

1 **Haplotype-resolved assemblies and variant benchmark of a Chinese 2 Quartet**

3 Peng Jia^{1,2, #}, Lianhua Dong^{3#}, Xiaofei Yang^{2,4,5}, Bo Wang^{1,2}, Tingjie Wang^{1,2,6},
4 Jiadong Lin^{1,2}, Songbo Wang^{1,2}, Xixi Zhao^{2,4,6}, Tun Xu^{1,2}, Yizhuo Che^{1,2}, Ningxin
5 Dang⁵, Luyao Ren⁷, Yujing Zhang³, Xia Wang³, Fan Liang⁸, Yang Wang⁸, Jue Ruan⁹,
6 The Quartet Project Team, Yuanting Zheng⁷, Leming Shi⁷, Jing Wang^{3*} and Kai
7 Ye^{1,2,5,6,10,11,*}

8 ¹School of Automation Science and Engineering, Faculty of Electronic and
9 Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

10 ²MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic
11 and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

12 ³National Institute of Metrology, Beijing, 100029, China.

13 ⁴School of Computer Science and Technology, Faculty of Electronic and Information
14 Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

15 ⁵Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an,
16 710061, China

17 ⁶Center for Mathematical Medical, The First Affiliated Hospital of Xi'an Jiaotong
18 University, Xi'an, 710061, China.

19 ⁷State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of
20 Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, 200438,
21 China

22 ⁸GrandOmics Biosciences, Beijing, 100089, China

23 ⁹Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture,
24 Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs,
25 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural
26 Sciences, Shenzhen 518120, China

27 ¹⁰School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049,
28 China

29 ¹¹Faculty of Science, Leiden University, Leiden, 2311EZ, The Netherlands

30 [#]These authors contributed equally.

31 ^{*}To whom correspondence should be addressed.

32 E-mail: kaiye@xjtu.edu.cn (Ye K), wj@nim.ac.cn (Wang J)

33 **Abstract**

34 As the state-of-the-art sequencing technologies and computational methods enable
35 investigation of challenging regions in the human genome, an update variant
36 benchmark is demanded. Herein, we sequenced a Chinese Quartet, consisting of two
37 monozygotic twin daughters and their biological parents, with multiple advanced
38 sequencing platforms, including Illumina, BGI, PacBio, and Oxford Nanopore
39 Technology. We phased the long reads of the monozygotic twin daughters into
40 paternal and maternal haplotypes using the parent-child genetic map. For each
41 haplotype, we utilized advanced long reads to generate haplotype-resolved
42 assemblies (HRAs) with high accuracy, completeness, and continuity. Based on the
43 ingenious quartet samples, novel computational methods, high-quality sequencing
44 reads, and HRAs, we established a comprehensive variant benchmark, including
45 3,883,283 SNVs, 859,256 Indels, 9,678 large deletions, 15,324 large insertions, 40
46 inversions, and 31 complex structural variants shared between the monozygotic twin
47 daughters. In particular, the previously excluded regions, such as repeat regions and
48 the human leukocyte antigen (HLA) region, were systematically examined. Finally,
49 we illustrated how the sequencing depth correlated with the *de novo* assembly and
50 variant detection, from which we learned that $30 \times$ HiFi is a balance between
51 performance and cost. In summary, this study provides high-quality
52 haplotype-resolved assemblies and a variant benchmark for two Chinese
53 monozygotic twin samples. The benchmark expanded the regions of the previous
54 report and adapted to the evolving sequencing technologies and computational
55 methods.

56 **Background**

57 Since the dawn of the genome era, genomic variations, including single
58 nucleotide variations (SNVs), small insertions/deletions (Indels) and structural
59 variants (SVs), have been extensively detected and proved to contribute to many
60 diseases, such as Mendelian disorders and cancers¹⁻⁴. Thus, authoritative and
61 comprehensive variant benchmarks are crucial for precisely understanding genetic
62 variations in clinical samples. Many variant benchmarks and genomic reference
63 materials have been established for the community to evaluate their variant detection
64 pipelines during the past decades⁵⁻¹⁵. For example, the Genome in a Bottle (GIAB)
65 Consortium developed seven reference materials and high-confidence benchmarks
66 for both small variants¹⁰ and structural variants⁷, prompting the pipeline evaluation
67 in genomic analysis. Another companion study released a robust benchmark on the
68 Certified Reference Materials for whole genome-variant assessment to reveal the
69 variant detection biases among different short-read sequencing platforms and among
70 sequencing centers¹⁵. Nevertheless, these studies focus on the simple variant types
71 and high-confidence regions for short reads, ignoring the complex regions and
72 complex variant types that are accessible for long read sequencing technologies.

73 Advanced sequencing technologies¹⁶⁻¹⁸, including PacBio HiFi and Oxford
74 Nanopore ultra-long reads, were recently leveraged to assemble a complete
75 hydatidiform mole (CHM13) at telomere-to-telomere levels¹⁹, making it possible to
76 resolve many medical-related genes and regions excluded by previous benchmarks.
77 Another remarkable investigation of genetic variants by the Human Genome
78 Structural Variation Consortium (HGSVC) demonstrates that high-quality
79 haplotype-resolved assemblies (HARs) detect more variants than previous
80 read-alignment-based strategies²⁰. Based on the high-quality HRAs, variants located
81 in complex regions, such as simple repeat (SR), segmental duplication (SD),
82 variable number tandem repeat (VNTR), and short tandem repeat (STR), were

83 resolved. In addition to high-quality reads and assemblies, novel computational
84 methods such as Sniffles²¹, cuteSV²², and SVision²³ were also developed to reveal
85 complex SVs in the human genome.

86 As samples for benchmarking in practices, a single sample or even a trio is
87 difficult to deal with the random variants induced by contamination in cell line
88 culture and transportation²⁴. To address this problem, we included a “Chinese
89 Quartet”, consisting of two monozygotic twin daughters (LCL5 and LCL6) and their
90 biological parents (LCL7 and LCL8), in this study. Notably, the DNA of four
91 samples was approved as Certified Reference Materials (CRMs) for whole
92 genome-variant assessment (GBW09900~GBW09903) by the State Administration
93 for Market Regulation in China. We applied advanced sequencing technologies to
94 the four samples and emphatically assembled high-quality haplotype-resolved
95 genomes for the monozygotic twins. We demonstrated that two haplotypes of the
96 diploid samples achieved high performance in terms of accuracy, continuity, and
97 completeness. Benefiting from the ingenious samples, the advanced sequencing
98 technologies, high-quality HRAs, and novel computational methods, we construct a
99 comprehensive benchmark for all scales of variants. In particular, we extend the
100 variant benchmark to complex regions and complex variant types.

101 **Results**

102 **Sample processing and sequencing**

103 In this study, we included various sequencing data of the Chinese Quartet, parents
104 and monozygotic twin daughters, to construct a high-quality genome and variant
105 benchmark for the Chinese Han population. To obtain high-quality assemblies for
106 the twin daughters, we generated $\sim 50 \times$ HiFi (read length N50 = 13~14 kb), $\sim 100 \times$
107 ONT regular (read length N50 = 20~25 kb) reads for each of four samples, and
108 addition $\sim 30 \times$ ONT ultra-long (read length N50 = 77 kb) reads for one twin sample,
109 LCL5 (Table S1). To establish a robust variant benchmark for the twin daughters, we

110 used $\sim 160 \times$ Illumina (150bp read length) and $\sim 100 \times$ BGI (100bp read length)
111 reads and a variety of long reads to discover and evaluate the variants shared
112 between the monozygotic twin daughters (Table S1).

113 **Haplotype-resolved genome assembly**

114 Since monozygotic twins are generally considered genetically identical with limited
115 somatic substations²⁵, we first merged the data of these two samples and endeavored
116 to generate high-quality haplotype-resolved genomes. We phased HiFi, ONT regular,
117 and ONT ultra-long reads of the monozygotic twins into paternal (CQ-P) and
118 maternal (CQ-M) haplotypes and assembled each haplotype using a hybrid assembly
119 strategy (Fig. S1). First, high-quality SNVs and Indels were obtained from a
120 previous study¹³, and both the sharing patterns among trios and their concurrence on
121 HiFi reads²⁶. Next, long reads including HiFi, ONT regular, and ONT ultra-long of
122 two twin daughters were separated into two haplotypes with the phased variants²⁶.
123 Overall, we phased 76.2 % of HiFi reads, 65.0 % of ONT regular reads, and 72.8 %
124 of ONT ultra-long reads, and the unphased reads were assigned to the two
125 haplotypes randomly (Table S2). For each haplotype of the two twin daughters, we
126 obtained around $53 \times$ HiFi, $95 \times$ ONT regular, and $14 \times$ ONT ultra-long reads (Table
127 S2). We assembled ONT reads using shasta²⁷ and flye²⁸ and assembled HiFi reads
128 using hifiasm²⁹, hicantu³⁰, and flye²⁸, yielding five haplotype-resolved assemblies
129 (Table S3). After that, the hifiasm contigs were scaffolded using ragtag³¹ and the
130 other four assemblies were used to fill the gaps in the hifiasm scaffolds (see methods
131 and Supplementary Notes). Finally, the two haplotypes of twin daughters were
132 further polished with phased HiFi reads³² (see methods and Supplementary Notes).

133 The final two haplotypes contained 297 contigs and 276 for CQ-P and CQ-M,
134 respectively, and both haplotypes had a length of around 3.05 Gb. The contig N50
135 values of two haplotypes are ~ 132 M, about 2-fold of GRCh38.p13, suggesting high
136 continuousness of the obtained phased assemblies compared to previous reports³³⁻³⁷

137 (Table 1, S3 and S4). Notably, seven and nine chromosomes of two haplotypes were
138 gap free. Meanwhile, 20 and 18 chromosome arms in CQ-P and CQ-M were
139 successfully represented as a single contig, respectively (Fig. S2, S3, and Table S5).
140 Furthermore, CQ-P and CQ-M closed 236 and 251 gaps in GRCh38, respectively
141 (Fig. 1A, and Fig. S4). For example, the HiFi read depth illustrated that GRCh38
142 gaps near the centromere of chromosome 17 were filled by both CQ-P and CQ-M
143 haplotypes (Fig. 1B). Another further example, a previous reported polymorphic
144 inversion by CHM13³⁸ at chromosome 8p23.1, was also identified, and the flanking
145 gaps of the ~ 4M inversion were accurately resolved by both haplotypes (Fig. 1C
146 and Fig. S5).

