1948, initially investigating the common
379  factors of characteristics that contribute to cardiovascular disease (CVD)®*. The study at first enrolled
380  participants living in the town of Framingham, Massachusetts, who were free of overt symptoms of
381 CVD, heart attack or stroke at enrolment. In 1971, the study established the FHS Offspring Cohort to
382 enrol a second generation of the original participants’ adult children and their spouses for conducting
383  similar examinations®. Participants from the FHS Offspring Cohort were eligible for our study if they
384  attended both the seventh and eighth examination cycles and consented to having their molecular data
385 used for study. We used data pertaining to a total of 711 individuals which had not been used in the
386  training of GrimAge, and for which DNAm data and death records were available. Peripheral blood

387  samples were obtained on the eight examination cycle, and DNAm data was measured using the
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388 lllumina Infinium HumanMethylation450 array, with QC details are described elsewhere'”. Deaths
389  recorded are accurate as of 1st January 2013, with a total of 100 recorded.

390

391 Women’s Health Initiative (WHI)

392

3983 The WHI study enrolled postmenopausal women aged 50-79 years into the clinical trials (CT) or
394  observational study (OS) cohorts between 1993 and 1998. We included 2,107 women from “Broad
395  Agency Award 23” (WHI BA23). WHI BA23 focuses on identifying miRNA and genomic biomarkers of
396  coronary heart disease (CHD), integrating the biomarkers into diagnostic and prognostic predictors of
397 CHD and other related phenotypes. This cohort is divided into three datasets, pertaining to three
398  different ancestries: White, Black, and Hispanic, with 998, 676, and 433 participants respectively. Blood-
399 derived DNAmM data was available for participants. DNAm data was measured using the Illumina
400 Infinium HumanMethylation450 array, QC details described elsewhere'”. Deaths recorded are accurate
401 as March 15t 2017, with a total of 418, 229, and 118 recorded for White, Black, and Hispanic ancestries
402 respectively.

403

404 EWAS of chronological age

405

406 We conducted an EWAS to identify CpG sites that had linear or quadratic associations with
407  chronological age, using Generation Scotland data (N = 18,413, CpGs = 752,722). Linear regression
408  analyses were carried out which included both linear and quadratic CpG M-values as predictor variables
409 and age as the dependent variable (Age ~ CpG and Age ~ CpG + CpG?, respectively). Fixed effect
410  covariates included estimated white blood cell (WBC) proportions (basophils, eosinophils, natural killer
411 cells, monocytes, CD4T, and CD8T cells) calculated in the minfi R package (version 1.36.0)% using the
412 Houseman method®”, sex, DNAm batch/set, smoking status (current, gave up in the last year, gave up
413 more than a year ago, never, or unknown), smoking pack years, and 20 methylation based principal
414  components (PCs) to correct for unmeasured confounders. Age was centered by its mean, and CpG
415  and CpG? M-values were scaled to mean zero and variance one. Epigenome-wide significance was set
416  at p-value < 3.6 x 108, as per Saffari et al®.

417
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418 Prediction of chronological age

419

420 Elastic net regression (with a = 0.5 as the L1, L2 mixing parameter) was used to derive a predictor of
421 chronological age from the 374,791 CpG sites common across all cohorts considered in cAge training
422 (description of cohorts in Table 1). The biglasso R package (version 1.5.1) was used?®, with 25-fold
423  cross validation (CV) to select the shrinkage parameter (A) that minimised the mean cross-validated
424  error. This resulted in randomly assigned folds of ~1,000 individuals. A sensitivity analysis was
425  performed, assigning individuals from the same methylation set and cohort to individual folds, which
426  returned highly similar results.

427

428  Leave-one-cohort-out (LOCO)

429

430 The cAge predictor was created and tested using a leave-one-cohort-out (LOCO) framework, where
431 the model was trained in 10 cohorts and tested on the excluded external cohort (Figure 2). The final
432  reported model was trained using all 11 sets described here. Pearson correlations (r) with reported age
433  were calculated along with the root mean square error (RMSE) and median absolute error (MAE).

434

435 Log(age)

436

437 In addition to training on chronological age, models were also trained on the natural logarithm of
438  chronological age, log(age). The age of our test samples was predicted using the model fit on
439  chronological age, and, if the predicted age returned was 20 years or younger, a new prediction was
440  obtained making use of the model fit on log(age). This approach parallels that in Horvath’s 2013 clock,
441 which log-transforms chronological age in under 20s prior to training®.

