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Abstract
Insect-borne diseases kill >0.5 million people annually. Currently available repellents for personal or
household protection are limited in their e�cacy, applicability, and safety pro�le. Here, we describe a
machine-learning-driven high-throughput method for the discovery of novel repellent molecules. To
achieve this, we digitized a large, historic dataset containing ~19,000 mosquito repellency
measurements. We then trained a graph neural network (GNN) to map molecular structure and
repellency. We applied this model to select 317 candidate molecules to test in parallelizable behavioral
assays, quantifying repellency in multiple pest species and in follow-up trials with human volunteers.
The GNN approach outpe�ormed a chemoinformatic model and produced a hit rate that increased
with training data size, suggesting that both model innovation and novel data collection were integral
to predictive accuracy. We identi�ed >10 molecules with repellency similar to or greater than the most
widely used repellents. This approach enables computational screening of billions of possible
molecules to identify empirically tractable numbers of candidate repellents, leading to accelerated
progress towards solving a global health challenge.

Introduction
Mosquitos and other blood-sucking a�hropods carry and transmit diseases that kill hundreds of
thousands of people each year1,2. To make continued progress on this global health issue, we must
discover, manufacture, and deploy more e�cient molecules for pest control across a variety of
application spaces collectively termed <vector control=; this includes molecules that a�ect life history
traits, such as insecticides, and molecules that a�ect host-seeking behavior, e.g. topical repellents for
personal protection and spatial repellents applied to a home or room. Commonly used repellents such
as DEET (N,N-diethyl-meta-toluamide), Picaridin (Hydroxyethyl isobutyl piperidine carboxylate), and
IR3535 (Ethyl butylacetylaminopropionate) require high concentrations of over 40%
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\cite{noauthor_undated-nv} which limit their use to topical applications. Fu�hermore, they have
undesirable prope�ies and/or safety pro�les; for example, DEET is a plasticizer, precluding its use on
synthetic clothing or shelter su�aces, and it is toxic to some ve�ebrate wildlife3. Some commonly
used repellents are species-speci�c; for example IR3535 is e�ective against Aedes aegypti but is
ine�ective against Anopheles mosquitoes and is therefore not recommended for use in
malaria-endemic regions. Over the past few decades, only a few dozen new repellent molecule
candidates have been found and very few have reached the market; an approach to rapidly discover
and validate large numbers of new candidates is desperately needed.

Multiple strategies exist for identifying insect repellent candidates. Behavioral assays seek to directly
test repellent activity in realistic conditions. Recognizing the devastating e�ect of insect-borne
diseases (including dengue fever) faced by the United States Army during the second world war, the
U.S. Depa�ment of Agriculture (USDA) tested 30,000 molecules for their e�ectiveness as repellents
and insects on mosquitos, ticks, and other insect species4,5. In pa�icular, 14,000 molecules were
tested for their e�ectiveness as mosquito (A. aegypti and A. quadrimaculatus) repellents using human
volunteers; this e�o� led to the discovery of DEET. Structure-targeted modeling of the obligatory
insect olfactory co-receptor Orco led to discovery of picaridin6 and VUAA17. Sca�old-hopping
techniques8 can focus the molecular search space, and in combination with arm-in-cage testing, led
to the discovery of IR35359 and DEPA10. Chemoreceptor studies exploit the molecular mechanism of
action: DEET and IR3535 modulate the activity of odorant and gustatory receptors11,12 but may also
a�ect cholinergic signaling13,14. The exact molecular details of their mode of action are not fully
understood, and may be very species-speci�c (A�fy and Po�er, 2020). It is di�cult to more broadly
and systematically explore molecular space using each of these approaches, as they can be
labor-intensive.