147 We demonstrated that ten chromosomes (5 paternal and 5 maternal) of our
148 assemblies had more than a 3% increase in length compared with GRCh38, while
149 six chromosomes (3 paternal and 3 maternal) had a 3% decrease in length compared
150 to CHM13 (Fig. 1D). To further assess the completeness of CQ-P and CQ-M, we
151 aligned two haplotypes against GRCh38 and observed that CQ-P and CQ-M covered
152 97.59% and 97.55% of the GRCh38 genome, respectively (Table S6). The
153 completeness evaluation by BUSCO³⁹ (v5.1.3) showed that our phased genomes
154 resolved 95.7% of complete genes from the mammalia_odb10 library, indicating that
155 our assemblies were highly complete as well (Table 1).

156 To characterize the reference material comprehensively, we annotated genes and
157 novel sequences of two haplotypes (Fig. S6). We found 8.4 M and 8.8 M novel
158 sequences in CQ-M and CQ-P, respectively, when compared to GRCh38. Most
159 novel sequences were located in centromeric and acrocentric regions (Fig. S7). To
160 annotate our genomes, we converted the gene coordinates of GRCh38.p13 to CQ-P
161 and CQ-M with liftoff⁴⁰, of which 96.62% (19207/19878) and 96.54%
162 (19191/19878) of protein-coding genes were successfully converted. To annotate
163 genes at novel sequences, we then masked the repeat sequences and annotated the

164 protein-coding genes by Augustus⁴¹. We finally obtained 45 and 58 novel genes in
165 CQ-P and CQ-M, respectively (Table S7). The most abundant functional domains in
166 these novel genes included domains such as ElonginA binding-protein 1 (PF15870),
167 Poly-adenylate binding protein domain (PF00658), Kinase suppressor of RAS,
168 SAM-like domain (PF13543) and Extensin domain (PF04554).

169 **Variant benchmark construction**

170 Since each sequencing technology and variant pipeline had its own advantages, we
171 involved short reads, long reads, and haplotype-resolved assemblies to discover all
172 scales of variants for the monozygotic twins (see Methods). In particular, the twin
173 daughters were regarded as two biological replicates, so that only variants supported
174 by both samples were kept in the final benchmark (Fig. S8 and S9, see Methods).

175 *SNV and Indel benchmark construction*

176 For SNVs and Indels, Illumina calls were downloaded from the previous study¹³,
177 HiFi calls were generated by the minimap2-deepvariant pipeline^{42, 43}. Both the
178 Illumina and HiFi calls were filtered by read depth, allele frequency, and Mendelian
179 rule. Meanwhile, three haplotype-resolved assemblies by HiFi reads were used for
180 variant discovery by PAV²⁰, and only variants supported by all three assemblies were
181 included in the HRA callset (Fig. S8, see Methods).

182 We released 3,883,283 SNVs and 859,256 Indels for the monozygotic twins (**Fig.**
183 **2A**), of which 91.1% of SNVs and 91.8% of Indels were also observed by BGI reads
184 (**Fig. 2B**, and Fig. 10). Notably, long-read assembly (HRAs) based variant calling
185 strategies contributed to 97.9% (3,803,062) of SNVs and 98.4% (845,085) of Indels,
186 while long-read HiFi mapping based approaches accounted for 93.2% (3,619,614) of
187 SNVs and 70.1% (602,343) of Indels. Illumina short-read mapping based variant
188 calling result yielded 81.0% (3,144,055) of SNVs and 45.1% (387,741) of Indels.

189 As expected, the Indel length distribution demonstrated that the sensitivities of

190 Illumina, HiFi, and HRAs to detect Indel increased accordingly (**Fig. 2C** and Fig.
191 S11). Meanwhile, we found that HiFi and HRA detected more Indels in complex
192 regions like STR (**Fig. 2D**, Fig. S12 and S13). In particular, HRA detected 25.5% of
193 Indels specifically, of which 91.7% were in STR regions. For example, a 21 bp
194 heterozygous insertion of TCC repeat at *ERICH6* was accurately identified by both
195 HRAs and HiFi reads, but missed by Illumina data due to its shorter read length (**Fig.**
196 **2E**). Another example was that an 11bp deletion in a homopolymer region (49 bp A
197 repeat) of *ZNF302* was missed by both HiFi and Illumina reads but detected by
198 HRAs, indicating the vantage of HRAs for Indel detection in homopolymer regions
199 (**Fig. 2F**).

200 *Large deletion and insertion benchmark construction*

201 Structural variants affected more nucleotides and were more deleterious than
202 SNVs and Indels³, although they are relatively rare compared to SNVs and Indels.
203 However, SV detection and benchmarking remain challenging. To overcome the
204 biases of SV detection across different technologies, SVs from Illumina reads, HiFi
205 reads, and haplotype-resolved assemblies were discovered, filtered, and merged.
206 Illumina calls were generated by four prevalent callers, including Manta⁴⁴ (v1.6.0),
207 Delly⁴⁵ (v0.9.1), Lumpy⁴⁶ (v0.2.13), and Pindel⁴⁷ (v0.3). HiFi calls were produced
208 by pbsv (v2.6.2), Sniffles²¹ (v1.0.12), cuteSV²² (v1.0.11), and SVision²³ (v1.3.6).
209 Apart from read-alignment strategies, we also used five HRAs to discover SVs, and
210 SVs supported by at least three assemblies were included in the HRA callset (Fig.
211 S9).

212 We finally obtained 9,678 large deletions and 15,324 insertions for the
213 monozygotic twins (**Fig. 3A**). HRAs account for 92.6% of deletions and 89.3% of
214 insertions, while HiFi reads contributed 77.1% of deletions and 68.7% of insertions,
215 and Illumina calls covered 38.3% of deletions and 10.2% of insertions. We found
216 that 79.8% of deletions and 75.9% of insertions could be independently supported

217 by ONT reads (**Fig 3B**). The SV length distribution displayed ~ 300bp and ~ 6kb
218 peaks related to SINE-Alu and LINE elements, respectively, suggesting the effective
219 SV detection of our benchmark (**Fig. 3C, 3D**, Fig. S14). Like small variants, we also
220 reported more high-quality variants for the monozygotic twin daughters compared to
221 HG002 in GIAB due to the contributions of HRAs. HiFi reads and HRAs identified
222 more SVs in repeat regions like VNTR, simple repeat, and segmental duplication
223 regions, and variants in these complex regions were always difficult to resolve by
224 ONT reads (**Fig. 3E, 3F**, Fig. S15, and S16). Meanwhile, SVs supported by at least
225 two platforms always achieved a higher ONT-supporting rate compared to those
226 supported only by one platform (**Fig 3E**). For example, there were 1,985 deletions
227 and 4,309 insertions specifically contributed by HRAs, but around 36.0% of those
228 calls were supported by ONT reads. Notably, 91.0% and 85.7% of HRA-specific
229 deletions and insertions, respectively, were located in repeat regions. For example,
230 HRAs identified a 27 kb maternal deletion at segmental duplications in *HEATR4*,
231 but this deletion was not reported in HiFi and Illumina read alignment-based callsets
232 (**Fig. 3G**).

233 *Complex structural variant (CSV) and inversion benchmark construction*

234 Detection of complex SVs and inversions was more complicated than simple
235 variants due to ambiguous alignments, especially in repetitive regions. To build a
236 benchmark for complex structural variants, we generated five callsets of complex
237 SVs and inversions with HiFi reads and HRAs as input using Sniffles, SVision,
238 cuteSV, pbsv, and PAV. Next, 175 candidate variants from the merged callset were
239 manually inspected and refined according to IGV snapshots and dotplots (**Fig. 4A**).

240 Finally, we released 31 CSVs, of which 90.3% are inversion-associated (**Fig. 4B**,
241 and Table S8). We found that Sniffles, SVision, and cuteSV discovered 80.6%-87.1%
242 of CSVs, while PAV only reported 32.3% (Fig. S17). Only five CSVs were
243 discovered by all callers, suggesting the challenge of CSV detection. As for

244 inversions, we reported 40 nonredundant inversions and 75% of them were major
245 alleles (allele frequency > 0.5) in the HGSVC callset (Table S8). We observed that
246 65% (26) of inversions were flanked by inverted repetitive sequences, which were
247 defined as recurrent inversions⁴⁸ (**Fig. 4C-F**). Notably, 92.3% of recurrent inversions
248 were major alleles in HGSVC callset, indicating that most of recurrent inversions
249 were caused by mis-assembly of the reference genome in such complex regions (**Fig.**
250 **4D-F**).

251 **Summary and evaluation of variant benchmark**

252 Variants in our benchmark were enriched ($P < 1.1 \times 10^{-6}$) in the proximal telomere
253 of metacentric chromosomes instead of random distribution in the genome (Fig. S18
254 and S19). Meanwhile, the densities of SNVs and Indels are strongly correlated with
255 the density of STR (SNV: $R = 0.73$, $P = 8.35 \times 10^{-51}$; Indel: $R = 0.88$, $P = 2.58 \times$
256 10^{-102}), while the densities of large deletions and insertions are strongly correlated
257 with the density of VNTR (Deletion: $R = 0.82$, $P = 5.35 \times 10^{-74}$; Insertion: $R = 0.85$,
258 $P = 9.84 \times 10^{-84}$) (Fig. S20). In our benchmark, we found that 27,506 SNVs, 1,003
259 Indels, 64 deletions, and 77 insertions affected coding DNA sequence (CDS) regions
260 (Table S9).

