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Abstract

Motivation: High throughput omics technologies have generated a wealth of large protein, gene and
transcript datasets that have exacerbated the need for new methods to analyse and compare big da-
tasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visu-
alize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses.
Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at both gene level
and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers
are an order of magnitude larger than gene numbers.

Results: We tested the tool on synthetic and real datasets at gene and transcript levels to detect cor-
relation and anti-correlation patterns and found it to be fast and accurate, even on very large datasets
thanks to an evolutionary algorithm based minimal P-value search. The tool comes with a ready-to-use
permutation scheme allowing the computation of adjusted P-values at low time cost. Additionally, the
package is a drop-in replacement to previous packages as a compatibility mode is included, allowing
to re-run older studies with close to no change to existing pipelines. RedRibbon holds the promise to
accurately extricate detailed information from large analyses.

Availability: RNA-sequencing datasets are available through the Gene Expression Omnibus (GEO)
portal with accession numbers GSE159984, GSE133218, GSE137136, GSE98485, GSE148058 and
GSE108413. The C libraries and R package code are open to the community with a permissive licence
(GPL3) and available for download from  GitHub  https://github.com/antpiron/ale,
https://github.com/antpiron/cRedRibbon and https://github.com/antpiron/RedRibbon.

Contact: anthony.piron@ulb.be

studies and pathway databases are gene-centric (Liberzon, et al., 2011)

and the number of transcripts or splicing events can be overwhelming.

1 Introduction Most studies aggregate transcript expression levels at gene level, thus los-

During the past two decades, we have seen a democratization of high
throughput sequencing technologies. The cost of DNA sequencing went
down by six orders of magnitude from 2000 to 2022 (Lewin, et al., 2018).
High throughput sequencing has led to the generation of large and diverse
datasets covering multiple omics, including genomes, transcriptomes and
proteomes. Alternative splicing generates massive protein diversity.
Through the inclusion or exclusion of exons from pre-mRNAs, distinct
mature mRNAs give birth to multiple proteins with different functions
(Black, 2003). Thereby, in humans, more than 200,000 different proteins
are produced from around 20,000 protein coding genes (Alvelos, et al.,
2018). Alternative splicing is omnipresent in eukaryotic cells, with 80%
of protein coding genes undergoing it. On average, a human gene is
spliced into 4.4 transcripts. Alternative splicing is implicated in many dis-
eases (Lopez-Bigas, et al., 2005). Its analysis is challenging as most

ing crucial information about isoforms that may play different or even op-
posite roles. Collectively, the widespread use of these omics technologies
has exacerbated the need for new methods to analyse and compare diverse
and ever larger datasets. Multiple data aggregation initiatives collected
those datasets, including amongst others: Gene Expression Omnibus
(Barrett, et al., 2012; Edgar, et al., 2002), the Genotype-Tissue Expression
(GTEXx) Project (Lonsdale, et al., 2013) and the Translational Human Pan-
creatic Islet Genotype Tissue-Expression Resource (TIGER) (Alonso, et
al., 2021).

Rank-rank hypergeometric overlap (RRHO) has been developed to com-
pare two lists of differentially expressed genes generated with microarray
technology (Plaisier, et al., 2010) and it was further improved with alter-
native statistics and better enrichment sets (Cahill, et al., 2018). RRHO
compares two labelled ranked lists of real numbers. The labels can be
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gene/transcript identifiers or any other unique identifier. The values can
be fold changes, P-values, slopes or another meaningful ranked statistic.
The method detects the enrichments at the extremities of the ranked lists.
For example, using two lists of fold change in gene expression, it allows
the construction of enriched gene sets for the four possible directions, i.e.
downregulated-downregulated, upregulated-upregulated, downregulated-
upregulated and upregulated-downregulated. The method proceeds by
computing, for all coordinates (i, ) in the two compared lists, an enrich-
ment P-value from the number of labels in common at the extremities up
to the coordinate with the hypergeometric distribution. The coordinates
with the minimal P-value are used to determine the most significant gene
set. The method can thus be seen as a 2D generalisation of Gene Set En-
richment Analysis (Mootha, et al., 2003; Subramanian, et al., 2005).