The USDA dataset represents a wealth of information on the relationship between molecular structure
and a�hropod behavior. Small pa�s of this dataset have been used previously to train computational
models of mosquito repellency15317, typically on speci�c structural families of molecules. Katritzky et
al.18 used an a�i�cial neural network model trained on 167 carboxamides and found 1 carboxamide
candidate with high repellency activity. As modern deep learning models show pe�ormance which
scales in propo�ion to the volume of their training data19, we hypothesized that exploiting the full size
of the USDA dataset would provide a strong sta�ing point for a new deep learning model. We selected
a graph neural network architecture (GNN), as GNNs have been shown to have superior pe�ormance
to computable chemoinformatics descriptors in predicting the prope�ies of a molecule from its
chemical structure, given a su�ciently large dataset20,21. Notably, previous work demonstrated that a
GNN-based human odor model outpe�orms standard cheminformatics models even on insect
behavior datasets.15317

Here we present a data-driven work�ow for the discovery and validation of novel molecules for
behavioral modi�cation in a�hropods. The critical components underlying the success of this
approach are 1) expanded training data made possible by a complete digitization of the USDA dataset;
2) high-quality validation data using a parallelizable membrane-feeding assay that does not require
human volunteers; and 3) a graph neural network model to learn the relationship between molecular
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structure and these data. We iteratively use this model to propose candidates from a purchasable
chemical library, validate these candidates for repellency, and use these results to expand the training
dataset and therefore improve the predictive accuracy of the behavior model (Figure 1). Through this
process we have discovered a chemically diverse set of molecules with e�ectiveness equal to or
greater than DEET, unlocking new potential capabilities in vector control.

Figure 1: Pipeline for active learning of new behavior repellent molecules.
A large historical dataset from the USDA (USDA data) was used to train a
graph neural network to generate a �xed vector representation of any
candidate molecule (USDA learned representation, USDALR). To create the
transfer-learned assay model, molecules are �rst embedded with the
USDA learned representation and fed to a dense neural network; this assay
model is trained on the assay data. A large-scale in silico molecular screen
is applied to select candidate molecules for testing in a membrane feeder
assay for repellency. Resulting data are used to train the assay model. In
subsequent iterations, the assay results are used to improve the
transfer-learning model, a form of active learning.

Results

Digitizing a rich historical dataset
The USDA dataset is unmatched in size and scope, but for decades existed only in print. Google Books
scanned and made available the original work online4, and for this work we subsequently conve�ed it
into a machine-readable format. A�er some preprocessing to make the dataset easier to read, we
employed expe� curators to transcribe the full records and provide canonical structures for each
listed molecule (Fig. 2A, Methods). We then focused our analysis on the four mosquito repellency
assays contained in this dataset: two mosquito species, Aedes aegypti and Anopheles
quadrimaculatus; and two repellency contexts, skin and cloth. Together these comprise ~19,000
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labeled data points on repellency of speci�c molecules (Fig. 2B), representing a broad range of
structural and functional classes (Fig. 2C). This large dataset served as training data for our modeling
e�o�s.

Assessment of repellent candidates
In order to test model predictions and iteratively expand the training data, we adapted a standard
membrane feeding assay (SMFA), commonly used in malaria research22,23, to evaluate the repellency
against Anopheles stephensi mosquitoes. Repellency was evaluated by prevention of blood feeding
relative to a vehicle (ethanol) control (Fig. 2D). The assay was used to evaluate each molecule’s
potency and duration of e�ect as exempli�ed for the reference molecule DEET in Fig 2E. We assessed
the inherent inter-assay reliability by comparing repellency levels for a diverse set of molecules from
independent experiments (tested at 25 µg/cm2, r=0.81, Fig. 2F). Using a cut-o� of 75% repellency as
measured 120 min a�er initial application, selected to include widely used repellents (e.g. DEET,
dimethyl phthalate, and indalone), approximately 3/4 of the molecules classi�ed as active in a �rst
assay were con�rmed to be active upon re-testing.