261 In variant detection pipelines, complex regions like SD, SR, VNTR, and STR
262 usually result in sequencing errors and multiple read alignments, particularly in short
263 read sequencing⁴⁹. Long read length and high base precision of HiFi and HRAs
264 facilitated the detection of variants in complex regions, that were not accessible for
265 other technologies (Fig. S21 and S22). Therefore, variants in our benchmark were
266 divided into high-confidence and technology-specific callsets according to their
267 supporting technologies (**Fig. 5A**). In particular, variants detected by at least two
268 technologies or also observed by either BGI or ONT reads were labeled as
269 high-confidence calls, and variants supported only by one technology were defined
270 as technology-specific calls. In our benchmark, technology-specific calls account for

271 4.4% of SNVs, 4.8 % of Indels, 14.9% of deletions, and 19.7 % of insertions. As
272 expected, in three technology-specific callsets, 87.0% of SNVs, 94.0 % of Indels,
273 89.7% of deletions, and 83.0% of insertions were in repeat regions. Compared to
274 high-confidence calls, we found that technology-specific calls always had abnormal
275 read depths and low mappabilities due to the repetitive regions (**Fig. 5B, 5C**, and Fig.
276 S23).

277 **Assemblies and variant detection in different sequencing depths**

278 Sequencing depth was an important factor for both assembly and variant detection.
279 To further assess the assembly and variant detection pipeline in different sequencing
280 depths, samples with multiple sequencing depths (ranging from $10 \times$ to $100 \times$) were
281 generated by downsampling the HiFi reads of monozygotic twins. Initially, samples
282 with different sequencing depths were assembled into haplotype-resolved assemblies
283 by hifiasm²⁹. The contig N50 of two haplotypes flattened out with increasing
284 sequencing depth and was maintained for more than 25M at $40 \times$ (**Fig. 6A** and Table
285 S10). The BUSCO completeness also increased rapidly and reached around 94% at
286 $30 \times$ (**Fig. 6A**). The accuracy of assemblies (QV) also increased steadily with the
287 depth increase and remained stable from $60 \times$ (**Fig. 6A**, Table S10). To further
288 evaluate the performance of variant detection with HRA in diverse sequencing
289 depths, two haplotypes from different depths were used for variant detection with
290 PAV²⁰. Like the performance of assemblies, the recall, precision, and F1 score of
291 variants were also improved with the increases in depth and reached a plateau at $30 \times$
292 (**Fig. 6B** and Table S11). Taken together, these results suggest that $30 \times$ HiFi reads
293 could achieve outstanding performances in both assembly and germline variant
294 detection pipelines.

295 **Decoding HLA regions with high quality assemblies and variant benchmark**

296 Human leukocyte antigen (HLA) genes are important in cancer, autoimmune disease,
297 infectious disease, and tissue transplantation⁵⁰. To better understand the genetic

298 features of human leukocyte antigen genes, we investigated the extended major
299 histocompatibility complex⁵¹ (xMHC) region of two twin daughters based on the
300 haplotype-resolved assemblies and high-quality variant benchmark. We observed
301 that both CQ-P and CQ-M covered the entire xMHC region in GRCh38 (**Fig. 7A**).
302 In addition, 265 out of 271 protein-coding genes located at xMHC regions were
303 resolved by both CQ-P and CQ-M. Compared to classical class III regions, classical
304 class I and II had higher variant rates and lower methylation density, indicating
305 classical class I and II regions are more active (**Fig. 7B**). We also discovered obvious
306 distinctions in variants and methylations between two haplotypes (**Fig. 7B and 7C**).
307 Furthermore, we discovered that the heterozygous SNVs and Indels in xMHC
308 regions were significantly ($P < 0.0018$) more prevalent than those in other regions,
309 while homozygous variants had no significant ($P > 0.88$) difference (**Fig. 7D**),
310 confirming the linkage disequilibrium of HLA regions⁵².

311 **Discussions**

312 As the reference materials, the twin daughters of the Chinese Quartet could be
313 regarded as two biological replicates, which facilitates additional cross validation
314 than variant calling in a single sample or even in a trio. To accurately decode the
315 reference materials, high coverage reads were generated by diverse technologies
316 including Illumina, BGI, HiFi, and ONT. Based on the ingenious samples, the
317 advanced data and approaches, we released high-quality haplotype-resolved
318 assemblies for the Chinese Quartet children and constructed a comprehensive
319 variant benchmark.

320 Compared to the complete hydatidiform mole (CHM13), it is more challenging to
321 decode the complete genome of a diploid sample. Nevertheless, 76% of the
322 chromosome arms in our assemblies of the monozygotic twins were represented by
323 single contigs (Table S5). Meanwhile, seven and nine chromosomes of CQ-P and
324 CQ-M were assembled at telomere-to-telomere levels, respectively (Table S5).

325 Although advanced technologies, including HiFi and ultra-long ONT reads, were
326 applied in our assemblies, it was still difficult to distinguish two haplotypes of
327 diploid samples in large repetitive regions, such as higher-order repeats in
328 centromeres. To obtain high quality assembly in these large repetitive regions, we
329 divided the unphased reads into two haplotypes equally in our assembly pipeline.
330 Hence, the sequences of large repetitive regions also need to be further validated by
331 more accurate and longer reads in the future.

332 When including haplotype-resolved assemblies for benchmarking, more
333 large-scale variants were detected due to the longer spanning length of HRAs on the
334 genome²⁰. Meanwhile, many variants in complex regions such as xMHC and
335 segmental duplications were reported, which are difficult for the read-alignment
336 strategies. Another contribution of our benchmark is that we extend the variant types
337 to complex structural variants, compared to previous studies^{7, 8, 11, 53}. Nevertheless,
338 our benchmark also has several limitations. Firstly, technology-specific variants
339 were subjected to further validation in the future because it was difficult for current
340 technologies to decode all complex regions unbiasedly. For example, it is difficult
341 for HiFi reads to resolve the variants located at large segmental duplications (Fig.
342 3G). Secondly, the same structural variant in our benchmark may be reported as
343 multiple records at repeat regions due to the breakpoint shifts.

344 For the next phase of Chinse Quartet, we will develop new algorithms and
345 generate novel data to improve both *de novo* assemblies and variant benchmark to
346 facilitate resequencing projects of the Chinese Han population. We believe that the
347 investigation of certified reference materials for genomics and other omics will
348 prompt the reproducivity and repeatability of bioinformatics analysis in the future.

349 **Conclusions**

350 In summary, we provide the high-quality haplotype-resolved assemblies and
351 comprehensive variant benchmark for monozygotic twin daughters of the Chinese

352 Quartet, the reference materials for whole genome-variant assessment. The
353 high-quality assemblies and variant benchmark could be used to evaluate the
354 performance of analysis pipelines and sequencing technologies in different centers
355 and laboratories. For better usability of our research work, we also provide the
356 reference materials, assemblies, and variant benchmark to the research community
357 for improving the reproducibility of pipelines.

358 **Methods**

359 **Sequencing data generation**

360 The “Chinese Quartet” family, including father (LCL7), mother (LCL8), and two
361 monozygotic twin daughters (LCL5 and LCL6) in this study, was from the Fudan
362 Taizhou cohort, which was approved as certified reference material by the State
363 Administration for Market Regulation in China. The processes of cell line
364 establishment, DNA extraction, and Illumina sequencing were described in prior
365 studies^{12, 13}. The four cell lines were also sequenced by BGI, PacBio, and ONT
366 solutions. Details of library preparation and sequencing in this study are described in
367 the supplementary notes file.

368 **Separation of reads by haplotype**

369 To build haplotype-resolved assemblies for the monozygotic twins of the Chinese
370 Quartet, we split HiFi and ONT reads into paternal (CQ-P) and maternal (CQ-M)
371 haplotypes. Firstly, we obtained the high-quality single nucleotide variants (SNVs)
372 and Indels of the family from a previous study¹³. The variants of the monozygotic
373 twin daughters were phased using whatshap²⁶ (v1.1) with parent-child information
374 and children’s HiFi reads. Then, we aligned HiFi, ONT, and ultra-long ONT reads of
375 the twins to GRCh38 with minimap2⁴² (v2.20-r1061) and separated the reads into
376 two haplotypes according to the heterozygous variants. The reads that were not
377 covered by heterozygous variants were also assigned to the two haplotypes

378 randomly.

379 **Assemblies of the Chinese Quartet**

380 As monozygotic twins are in general regarded as genetically identical with limited
381 somatic mutations²⁵, we merged the data of two twin samples and endeavored to
382 obtain high-quality haplotype-resolved genomes. For each haplotype of the
383 monozygotic twin daughters, we assembled phased HiFi reads using three popular
384 assemblers, including hifiasm²⁹ (v0.15.5), hicanu³⁰ (v-r10117), and flye²⁸
385 (v2.8.3-b1695). Meanwhile, ONT regular and ONT ultra-long reads were assembled
386 with flye²⁸ (v2.8.3-b1695) and shasta²⁷ (0.7.0). Next, we identified the mis-assembly
387 and broke the chimeric contigs with ragtag^{31, 54} (v2.0.1). Then we scaffolded the
388 hifiasm contigs based on the human Telomere-to-Telomere genome¹⁹ (CHM13 v1.0)
389 and closed the gaps of hifiasm scaffolds with other contigs by Gapless
390 (<https://github.com/PengJia6/gapless>). Finally, two haplotypes were polished with
391 corresponding HiFi reads using NextPolish³² (v1.3.1).

