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Abstract 
Motivation: High throughput omics technologies have generated a wealth of large protein, gene and 
transcript datasets that have exacerbated the need for new methods to analyse and compare big da-
tasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visu-
alize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses. 
Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at both gene level 
and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers 
are an order of magnitude larger than gene numbers. 
Results: We tested the tool on synthetic and real datasets at gene and transcript levels to detect cor-
relation and anti-correlation patterns and found it to be fast and accurate, even on very large datasets 
thanks to an evolutionary algorithm based minimal P-value search. The tool comes with a ready-to-use 
permutation scheme allowing the computation of adjusted P-values at low time cost. Additionally, the 
package is a drop-in replacement to previous packages as a compatibility mode is included, allowing 
to re-run older studies with close to no change to existing pipelines. RedRibbon holds the promise to 
accurately extricate detailed information from large analyses. 
Availability: RNA-sequencing datasets are available through the Gene Expression Omnibus (GEO) 
portal with accession numbers GSE159984, GSE133218, GSE137136, GSE98485, GSE148058 and 
GSE108413. The C libraries and R package code are open to the community with a permissive licence 
(GPL3) and available for download from GitHub https://github.com/antpiron/ale, 
https://github.com/antpiron/cRedRibbon and https://github.com/antpiron/RedRibbon. 
Contact: anthony.piron@ulb.be 

 

 

1 Introduction 

During the past two decades, we have seen a democratization of high 

throughput sequencing technologies. The cost of DNA sequencing went 

down by six orders of magnitude from 2000 to 2022 (Lewin, et al., 2018). 

High throughput sequencing has led to the generation of large and diverse 

datasets covering multiple omics, including genomes, transcriptomes and 

proteomes. Alternative splicing generates massive protein diversity. 

Through the inclusion or exclusion of exons from pre-mRNAs, distinct 

mature mRNAs give birth to multiple proteins with different functions 

(Black, 2003). Thereby, in humans, more than 200,000 different proteins 

are produced from around 20,000 protein coding genes (Alvelos, et al., 

2018). Alternative splicing is omnipresent in eukaryotic cells, with 80% 

of protein coding genes undergoing it. On average, a human gene is 

spliced into 4.4 transcripts. Alternative splicing is implicated in many dis-

eases (López-Bigas, et al., 2005). Its analysis is challenging as most 

studies and pathway databases are gene-centric (Liberzon, et al., 2011) 

and the number of transcripts or splicing events can be overwhelming. 

Most studies aggregate transcript expression levels at gene level, thus los-

ing crucial information about isoforms that may play different or even op-

posite roles. Collectively, the widespread use of these omics technologies 

has exacerbated the need for new methods to analyse and compare diverse 

and ever larger datasets. Multiple data aggregation initiatives collected 

those datasets, including amongst others: Gene Expression Omnibus 

(Barrett, et al., 2012; Edgar, et al., 2002), the Genotype-Tissue Expression 

(GTEx) Project (Lonsdale, et al., 2013) and the Translational Human Pan-

creatic Islet Genotype Tissue-Expression Resource (TIGER) (Alonso, et 

al., 2021). 

Rank-rank hypergeometric overlap (RRHO) has been developed to com-

pare two lists of differentially expressed genes generated with microarray 

technology (Plaisier, et al., 2010) and it was further improved with alter-

native statistics and better enrichment sets (Cahill, et al., 2018). RRHO 

compares two labelled ranked lists of real numbers. The labels can be 
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gene/transcript identifiers or any other unique identifier. The values can 

be fold changes, P-values, slopes or another meaningful ranked statistic. 

The method detects the enrichments at the extremities of the ranked lists. 

For example, using two lists of fold change in gene expression, it allows 

the construction of enriched gene sets for the four possible directions, i.e. 

downregulated-downregulated, upregulated-upregulated, downregulated-

upregulated and upregulated-downregulated. The method proceeds by 

computing, for all coordinates (ÿ, Ā) in the two compared lists, an enrich-

ment P-value from the number of labels in common at the extremities up 

to the coordinate with the hypergeometric distribution. The coordinates 

with the minimal P-value are used to determine the most significant gene 

set. The method can thus be seen as a 2D generalisation of Gene Set En-

richment Analysis (Mootha, et al., 2003; Subramanian, et al., 2005). 

The RRHO method allowed us and others to generate meaningful com-

parisons of differential gene and protein expression data (Blencowe, et al., 

2022; Colli, et al., 2020; Colli, et al., 2020; Lytrivi, et al., 2020; Marselli, 

et al., 2020), but its application revealed shortcomings that required adap-

tation of the original RRHO R package (Marselli, et al., 2020). Nonethe-

less, major shortcomings remained. First, the original R package is limited 

by R language real number representation (R Core Team, 2022). This rep-

resentation often leads to an underflow, i.e., a P-value that is rounded to 

zero below a threshold. Therefore, the zero P-values become indistin-

guishable from each other, making the detection of the minimal P-value 

impossible and lowering the accuracy of the method. Second, the execu-

tion time follows a cubic growth depending on the list length, making it 

unpractical for large lists. To circumvent these long run times, the original 

R package offers the possibility to skip some coordinates in the map, trad-

ing accuracy for performance. The recommended step size is between 100 

and 500 for lists of 10,000 to 50,000 elements (with the number of element 

square root as default value) introducing a potential inaccuracy of hun-

dreds of genes. 

In recent years, methods have been developed to accurately quantify tran-

script expression levels, including splice variants, from RNA-sequencing 

(RNA-Seq) reads, e.g. Salmon (Patro, et al., 2017), kallisto (Bray, et al., 

2016) and RSEM (Li and Dewey, 2011). Despite the progress in transcript 

quantification methods, to our knowledge, there are no tools available to 

compare transcript level differential analyses without prior gene level ag-

gregation. As the total number of transcripts quantified by RNA-Seq is an 

order of magnitude higher than for genes, existing RRHO packages are 

inadequate. Plaisier et al. suggested to compute corrected P-values by per-

muting samples and re-running differential and RRHO analyses a thou-

sand times (Plaisier, et al., 2010). This permutation method is slow for 

large gene expression analyses and renders transcript expression analyses 

prohibitive (or inaccurate with very large step sizes).  