The USDA dataset was collected ~70 years ago using arm-in-cage experiments, involving human
volunteers, while our assay was conducted with a surrogate target. We evaluated the relationship
between these two experiments by directly comparing the activity of 38 molecules with their
repellency repo�ed in the USDA dataset. We found considerable concordance between the historical
USDA dataset and the membrane feeding assays (p<0.01 Mann Whitney U test, Fig. 2G), despite
di�erences in experimental setup. However, some disagreement was observed, highlighting the need
for additional data collection.

Modeling mosquito repellency behavior

Using the USDA dataset, we sought to create a representation of molecules speci�c to mosquito
repellency behavior. It has been previously demonstrated that graph neural networks (GNNs) are
pa�icularly adept at creating task-speci�c representations20,24, and that representational power
extends to the domain of olfaction25,26. We trained GNN models on the USDA dataset, observing an
AUC=0.881 on the cloth-Aedes aegypti task, the task with the largest dataset (Methods). We then use
the output heads from the ensemble models on all four USDA tasks to create the USDA learned
representation (USDALR, Figure 1).
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Figure 2: Overview of data sources. (A) The USDA dataset scanned into Google Books was digitized and
manually curated into a machine-readable table of repellency ratings for each compound (King, WV 1954). (B)
Digitized ratings from USDA dataset used here covered two assay types and two mosquito species. (C) The
USDA dataset covered a diverse range of chemical classes; shown here is the distribution of some ClassyFire
classes (Djoumbou-Feunang et al. 2016). Active compounds are de�ned as class 4 or higher. (D)Our validation
assay used warmed blood and an odorant-coated ne�ing; repellency was identi�ed with a decrease in feeding
behavior relative to a control odorant (ethanol). (E) Repellency measured using the assay in (D); 100% indicates
total repellency (no feeding) and 0% matches behavior using the solvent alone. Data points (mean +/- SD across
replicates) show repellency using the indicated concentration of DEET as the odorant. Top: Repellency of DEET
at t=120 min. increases with concentration. Bo�om: Repellency decreases with time a�er initial application of
the odorant (sigmoidal �t). (F) Repellency values are correlated across independent replications of the assay.
Trials 1 and 2 are not necessarily in chronological order. Test-retest values of DEET are indicated in red. Do�ed
line indicates positive activity cuto� at Repellency=0.75 for t=120min. (G) Repellency observed in the assay at
t=2 min. at 1% concentration using A. stephensi is concordant with repellency from the USDA dataset using A.
aegypti on cloth. Do�ed line represents activity cuto� at Repellency=0.9 for t=2min. for feeder assay. DEET’s
activity is represented by a red dot. Raw repellency % for USDA Class 1&2 vs Class 5: p<0.01 (Mann-Whitney U
Test); Hit percentage: p<0.05 (Z-test of propo�ions).

We sought to build a model that was speci�c for the activity behavior in our membrane feeder assay.
We created an assay model by �rst using the �xed USDA learned representation to embed input
molecules, then adding a two layer, 256-node neural network to learn to predict the assay data.

We applied the assay model to make predictions on novel repellent candidate compounds from a
large library of purchasable molecules provided by the vendor eMolecules27. We �ltered this library for
desirable qualities such as volatility and low cost, and we fu�her screened out molecules which did
not pass an inhalation toxicity �lter (Methods). From among those compounds passing these �lters
(~10k molecules), we selected those which had su�cient predicted repellency and--to ensure
novelty--which were structurally distinct (Tanimoto similarity <0.8) from those in the USDA dataset or
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previous candidate selections. Assay results from each batch of selections were added to the assay
dataset; for each subsequent batch of selections, the assay model was re-trained on the expanded
assay dataset. Detailed notes on the speci�c modeling setup for each batch are located in the
Supplementary section.