392 **Assemblies evaluation and analysis**

393 Two haplotype-resolved assemblies of the monozygotic twin daughters were
394 evaluated in three aspects, including accuracy, continuity, and completeness. The
395 accuracies (QV score) of the Chinese Quartet genomes were evaluated according to
396 the Illumina reads by Merqury⁵⁵ (v1.3). For continuity evaluation, we calculated
397 contig numbers, contig N50, and the gap of HRAs. In terms of completeness, we
398 applied three methods to evaluate CQ-P and CQ-M. First, we applied BUSCO³⁹
399 (v5.1.3) with mammalia_odb10 to calculate the fraction of complete BUSCO genes.
400 Then, Merqury⁵⁵ (v1.3) was used to estimate the completeness of HRAs with
401 Illumina sequencing data. Meanwhile, we aligned our assemblies to GRCh38 with
402 minimap2, and the coverage fractions of our assemblies to GRCh38 were calculated
403 for completeness assessment.

404 **Novel sequences identification and genome annotation**

405 We aligned contigs of two haplotypes of the Chinese Quartet to GRCh38 with
406 minimap2⁴² (v2.20-r1061) and winnowmap2⁵⁶ (v2.03). Thereafter, the sequences
407 labeled by hard-clip (H), soft-clip (S), and insertion (I) in bam files were extracted
408 and aligned to GRCh38 again. The unmapped sequences were collected as novel
409 sequences. We also annotated the protein-coding genes of our assemblies by
410 LiftOff⁴⁰ (v1.6.1) based on gencode annotation (v38) of GRCh38. Then, the novel
411 sequences of our assemblies were extracted and repeat regions were marked by
412 RepeatMasker (v4.1.2-p1, <http://www.repeatmasker.org>). Finally, the unannotated
413 regions were further annotated by Augustus⁴¹.

414 **Variant detection of the Chinese Quartet by Illumina reads**

415 The SNVs and Indels of the Chinese Quartet by Illumina were downloaded from a
416 previous study¹³. To discover structural variants using short reads, we aligned
417 Illumina reads to GRCh38 and marked duplication reads with biobambam2⁵⁷
418 (v2.0.182). Then we detected variants of the Chinese Quartet by Manta⁴⁴ (v1.6.0),
419 Delly⁴⁵ (v0.9.1), Lumpy⁴⁶ (v0.2.13), and Pindel⁴⁷ (v0.3). We kept the SVs with at
420 least 30 reads supporting and 50 bp long for the following steps. Only SVs
421 supported by both girls and one of their parents were kept as high-quality variants of
422 the twins for each caller. High quality variants from four callers were then integrated
423 by Jasmine⁵⁸ (v1.1.5) for each SV type, respectively. Finally, variants supported by
424 at least two callers were retained for the final benchmark.

425 **Variant detection of the Chinese Quartet by HiFi reads**

426 We aligned HiFi reads to GRCh38 using minimap2⁴² (v2.20-r1061) and then
427 detected small variants for each sample using deepvariant⁴³ (v1.1.0) with the
428 parameter “--model_type=PACBIO” set. The GVCFs of four samples were merged
429 and genotyped by glnexus (v1.2.7). SNVs and Indels were phased according to

430 parent-child information and children's HiFi reads²⁶ (v1.1). To obtain high-quality
431 SNVs and Indels, we filtered variants in four steps: (i) filtering variants with allele
432 frequencies less than 0.2, read depth less than 25 or more than 75; (ii) removing
433 variants violating the Mendelian rule, (iii) only keeping variants, of which two girls
434 had same genotypes; (iv) filtering variants longer than 49bp.

435 To obtain high-quality SV calls from the Chinese Quartet, we utilized four
436 popular callers, including pbsv (v2.6.2), Sniffles²¹ (v1.0.12), cuteSV²² (v1.0.11), and
437 SVision²³ (v1.3.6), to discover SV events. Similar to Illumina reads, we also kept
438 SVs with at least 15 reads supported. Then SVs following the Mendelian rule and
439 supported by at least two callers were kept for the final benchmark.

440 **Variant detection of the Chinese Quartet by HRAs**

441 Apart from read-alignment strategies, contigs of HARs were also used for variant
442 detection. We aligned HRAs to GRCh38 using minimap2⁴² (v2.20-r1061) and
443 discovered variants by PAV²⁰ (v1.1.0) pipelines. We discovered SNVs and Indels
444 with HiFi assemblies, and only variants detected by all three assemblies were kept in
445 the final benchmark. SVs were discovered by both HiFi and ONT assemblies, and
446 we kept variants with at least two assemblies supported in the final benchmark.

447 **Complex structural variant and inversion detection**

448 To expand the complex structural variants in our benchmark, we used HiFi reads and
449 HRA to discover variants. In raw callsets, SVs labeled by multiple types, inversion,
450 and CSV were extracted as candidate variants. All candidate variants were manually
451 refined by IGV snapshots and dotplots. In particular, variant types were determined
452 by the dotplots between HRAs and the reference genome.

453 **Variant benchmark construction and evaluation**

454 SNVs and Indels calls from Illumina, HiFi, and HRAs were merged with bcftools
455 (v1.13) and large deletions and insertions were merged with Jasmine⁵⁸ (v1.1.5).

456 Variants at centromeres, telomeres, copy number abnormal regions, and sex
457 chromosomes were excluded in the final benchmark. To evaluate the quality of
458 SNVs and Indels in our benchmark, BGI reads were aligned to GRCh38, and the
459 deepvariant⁴³ was used to call SNVs and Indels. ONT reads were aligned to the
460 reference genome and four callers, including pbsv (v2.6.2), Sniffles²¹ (v1.0.12),
461 cuteSV²² (v1.0.11), and SVision²³ (v1.3.6), were used to call variants. We kept SVs
462 supported by at least 15 reads and 2 callers in ONT for SV evaluation. In our
463 benchmark, variants that were supported by at least two technologies or supported
464 by BGI or ONT reads were labeled as “high-confidence” calls. Moreover, the
465 variants only detected by one technology were assigned as “technology-specific”
466 calls.

467 **Chinese Quartet benchmark annotation**

468 Repeat regions, including segmental duplication (SD), simple repeat (SR), variable
469 number tandem repeat (VNTR), and repeat mask (RM), were downloaded from the
470 table browser. Short tandem repeats (STRs) were generated by the “scan” command
471 in msisensor-pro⁵⁹. A variant was annotated to repeat regions if it overlapped with
472 repeat regions. Variants were also annotated by the Ensembl Variant Effect Predictor
473 (VEP)⁶⁰ (v104.3).

474 **Haplotype-resolved methylation calling of Chinese Quartet**

475 Phased ONT reads and raw fast5 files were indexed with the “index” command of
476 nanopolish⁶¹ (0.13.2). Then we call methylation of each haplotype using phased
477 reads with the “call-methylation” command in nanopolish. Next, the methylation
478 frequency of each site was calculated by the ‘calculate_methylation_frequency.py’.
479 Finally, we kept the sites with a methylation frequency greater than 0.8 as
480 methylated sites.

481 **Chinese Quartet benchmark application**

482 To further assess the performance of assemblies and variants calling in various
483 sequencing depths, we downsampled the HiFi reads of two monozygotic twins
484 ranging from $10 \times$ to 100 with increments by $10 \times$. We assembled the simulated
485 samples from different sequencing depths with hifiasm²⁹ and called variants by
486 PAV²⁰ pipelines. The assemblies were evaluated in three aspects, including accuracy,
487 completeness, and continuity, as in the previous description. As for variants, only
488 calls supported by both LRA and minimap2 in the PAV pipeline remained as
489 high-quality calls. We defined the variant supported by both the benchmark and
490 simulated sample as “true positive” (TP) call. The variant only supported by the
491 simulated sample and benchmark was labeled as “false positive” (FP) and “false
492 negative” (FN) call, respectively. Then, recall, precision, and F1 score of variant
493 detection were calculated by equations (1–3).

494
$$Recall = \frac{TP}{TP+FP}$$
 (1)

495
$$Precision = \frac{TP}{TP+FN}$$
 (2)

496
$$F1\ score = 2 * \frac{Recall \times Precision}{Recall + Precision}$$
 (3)

497 **Authors' contributions**

498 Conceptualization: K.Y., J.W., L.S., P.J., and L.D. Sequencing data generation: L.D.,
499 YUA.Z., YUJ.Z., X.W., F.L., and Y.W. Data management and archiving: P.J., L.D,
500 YUA. Z., and L.R. Genome assembly: P.J., K.Y., B.W., X.Y, X.Z, and J.R. Variant
501 analysis: P.J., K.Y., J.L., T.W., and S.W. Software and pipeline development: P. J.
502 Validation: P.J. and L.R. Visualization: P.J., T.X., N.D., and Y.C. Organization of
503 supplementary materials: P.J. Original manuscript writing: P.J. and K.Y. Manuscript
504 review and editing: K.Y., P.J., B.W., X.Y. and L.D. Project administration and
505 supervision: K.Y. and J.W.

506 **Competing interests**

507 The authors declare that they have no competing interests.

508 **Availability of data and materials**

509 The Certified Reference Materials can be requested from the Quartet Data Portal
510 (<http://chinese-quartet.org/>) under the Administrative Regulations of the People's
511 Republic of China on Human Genetic Resources. All raw sequencing reads of the
512 reference materials have been deposited in the Genome Sequence Archive⁶² at the
513 National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of
514 Sciences/China National Center for Bioinformation (GSA: HRA001859), and are
515 publicly accessible at <https://ngdc.cncb.ac.cn/gsa>. The assemblies and variant
516 benchmark are also available from GSA (PRJCA007703) or from the authors upon
517 request. Other supporting data is available at the additional files of this paper or
518 from the authors upon request. Pipelines for genome assembly and variant detection
519 are available at Github (<https://github.com/xjtu-omics/ChineseQuartetGenome>).

520 **Acknowledgments**

521 We would like to thank Guangbo Tang, Zihang Li, and Xiujuan Li for the cell
522 culturing in this project and Jing Hai and Huanhuan Zhao for administrative and
523 technical support.