To address the above-described unmet need for comparative analysis tools 

of diverse omics datasets including transcripts, we developed RedRibbon. 

RedRibbon is a complete rewrite of the original RRHO package bearing 

in mind performance and accuracy, introducing novel data structures and 

algorithms, and an all-in-one permutation method to adjust the minimal P-

value. The improvements in performance and accuracy have been assessed 

using synthetic datasets and previously reported results (Marselli, et al., 

2020). We applied the method to compare alternative splicing results in 

experimental models of diabetes, including the human EndoC-òH1 beta 

cell line and pancreatic islets. 

2 Methods 

The RedRibbon package is a complete rewrite of the original package 

(Plaisier, et al., 2010; Rosenblatt and Stein, 2014) with performance in 

mind and including novel algorithms and data structures. RedRibbon 

allows to do a full RRHO analysis with adjusted P-values over lists or 

differential analyses containing millions of elements. A C library and an 

easy-to-use R package are provided. It implements new performant algo-

rithms to find the minimal P-value, a novel adjusted minimal P-values 

computation algorithm, improved plots and parallel execution. 

2.1 RedRibbon workflow 

The input for RedRibbon is two lists of gene or transcript ranked statistics 

such as fold change or direction signed P-value (Fig. 1A). From these, the 

minimal hypergeometric P-value coordinates are identified in the four 

quadrants of the level map using the original method (Plaisier, et al., 2010) 

3  called in this manuscript <grid method= in reference to the grid-like 

traversal of the coordinate matrix 3 or our fast and accurate evolutionary 

algorithm (see below). Locating the minimal coordinates aims to split 

overlapping map quadrants into two areas, an enriched and a randomly 

ordered region. Optionally, the minimal P-value can be adjusted consider-

ing expression level correlation between genes or transcripts. The result is 

four transcript sets, one per quadrant. The enrichment result, the corrected 

P-values and the four quadrants can be visualized in an overlap map. 

Pathway enrichment analyses usually use overlapping genes in each quad-

rant. For transcript level analyses, as most databases are gene centric, it is 

necessary to convert transcripts to genes. Gprofiler2 R package (Kolberg, 

et al., 2020) and clusterprofiler R package (Wu, et al., 2021; Yu, et al., 

2012) were used to do the enrichment analysis respectively for gene level 

and alternative splicing analyses. For alternative splicing analysis, we cre-

ated 5 new pathways, namely SRSF6 regulation, type 2 diabetes, positive 

regulation of apoptosis, insulin secretion and JNK signalling. The list of 

spliced genes regulated by SRSF6 were taken from (Juan-Mateu, et al., 

2018) (the spliced gene lists are reproduced in the present Fig. 4A) and 

have been converted into clusterProfiler-ready format. 

2.2 RedRibbon rank-rank hypergeometric overlap 

2.2.1 P-value computation 

RedRibbon P-values can be computed with one- or two-sided or compat-

ible with the original R module two-sided statistics. With ā being the num-

ber of genes in common for the coordinate (ÿ, Ā) in an RRHO map of size ÿ × ÿ, the P-value is computed as  

āăÿĂ = { 1 2  ÿĀĂ/þ���(ā 2 1, ÿ , Ā, ÿ)2 ∗ min (1 2  ÿĀĂ/þ���(ā 2 1, ÿ , Ā, ÿ), ÿĀĂ/þ���(ā, ÿ , Ā, ÿ)) ĂĀÿ Āÿă ĀÿĂăĂĂĀÿ āĄĀ ĀÿĂăĂ 

The two-sided test allows to detect enrichment both in correlated (up/up 

and down/down) and anti-correlated (up/down and down/up) genes. The 

anti-correlated genes were not reported by the original R Package. Addi-

tionally, if the hypergeometric P-value comes from the lower tail of the 

distribution, they are negatively signed to distinguish depletion (anti-cor-

relation) from enrichment (correlation). 

2.2.2 C language implementation and R module 

 RedRibbon has been split between a performant C library and an easy-to-

use R module interfacing this library. RedRibbon has been optimised to 

be efficient regardless of the length of the lists given as input. The gene 

sets are represented by bit vectors allowing the use of CPU bit instructions. 

Bit vectors allow to efficiently compute set intersections, an essential op-

eration for RRHO as it is done for each P-value computation. Addition-

ally, the intersected gene sets relative for two close coordinates on the 
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RRHO map are very similar, most genes being in common. We leverage 

this similarity to decrease the operation numbers to compute the intersec-

tions by updating previously computed sets.  

In order to improve the accuracy of small P-value computation which can 

be smaller than the smallest representable positive number by C language, 

long double type has been used for large lists rather than double. Doing 

so, on a x86 platform, the smallest positive number becomes 3.36ă−4932 

instead of 2.23ă−308. As R does not support the long double type, we use 

the logarithm of the P-value to stay in the representable range for the R 

package. 

2.3 Evolutionary algorithm to find the minimal P-value 

Two minimal P-value search methods are implemented in RedRibbon: (1) 

the grid-based method used in the original RRHO implementation, and (2) 

an evolutionary algorithm-based method (Fig. 1B). The latter interprets 

coordinates on the map as individuals of a population subject to selective 

pressure. The initial set of coordinates is chosen to be uniformly spaced 

on the diagonal of the RRHO map, a choice purposely reminiscent of the 

classical method to guarantee with a high probability that it remains at 

least as good as the classical method. Next, a new generation is created by 

mating the coordinates and randomly introducing mutations to induce ge-

netic diversity. This new population is then selected for the coordinates 

with the best fitness, measured with hypergeometric P-values and where 

lower is better. The process is repeated until a stable set of best coordinates 

(i.e., no newly added coordinates in best coordinate set) or a pre-defined 

number of generations is reached. 