Over several iterations, a total of 400 molecules were purchased and fu�her screened empirically
according to a solubility criterion (Methods); those that passed (n=317) were then tested for
repellency with the membrane-feeder assay. Over the course of selections spanning over a year,
some adjustments were made to both the USDA model and the membrane-feeder assay. In pa�icular,
our hit de�nition evolved with our dataset size and model capability: we initially de�ned a hit as ≥90%
repellency using a dose of 25 µg/cm2 as measured at T=2min (≥1 measurement), but in the �nal batch
of selections, we changed our de�nition to ≥75% repellency as measured at T=120min (≥3
measurements).

The hit rate improves with training data size

To evaluate the contribution of the training data to our pe�ormance, we retrospectively scored
high-repellency candidates in two phases: before the USDA dataset was available (pre-USDA) and
a�er we began using the USDA dataset to build and deploy the USDA learned representation
(post-USDA). In the pre-USDA phase, instead of using the USDA learned representation to embed
molecules, we employed an odor-speci�c representation previously demonstrated to outpe�orm
standard cheminformatics representations on olfaction related tasks26. Fu�her, at that time, we only
had assay data for 34 molecules, so we opted to use a k-nearest neighbors model (k=10) to model
assay activity. In the post-USDA phase, the assay dataset size for the �rst batch was 142 molecules,
and grew to a size of 402 molecules for our �nal batch of selections (Supplemental Batch Notes).

This large dataset made a huge di�erence; hit rates post-USDA measured on repellency time=2min
increased to 49% from the pre-USDA level of only 29% (Figure 3A). When we then raised the bar for
<hit= classi�cation to require a longer duration of e�ect, hit rates dropped to 6% for predictions from
the post-UDSA phase and 3% for predictions from the pre-USDA phase. It is impo�ant to note that
only the last batch in the post-USDA phase was trained to �nd candidates meeting this new repellent
standard; fu�her iterations may have continued to improve pe�ormance as they did under the
previous standard.

This <hit rate= comparison across the two di�erent experimental phases aggregates changes in both
representational approach and assay dataset size; how much did the USDA learned representation
speci�cally, and by extension the USDA dataset, improve our model’s pe�ormance?
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Figure 3: The table re�ects experimental testing set up in pre-USDA phase, i.e. before the
use of the USDA dataset for modeling, and post-USDA phase, i.e. a�er the use of the USDA
dataset. (A) Active repellent compounds found at a much higher rate in post-USDA phase
(49%) vs. pre-USDA phase (29%). Hits are de�ned as compounds that showed >90%
repellency in the feeder assay at initial application (t=2 min) or >75% repellency a�er 2 hours
of evaporation (t=120). Error bars represent the standard error of jackknife estimated mean
values. (B) In a retrospective prediction task, USDA learned representation model (USDALR)
outpe�orms models using cheminformatics representation (Mordred, Moriwaki et al, 2018)
and odor-based representation (Qian et al. 2022). Models were trained on assay data
collected before USDA modeling (88 data points), and evaluated on post-USDA
measurements (170 data points). Error bars represent 95% bootstrap-resampling con�dence
intervals.

To estimate the contributions of the USDA representation, we pe�ormed a retrospective analysis
comparing the USDA representation against two other chemical representation approaches: a
cheminformatics representation (using Mordred descriptors28) and the odor-based representation26

used in the pre-USDA phase. The same assay model architecture was used for the di�erent
representations. We split the full assay dataset into two pa�s, a training set composed of molecules
from all batches of tests pe�ormed before the use of the USDA dataset (88 measurements) and an
evaluation set of all molecules selected in the post-USDA phase (170 measurements).

We observed that the USDA learned representation model signi�cantly outpe�ormed both
alternatives on this prediction task (Figure 3B; USDA model AUC=0.74 [0.68,0.81]; Chemoinformatics
model AUC=0.59 [0.50,0.67]; GNN Odor model AUC=0.60 [0.51,0.67]), suggesting that the historical
dataset played a signi�cant role in the elevated predictive pe�ormance. There is a selection bias
because the selection of molecules for evaluation was done by the assay model using USDA learned
representations. One e�ect of this bias is that it reduces the expected number of negative examples,
reducing the contrast between predicted repellents and non-repellents, resulting in a negative bias
into all AUC measurements. However, the model used for selection should su�er the greatest
negative bias, suggesting that the pe�ormance di�erence we observed is an underestimate of the
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true advantage that the USDA model has over its alternatives, as would have been observed under a
counte�actual unbiased selection of repellent candidates.