The RRHO method allowed us and others to generate meaningful com-
parisons of differential gene and protein expression data (Blencowe, et al.,
2022; Colli, et al., 2020; Colli, et al., 2020; Lytrivi, et al., 2020; Marselli,
et al., 2020), but its application revealed shortcomings that required adap-
tation of the original RRHO R package (Marselli, et al., 2020). Nonethe-
less, major shortcomings remained. First, the original R package is limited
by R language real number representation (R Core Team, 2022). This rep-
resentation often leads to an underflow, i.e., a P-value that is rounded to
zero below a threshold. Therefore, the zero P-values become indistin-
guishable from each other, making the detection of the minimal P-value
impossible and lowering the accuracy of the method. Second, the execu-
tion time follows a cubic growth depending on the list length, making it
unpractical for large lists. To circumvent these long run times, the original
R package offers the possibility to skip some coordinates in the map, trad-
ing accuracy for performance. The recommended step size is between 100
and 500 for lists of 10,000 to 50,000 elements (with the number of element
square root as default value) introducing a potential inaccuracy of hun-
dreds of genes.

In recent years, methods have been developed to accurately quantify tran-
script expression levels, including splice variants, from RNA-sequencing
(RNA-Seq) reads, e.g. Salmon (Patro, et al., 2017), kallisto (Bray, et al.,
2016) and RSEM (Li and Dewey, 2011). Despite the progress in transcript
quantification methods, to our knowledge, there are no tools available to
compare transcript level differential analyses without prior gene level ag-
gregation. As the total number of transcripts quantified by RNA-Seq is an
order of magnitude higher than for genes, existing RRHO packages are
inadequate. Plaisier et al. suggested to compute corrected P-values by per-
muting samples and re-running differential and RRHO analyses a thou-
sand times (Plaisier, et al., 2010). This permutation method is slow for
large gene expression analyses and renders transcript expression analyses
prohibitive (or inaccurate with very large step sizes).

To address the above-described unmet need for comparative analysis tools
of diverse omics datasets including transcripts, we developed RedRibbon.
RedRibbon is a complete rewrite of the original RRHO package bearing
in mind performance and accuracy, introducing novel data structures and
algorithms, and an all-in-one permutation method to adjust the minimal P-
value. The improvements in performance and accuracy have been assessed
using synthetic datasets and previously reported results (Marselli, et al.,
2020). We applied the method to compare alternative splicing results in
experimental models of diabetes, including the human EndoC-BHI1 beta
cell line and pancreatic islets.

2 Methods

The RedRibbon package is a complete rewrite of the original package
(Plaisier, et al., 2010; Rosenblatt and Stein, 2014) with performance in
mind and including novel algorithms and data structures. RedRibbon

allows to do a full RRHO analysis with adjusted P-values over lists or
differential analyses containing millions of elements. A C library and an
easy-to-use R package are provided. It implements new performant algo-
rithms to find the minimal P-value, a novel adjusted minimal P-values
computation algorithm, improved plots and parallel execution.

2.1 RedRibbon workflow

The input for RedRibbon is two lists of gene or transcript ranked statistics
such as fold change or direction signed P-value (Fig. 1A). From these, the
minimal hypergeometric P-value coordinates are identified in the four
quadrants of the level map using the original method (Plaisier, et al., 2010)
— called in this manuscript “grid method” in reference to the grid-like
traversal of the coordinate matrix — or our fast and accurate evolutionary
algorithm (see below). Locating the minimal coordinates aims to split
overlapping map quadrants into two areas, an enriched and a randomly
ordered region. Optionally, the minimal P-value can be adjusted consider-
ing expression level correlation between genes or transcripts. The result is
four transcript sets, one per quadrant. The enrichment result, the corrected
P-values and the four quadrants can be visualized in an overlap map.
Pathway enrichment analyses usually use overlapping genes in each quad-
rant. For transcript level analyses, as most databases are gene centric, it is
necessary to convert transcripts to genes. Gprofiler2 R package (Kolberg,
et al., 2020) and clusterprofiler R package (Wu, et al., 2021; Yu, et al.,
2012) were used to do the enrichment analysis respectively for gene level
and alternative splicing analyses. For alternative splicing analysis, we cre-
ated 5 new pathways, namely SRSF6 regulation, type 2 diabetes, positive
regulation of apoptosis, insulin secretion and JNK signalling. The list of
spliced genes regulated by SRSF6 were taken from (Juan-Mateu, et al.,
2018) (the spliced gene lists are reproduced in the present Fig. 4A) and
have been converted into clusterProfiler-ready format.