2.4 Adjusted minimal P-values 

The RRHO minimal P-value coordinate is selected among a large set of 

coordinates. For lists of N features, the minimal P-value coordinate is to 

be found in N² coordinates, each associated with one colour dot in the 

overlap map. Correcting the minimal coordinate P-values presents multi-

ple challenges: (1) while the distribution for one specific coordinate is hy-

pergeometric, the distribution of the minimal P-value coordinate is, to our 

knowledge, unknown, (2) the features can be correlated, e.g. from gene 

interaction, (3) the coordinate P-values are highly dependent as the hyper-

geometric P-value for two close coordinates is computed from sets with 

many elements in common; hence, the false discovery rate correction as-

suming independence of variables is inadequate to compute a corrected 

minimal P-value, (4) permuting samples and re-doing the full differential 

expression analyses many times as in Plaisier et al. (Plaisier, et al., 2010) 

is very time consuming, unpractical and out of reach for very large da-

tasets. Here, we introduce a new permutation scheme considering the cor-

relation without re-doing the differential analysis for each permutation 

(Fig. 1C). 

2.4.1 Hybrid prediction-permutation method RedRibbon ad-

justed minimal P-values are computed using an efficient hybrid predic-

tion-permutation method (HPP) to assess the null distribution of the min-

imal coordinate P-value. When the features are independent, the HPP 

method is strictly equivalent to a permutation of the feature lists. The 

HPP method divides the features in two disjoint sets, namely the predic-

tor and predicted sets. The predictor set is composed of features which 

are not able to mutually predict each other. Each predicted set feature 

value is predictable from the predictor set feature values or another pre-

dicted feature. A HPP permutation is generated by first permuting the 

original predictor set values and then predicting the other set features 

from these.  

For a list of fold changes Ăÿÿ, the predicted values are computed with a 

linear model: log Ăÿþ = �1 log Ăÿý 

where the gene or transcript ą is in the predictor set and Ć belongs to the 

predicted set and the �1 coefficient is estimated from another linear model 

over expression levels log āąāÿþ =  �1 log āąāÿý  + �0. The latter is jus-

tified as for two samples we have log Ăÿþ = log āąāÿþ(1) 2log āąāÿþ(2) = �1 log āąāÿý(1)  + �0 2 �1 log āąāÿý(2) 2  �0 =�1 log Ăÿý. The linear model parameters are estimated with ordinary least 

square method from the expression matrices. 

For a list of P-values Āÿ, the predicted values are computed from the ex-

pression correlation coefficient ÿ relative to a predictor and a random 

value Ā̂ generated from the distribution of all values in the original list: Āþ = |ÿ|Āý + (1 2 |ÿ|)Ā̂ 

where Āý is in the predictor set and Āþ belongs to the predicted set. 

This formula assumes a linear effect between the value and the correlation 

coefficient. This effect is modelled by the term |ÿ|Āý. In case of standard-

ised predictor and predicted variables r is the best linear ordinary least 

square estimator. The term (1 2 |ÿ|)Ā̂ is a bootstrap estimate before tak-

ing into account the correlation of variables. The whole formula guaran-

tees that the estimated value is equal to the predictor value if |r| is one 

while an r close to zero gives a bootstrapped random value. Consequently, 

the model can be seen as a finite mixture between the predictor and a boot-

strap variable weighted with the correlation coefficient. 

2.4.2 Beta distribution fittingThe HPP method is repeated several 

times to obtain a list of minimal P-values. In order to limit the number of 

HPP iterations (around 100), a beta distribution is fitted on the HPP P-

values, and the goodness of fit is assessed with a Kolmogorov3Smirnov 

test. If the goodness of fit test is verified, the threshold for 0.05 signifi-

cance is given by moment methods fitted beta ÿĀĂ−1(0.05) and the ad-

justed P-value is 0.05/(ÿĀĂ^(21) (0.05) ) ∗ āăÿĂĂă. If the goodness 

of fit test rejects the hypothesis of beta distribution, the threshold is com-

puted from the empirical cumulative distribution function. 

2.4.3 Computing the parameters of linear regressions and se-

lecting HPP predictorsIn case of fold change lists, for each gene the 

best gene predictor is selected among the linear regression models with 

significant �1. The minimal mean squared error model is used as fold 

change predictor. A gene is put in the HPP predictor set if it is the best 

predictor for another gene and is not itself predicted from another gene. 

For one gene, all linear models are computed at once with an efficient or-

dinary least square based on Householder reflections QR decomposition. 

For P-value lists, the best significant |ÿ| is selected. 

2.5 Data structures and algorithm 

The computation of hypergeometric enrichment requires the computation 

of many set intersections. A bitset data structure is used to represent the 

sets. The bitset is a C array of 64 bits unsigned integer allowing to intersect 

64 elements in one computer cycle with a binary <and” instruction. This 
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data structure divides the number of operations for the intersection by 64 

and lowers the CPU cache pressure (Drepper, 2007) reducing the RAM 

storage by 32, the integer bit size of R language. 

Additionally, the intersection algorithm makes use of the previous inter-

section computation to reduce the number of updates to sets to intersect as 

the sets for the coordinate (ÿ + Ā, Ā) are the same as for previously com-

puted (ÿ, Ā) set except for Ā elements. 

2.6 Synthetic gene sets and accuracy measurements 

In order to assess the accuracy of our method, two distinct synthetic sets 

of gene sets have been generated. The aim of these datasets is to assess the 

true positive rate (i.e., sensitivity), true negative rate (i.e., specificity) and 

the accuracy in a setting where the overlapping genes are known. The first 

set of gene sets (TS1) is composed of 192 artificial gene sets 3 each of 

23,000 genes - with 5000 genes with perfectly identical fold changes in 

both lists, split in half between downregulation and upregulation. The re-

maining genes have randomly assigned fold changes. This set has no noise 

for the 5000 overlapping genes. Hence, the boundaries between down- and 

upregulated genes are well defined, and the overlapping methods are ex-

pected to detect close to perfectly the 5000 overlapping genes. 

The second set of gene sets (TS2) is composed of 192 artificial gene sets 

of 23,000 genes with 5000 log fold change correlated genes like lĂÿĀ =Āÿ�ÿ(lĂÿÿ) ∗ �(|lĂÿÿ|−1) for each gene, where �(�) is an exponential 

random variate of � mean, ÿ and Ā are the two lists. The ĂĂÿÿ and uncor-

related ĂĂÿĀ  are generated from a standard normal distribution. The noisy 

association between the 5000 genes is closer to real data. Hence, the 

boundaries between down- and upregulated genes are not as well defined 

and are harder to detect with a rank-rank hypergeometric overlap. 