524 **Funding**

525 Kai Ye, Xiaofei Yang, Yuanting Zheng, Leming Shi, and Bo Wang are supported by
526 the National Natural Science Foundation of China (32125009, 32070663, 62172325,
527 32200510, 31720103909 and 32170657). Kai Ye is supported by the Natural Science
528 Basic Research Program of Shaanxi (2021GXLH-Z-098), and by the Key
529 Construction Program of the National "985" Project. Lianhua Dong and Jing Wang
530 are supported by the National Key Research and Development Program of China
531 (2017YFF0204605) in the National Science & Technology Pillar Program and the

532 basic research funding of National Institute of Metrology, P.R. China (AKYZD2202
533 and AKY1929). Yuanting Zheng and Leming Shi are supported in part by the
534 National Key R&D Project of China (2018YFE0201603, 2018YFE0201600, and
535 2017YFF0204600), Shanghai Municipal Science and Technology Major Project
536 (2017SHZDZX01), State Key Laboratory of Genetic Engineering (SKLGE-2117),
537 and the 111 Project (B13016).

538 **References**

- 539 1. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes.
540 *Nature* **446**, 153-158 (2007).
- 541 2. Consortium, I.T.P.-C.A.o.W.G. Pan-cancer analysis of whole genomes. *Nature*
542 **578**, 82-93 (2020).
- 543 3. Ho, S.S., Urban, A.E. & Mills, R.E. Structural variation in the sequencing era.
544 *Nat Rev Genet* **21**, 171-189 (2020).
- 545 4. Stange, M., Barrett, R.D.H. & Hendry, A.P. The importance of genomic
546 variation for biodiversity, ecosystems and people. *Nat Rev Genet* **22**, 89-105
547 (2021).
- 548 5. Wagner, J. et al. Curated variation benchmarks for challenging medically
549 relevant autosomal genes. *Nat Biotechnol* (2022).
- 550 6. Wagner, J. et al. Benchmarking challenging small variants with linked and
551 long reads. *Cell Genomics* (2022).
- 552 7. Zook, J.M. et al. A robust benchmark for detection of germline large deletions
553 and insertions. *Nat Biotechnol* **38**, 1347-1355 (2020).
- 554 8. Pei, S. et al. Benchmarking variant callers in next-generation and
555 third-generation sequencing analysis. *Brief Bioinform* (2020).
- 556 9. Chin, C.S. et al. A diploid assembly-based benchmark for variants in the major
557 histocompatibility complex. *Nat Commun* **11**, 4794 (2020).
- 558 10. Zook, J.M. et al. Integrating human sequence data sets provides a resource of
559 benchmark SNP and indel genotype calls. *Nat Biotechnol* **32**, 246-251 (2014).
- 560 11. Du, X. et al. Robust Benchmark Structural Variant Calls of An Asian Using
561 the State-of-art Long Fragment Sequencing Technologies. *Genomics
562 Proteomics Bioinformatics* (2021).
- 563 12. Khayat, M.M. et al. Hidden biases in germline structural variant detection.
564 *Genome Biol* **22**, 347 (2021).
- 565 13. Pan, B. et al. Assessing reproducibility of inherited variants detected with
566 short-read whole genome sequencing. *Genome Biol* **23**, 2 (2022).
- 567 14. Sahraeian, S.M.E. et al. Achieving robust somatic mutation detection with
568 deep learning models derived from reference data sets of a cancer sample.
569 *Genome Biol* **23**, 12 (2022).
- 570 15. Ren, L. et al. Quartet DNA reference materials and datasets for
571 comprehensively evaluating germline variants calling performance. *bioRxiv*

572 (2022).

573 16. Logsdon, G.A., Vollger, M.R. & Eichler, E.E. Long-read human genome
574 sequencing and its applications. *Nat Rev Genet* **21**, 597-614 (2020).

575 17. Wenger, A.M. et al. Accurate circular consensus long-read sequencing
576 improves variant detection and assembly of a human genome. *Nat Biotechnol*
577 **37**, 1155-1162 (2019).

578 18. Jain, M. et al. Nanopore sequencing and assembly of a human genome with
579 ultra-long reads. *Nat Biotechnol* **36**, 338-345 (2018).

580 19. Nurk, S. et al. The complete sequence of a human genome. *Science* **376**, 44-53
581 (2022).

582 20. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated
583 analysis of structural variation. *Science* **372** (2021).

584 21. Sedlazeck, F.J. et al. Accurate detection of complex structural variations using
585 single-molecule sequencing. *Nat Methods* **15**, 461-468 (2018).

586 22. Jiang, T. et al. Long-read-based human genomic structural variation detection
587 with cuteSV. *Genome Biol* **21**, 189 (2020).

588 23. Ye, K. et al. SVision: A deep learning approach to resolve complex structural
589 variants. (2022).

590 24. American Type Culture Collection Standards Development Organization
591 Workgroup, A.S.N. Cell line misidentification: the beginning of the end. *Nat
592 Rev Cancer* **10**, 441-448 (2010).

593 25. van Dongen, J., Slagboom, P.E., Draisma, H.H., Martin, N.G. & Boomsma,
594 D.I. The continuing value of twin studies in the omics era. *Nat Rev Genet* **13**,
595 640-653 (2012).

596 26. Patterson, M. et al. WhatsHap: Weighted Haplotype Assembly for
597 Future-Generation Sequencing Reads. *J Comput Biol* **22**, 498-509 (2015).

598 27. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient
599 de novo assembly of eleven human genomes. *Nat Biotechnol* **38**, 1044-1053
600 (2020).

601 28. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P.A. Assembly of long,
602 error-prone reads using repeat graphs. *Nat Biotechnol* **37**, 540-546 (2019).

603 29. Cheng, H.Y., Concepcion, G.T., Feng, X.W., Zhang, H.W. & Li, H.
604 Haplotype-resolved de novo assembly using phased assembly graphs with
605 hifiasm. *Nature Methods* **18**, 170-+ (2021).

606 30. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites,
607 and allelic variants from high-fidelity long reads. *Genome Res* **30**, 1291-1305
608 (2020).

609 31. Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of
610 draft genomes. *Genome Biol* **20**, 224 (2019).

611 32. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome
612 polishing tool for long-read assembly. *Bioinformatics* **36**, 2253-2255 (2020).

613 33. Yang, X. et al. Haplotype-resolved Chinese male genome assembly based on
614 high-fidelity sequencing. *Fundamental Research* (2022).

615 34. Porubsky, D. et al. Fully phased human genome assembly without parental
616 data using single-cell strand sequencing and long reads. *Nat Biotechnol* **39**,
617 302-308 (2021).

618 35. Shi, L. et al. Long-read sequencing and de novo assembly of a Chinese
619 genome. *Nat Commun* **7**, 12065 (2016).

620 36. Du, Z. et al. Whole Genome Analyses of Chinese Population and De Novo
621 Assembly of A Northern Han Genome. *Genomics Proteomics Bioinformatics*
622 **17**, 229-247 (2019).

623 37. Wang, J. et al. The diploid genome sequence of an Asian individual. *Nature*
624 **456**, 60-65 (2008).

625 38. Logsdon, G.A. et al. The structure, function and evolution of a complete
626 human chromosome 8. *Nature* **593**, 101-107 (2021).

627 39. Manni, M., Berkeley, M.R., Seppey, M., Simao, F.A. & Zdobnov, E.M.
628 BUSCO Update: Novel and Streamlined Workflows along with Broader and
629 Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and
630 Viral Genomes. *Mol Biol Evol* **38**, 4647-4654 (2021).

631 40. Shumate, A. & Salzberg, S.L. Liftoff: accurate mapping of gene annotations.
632 *Bioinformatics* (2020).

633 41. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and
634 syntenically mapped cDNA alignments to improve de novo gene finding.
635 *Bioinformatics* **24**, 637-644 (2008).

636 42. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
637 *Bioinformatics* **34**, 3094-3100 (2018).

638 43. Poplin, R. et al. A universal SNP and small-indel variant caller using deep
639 neural networks. *Nat Biotechnol* **36**, 983-987 (2018).

640 44. Chen, X. et al. Manta: rapid detection of structural variants and indels for

641 germline and cancer sequencing applications. *Bioinformatics* **32**, 1220-1222
642 (2016).

643 45. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end
644 and split-read analysis. *Bioinformatics* **28**, i333-i339 (2012).

645 46. Layer, R.M., Chiang, C., Quinlan, A.R. & Hall, I.M. LUMPY: a probabilistic
646 framework for structural variant discovery. *Genome Biol* **15**, R84 (2014).

647 47. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern
648 growth approach to detect break points of large deletions and medium sized
649 insertions from paired-end short reads. *Bioinformatics* **25**, 2865-2871 (2009).

650 48. Porubsky, D. et al. Recurrent inversion toggling and great ape genome
651 evolution. *Nat Genet* **52**, 849-858 (2020).

652 49. Mahmoud, M. et al. Structural variant calling: the long and the short of it.
653 *Genome Biol* **20**, 246 (2019).

654 50. Trowsdale, J. & Knight, J.C. Major histocompatibility complex genomics and
655 human disease. *Annu Rev Genomics Hum Genet* **14**, 301-323 (2013).

656 51. Horton, R. et al. Gene map of the extended human MHC. *Nature Reviews
657 Genetics* **5**, 889-899 (2004).

658 52. Dausset, J. The major histocompatibility complex in man. *Science* **213**,
659 1469-1474 (1981).

660 53. Zook, J.M. et al. An open resource for accurately benchmarking small variant
661 and reference calls. *Nat Biotechnol* **37**, 561-566 (2019).

662 54. Alonge, M. et al. Automated assembly scaffolding elevates a new tomato
663 system for high-throughput genome editing. *bioRxiv*, 2021.2011.2018.469135
664 (2021).

665 55. Rhie, A., Walenz, B.P., Koren, S. & Phillippy, A.M. Merqury: reference-free
666 quality, completeness, and phasing assessment for genome assemblies.
667 *Genome Biol* **21**, 245 (2020).