2.2 RedRibbon rank-rank hypergeometric overlap

2.2.1 P-value computation

RedRibbon P-values can be computed with one- or two-sided or compat-
ible with the original R module two-sided statistics. With ¢ being the num-
ber of genes in common for the coordinate (i, ) in an RRHO map of size
n X n, the P-value is computed as

L= CDFyyper(c = 1,0,j,m) For one sided
pral =1, . min (1= CDFyyper(c = 1,1,4,1), CDFyyper (e, i, j,m)) For two sided
The two-sided test allows to detect enrichment both in correlated (up/up
and down/down) and anti-correlated (up/down and down/up) genes. The
anti-correlated genes were not reported by the original R Package. Addi-
tionally, if the hypergeometric P-value comes from the lower tail of the
distribution, they are negatively signed to distinguish depletion (anti-cor-

relation) from enrichment (correlation).

2.2.2 C language implementation and R module

RedRibbon has been split between a performant C library and an easy-to-
use R module interfacing this library. RedRibbon has been optimised to
be efficient regardless of the length of the lists given as input. The gene
sets are represented by bit vectors allowing the use of CPU bit instructions.
Bit vectors allow to efficiently compute set intersections, an essential op-
eration for RRHO as it is done for each P-value computation. Addition-
ally, the intersected gene sets relative for two close coordinates on the
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RRHO map are very similar, most genes being in common. We leverage
this similarity to decrease the operation numbers to compute the intersec-
tions by updating previously computed sets.

In order to improve the accuracy of small P-value computation which can
be smaller than the smallest representable positive number by C language,
long double type has been used for large lists rather than double. Doing
so, on a x86 platform, the smallest positive number becomes 3.36e 432
instead of 2.23e73%8, As R does not support the long double type, we use
the logarithm of the P-value to stay in the representable range for the R
package.

2.3 Evolutionary algorithm to find the minimal P-value

Two minimal P-value search methods are implemented in RedRibbon: (1)
the grid-based method used in the original RRHO implementation, and (2)
an evolutionary algorithm-based method (Fig. 1B). The latter interprets
coordinates on the map as individuals of a population subject to selective
pressure. The initial set of coordinates is chosen to be uniformly spaced
on the diagonal of the RRHO map, a choice purposely reminiscent of the
classical method to guarantee with a high probability that it remains at
least as good as the classical method. Next, a new generation is created by
mating the coordinates and randomly introducing mutations to induce ge-
netic diversity. This new population is then selected for the coordinates
with the best fitness, measured with hypergeometric P-values and where
lower is better. The process is repeated until a stable set of best coordinates
(i.e., no newly added coordinates in best coordinate set) or a pre-defined
number of generations is reached.

2.4 Adjusted minimal P-values

The RRHO minimal P-value coordinate is selected among a large set of
coordinates. For lists of N features, the minimal P-value coordinate is to
be found in N2 coordinates, each associated with one colour dot in the
overlap map. Correcting the minimal coordinate P-values presents multi-
ple challenges: (1) while the distribution for one specific coordinate is hy-
pergeometric, the distribution of the minimal P-value coordinate is, to our
knowledge, unknown, (2) the features can be correlated, e.g. from gene
interaction, (3) the coordinate P-values are highly dependent as the hyper-
geometric P-value for two close coordinates is computed from sets with
many elements in common; hence, the false discovery rate correction as-
suming independence of variables is inadequate to compute a corrected
minimal P-value, (4) permuting samples and re-doing the full differential
expression analyses many times as in Plaisier et al. (Plaisier, et al., 2010)
is very time consuming, unpractical and out of reach for very large da-
tasets. Here, we introduce a new permutation scheme considering the cor-
relation without re-doing the differential analysis for each permutation
(Fig. 1C).