2.7 Transcriptomes and differential analyses 

 RNA-Seq datasets previously generated by our group (see structured ab-

stract, availability section) were used to assess the performance of Re-

dRibbon, and its ability to generate new and accurate results. The data are 

transcriptomes of human islets of Langerhans from type 2 diabetic and 

non-diabetic donors, the latter exposed to palmitate and high glucose for 

2 days followed by a recovery period from the lipoglucotoxic insult of 4 

days (Marselli, et al., 2020), or to IFNñ for 8 and 18h (n = 6) (Colli, et al., 

2020; Gonzalez-Duque, et al., 2018), and EndoC-òH1 cells 3 an immor-

talized human beta cell line 3 exposed to IFNñ for 8 and 18h (n = 5) (Colli, 

et al., 2020), IFN+IL-1ò for 24h (n = 5) (Ramos-Rodriguez, et al., 2019) 

or following knockdown of the splicing factor SRSF6 (n = 5) (Juan-Mateu, 

et al., 2018). 

Quality control and trimming were done with fastp 0.19.6. The bulk RNA-

Seq fastq were quantified with Salmon 1.4.0 (Patro, et al., 2017) using the 

parameters --seqBias --gcBias –validateMappings with GENCODE v36 

(Frankish, et al., 2019) as the genome reference. Differential expression 

analyses were done with DESeq2 1.28.1 (Love, et al., 2014). 

2.8 RedRibbon R package compatibility with the original 

implementation 

 In order to facilitate re-analysis of existing datasets, the RedRibbon R 

package provides a compatibility mode. The original RRHO R function 

has been rewritten using the new algorithms of RedRibbon. Hence, the 

existing pipelines can be improved for accuracy and performance just by 

substituting the library inclusion with close to no code editing. 

3 Results 

3.1 Enhanced overlap maps 

We first generated synthetic dataset overlap maps to exemplify RedRib-

bon results and illustrate its new visual features that facilitate interpreta-

tion (Fig. 2). The overlap map of two perfectly identical lists is a perfect 

diagonal signal from downregulation to upregulation (Fig. 2A). The hy-

pergeometric P-value gets lower as coordinates are closer to the list cen-

tres and give the whole list as enrichment. On the contrary, the overlap 

map of one list being in perfectly reversed order of the other 4 i.e., perfect 

anti-correlation of gene expression changes 4 follows a perfect diagonal 

from down-up quadrant to the up-down quadrant (Fig. 2B). The P-values 

are negatively signed in order to distinguish them as related to anti-corre-

lated genes. The P-value can be plotted with different colours in the over-

lap map depending on their sign (not shown here). 

Two lists with four quarters of 5000 genes going respectively and per-

fectly in the same direction (both down-ranked or both up-ranked in the 

lists) or in opposite directions (down-ranked in the first list and up-ranked 

in the other one, and vice-versa) result in an overlap map with perfect di-

agonal signals for the four quadrants (Fig. 2C). The maximal log P-values 

and the permutation adjusted P-values are shown for each quadrant. The 

horizontal and vertical dotted lines split the downregulation and upregu-

lation where the log fold change is zero. In this dataset, the <zero= log fold 
change is at two fifth of both lists, hence, the split point is shifted to the 

beginning of the lists. 

For completely random synthetic data lists, the fluctuation in the map is 

caused by random sampling and no signal is present (Fig. 2D). In this case, 

the overlap algorithm is unable to find any significant adjusted P-value 

and no P-value is shown on the map for any quadrant.  

3.2 Performance 

We next benchmarked RedRibbon against the original R package (Fig. 3). 

First, both packages were compared using the same grid method for a list 

of n genes with a step size of √n, aiming to assess the performance of the 

new data structures and intersection algorithm (see Methods). On an In-

tel® Xeon® Processor E5-2650 v4, RedRibbon’s running time increases 
slowly with the gene list size and is below 25 seconds for lists of 262,144 

genes, while the running time of the original R implementation grows 

steeply and is already close to 200 seconds for lists of 65,536 genes (Fig. 

3A, left).  

Next, two lists of 5,000 genes and a step size of 50 were used to assess the 

P-value adjusting method, a benchmark setting used by Plaisier et al. 

(Plaisier, et al., 2010). The running time they reported (8,345 seconds, af-

ter correction for CPU performance) is used as reference. RedRibbon out-

performs this by four orders of magnitude for all tested methods: grid 

method, parallel execution grid, and evolutionary algorithm (Fig. 3A, mid-

dle). 

Our grid method re-implementation was then compared to the evolution-

ary algorithm with adjusted P-value computation. For the grid method, we 

used a square root of the list length for the step size. Both algorithms were 

run in parallel mode for the adjusted P-value permutation computation. 

The grid method outperforms the evolutionary algorithm for shorter lists, 
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but with 20,000 or more genes the evolutionary algorithm has an ad-

vantage (Fig. 3A, right). The evolutionary algorithm is usable for the anal-

ysis of millions of elements (up to 256,000 are shown in Fig. 3A).  

3.3 Accuracy 

True positive rate (TPR), true negative rate (TNR) and accuracy were as-

sessed for the two synthetic datasets (see Methods). Measurements for the 

first set show a clear-cut advantage to the evolutionary algorithm for both 

TPR and accuracy (Fig. 3B). In most synthetic datasets, TPR is exactly 1 

meaning that all genes significantly correlated in the lists are detected, 

while for the grid method 3 genes in 1,000 are missed (TPR = 0.997). The 

TNR is kept under control as at most 0.5 gene out of 1,000 misses detec-

tion (TNR = 0.9995) with most datasets having close to 0 misdetections. 

Accuracy is systematically better for the evolutionary algorithm than for 

the grid algorithm (Fig. 3B). 

Measurements for the second synthetic dataset 4 simulating a real case 

scenario 4 is clearly to the advantage of the evolutionary algorithm for 

TPR and accuracy (Fig. 3C). TPR is equal or close to 1 for all generated 

gene sets. The grid method TPR and accuracy exhibit a bimodal distribu-

tion caused by the step size length jumps in the coordinate. The TNR is 

close to a value of 1 as for the first dataset. 