Figure 4: (A) The model-selected molecules are distributed throughout the chemical space, with some active
molecules found both near and far from USDA clusters. Shown is a UMAP embedding of USDA active molecules (light
blue), and model selected molecules (dark blue), aligned with the eMolecules library (grey heatmap), using Morgan
�ngerprint features (r=4, n=2048). The positions of a few high-repellency, model-selected compounds and several
known repellents are shown. (B) Tanimoto distance of ML-selected candidates to the USDA dataset; molecules were
selected to be at least Tanimoto distance=0.2 away from other USDA molecules, with active candidates having a lower
median distance away from the USDA dataset (median=0.48) compared to inactive candidates (median=0.54). (C)
Distribution of ClassyFire classes (Djoumbou-Feunang et al., 2016) in the USDA dataset and the TropIQ selections.
TropIQ selections are enriched for organoheterocyclic compounds, ethers, benzenoids, and carboxylic acid
derivatives.

Selected hit molecules are chemically diverse
Training a model on a large pool of data containing a variety of molecules allows the model to
generalize to larger areas of chemical space. Figure 4 shows the distribution of molecules selected by
our post-USDA models, and compares them to the active molecules repo�ed in the USDA dataset
itself. The candidate selections made by our model explore some of the same regions of the USDA
dataset, but �nd hits in some underexplored regions of the original dataset (Figure 4A). The
ML-selected molecules were required to be a minimum of 0.2 Tanimoto distance from USDA
molecules; we observe an overall median Tanimoto distance of 0.52 from USDA molecules across all
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of our selections, and a median distance of 0.48 from USDA molecules amongst active molecules
(Figure 4B). Using ClassyFire29 to annotate each molecule, we found that molecules selected by our
model are enriched in benzenoids, ethers, carboxylic acid derivatives, and organoheterocyclic
molecules when compared to the molecules measured by the USDA dataset (Figure 4C).

Top candidates show strong repellency in additional applications
While the membrane feeder assay provides a rapid measurement of repellency e�ectiveness, for
real-world applications it is necessary to consider the e�ect of odorants released by human skin. To
assess repellency of hit molecules in the context of host skin emanations, we tested a representative
set of our molecules in arm-by-cage experiments (Fig. 5A). To this end, we selected 31 hit molecules
that showed ≥75% repellency at a density of 25 µg/cm2 at T=120 minutes at least once in the
membrane feeder experiments, and 4 molecules with lower repellency activities. When tested at a
density of 13 µg/cm2 in the arm-by-cage experiments, 43% of the tested molecules pe�orm very well
(≥75% repellency) and 67% of those even outpe�orm DEET (>84% repellency) (Fig. 5B). Overall, we
observed high correspondence between repellency as measured in the feeder vs. the arm-in-cage
assays (r=0.64), with 83% of hits from the former also reaching the hit threshold in the la�er (Fig. 5C).