24.1 Hybrid prediction-permutation method RedRibbon ad-
justed minimal P-values are computed using an efficient hybrid predic-
tion-permutation method (HPP) to assess the null distribution of the min-
imal coordinate P-value. When the features are independent, the HPP
method is strictly equivalent to a permutation of the feature lists. The
HPP method divides the features in two disjoint sets, namely the predic-
tor and predicted sets. The predictor set is composed of features which
are not able to mutually predict each other. Each predicted set feature

value is predictable from the predictor set feature values or another pre-
dicted feature. A HPP permutation is generated by first permuting the
original predictor set values and then predicting the other set features
from these.
For a list of fold changes FC;, the predicted values are computed with a
linear model:

log FC, = B11og FCy
where the gene or transcript x is in the predictor set and y belongs to the
predicted set and the f3; coefficient is estimated from another linear model
over expression levels log Expr, = Blog Expr, + . The latter is jus-

log FC, = log Expr(l) -

tified as for two t

samples we have
log Expr}fZ) = [, log Exprx(l) + Bo— B logExer(Z) - By =
B, log FC,. The linear model parameters are estimated with ordinary least
square method from the expression matrices.
For a list of P-values P;, the predicted values are computed from the ex-
pression correlation coefficient r relative to a predictor and a random
value P generated from the distribution of all values in the original list:
P, = Ir|P.+ (1~ |r)P
where P, is in the predictor set and P, belongs to the predicted set.
This formula assumes a linear effect between the value and the correlation
coefficient. This effect is modelled by the term |r|P,. In case of standard-
ised predictor and predicted variables r is the best linear ordinary least
square estimator. The term (1 — |[rDP is a bootstrap estimate before tak-
ing into account the correlation of variables. The whole formula guaran-
tees that the estimated value is equal to the predictor value if |r| is one
while an r close to zero gives a bootstrapped random value. Consequently,
the model can be seen as a finite mixture between the predictor and a boot-
strap variable weighted with the correlation coefficient.

24.2 Beta distribution fittingThe HPP method is repeated several
times to obtain a list of minimal P-values. In order to limit the number of
HPP iterations (around 100), a beta distribution is fitted on the HPP P-
values, and the goodness of fit is assessed with a Kolmogorov—Smirnov
test. If the goodness of fit test is verified, the threshold for 0.05 signifi-
cance is given by moment methods fitted beta CDF~*(0.05) and the ad-
justed P-value is 0.05/(CDF~(—1) (0.05) ) * pvalue. If the goodness
of fit test rejects the hypothesis of beta distribution, the threshold is com-
puted from the empirical cumulative distribution function.

243 Computing the parameters of linear regressions and se-
lecting HPP predictorsin case of fold change lists, for each gene the
best gene predictor is selected among the linear regression models with
significant ;. The minimal mean squared error model is used as fold
change predictor. A gene is put in the HPP predictor set if it is the best
predictor for another gene and is not itself predicted from another gene.
For one gene, all linear models are computed at once with an efficient or-
dinary least square based on Householder reflections QR decomposition.
For P-value lists, the best significant |r]| is selected.

2.5 Data structures and algorithm

The computation of hypergeometric enrichment requires the computation
of many set intersections. A bitset data structure is used to represent the
sets. The bitset is a C array of 64 bits unsigned integer allowing to intersect
64 elements in one computer cycle with a binary “and” instruction. This
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data structure divides the number of operations for the intersection by 64
and lowers the CPU cache pressure (Drepper, 2007) reducing the RAM
storage by 32, the integer bit size of R language.