We next assessed RedRibbon on experimental datasets previously ana-

lysed by us (Marselli, et al., 2020). Rank-rank hypergeometric overlap was 

run between the fold changes of 16,547 genes from human islets, compar-

ing donors with and without type 2 diabetes against islets exposed in vitro 

to the saturated free fatty acid palmitate and high glucose for 48h and sub-

sequently allowed to recover for 4 days. The level map shows significant 

signals in the four quadrants with the strongest signal being in the upreg-

ulated direction (Fig. 3D). The comparison with the original R package 

shows a large intersection between the result of the original R and Re-

dRibbon packages (Fig. 3E). RedRibbon identifies 7 to 107 additional 

genes in the 4 quadrants of the overlap map (Fig. 3E, top). The differences 

between the 2 packages result in differences in enriched pathway detection 

(Fig. 3E, bottom). The extent of the differences is similar to the differences 

for the synthetic gene sets, suggesting the accuracy metrics are sound. 

3.4 Adjusted P-Value type 1 error 

The permutation method was controlled for type 1 error against a random 

background composed of 1000 random list pairs of 1000 elements. An 

adjusted P-Value below 0.05 was reported for 1.3 percent of the RedRib-

bon analyses (P-Value = 2.5e-10 for P-Adjusted > 0.05 null hypothesis). 

This below expected percentage shows that our adjustment method con-

servatively controls for type 1 errors. 

3.5 Alternative splicing analyses 

The tool developed by Plaisier et al. is not suited for splicing analyses, 

while RedRibbon allows it by having the power to run hundreds of thou-

sands of transcripts (Figure 3A). To validate the suitability of this package 

for this type of analysis, we applied RedRibbon to previously generated 

alternative splicing data. We have used our previously published RNA-

Seq from EndoC-òH1 cells and human islets exposed to IFNα, and RNA-

Seq in which the splicing factor SRSF6 (also known as SRp55) was 

silenced (Juan-Mateu, et al., 2018). The exposure to IFNα induces beta 
cell hallmarks of type 1 diabetes, including inflammation, endoplasmic 

reticulum stress and HLA class I overexpression (Coomans de Brachène, 

et al., 2018; Marroqui, et al., 2017), but also major alterations in the splic-

ing pattern (Colli, et al., 2020). 

Interestingly, the main SRSF6 transcript is downregulated in EndoC-òH1 

cells and human islets exposed to IFNα (see Supplemental Table 1, tran-
script SRSF6-201). SRSF6 seems to be thus responsible for some of the 

IFNα-induced alternative splicing modifications (Juan-Mateu, et al., 

2018), providing an interesting model for comparison with splicing in 

SRSF6-silenced EndoC-òH1 cells. SRSF6 downregulation modulates the 

splicing of genes involved in apoptosis, JNK signalling, insulin secretion 

and type 2 diabetes (Fig. 4A from the results of (Juan-Mateu, et al., 2018)). 

The transcript signatures of SRSF6-depleted (101,226 transcripts) vs 

IFNα-exposed EndoC-òH1 cells (151,157 transcripts) show substantial 

overlap in down- and upregulated transcripts (Fig. 4B, left panel). The en-

richment of SRSF6-regulated pathways and the type 2 diabetes pathway 

observed among the downregulated transcripts, points to a SRSF6-

mediated splicing modification in IFNα-treated EndoC-òH1 cells (Fig. 

4C, left panel). The down-up and up-down overlap corresponds to changes 

induced by IFNα that are not recapitulated by SRFS6 knockdown and 

vice-versa, not discussed as we focus here on similarities. The comparison 

between EndoC-òH1 cells and human islets (165,066 transcripts), both 

exposed to IFNα, shows strong similarity in down- and upregulated tran-

scripts, with an overlap pattern resembling Figure 2A, suggesting that En-

doC-òH1 cells are an adequate model for alternative splicing studies (Fig. 

4B, right panel). Among the downregulated transcripts, pathway analysis 

identified enrichment of the SRSF6 regulatory network 3 apoptosis, JNK 

signalling, insulin secretion, and type 2 diabetes 3 suggesting that SRSF6-

regulated splicing modifications are also present in human islets exposed 

to IFNα (Fig. 4C, right panel). 

The transcripts upregulated in EndoC-òH1 cells by SRSF6 knockdown 

and IFNα exposure exhibit significant enrichment in interferon signalling, 
lysosomes, and apoptosis (Fig. 5A). Overlapping upregulated transcripts 

between IFNα-exposed EndoC-òH1 cells and human islets showed addi-

tional enrichment of alternative splicing networks with a major role in beta 

cell signalling and apoptosis (Fig. 5B). Of note, 11 of the 16 enriched 

pathways in EndoC-òH1 cells (Fig. 5A) were also present in human islets 

(Fig. 5B, highlighted in bold). Hallmarks of beta cells in type 1 diabetes 

were enriched, including the triad of MHC class I, stress pathways and 

inflammation (toll-like receptors, interferon signalling). 

4 Discussion 

The widespread use of omics technologies has exacerbated the need for 

new methods to analyse and compare diverse and ever larger datasets. 

Here we developed RedRibbon, a complete rewrite of the original RRHO 

package (Plaisier, et al., 2010), substantially increasing performance and 

accuracy, and introducing novel data structures and algorithms. In addi-

tion to the improved speed and accuracy of gene-level analyses, RedRib-

bon allows to leverage transcript-level quantification to detect overlapping 

signatures between two differential alternative splicing analyses. It fea-

tures the capability to analyse lists one or two orders of magnitude longer 

without any loss of accuracy. The algorithms and data structures have been 

specifically tailored to be efficient (e.g., the bitset data structure allows to 
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efficiently compute large set intersections using previously computed in-

tersections). This new implementation goes beyond improving perfor-

mance. First, gene or transcript overlap sets are provided for all four di-

rections of regulation owing to the implementation of a two-sided test. The 

original R package did not report anticorrelated genes properly and the 

returned results were difficult to interpret (Cahill, et al., 2018). The up-

down and down-up quadrant enrichment lists are returned as the intersec-

tion of the set between the best coordinate and the quadrant corner. 