668 56. Jain, C., Rhie, A., Hansen, N.F., Koren, S. & Phillippy, A.M. Long-read
669 mapping to repetitive reference sequences using Winnowmap2. *Nat Methods*
670 (2022).

671 57. Tischler, G. & Leonard, S. biobambam: tools for read pair collation based
672 algorithms on BAM files. *Source Code for Biology and Medicine* **9** (2014).

673 58. Kirsche, M. et al. Jasmine: Population-scale structural variant comparison and
674 analysis. *bioRxiv*, 2021.2005.2027.445886 (2021).

675 59. Jia, P. et al. MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free
676 Detection of Microsatellite Instability. *Genomics Proteomics Bioinformatics*
677 **18**, 65-71 (2020).

678 60. McLaren, W. et al. The Ensembl Variant Effect Predictor. *Genome Biol* **17**,
679 122 (2016).

680 61. Simpson, J.T. et al. Detecting DNA cytosine methylation using nanopore
681 sequencing. *Nat Methods* **14**, 407-410 (2017).

682 **Uncategorized References**

683 62. Chen, T. et al. The Genome Sequence Archive Family: Toward Explosive
684 Data Growth and Diverse Data Types. *Genomics Proteomics Bioinformatics*
685 **19**, 578-583 (2021).

686

687 **Figure legends**

688 **Figure 1.** An overview of Chinese Quartet assemblies. **A** Idiogram depicts the
689 alignments between the GRCh38 (gray rectangles) and two Chinese Quartet
690 haplotypes (blue rectangles for CQ-P and orange for CQ-M). The red rectangles
691 represent the GRCh38 gaps filled by Chinese Quartet assemblies, while the gray
692 rectangles refer to unresolved gaps. **B** and **C** Examples of gaps resolved by Chinese
693 Quartet assemblies. The top and bottom channels represent the paternal and maternal
694 haplotypes, respectively. The middle channel represents the GRCh38. The depths of
695 HiFi reads on three genomes are shown with gray lines. The repeat regions and
696 genes are labeled with purple and pink rectangles, and the gaps in GRCh38 are
697 labeled with gray rectangles. **D** The bar plots show the percentage size of Chinese
698 Quartet assembled chromosomes relative to CHM13 (top) and GRCh38
699 chromosomes (bottom), without including Ns. The chromosome with more than 3%
700 difference in length is labeled with star.

701 **Figure 2.** Small variant benchmark of Chinese Quartet. **A** Overlap of SNVs and
702 Indels among ILM, HiFi, and HRA, respectively. **B** Bar plot depicts the percentage
703 of ILM, HiFi, and HRA calls in SNV (left) and Indel (right) benchmark, with gray
704 stripes representing the percentages of calls supported by BGI reads. **C** Indel length
705 distribution of Indels across HG002 and three callsets of Chinese Quartet. **D** Left bar
706 represents the percentages of indels in different combinations of three technologies.
707 Right bar represents the ratio of Indels at STR regions across different combinations
708 of three technologies. **E** IGV snapshot shows a heterozygous deletion at a TCC
709 repeat. This deletion is detected by both HRA and HiFi reads. **F** IGV snapshot shows
710 a homozygous insertion at a homopolymer region. This deletion is only detected by
711 HRA.

712 **Figure 3.** Simple SV benchmark of the Chinese Quartet. **A** Overlap of large
713 deletions and insertions among ILM, HiFi, and HRA, respectively. **B** Bar plot

714 depicts the percentage of ILM, HiFi, and HRA calls in the final simple SV
715 benchmark, with gray stripes representing the supported percentages by ONT read.
716 **C** and **D** Length distribution of large deletions and insertions in Chinese Quartet and
717 HG002. **E** Bar plots show the rate of variation supported by ONT reads in different
718 combinations of three technologies. **F** Bar plots represent the ratio of Indels at STR
719 regions in different combinations of three technologies. **G** IGV snapshot shows a 27
720 kb deletion at a segmental duplication region.

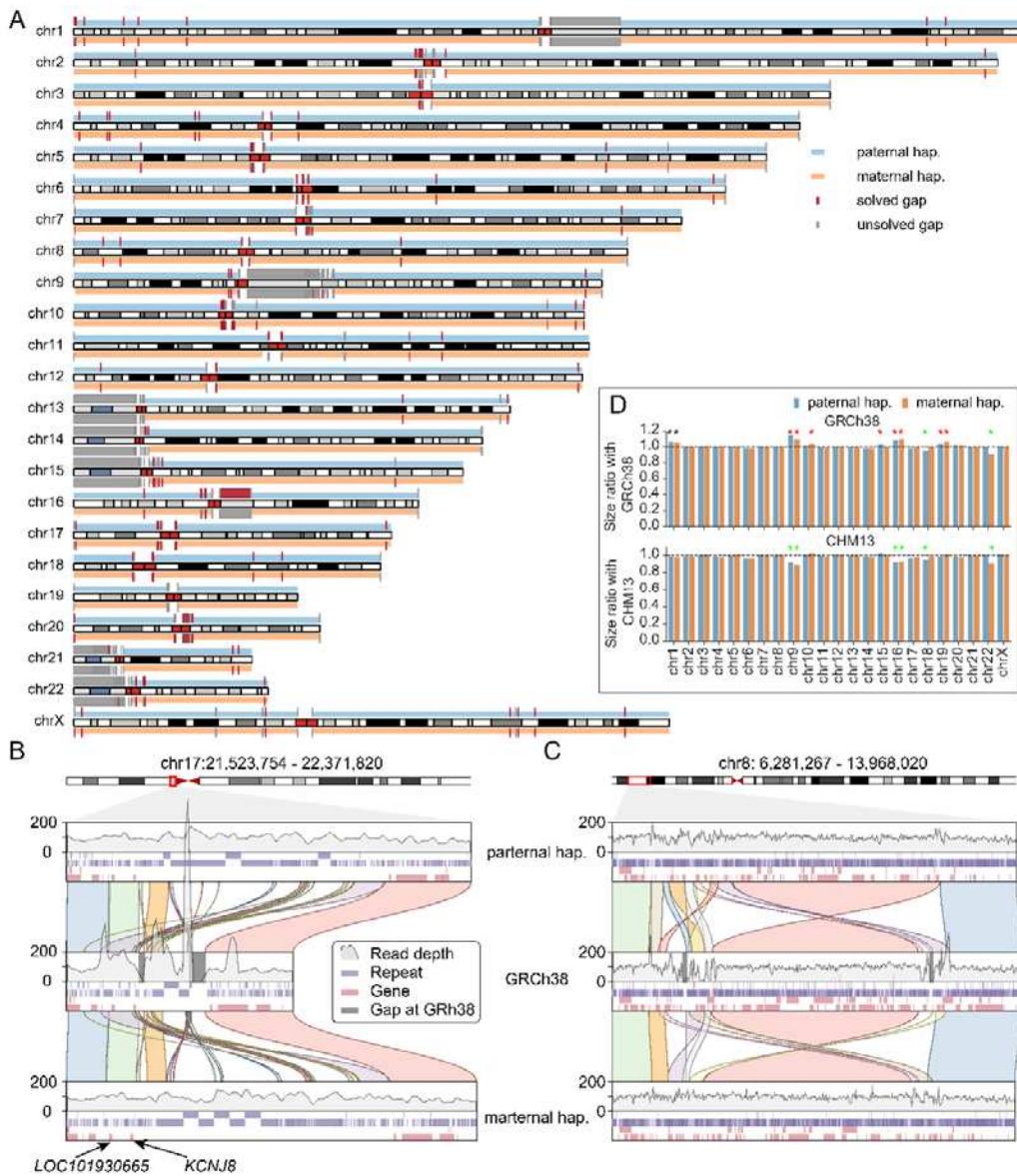
721 **Figure 4** Complex SV and inversion benchmark of Chinese Quartet. **A** Composition
722 of complex SVs and inversions. **B** and **C** The pie plot shows the composition of
723 different types of complex SVs (B) and inversions (C) in our benchmark. **D** and **E**
724 The diagram shows the read alignment pattern (D) and assemblies (E) of recurrent
725 inversion. **F** The example of recurrent inversion.

726 **Figure 5 Summary and characteristics of variant benchmark.** **A** Summary of
727 variant benchmark in Chinese Quartet. **B** and **C** The density plots show the
728 difference of variant characteristics between high-confidence and
729 technology-specific calls in small variants (B) and structural variants (C).

730 **Figure 6** Performance of Chinese Quartet assemblies and variants of in diverse
731 sequencing depths. **A** Contig N50 (left), completeness (middle) and QV (right) for
732 paternal and maternal haplotypes across $10 \times$ to $100 \times$ sequencing depths.
733 Completeness and QV are calculated by BUCSO and Merqury, respectively. **B**
734 Recall, precision, and F1-score for SNVs, indels, large deletions, and insertions
735 using assemblies with diverse sequencing depths (ranging from $10 \times$ to $100 \times$).