Additionally, the intersection algorithm makes use of the previous inter-
section computation to reduce the number of updates to sets to intersect as
the sets for the coordinate (i + b, j) are the same as for previously com-

puted (i, j) set except for b elements.

2.6 Synthetic gene sets and accuracy measurements

In order to assess the accuracy of our method, two distinct synthetic sets
of gene sets have been generated. The aim of these datasets is to assess the
true positive rate (i.e., sensitivity), true negative rate (i.e., specificity) and
the accuracy in a setting where the overlapping genes are known. The first
set of gene sets (TS1) is composed of 192 artificial gene sets — each of
23,000 genes - with 5000 genes with perfectly identical fold changes in
both lists, split in half between downregulation and upregulation. The re-
maining genes have randomly assigned fold changes. This set has no noise
for the 5000 overlapping genes. Hence, the boundaries between down- and
upregulated genes are well defined, and the overlapping methods are ex-
pected to detect close to perfectly the 5000 overlapping genes.

The second set of gene sets (TS2) is composed of 192 artificial gene sets
of 23,000 genes with 5000 log fold change correlated genes like 1FC), =
sign(IFC,) * X(|IFC4|™1) for each gene, where X (1) is an exponential
random variate of A mean, a and b are the two lists. The [FC, and uncor-
related [F C;, are generated from a standard normal distribution. The noisy
association between the 5000 genes is closer to real data. Hence, the
boundaries between down- and upregulated genes are not as well defined
and are harder to detect with a rank-rank hypergeometric overlap.

2.7 Transcriptomes and differential analyses

RNA-Seq datasets previously generated by our group (see structured ab-
stract, availability section) were used to assess the performance of Re-
dRibbon, and its ability to generate new and accurate results. The data are
transcriptomes of human islets of Langerhans from type 2 diabetic and
non-diabetic donors, the latter exposed to palmitate and high glucose for
2 days followed by a recovery period from the lipoglucotoxic insult of 4
days (Marselli, et al., 2020), or to IFNa. for 8 and 18h (n = 6) (Colli, et al.,
2020; Gonzalez-Duque, et al., 2018), and EndoC-BHI cells — an immor-
talized human beta cell line — exposed to IFNa for 8 and 18h (n=5) (Colli,
et al., 2020), IFNy+IL-1p for 24h (n = 5) (Ramos-Rodriguez, et al., 2019)
or following knockdown of the splicing factor SRSF6 (n =5) (Juan-Mateu,
et al., 2018).

Quality control and trimming were done with fastp 0.19.6. The bulk RNA-
Seq fastq were quantified with Salmon 1.4.0 (Patro, et al., 2017) using the
parameters --seqBias --gcBias —validateMappings with GENCODE v36
(Frankish, et al., 2019) as the genome reference. Differential expression
analyses were done with DESeq2 1.28.1 (Love, et al., 2014).

2.8 RedRibbon R package compatibility with the original
implementation
In order to facilitate re-analysis of existing datasets, the RedRibbon R

package provides a compatibility mode. The original RRHO R function

has been rewritten using the new algorithms of RedRibbon. Hence, the

existing pipelines can be improved for accuracy and performance just by

substituting the library inclusion with close to no code editing.

3 Results

3.1 Enhanced overlap maps

We first generated synthetic dataset overlap maps to exemplify RedRib-
bon results and illustrate its new visual features that facilitate interpreta-
tion (Fig. 2). The overlap map of two perfectly identical lists is a perfect
diagonal signal from downregulation to upregulation (Fig. 2A). The hy-
pergeometric P-value gets lower as coordinates are closer to the list cen-
tres and give the whole list as enrichment. On the contrary, the overlap
map of one list being in perfectly reversed order of the other —i.e., perfect
anti-correlation of gene expression changes — follows a perfect diagonal
from down-up quadrant to the up-down quadrant (Fig. 2B). The P-values
are negatively signed in order to distinguish them as related to anti-corre-
lated genes. The P-value can be plotted with different colours in the over-
lap map depending on their sign (not shown here).