Second, the accuracy of the localisation of the minimal P-value is im-

proved over the grid method with an evolutionary algorithm. The grid 

method is pervasive among RRHO derivatives (Cahill, et al., 2018; 

Rosenblatt and Stein, 2014; Thind, et al., 2019) and other rank-based al-

gorithms (Antosh, et al., 2013). For an analysis of 20,000 genes, the orig-

inal R package grid used a default step size of √20ā = 141, limiting the 

accuracy to this step size. The step parameter acts as a balance between 

speed and accuracy. A large step offers faster speed to the detriment of 

accuracy, and vice versa. Finding the right balance is difficult and there is 

no one-fits-all best value 4 the appreciation is left to the end user. As the 

error induced by the grid method is proportional to the step size and the 

complexity of the original R package algorithm is ÿ(ÿ(ÿ Āāăā⁄ )2) for 

transcript lists, a small step is computationally expensive while a large one 

gives inaccurate results leading to numerous false positives. Our evolu-

tionary algorithm does not have this limitation and can accurately pinpoint 

the best P-value whatever the number of features analysed without im-

pacting performance (Fig. 3). The evolutionary algorithm complexity is ÿ(ÿ ā ÿ) where ÿ is the number of iterations (default value 200) and ā is 

the population size (default value is 500 + √ÿ) giving a default parame-

ters complexity of ÿ (ÿ32). A downside is that it comes at the cost of non-

determinism in the minimal P-value finding algorithm. We mitigated this 

by initializing the algorithm population with evenly spaced coordinates on 

the diagonal of the map. In the experiments presently performed, we did 

not detect any minimal P-value worse than the ones detected by the grid 

method and the returned overlap sets were always close to identity in case 

of non-determinism. 

Third, the computation of the overlap map is decoupled from the minimal 

P-value search. Hence, locating minimal P-value coordinates is independ-

ent of visualization map resolution. This helps to optimize memory usage, 

something that is particularly important in the analysis of very long lists. 

Our minimal P-value search algorithm only keeps in memory for the grid 

algorithm the best coordinates, and for the evolutionary algorithm the cur-

rent population of coordinates, guaranteeing a very small memory foot-

print. 

Eventually, a performant permutation scheme considering the correlation 

between genes is available to adjust the minimal P-value. This permuta-

tion scheme allows to correct the minimal P-value without having to re-

run the whole differential analysis thousands of times while still consider-

ing the correlation between genes or transcripts. Doing so, the perfor-

mance is greatly improved as shown in Fig. 3A. It makes it possible to run 

a permutation scheme over long lists and many conditions.  

The package has been validated on synthetic datasets and previously re-

ported RRHO results from (Marselli, et al., 2020) (Fig. 3B-E). The Re-

dRibbon evolutionary algorithm detected synthetic dataset genes with a 

systematically better accuracy compared to the original algorithm. A sim-

ilar difference in the number of detected genes was also present for real 

datasets related to type 2 diabetes suggesting similar accuracy 

improvements. The differences are particularly marked when the overlap 

signal is diffuse (e.g., Fig. 3D down-down quadrant) as the step size 

misses the minimum, the surrounding P-values being very close in a large 

area. The observed differences are propagated in the pathway analyses. 

Hence, pinpointing the minimal P-value with accuracy is an important and 

unique feature of RedRibbon. 

The package has been further applied to and validated for previously re-

ported alternative splicing results in EndoC-òH1 cells and human islets 

(Juan-Mateu, et al., 2018) (Fig. 4 and Fig. 5). These analyses were done 

at transcript level on lists comprising around 150,000 transcripts (see Sup-

plemental Table S1), list lengths that are beyond the reach of the original 

R package. RedRibbon allowed to run these analyses with accuracy and 

permutation adjusted P-values in a matter of minutes. Our results suggest 

that SRSF6 splicing regulation transposes from EndoC-òH1 cells to hu-

man islets as the SRSF6 splicing pathways are enriched in both for down-

regulated transcripts. Moreover, most of the upregulated transcript path-

ways in EndoC-òH1 cells are recapitulated in human islets. The availabil-

ity of human islets of Langerhans is limited, whereas EndoC-òH1 cells are 

readily available. The present analyses suggests that EndoC-òH1 cells re-

capitulate human islets alternative splicing patterns, making this cell line 

an appropriate model to study alternative splicing in human beta cells by 

deep sequencing (Hastoy, et al., 2018; Lawlor, et al., 2019; Scharfmann, 

et al., 2014; Tsonkova, et al., 2018). 

The results obtained here show the importance of transcript level analyses 

in order to capture the effects of alternative splicing. We designed the 

SRSF6 regulatory pathway based on previous splicing analysis (Juan-

Mateu, et al., 2018), and it is only detectable at transcript level. For other 

pathways, one of the challenges is that pathway databases are gene ori-

ented. For those, transcript sets returned by RedRibbon can be converted 

to genes before pathway enrichment to compensate for the lack of tran-

script level pathway databases. Using this method, we obtained a large 

intersection between gene and transcript level pathway analyses and iden-

tified many new pathways for transcript level analyses. Obviously, the fi-

nal enrichment is only as good as the pathway databases. Splicing network 

regulatory pathways may not be detected without specifically tailored da-

tabases, as done here for SRSF6. The creation of new transcript level path-

way databases will enable refined alternative splicing analyses. 

In conclusion, RedRibbon is a very useful novel tool to compare both gene 

level and transcript level differential analyses. Specifically, RedRibbon 

allows the detection of splicing networks. Using this tool, we documented 

large transcript level similarities between EndoC-òH1 cells and human is-

lets. Worth of note, the method is robust even when the cell types are not 

matched, as is the case here for immortalized beta cells and bulk human 

islets that contain around 50% beta cells. RedRibbon will be a very useful 

addition to the bioinformatic toolsets for the analysis and comparison of 

diverse ever bigger datasets. 

Acknowledgements 

We wish to thank Xiaoyan Yi for testing the R package. 