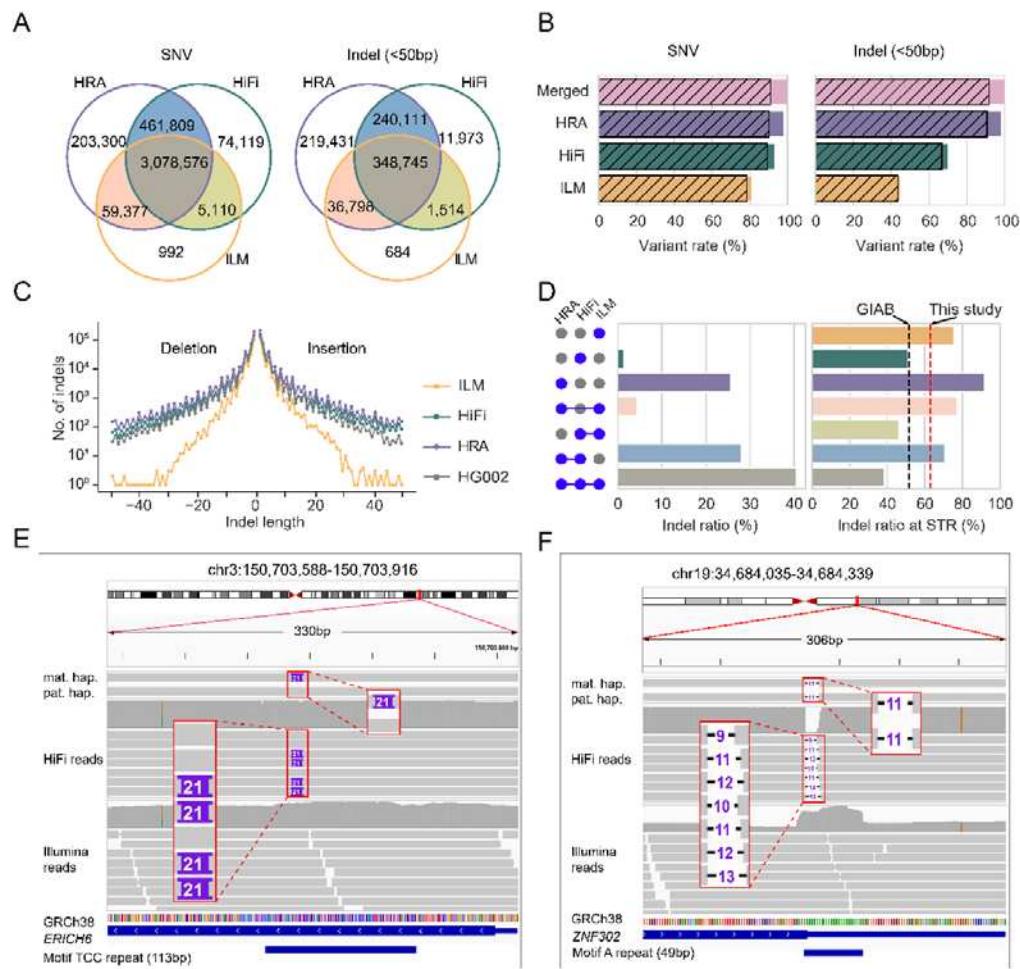
736 **Figure 7** Assemblies and variants of the Chinese Quartet at extended major
737 histocompatibility complex region. **A** Alignment of paternal and maternal
738 haplotypes to GRCh38 at extended major histocompatibility complex (xMHC)
739 region (chr6: 25,701,783-33,480,577). Both haplotypes covered the xMHC region
740 with only one contigs. Gray links between haplotypes and GRCh38 are the protein

741 coding genes resolved. **B** Genetic and epigenetic characteristics of two haplotypes.
742 **C** Violin plot shows the variants difference between two haplotypes in 10k bp
743 windows. The variant difference in xMHC region are significantly higher than that
744 in other random regions (Wilcoxon rank-sum test; SNV, $P < 0.0001$; Indel $P < 0.01$).
745 **D** Violin plot shows the heterozygous and homozygous variants count in 10k bp
746 windows. The number of heterozygous SNVs and Indels in xMHC regions are
747 significantly more than those in other random regions, while homozygous variants
748 have no significant difference. ns, not significant; *, $P < 0.05$; **, $P < 0.01$; ***, $P <$
749 0.001; ****, $P < 0.0001$.

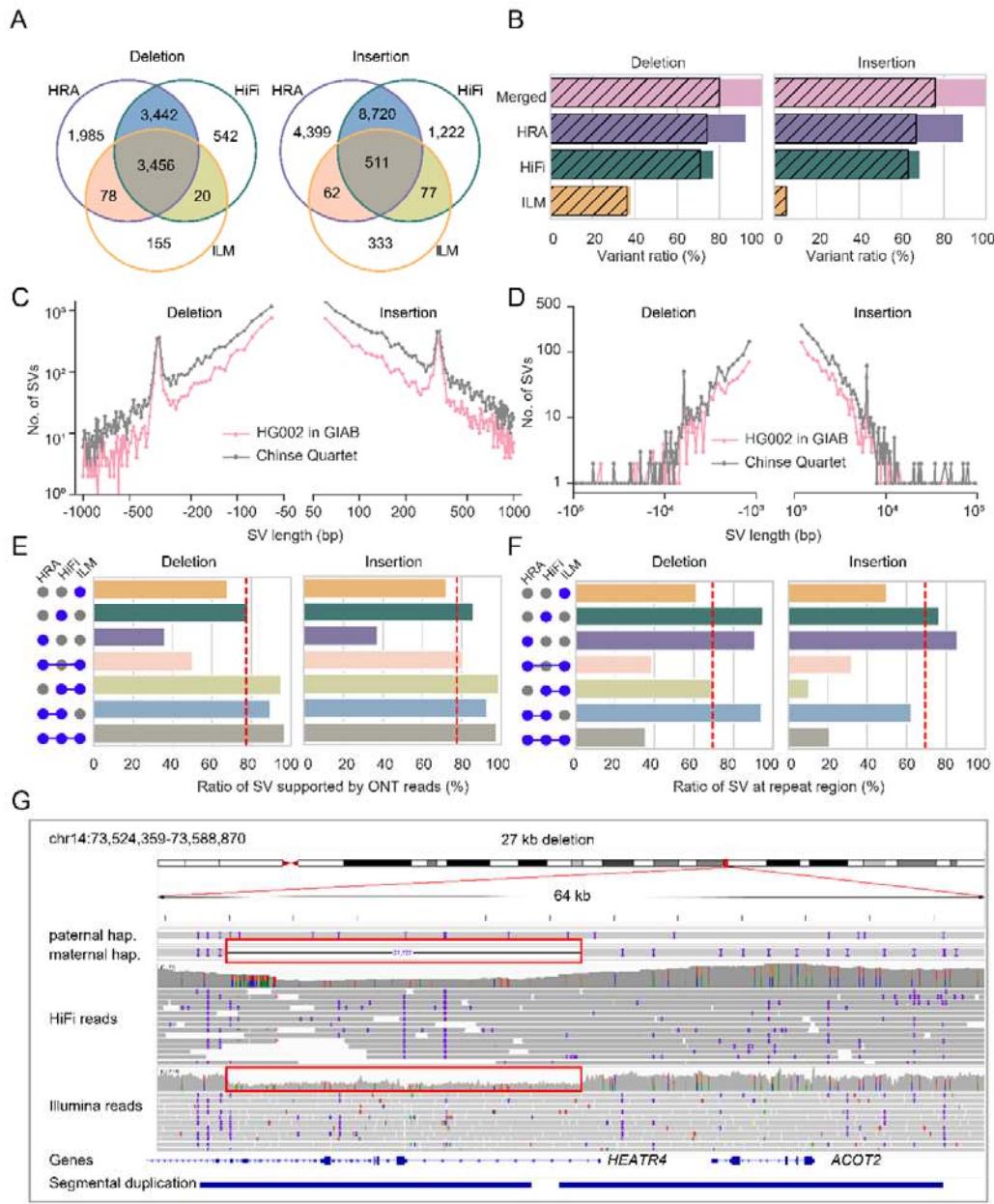

750 **Table 1:** Summary statistics comparison of haplotype-resolved
751 assemblies of Chinese Quartet and other assemblies.

Sample	Haplotype	Genome length (Gb)	No. of contigs	Contig N50 (Mb)	Completeness (BUSCO)	QV	Switch error
Chinese Quartet	Paternal	3.05	279	132.84	95.7%	50 - 58	0.050%
	Maternal	3.05	276	132.84	95.7%	52 - 59	0.048%
HJ	Paternal	3.07	1330	28.15	94.9%	52 - 59	0.815%
	Maternal	2.91	896	25.90	93.5%	54 - 58	0.813%
NA12878	Hap1	2.88	4,363	18.3	95.5%	51 - 60	0.449%
	Hap2	2.88	4,449	21.9	95.4%	51 - 60	0.435%
HG00733	Hap1	2.92	3,728	23.7	94.9%	50 - 59	0.169%
	Hap2	2.92	3,795	25.9	95.1%	51 - 59	0.171%
YH2.0	Collapsed	2.91	361,157	0.02	94.2%	NA	NA
HX1	Collapsed	2.93	5,845	8.33	94.0%	NA	NA
NH1.0	Collapsed	2.89	11,019	3.6	94.6%	NA	NA
GRCh38.p13*	Collapsed	3.21	685	56.41	94.7%	NA	NA