Two lists with four quarters of 5000 genes going respectively and per-
fectly in the same direction (both down-ranked or both up-ranked in the
lists) or in opposite directions (down-ranked in the first list and up-ranked
in the other one, and vice-versa) result in an overlap map with perfect di-
agonal signals for the four quadrants (Fig. 2C). The maximal log P-values
and the permutation adjusted P-values are shown for each quadrant. The
horizontal and vertical dotted lines split the downregulation and upregu-
lation where the log fold change is zero. In this dataset, the “zero” log fold
change is at two fifth of both lists, hence, the split point is shifted to the
beginning of the lists.

For completely random synthetic data lists, the fluctuation in the map is
caused by random sampling and no signal is present (Fig. 2D). In this case,
the overlap algorithm is unable to find any significant adjusted P-value
and no P-value is shown on the map for any quadrant.

3.2 Performance

We next benchmarked RedRibbon against the original R package (Fig. 3).
First, both packages were compared using the same grid method for a list
of n genes with a step size of v/n, aiming to assess the performance of the
new data structures and intersection algorithm (see Methods). On an In-
tel® Xeon® Processor E5-2650 v4, RedRibbon’s running time increases
slowly with the gene list size and is below 25 seconds for lists of 262,144
genes, while the running time of the original R implementation grows
steeply and is already close to 200 seconds for lists of 65,536 genes (Fig.
3A, left).

Next, two lists of 5,000 genes and a step size of 50 were used to assess the
P-value adjusting method, a benchmark setting used by Plaisier et al.
(Plaisier, et al., 2010). The running time they reported (8,345 seconds, af-
ter correction for CPU performance) is used as reference. RedRibbon out-
performs this by four orders of magnitude for all tested methods: grid
method, parallel execution grid, and evolutionary algorithm (Fig. 3A, mid-
dle).

Our grid method re-implementation was then compared to the evolution-
ary algorithm with adjusted P-value computation. For the grid method, we
used a square root of the list length for the step size. Both algorithms were
run in parallel mode for the adjusted P-value permutation computation.

The grid method outperforms the evolutionary algorithm for shorter lists,
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but with 20,000 or more genes the evolutionary algorithm has an ad-
vantage (Fig. 3A, right). The evolutionary algorithm is usable for the anal-
ysis of millions of elements (up to 256,000 are shown in Fig. 3A).

3.3 Accuracy

True positive rate (TPR), true negative rate (TNR) and accuracy were as-
sessed for the two synthetic datasets (see Methods). Measurements for the
first set show a clear-cut advantage to the evolutionary algorithm for both
TPR and accuracy (Fig. 3B). In most synthetic datasets, TPR is exactly 1
meaning that all genes significantly correlated in the lists are detected,
while for the grid method 3 genes in 1,000 are missed (TPR =0.997). The
TNR is kept under control as at most 0.5 gene out of 1,000 misses detec-
tion (TNR = 0.9995) with most datasets having close to 0 misdetections.
Accuracy is systematically better for the evolutionary algorithm than for
the grid algorithm (Fig. 3B).

Measurements for the second synthetic dataset — simulating a real case
scenario — is clearly to the advantage of the evolutionary algorithm for
TPR and accuracy (Fig. 3C). TPR is equal or close to 1 for all generated
gene sets. The grid method TPR and accuracy exhibit a bimodal distribu-
tion caused by the step size length jumps in the coordinate. The TNR is
close to a value of 1 as for the first dataset.

We next assessed RedRibbon on experimental datasets previously ana-
lysed by us (Marselli, et al., 2020). Rank-rank hypergeometric overlap was
run between the fold changes of 16,547 genes from human islets, compar-
ing donors with and without type 2 diabetes against islets exposed in vitro
to the saturated free fatty acid palmitate and high glucose for 48h and sub-
sequently allowed to recover for 4 days. The level map shows significant
signals in the four quadrants with the strongest signal being in the upreg-
ulated direction (Fig. 3D). The comparison with the original R package
shows a large intersection between the result of the original R and Re-
dRibbon packages (Fig. 3E). RedRibbon identifies 7 to 107 additional
genes in the 4 quadrants of the overlap map (Fig. 3E, top). The differences
between the 2 packages result in differences in enriched pathway detection
(Fig. 3E, bottom). The extent of the differences is similar to the differences
for the synthetic gene sets, suggesting the accuracy metrics are sound.