442

443 Feature pre-selection

444

445  Several studies have highlighted the benefits of feature pre-selection for elastic net*¢47. Here, we
446  performed preliminary analyses, including differently sized subsets of CpG sites as features in elastic

447  net. We considered sites that were epigenome-wide significant at p < 3.6 x 108 and then ranked CpGs
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448  in ascending order of p-value (most significant ranked first), before defining subsets of varying sizes
449  (from 1,000 to 300,000 CpGs). Our training cohort was Generation Scotland, whilst our test set was
450  GSE40279, one of the largest external datasets with the widest age range. Our analyses showed that
451 the 10,000 most significant loci (age - CpG associations) yielded the test set predictions with the highest
452  r and lowest RMSE (Supplementary Table 3, Supplementary Figure 4). In addition to these sites,
453  subsets of CpGs with a significant quadratic relationship to age were explored, with subset sizes varying
454  from 100 to 20,000. These features were included in training as CpG? beta values, and, when not
455  already present in the model, in their linear form as well. In addition to the top 10,000 age-associated
456  CpGs, the top 300 quadratic sites from our EWAS yielded the best performing model (Supplementary
457  Table 4, Supplementary Figure 5). This final list of features was then trained and tested using a LOCO
458  framework, as described above.

459

460  While this involves substantial overfitting in the training data, the test sets (other than GSE40279)
461 remained completely independent prior to the prediction analyses.

462

463 EWAS of all-cause mortality

464

465  An EWAS was conducted to identify CpG sites (from a total of 752,722 loci) that were associated with
466  time to all-cause mortality in Generation Scotland. Cox Proportional Hazards (Cox PH) regression
467  models were fit for each CpG site as predictor of interest using the coxph function from the survival R
468  package (version 3.3.1), with time-to-death or censoring as the survival outcome. Fixed effect
469  covariates included those used in our cAge EWAS (age at baseline, sex, set/batch, smoking status,
470  smoking pack years, WBC estimates, and top 20 methylation PCs). Epigenome-wide significance was
471  setat p-value < 3.6 x 108,

472

473  To assess whether relatedness in the cohort influenced the results, a Cox PH model with a kinship
474 matrix was fit for each significantly associated CpG, using the coxme R package (version 2.2.16). All
475  associations were replicated at p < 3.6 x 108 (Supplementary Table 8).

476

477 Prediction of survival (biological age)
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478

479 Training in Generation Scotland

480

481 To train a bAge predictor, component scores for GrimAge were estimated for all Generation Scotland
482 samples via Horvath’s online calculator'” (http://dnamage.genetics.ucla.edu/new). These included
483 DNAm estimates of smoking and seven proteins — DNAm ADM, DNAm B2M, DNAm cystatin C, DNAm
484  GDF15, DNAm leptin, DNAm PAI1, and DNAm TIMP1. Each variable was then standardised to have a
485  mean of zero and variance of one. We also considered DNAm EpiScores for 109 proteins as described
486 by Gadd et al'*. The 109 EpiScores were projected into Generation Scotland via the MethylDetectR®°
487  Shiny App (https://shiny.igmm.ed.ac.uk/MethylDetectR/) before being standardised to have a mean of
488  zero and variance of one.

489

490  This resulted in 116 protein EpiScores, a smoking EpiScore, plus chronological age and sex as features
491 for an elastic net Cox PH model (R package g/mnet version 4.1.4). 20-fold CV was performed (with
492  approximately 1,000 individuals per fold), with individuals from the same batch/set included in the same
493  fold, and with Harrell's C index used to evaluate the optimal A value.

494

495 Testing in LBC, FHS, and WHI

496

497  The association between bAgeAccel (the residual of bAge regressed on chronological age to obtain
498 measure of accelerated epigenetic ageing) and mortality was assessed in six datasets from four
499  external studies: LBC1921 and LBC1936, FHS, and the WHI studies for White, Black, and Hispanic
500 ancestries (Table 2). After generating the bAge predictors in the external datasets, Cox proportional
501 hazards models, adjusting for age and sex, were used to compare associations with all-cause mortality
502  for GrimAgeAccel and bAgeAccel. We examined Schoenfeld residuals in the LBC models to check the
503 proportional hazards assumption at both global and variable-specific levels using the cox.zph function
504  from the R survival package (version 3.3.1). We restricted the TTE period by each year of possible
505  follow-up, from 5 to 21 years, and found minimal differences in the bAgeAccel-survival HRs between
506  follow-up periods that did not violate the assumption and those that did (Supplementary Table 12).