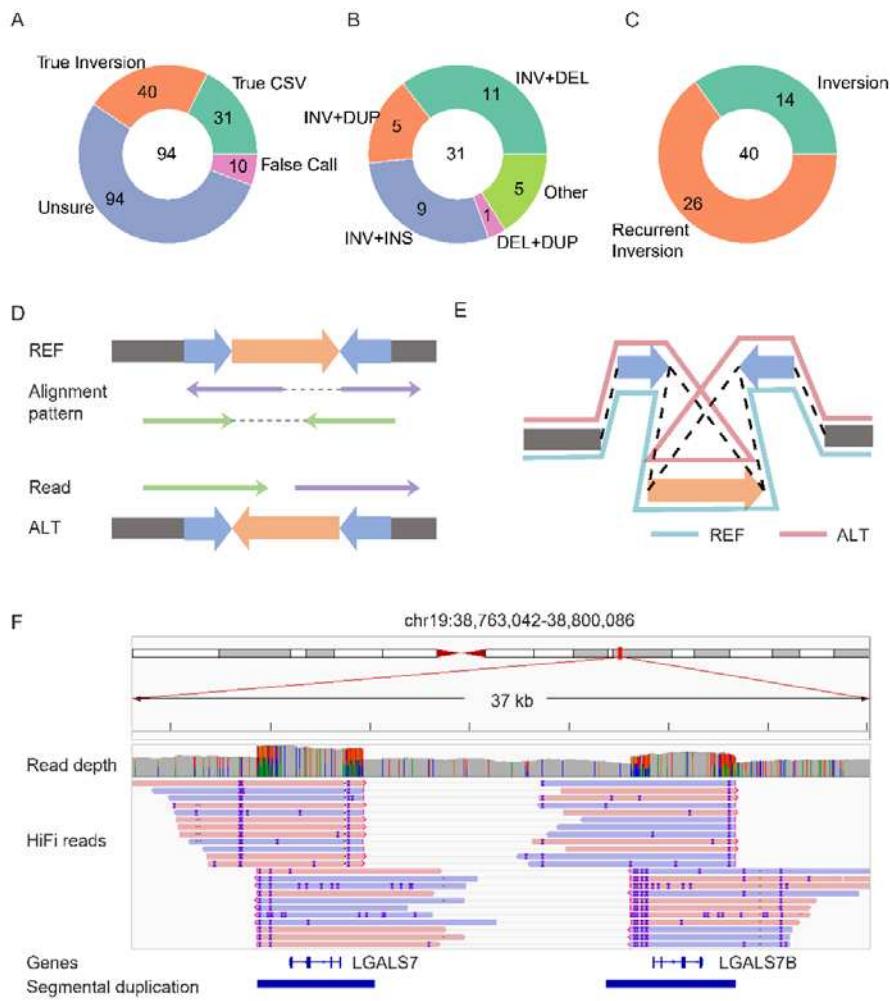
752 Note: * GRCh38 without the alternative sequences; NA: not available.


753 **Figures:**

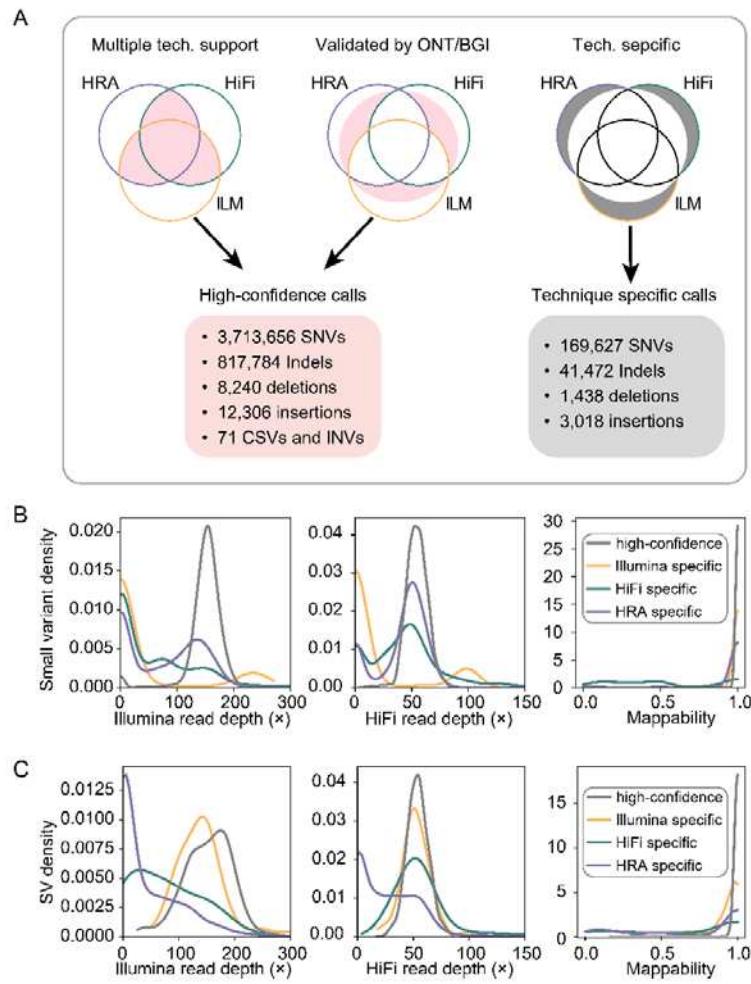
754 **Figure. 1 An overview of Chinese Quartet assemblies.**


755

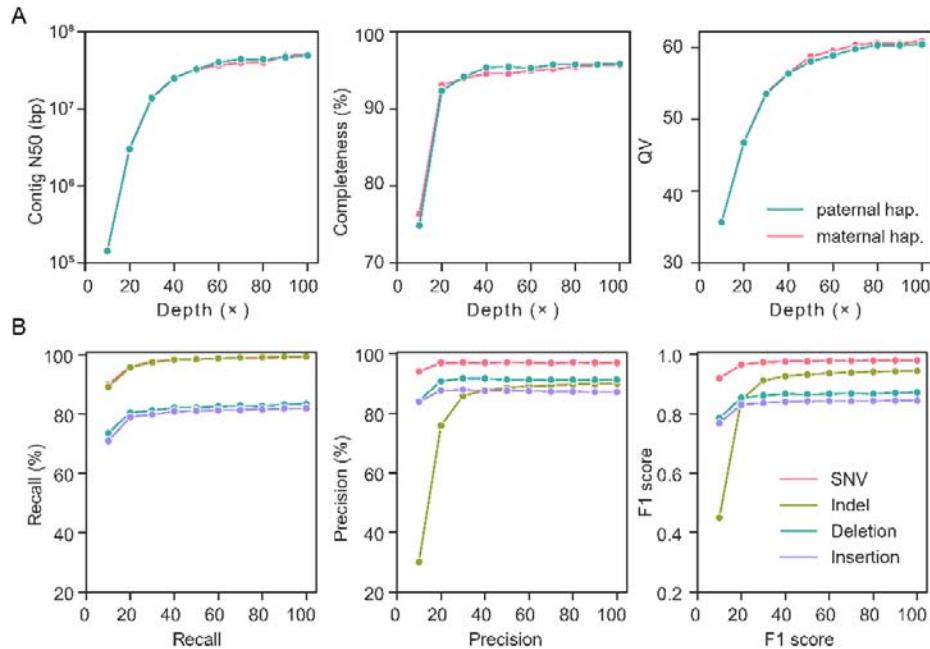
756 **Figure. 2 Small variant benchmark of Chinese Quartet**


757

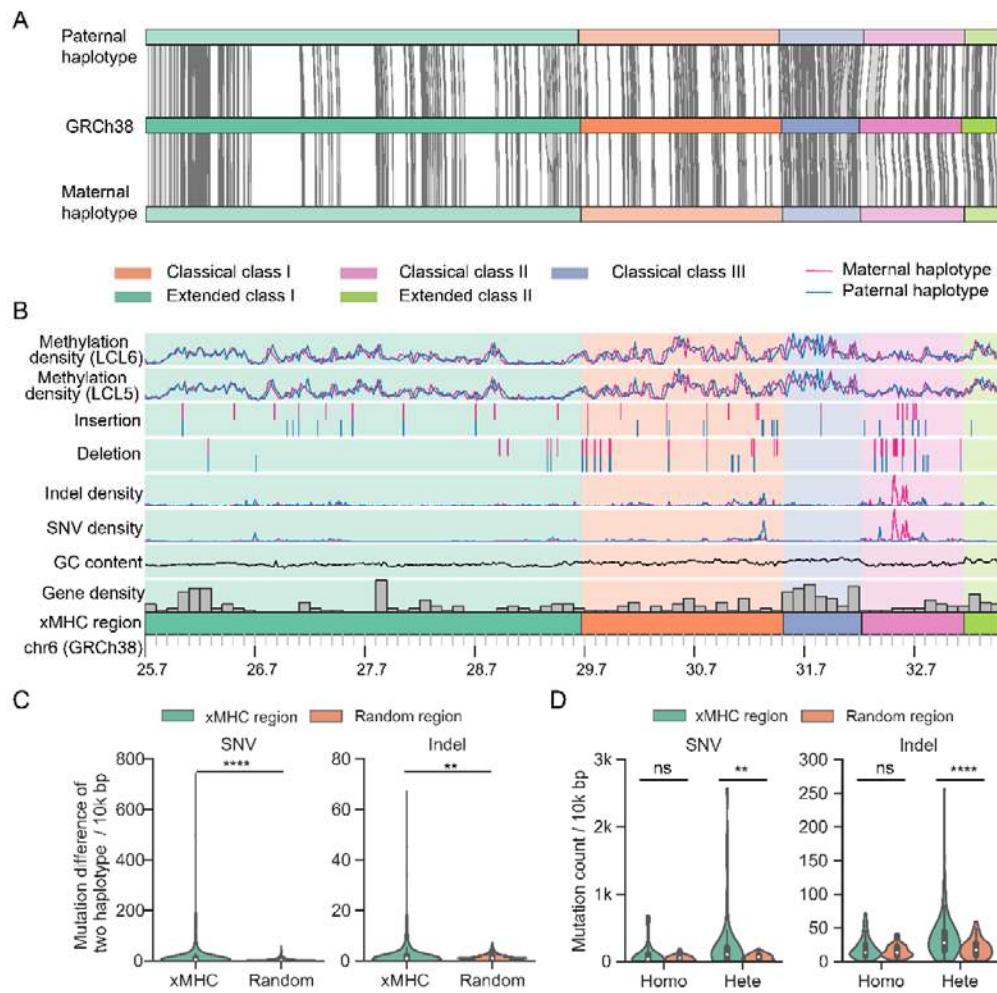
758 **Figure. 3 Simple SV benchmark of the Chinese Quartet.**


759

760 **Figure. 4 Complex SV and inversion benchmark of Chinese Quartet**


761

762 **Figure 5 Summary and characteristics of variant benchmark**


763

764 **Figure 6 Performance of Chinese Quartet assemblies and variants in diverse**
765 **sequencing depths.**

766

767 **Figure 7 Assemblies and variants of the Chinese Quartet at human leukocyte
768 antigen (HLA) region.**

769