Our primary assay assessed repellency against A. stephensi, but other pest species also carry
disease, and there are some known species-speci�c di�erences in repellency of known molecules
(e.g. IR3535). To address this concern, we selected 16 molecules based on their activity against A.
stephensi, 9 strong and 7 weak repellents. We then used the original assay to test them against A.
aegypti and a modi�ed assay (Fig. 5D) to test against I. scapularis, the black-legged tick. We observed
signi�cant generalization across pest species: 8 of the strong repellents (88%) demonstrated good
repellency (>50% repellency) at 25 µg/cm2 against A. aegypti, and 12 (75%) molecules were active
(>75% repellency) at 540 µg/cm2 against I. scapularis (ED50 of DEET ≈120 µg/cm2, Fig. 5E).
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Figure 5: Model-selected and feeder assay validated compounds show high
pe�ormance across context and species. (A) Experimental setup of
arm-by-cage experiments on Anopheles stephensi. (B) Arm-by-cage repellency
of molecules previously determined to be repellent in the membrane feeder
assay. (C) Activities of repellents identi�ed in the membrane feeding assay
correlate well with the activity in arm-by-cage assays. (D) Experimental setup of
Ixodes scapularis (tick) repellency assay. Ticks are placed in a
repellent-impregnated ring on a heated bed and the number of ticks that cross
the ring are counted. (E) Repellency of molecules is correlated across species;
one line corresponds to one compound.

Discussion
We developed and validated novel methods for identifying potential repellent molecules for vector
control of deadly human and animal diseases. First, we digitized a historic dataset rich with an
unprecedented volume of relevant repellency data covering thousands of molecules. Second, we
applied and re�ned a deep learning model architecture to learn the mapping between molecular
structure and repellency in this dataset. Third, we used a high-throughput experimental assay to
prospectively validate predictions from this model, and to conduct active learning to iteratively
improve model predictions. Finally, we showed that these predictions identify new repellent
candidates in underexplored regions of chemical space, and that some of these molecules show
applicability across real-life context and across pest species. This represents a promising approach to
identify next-generation repellents and help solve one of humanity’s greatest global health challenges.

Despite containing a surprisingly large quantity of relevant repellency data, the USDA dataset has
remained underused, garnering only ~200 citations in the last 50 years. This surely stemmed in pa�
from the limited visibility and accessibility of the data during most of this period, where it was
accessible only via paper handbooks in physical libraries. The Google Books digitization project
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scanned these handbooks, making images of the data visible to anyone with an internet connection.
However, many of the chemical names contained there-in were archaic or ambiguous, and so could
not be e�o�lessly mapped to chemical structures; the repellency values themselves were also not
machine readable. The manual curation and digitization that we pe�ormed was the last step to unlock
the power of these historical records. The general pa�ern of connecting di�use experimental records
to suppo� larger modeling e�o�s and meta-analyses continues to bear fruit30,31.

How impo�ant were these data? Machine learning is data-driven, and frequently su�ers from <cold
sta�= problems; deep learning models are especially data-hungry, and �nding enough data to train
them to state-of-the-a� pe�ormance can be a major challenge. The USDA dataset solved this
problem by allowing us to train a dra� model, which we were then able to build upon using data from a
modern experimental assay. Several previous e�o�s to identify new repellents using machine learning
have used only several dozen similar molecules to train their models15317,32. A larger slice of the
historical dataset (~2000 molecules) has been used to train a neural network model to both predict
repellency and verify the repellency of known repellents33. Recently, larger datasets are becoming
available for receptor-targeted QSAR (RT-QSAR)34,35, but until this current work, no machine-readable
large-scale datasets have been available for BT-QSAR.

Most previous publications validated their repellency models only retrospectively by predicting the
activity of known repellents, rather than prospectively36 by using the model to identify new molecules
with repellency behavior. This typically leads to overestimation of predictive pe�ormance of new
repellent candidates. By contrast, we collected assay data for prospective validation of the model, and
fu�her used this data in an active learning loop to re�ne the model, showing continued improvement
in predictive pe�ormance as new data was collected.

Prospective validation has been used in the past to discover new repellent molecules: Picaridin was
discovered at Bayer using pharmacophore modeling6, and a small set of acylpiperdines were
discovered using neural networks trained on a small subset of USDA data17. However, these novel
repellents have typically been structural near-neighbors of existing repellents. By contrast, our
model-selected candidates cover a much wider range of structural classes than previous repellency
discovery a�empts, facilitating our discovery of molecules with repellency activity greater than DEET
even at 2 hours a�er application, and a subset that have repellency e�cacy when tested in the
presence of a�ractive human skin emanations.