Funding This work has been supported by the European Union’s Horizon 2020 research 
and innovation program T2DSystems under grant agreement no. 667191, the 

Fonds National de la Recherche Scientifique (FNRS), the Brussels Region 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.08.31.505818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.505818
http://creativecommons.org/licenses/by-nc-nd/4.0/


RedRibbon: A new rank-rank hypergeometric overlap pipeline to compare gene and transcript expression signatures 

Innoviris project DiaType, the Walloon Region SPW-EER Win2Wal project Beta-

Source, Belgium, the Francophone Foundation for Diabetes Research (FFRD, 

that is sponsored by the French Diabetes Federation, Abbott, Eli Lilly, Merck 

Sharp & Dohme and Novo Nordisk), the FWO and FRS-FNRS under the Excel-

lence of Science (EOS) programme (Pandarome project 40007487), and the In-

novative Medicines Initiative 2 Joint Undertaking under grant agreement 

115797 (INNODIA) and 945268 (INNODIA HARVEST). This latter Joint Under-taking receives support from the Union’s Horizon 2020 research and innovation 

programme and the European Federation of Pharmaceutical Industries and As-

sociations, JDRF, and The Leona M. and Harry B. Helmsley Charitable Trust. 

D.L.E. is also supported by grants from Welbio–FNRS, Belgium (WELBIO-CR-

2019C-04), NIH-HIRN (5U01DK127786-02), USA and the Innovate2Cu-

reType1-Dutch Diabetes Research Foundation (DDRF) grant 2018.10.002. F.S. 

is supported by a Research Fellow (Aspirant) fellowship from the FNRS, Bel-

gium (FC 038603). 

 

Conflict of Interest: none declared. 

References 
Alonso, L., et al. TIGER: The gene expression regulatory variation landscape of 
human pancreatic islets. Cell Rep 2021;37(2):109807. 
Alvelos, M.I., et al. When one becomes many-Alternative splicing in β-cell 
function and failure. Diabetes, obesity and metabolism 2018;20 Suppl 2:77-87. 
Antosh, M., et al. CORaL: comparison of ranked lists for analysis of gene 
expression data. J Comput Biol 2013;20(6):433-443. 
Barrett, T., et al. NCBI GEO: archive for functional genomics data sets4update. 
Nucleic Acids Res 2012;41(D1):D991-D995. 
Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev 

Biochem 2003;72:291-336. 
Blencowe, M., et al. IAPP-induced beta cell stress recapitulates the islet 
transcriptome in type 2 diabetes. Diabetologia 2022;65(1):173-187. 
Bray, N.L., et al. Near-optimal probabilistic RNA-seq quantification. Nature 

Biotechnology 2016;34(5):525-527. 
Cahill, K.M., et al. Improved identification of concordant and discordant gene 
expression signatures using an updated rank-rank hypergeometric overlap 
approach. Sci Rep 2018;8(1):9588. 
Colli, M.L., et al. An integrated multi-omics approach identifies the landscape of 
interferon-α-mediated responses of human pancreatic beta cells. Nature 

Communications 2020;11(1):2584. 
Colli, M.L., Szymczak, F. and Eizirik, D.L. Molecular Footprints of the Immune 
Assault on Pancreatic Beta Cells in Type 1 Diabetes. Frontiers in Endocrinology 
2020;11(666). 
Coomans de Brachène, A., et al. IFN-α induces a preferential long-lasting 
expression of MHC class I in human pancreatic beta cells. Diabetologia 
2018;61(3):636-640. 
Drepper, U. What Every Programmer Should Know About Memory. Redhat, Inc; 
2007. 
Edgar, R., Domrachev, M. and Lash, A.E. Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res 
2002;30(1):207-210. 
Frankish, A., et al. GENCODE reference annotation for the human and mouse 
genomes. Nucleic Acids Res 2019;47(D1):D766-D773. 
Gonzalez-Duque, S., et al. Conventional and Neo-antigenic Peptides Presented by 
beta Cells Are Targeted by Circulating Naive CD8+ T Cells in Type 1 Diabetic and 
Healthy Donors. Cell Metab 2018;28(6):946-960 e946. 
Hastoy, B., et al. Electrophysiological properties of human beta-cell lines EndoC-
βH1 and -βH2 conform with human beta-cells. Sci Rep 2018;8(1):16994. 
Juan-Mateu, J., et al. SRp55 Regulates a Splicing Network That Controls Human 
Pancreatic β-Cell Function and Survival. Diabetes 2018;67(3):423-436. 
Kolberg, L., et al. gprofiler2 -- an R package for gene list functional enrichment 
analysis and namespace conversion toolset g:Profiler [version 2; peer review: 2 
approved]. F1000Research 2020;9(709). 
Lawlor, N., et al. Multiomic Profiling Identifies cis-Regulatory Networks 
Underlying Human Pancreatic β Cell Identity and Function. Cell Rep 
2019;26(3):788-801.e786. 
Lewin, H.A., et al. Earth BioGenome Project: Sequencing life for the future of life. 
Proceedings of the National Academy of Sciences of the United States of America 
2018;115(17):4325-4333. 
Li, B. and Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq 
data with or without a reference genome. BMC Bioinformatics 2011;12(1). 
Liberzon, A., et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 
2011;27(12):1739-1740. 

Lonsdale, J., et al. The Genotype-Tissue Expression (GTEx) project. Nature 

Genetics 2013;45(6):580-585. 
López-Bigas, N., et al. Are splicing mutations the most frequent cause of hereditary 
disease? FEBS Letters 2005;579(9):1900-1903. 
Love, M.I., Huber, W. and Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550. 
Lytrivi, M., et al. Combined transcriptome and proteome profiling of the pancreatic 
β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC 

Genomics 2020;21(1):590. 
Marroqui, L., et al. Interferon-α mediates human beta cell HLA class I 
overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of 
early human type 1 diabetes. Diabetologia 2017;60(4):656-667. 
Marselli, L., et al. Persistent or Transient Human β Cell Dysfunction Induced by 
Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 
Diabetes. Cell Reports 2020;33(9):108466. 
Mootha, V.K., et al. PGC-1α-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in human diabetes. Nature 