507
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508 Enrichment analyses

509

510 A gene set enrichment analysis was performed using the Functional Mapping and Annotation (FUMA)
511 GENE2FUNC tool®!, which employs a hypergeometric test. Background genes employed included all
512  unique genes tagged by CpGs in the EPIC array. FDR p-value threshold was set at 0.05, and the

513 minimum number of overlapping genes within gene sets was set to 2.
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Number: 20-ES-0021), providing generic ethical approval for a wide range of uses within medical

research.

Ethical approval for the LBC1921 and LBC1936 studies was obtained from the Multi-Centre Research
Ethics Committee for Scotland (MREC/01/0/56) and the Lothian Research Ethics committee
(LREC/1998/4/183; LREC/2003/2/29). In both studies, all participants provided written informed

consent. These studies were performed in accordance with the Helsinki declaration.

Availability of data and material

According to the terms of consent for Generation Scotland participants, access to data must be
reviewed by the Generation Scotland Access Committee. Applications should be made to

access@generationscotland.org.

Lothian Birth Cohort data are available on request from the Lothian Birth Cohort Study, University of
Edinburgh (https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration). Lothian Birth Cohort
data are not publicly available due to them containing information that could compromise participant

consent and confidentiality.

All custom R (version 4.0.3), Python (version 3.9.7), and bash code is available with open access at

the following GitHub repository: https:/github.com/elenabernabeu/cage bage

EWAS summary statistics will be submitted to the EWAS catalog upon acceptance. They are currently

available for open access on Edinburgh DataShare: https://datashare.ed.ac.uk/handle/10283/4496
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cAge predictions can be obtained using MethylDetectR (https://shiny.igmm.ed.ac.uk/MethylDetectR/)

or via a standalone script:

https://github.com/elenabernabeu/cage bage/tree/main/cage predictor

As the CpG weights for the GrimAge components are not publicly available, bAge predictions first
require users to generate GrimAge estimates from the following online calculator
(http://dnamage.genetics.ucla.edu/new). bAge can then be estimated via the following standalone

script: https://github.com/elenabernabeu/cage bage/tree/main/bage predictor

Visualization of CpG-age relationships can be viewed using MethylBrowsR:

https://shiny.igmm.ed.ac.uk/Methy|BrowsR/
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Table 1. Age profile and test set prediction accuracy of cohorts used in cAge predictor training
and testing. External cohort information taken from Zhang et al®. r column states Pearson correlation,

RMSE the root mean squared error, and MAE the median absolute error.

Prediction Accuracy

Cohort N Mean Age (SD) Age Range  Nremates (%) Tissue r RMSE MAE
GS 18,413 47.5 (14.9) [17.1,985] 10,833 (58.8%)  Blood - - -

LBC19217778 692 82.3 (4.3) [77.8,90.6] 401 (57.9%) Blood  0.659 4050  2.466
LBC1936 2,795 73.6 (3.7) [67.7,80.9] 1,356 (48.5%) Blood 0.685 3.311 2.099
GSE727757 335 70.2 (10.3) [36.5, 90.5] 138 (41.2%) Blood 0.949 3.275 1.843
GSE788747° 259 68.8(9.7) [36.0, 88.0] 113 (43.6%) Saliva 0.875 6.826 4.333
GSE727737 310 65.6 (13.9) [35.1,91.9] 150 (48.4%) Blood 0.945 4.611 2.068
GSE727777° 46 14.7 (10.4) [2.2, 35.0] 31 (67.4%) Blood 0.942 4.211 2.505
GSE41169280 95 31.6 (10.3) [18.0, 65.0] 28 (29.5%) Blood 0.975 2.869 1.947
GSE40279* 656 64.0 (14.7) [19.0,101.0] 338 (51.5%) Blood 0.969 3.697 2.074
GSE4286128! 689 51.9 (11.8) [18.0, 70.0] 492 (71.4%) Blood 0.972 4.498 3.563
GSE5374028 383 67.8(9.6) [34.0, 93.0] 155 (40.5%) Blood 0.921 4.443 2.797

@ Some cohorts contain case/control data. GSE41169: Schizophrenia 62, control 33; GSE42861: Rheumatoid
arthritis 354, control 335; GSE53740: Alzheimer's disease 15, corticobasal degeneration 1, frontotemporal
dementia (FTD) 121, FTD/MND 7, progressive supranuclear palsy 43, control 193, unknown 4.
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Table 2. Cox Proportional Hazards output for GrimAgeAccel and bAgeAccel in the test datasets.