3.4 Adjusted P-Value type 1 error

The permutation method was controlled for type 1 error against a random
background composed of 1000 random list pairs of 1000 elements. An
adjusted P-Value below 0.05 was reported for 1.3 percent of the RedRib-
bon analyses (P-Value = 2.5e-10 for P-Adjusted > 0.05 null hypothesis).
This below expected percentage shows that our adjustment method con-

servatively controls for type 1 errors.

3.5 Alternative splicing analyses

The tool developed by Plaisier et al. is not suited for splicing analyses,
while RedRibbon allows it by having the power to run hundreds of thou-
sands of transcripts (Figure 3A). To validate the suitability of this package
for this type of analysis, we applied RedRibbon to previously generated
alternative splicing data. We have used our previously published RNA-
Seq from EndoC-BH]1 cells and human islets exposed to IFNo, and RNA-
Seq in which the splicing factor SRSF6 (also known as SRp55) was

silenced (Juan-Mateu, et al., 2018). The exposure to IFNa induces beta
cell hallmarks of type 1 diabetes, including inflammation, endoplasmic
reticulum stress and HLA class I overexpression (Coomans de Brachéne,
et al., 2018; Marroqui, et al., 2017), but also major alterations in the splic-
ing pattern (Colli, et al., 2020).

Interestingly, the main SRSF6 transcript is downregulated in EndoC-H1
cells and human islets exposed to IFNa (see Supplemental Table 1, tran-
script SRSF6-201). SRSF6 seems to be thus responsible for some of the
IFNo-induced alternative splicing modifications (Juan-Mateu, et al.,
2018), providing an interesting model for comparison with splicing in
SRSF6-silenced EndoC-BHI1 cells. SRSF6 downregulation modulates the
splicing of genes involved in apoptosis, JNK signalling, insulin secretion
and type 2 diabetes (Fig. 4A from the results of (Juan-Mateu, et al., 2018)).
The transcript signatures of SRSF6-depleted (101,226 transcripts) vs
IFNa-exposed EndoC-BH1 cells (151,157 transcripts) show substantial
overlap in down- and upregulated transcripts (Fig. 4B, left panel). The en-
richment of SRSF6-regulated pathways and the type 2 diabetes pathway
observed among the downregulated transcripts, points to a SRSF6-
mediated splicing modification in IFNa-treated EndoC-BHI1 cells (Fig.
4C, left panel). The down-up and up-down overlap corresponds to changes
induced by IFNa that are not recapitulated by SRFS6 knockdown and
vice-versa, not discussed as we focus here on similarities. The comparison
between EndoC-BH1 cells and human islets (165,066 transcripts), both
exposed to IFNa, shows strong similarity in down- and upregulated tran-
scripts, with an overlap pattern resembling Figure 2A, suggesting that En-
doC-BHI cells are an adequate model for alternative splicing studies (Fig.
4B, right panel). Among the downregulated transcripts, pathway analysis
identified enrichment of the SRSF6 regulatory network — apoptosis, JNK
signalling, insulin secretion, and type 2 diabetes — suggesting that SRSF6-
regulated splicing modifications are also present in human islets exposed
to IFNa (Fig. 4C, right panel).

The transcripts upregulated in EndoC-BH1 cells by SRSF6 knockdown
and IFNa exposure exhibit significant enrichment in interferon signalling,
lysosomes, and apoptosis (Fig. 5A). Overlapping upregulated transcripts
between IFNa-exposed EndoC-HI cells and human islets showed addi-
tional enrichment of alternative splicing networks with a major role in beta
cell signalling and apoptosis (Fig. 5B). Of note, 11 of the 16 enriched
pathways in EndoC-BHI cells (Fig. SA) were also present in human islets
(Fig. 5B, highlighted in bold). Hallmarks of beta cells in type 1 diabetes
were enriched, including the triad of MHC class I, stress pathways and

inflammation (toll-like receptors, interferon signalling).