Genetics 2003;34(3):267-273. 
Patro, R., et al. Salmon provides fast and bias-aware quantification of transcript 
expression. Nature Methods 2017;14(4):417-419. 
Plaisier, S.B., et al. Rank-rank hypergeometric overlap: identification of 
statistically significant overlap between gene-expression signatures. Nucleic Acids 

Res 2010;38(17):e169. 
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2022. 
Ramos-Rodriguez, M., et al. The impact of proinflammatory cytokines on the beta-
cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat 

Genet 2019;51(11):1588-1595. 
Rosenblatt, J.D. and Stein, J.L. RRHO: Test overlap using the Rank-Rank 
Hypergeometric test. 2014. 
Scharfmann, R., et al. Development of a conditionally immortalized human 
pancreatic β cell line. J Clin Invest 2014;124(5):2087-2098. 
Subramanian, A., et al. Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. Proceedings of the 

National Academy of Sciences 2005;102(43):15545-15550. 
Thind, A.S., Tripathi, K.P. and Guarracino, M.R. RankerGUI: A Computational 
Framework to Compare Differential Gene Expression Profiles Using Rank Based 
Statistics. In, International journal of molecular sciences. 2019. 
Tsonkova, V.G., et al. The EndoC-βH1 cell line is a valid model of human beta 
cells and applicable for screenings to identify novel drug target candidates. 
Molecular Metabolism 2018;8:144-157. 
Wu, T., et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics 
data. The Innovation 2021;2(3):100141. 
Yu, G., et al. clusterProfiler: an R Package for Comparing Biological Themes 
Among Gene Clusters. OMICS: A Journal of Integrative Biology 2012;16(5):284-
287. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.08.31.505818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.505818
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Piron et al. 

Figures 

 

Fig. 1. RedRibbon RRHO workflow. (A) Transcript level differential analysis by RRHO. The RedRibbon RRHO package can handle very large 

data because of improved data structures and algorithms (see benchmark). Transcript level differential analysis can be overlapped with a permutation 

scheme to correct P-values. The overlap analysis is followed by a pathway analysis. (B) The evolutionary algorithm will find the minimal P-value 

among coordinates. The best fitness individuals of a population of coordinates are mated and then randomly mutated to obtain a new population. This 

process is repeated until stability is reached among the best population or a fixed number of steps. (C) Hybrid prediction-permutation method to com-

pute the adjusted minimal P-value. A set of uncorrelated elements (genes, transcripts; shown in blue squares) is identified. Their value (P-value or fold 

change) is permuted. The remaining correlated elements of the lists are predicted from this set with a linear model. The minimal RRHO P-value is then 

computed for the two permutated lists. The operation is repeated a fixed number of times and the adjusted P-value assessed. 
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Fig. 2. Rank-Rank Hypergeometric Overlap for artificial datasets. (A) RRHO map of two perfectly identical lists a (on the x-axis) and b (on the y-

axis). (B) RRHO map of two perfectly symmetrical list going in opposite direction. (C) Two lists with half of the elements going in the same direction 

and the other half in opposite direction. The 96 permutation-adjusted P-values are reported. (D) RRHO map of two random lists. All adjusted P-values 

are below the significance threshold and therefore not shown (greater than 3 ≈ 2 log(0.05)). 
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Fig. 3. Benchmark of RedRibbon. (A) Assessment of RedRibbon performance. Left: Time to compute the minimal P-value for n genes with a step 

size of sqrt(n) with the Plaisier et al. (Plaisier, et al., 2010) grid method compared to our re-implementation of this method using the same parameters. 

Center: Comparison of our P-value permutation method with Plaisier et al. for 5,000 genes and a step size of 50. Time according to Plaisier et al. is 

reported and corrected for CPU performance improvement (single thread performance on https://www.cpubenchmark.net/). The RedRibbon method is 

reported in single thread (RedRibbon), multithreads (// RedRibbon), and multithreads with the evolutionary algorithm (// EA RedRibbon). Right: Time 

to compute the minimal P-value of n genes with a step size of sqrt(n) with permutation P-value correction. Our re-implementation of the Plaisier et al. 

grid algorithm is compared to the new evolutionary algorithm that has no step size limitation and hence higher accuracy. (B) Results for 192 artificial 

datasets of 23,000 genes with 5000 genes with perfectly identical fold changes in both lists, split in half between lowest and highest fold change (see 

method test set TS1). The remaining genes have randomly assigned fold changes. True Positive Rate (TPR), True Negative Rate (TNR) and accuracy 

are reported. TPR and accuracy are significantly better for evolutionary algorithms (ea) than with the classic grid method. (C) Violin plots for 192 artifi-

cial datasets of 23,000 genes with 5000 log fold change correlated genes (see method test set TS2). (D) RedRibbon hypergeometric map of >16,547 

genes comparing human islets from type 2 diabetic (T2D) vs non-diabetic (CTL) donors and human islets recovering from palmitate+glucose exposure 

in vitro (D8PG vs CTL), as in (Marselli, et al., 2020). (E) Comparison of the original RRHO algorithm with default step size (128 genes, red) with Re-

dRibbon (blue). Green shows elements detected with both methods. Top figure shows the overlapping gene counts. Bottom figure shows pathway en-

richment counts. 
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Fig. 4. Transcript level analysis of SRSF6 regulated alternative splicing network. (A) Genes and pathways regulated by SRSF6 as identified in 

(Juan-Mateu, et al., 2018). (B) RedRibbon transcript level overlap maps comparing differential analyses of IFNα-treated and SRSF6-silenced EndoC-

òH1 cells (left), and IFNα-treated EndoC-òH1 cells and IFNα-treated human islets (right). (C) Molecular Signature Database and canonical pathways 

enriched in overlapping downregulated transcripts. The pathways known to be regulated by SRSF6 are highlighted in bold. 

 

Fig. 5.  Molecular Signature Database and canonical pathways enriched in overlapping upregulated transcripts in beta cells following SRSF6 silenc-

ing and IFNα exposure. (A) Pathways enriched in upregulated transcripts in IFNα-treated and SRSF6-silenced EndoC-òH1 cells. (B) Pathways enriched 

in upregulated transcripts in IFNα-treated EndoC-òH1 cells and human islets. Pathways present in (A) are highlighted in bold in (B). 
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