Hazard ratios are presented per standard deviation of the GrimAgeAccel and bAgeAccel variables.

Further details in Supplementary Table 11. *The FHS cohort used here was the same as the test set

from the original GrimAge paper.

GrimAgeAccel bAgeAccel
Cohort N N deaths Hazard Ratio (95% CI) Hazard Ratio (95% CI)
LBC1936 895 367 1.74 (157, 1.94) 1.73 (1.56, 1.91)
LBC1921 421 421 1.33 (1.20, 1.47) 1.44 (1.29, 1.59)
FHS 711 100 1.72 (1.35,2.19) 1.77 (1.40, 2.25)
WHI B23 White 998 418 1.44 (1.31, 1.58) 1.45 (1.32, 1.60)
WHI B23 Black 676 229 1.35(1.19, 1.53) 1.42 (1.24,1.62)
WHI B23 Hispanic 433 118 1.41 (1.18, 1.68) 1.44 (1.21,1.72)
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Figure 1. Study overview. Using the Generation Scotland cohort as our main data source, we explored
the relationship between the epigenome and age/survival via EWAS, which also informed on genes of
interest and potentially enriched pathways. We further characterised epigenome-wide CpG ~ age
trajectories, which can be visualized in a new Shiny app, MethylBrowsR
(https://shiny.igmm.ed.ac.uk/MethylBrowsRY/). Finally, we refined epigenetic prediction of both cAge and
bAge. Calculation of cAge can be performed either using a standalone script
(https://github.com/elenabernabeu/cage_bage/tree/main/cage_predictor) or by uploading DNAm data
to our MethylDetectR shiny app (https://shiny.igmm.ed.ac.uk/MethylDetectR/). As the weights for
GrimAge and its component parts are not publicly available, bAge can only be calculated by using our
standalone script (https:/github.com/elenabernabeu/cage_bage/tree/main/bage_predictor), after
obtaining GrimAge estimates from an external online calculator

(http://dnamage.genetics.ucla.edu/new).
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Figure 2. Flowchart for the creation of the cAge predictor. First, DNAm data originating from
Generation Scotland and 10 external datasets was pre-processed. Next, CpGs were pre-selected
based on the Generation Scotland EWAS for genome-wide significant linear and quadratic CpG-age
associations. Elastic net models were then trained and tested on the remaining features using a LOCO

framework with 25-fold cross validation, with training on both age and log(age) as outcomes.
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Figure 3. cAge predictor performance on 10 external testing datasets, (a) across all datasets

considered, and (b) per cohort. Performance metrics shown include Pearson correlation (r), root mean

squared error (RMSE), and median absolute error (MAE). Metrics also included in Table 1.
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Figure 4. Flowchart for the creation of the bAge predictor. First, DNAm data originating from
Generation Scotland and six external datasets was pre-processed. GrimAge components and 109
protein EpiScores were generated within each cohort. A Cox proportional hazards elastic net regression
model of all-cause mortality (with 20-fold cross validation) was trained in Generation Scotland with the
GrimAge components and EpiScores as possible features. The model that maximised Harrell's C index

was tested on the six external datasets.
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Figure 5. Forest plots of bAge/GrimAge predictors, applied to all-cause mortality in LBC1921,
LBC1936, FHS, and WHI. Predictors regressed on age. Hazard ratios are presented per standard
deviation of the GrimAgeAccel and bAgeAccel variables, along with 95% confidence intervals. Cox

models are adjusted for age at DNAm sampling and sex.

Mortality Predictors

@ GrimAgeAccel

:

WHI B23 Hispanic i ° bAgeAccel 1:3?[[11.'1252,'11 gé}

WHI B23 Black ; e 135 thg,’ 1631
1

WHI B23 White ' — —— 144 HI%’?.’%J
1

FHS . ° 17 Hé’s,z'zz.%]
1

LBC36 ; — o—— 174 Hﬁggf 11f821]]
1

LBC21 i ——— 133 Hig?'li;]g]

0.8 1.:0 1.2 1.4 1.6 1.8 2.0 2.2

Hazard Ratio (Cl 95%)

33


https://doi.org/10.1101/2022.09.08.507115
http://creativecommons.org/licenses/by/4.0/