Machine learning, and pa�icularly deep learning, is yielding impressive advances in applications in
chemistry. Several academic and industrial groups have used deep learning models to screen for new
molecules with desirable prope�ies, such as antibiotic activity or protein binding a�nity34,37339. The
methods outlined in this paper can also be applied to other disease vectors, other classes of
behavior-modifying molecules, and more broadly to enable hit discovery in arbitrary chemical
applications. Future work will be required to impose additional �lters or modeling steps to satisfy
additional criteria related to safety, biodegradability, odor, and skin-feel, in conjunction with
experimental data about these impo�ant factors.
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Methods

Mosquitoes and ticks
Both Anopheles stephensi and Aedes aegypti mosquitoes were maintained on a 5% sugar solution in a
26 °C environment with 80% humidity, according to standard rearing procedures. Adult Ixodes
scapularis ticks were maintained in a 26 °C environment with 90% humidity.

Mosquito behavioral assays
Before each membrane feeding assay, 10-20 female Anopheles stephensi or Aedes aegypti
mosquitoes (3-5 days old) were transferred to a paper cup covered with mosquito ne�ing. The
mosquitoes were denied access to their normal sugar solution 4-6 hours prior to the feeding assay. 30
µl of test molecule, dissolved in ethanol, was pipe�ed on a piece of mosquito ne�ing (3x3 cm) and
allowed to dry. To ensure a regular and standardized ai�low over the samples, a gastronorm tray (½
200mm) equipped with a computer fan (80x80x25mm, 12V, 0.08A) was placed over the samples.
A�er a speci�ed time of evaporation (e.g., 2 hours), the sample was placed on top of the cup
containing the mosquitoes. The cups were then placed under a row of glass membrane feeders
containing a pre-warmed (37 °C) blood meal. The mosquitoes were allowed to feed for 15 minutes.
The number of fed and unfed mosquitoes were then recorded.

For the arm-by-cage assays, 30-50 female Anopheles stephensi mosquitoes were transferred to an
acrylic cup (150x100mm) covered with mosquito ne�ing. 1 mL of test molecule (0.5% w/v), dissolved
in ethanol, was pipe�ed on a piece of cheesecloth (6x9 cm) and taped to an acrylic panel (6mm thick)
with a cutout and allowed to dry. A panel with an untreated piece of cloth was then placed next to the
acrylic cups containing the mosquitoes and a volunteer placed his hand against the panel for 5
minutes. The mosquitoes were �lmed and the maximum number of mosquitoes landing
simultaneously was recorded. This was then repeated with a piece of treated cloth and the number of
landings was normalized to the control, which is the ethanol solvent alone. All arm-by-cage assays
were designed and run by TropIQ.

Tick behavioral assays
The setup of the tick repellency assay is shown in �gure 5D. The assay consists of a heated (37ºC)
aluminum plate (235 x 235 mm) that is painted white. Before the test, 750 µl of test molecule,
dissolved in ethanol, is pipe�ed on a ring of �lter paper (OD = 150 mm, ID = 122 mm). The ring is then
transferred onto the heated plate and 5 Ixodes scapularis ticks are placed in the center. The ticks are
monitored for 5 minutes and the number of ticks that cross the �lter paper are counted. Repellency is
expressed as the percentage of ticks that did not cross the �lter paper.

Historical dataset preparation
The scanned versions of the USDA datasets, available from Google Books, were conve�ed into a
machine-readable format. Chemical structures (Simpli�ed Molecular-Input Line-Entry System, or
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SMILES) 40 were assigned to each single molecule entry in the dataset. The raw PDFs of the two
repellency handbooks41,42 used to create the USDA dataset are available on Google Books. For this
study, the PDFs were conve�ed to png �les, then sliced by rows according to bounding boxes drawn
by curators. The row sliced images and the full page images were provided to a third-pa�y curation
service, who transcribed the chemical names as SMILES and corresponding assay results.
Post-processing analysis and evaluation of a random sample of 150 entries suggest an error rate of
<5% in the chemical structures. The �nal dataset resulted in 18,886 data points on 14,187 molecules.
This includes the results on two assay setups, one testing the e�ectiveness of the candidates on
cloth, the other on human skin, and also two di�erent mosquito species (Aedes aegypti and
Anopheles quadrimaculatus); all four combinations of these two species and conditions were used in
this study. USDA dataset labels in the source material were repellency ratings given as integers from 1
(worst) to 5 (best).41

USDA Dataset Modeling and Representation Learning
Each of the USDA tasks was split into a 70�15�15 train/validation/test split such that molecules were
assigned to the same split across all tasks; in pa�icular, if a molecule is in the training set for one task,
it was also in the training split for the other tasks for which there was a measurement. Molecules in the
USDA dataset that were also used in the pre-USDA phase (Batches 1-3, see Supplementary Batch
notes) were excluded from the USDA training sets. Iterative strati�cation over the label classes across
each task was applied to balance the labels in the training/validation/test splits for each task.

Graph neural network models (GNNs) were trained on each of the four mosquito repellent tasks from
the USDA dataset. Each model provided predicted probabilities of the class label and combination
class labels; speci�cally, the model predicted the probability of the class label being: [1], [2], [3], [4], [5],
[1 OR 3 OR 4 OR 5], [3 OR 4 OR 5], [1 OR 4 OR 5]. AUROC pe�ormance on the [3 OR 4 OR 5] label
objective was used to optimize the models. The graph neural network used message passing layers
(MPNN44), with a max atom size of 45, 30 atom features, and 6 bond features. Hyperparameter
selections were made using the Vizier43 default Bayesian optimization algorithm over 300 trials.

The USDA learned representation was constructed from the outputs of the frozen ensemble model of
the best 50 models from hyperparameters trained on the USDA dataset. For the last batch of
selections, the models used to create the ensemble model ranged in AUROC pe�ormance from 0.872
to 0.881.

Model Training on Membrane Feeding Assay Data
To train the models for activity in membrane feeding assays, assay results were binarized: a positive
label for repellency activity was de�ned as >90% at T=2min at 25 µg/cm2, and >75% for T=120min. For
model evaluation and hyperparameter selection, the dataset was split into a 70�30 train/test split,
using iterative strati�cation to balance the label classes. The model trained on the USDA dataset was
used to generate specialized representations for the molecules. A two-layer neural network model
with 256 nodes was used to predict the binarized activity label given the molecule; the
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hyperparameters of this model were selected with grid search. At inference time, to make predictions
on new candidates, the model was retrained using the entire dataset.

Molecule Selection
We began by �ltering molecules listed in the eMolecules catalog -- which contains ~1 million
commercially available molecules -- for atom composition (C/N/O/S/H only), price (<$1000 per 10
grams), purity (>95%), and availability (<4 weeks lead time). We utilized a toxicity �lter to remove
potentially harmful molecules, according to a toxicologist-recommended protocol. In this protocol, we
classi�ed molecules by their mutagen / Cramer class using ToxTree, calculated their vapor pressure at
room temperature, and then compared the likely exposure air volume to OSHA daily exposure limits
for the corresponding toxicity class. We removed likely odorless molecules according to water-soluble
(cLogP < 0) and nonvolatile (boiling point > 300 C) criteria. We manually removed molecules that were
likely to degrade or react under our experimental conditions. A�er training the assay model,
molecules were selected such that they had a prediction score above an f1 optimized cuto� score,
and then selected such that they had a Tanimoto similarity of <0.8 from other selected molecules and
the USDA dataset. A minimum solubility threshold of 10 mg/ml in absolute ethanol was used as a last
criterion. Molecules with an ethanol solubility below the threshold were abandoned. Detailed selection
criteria for batches are repo�ed in the Supplemental section.
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