4 Discussion

The widespread use of omics technologies has exacerbated the need for
new methods to analyse and compare diverse and ever larger datasets.
Here we developed RedRibbon, a complete rewrite of the original RRHO
package (Plaisier, et al., 2010), substantially increasing performance and
accuracy, and introducing novel data structures and algorithms. In addi-
tion to the improved speed and accuracy of gene-level analyses, RedRib-
bon allows to leverage transcript-level quantification to detect overlapping
signatures between two differential alternative splicing analyses. It fea-
tures the capability to analyse lists one or two orders of magnitude longer
without any loss of accuracy. The algorithms and data structures have been
specifically tailored to be efficient (e.g., the bitset data structure allows to
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efficiently compute large set intersections using previously computed in-
tersections). This new implementation goes beyond improving perfor-
mance. First, gene or transcript overlap sets are provided for all four di-
rections of regulation owing to the implementation of a two-sided test. The
original R package did not report anticorrelated genes properly and the
returned results were difficult to interpret (Cahill, et al., 2018). The up-
down and down-up quadrant enrichment lists are returned as the intersec-
tion of the set between the best coordinate and the quadrant corner.
Second, the accuracy of the localisation of the minimal P-value is im-
proved over the grid method with an evolutionary algorithm. The grid
method is pervasive among RRHO derivatives (Cahill, et al., 2018;
Rosenblatt and Stein, 2014; Thind, et al., 2019) and other rank-based al-
gorithms (Antosh, et al., 2013). For an analysis of 20,000 genes, the orig-
inal R package grid used a default step size of V20k = 141, limiting the
accuracy to this step size. The step parameter acts as a balance between
speed and accuracy. A large step offers faster speed to the detriment of
accuracy, and vice versa. Finding the right balance is difficult and there is
no one-fits-all best value — the appreciation is left to the end user. As the
error induced by the grid method is proportional to the step size and the
complexity of the original R package algorithm is O(n(n/step)?) for
transcript lists, a small step is computationally expensive while a large one
gives inaccurate results leading to numerous false positives. Our evolu-
tionary algorithm does not have this limitation and can accurately pinpoint
the best P-value whatever the number of features analysed without im-
pacting performance (Fig. 3). The evolutionary algorithm complexity is
0(i pn) where i is the number of iterations (default value 200) and p is
the population size (default value is 500 + +/n) giving a default parame-
ters complexity of O (ng) A downside is that it comes at the cost of non-
determinism in the minimal P-value finding algorithm. We mitigated this
by initializing the algorithm population with evenly spaced coordinates on
the diagonal of the map. In the experiments presently performed, we did
not detect any minimal P-value worse than the ones detected by the grid
method and the returned overlap sets were always close to identity in case
of non-determinism.

Third, the computation of the overlap map is decoupled from the minimal
P-value search. Hence, locating minimal P-value coordinates is independ-
ent of visualization map resolution. This helps to optimize memory usage,
something that is particularly important in the analysis of very long lists.
Our minimal P-value search algorithm only keeps in memory for the grid
algorithm the best coordinates, and for the evolutionary algorithm the cur-
rent population of coordinates, guaranteeing a very small memory foot-
print.

Eventually, a performant permutation scheme considering the correlation
between genes is available to adjust the minimal P-value. This permuta-
tion scheme allows to correct the minimal P-value without having to re-
run the whole differential analysis thousands of times while still consider-
ing the correlation between genes or transcripts. Doing so, the perfor-
mance is greatly improved as shown in Fig. 3A. It makes it possible to run
a permutation scheme over long lists and many conditions.

The package has been validated on synthetic datasets and previously re-
ported RRHO results from (Marselli, et al., 2020) (Fig. 3B-E). The Re-
dRibbon evolutionary algorithm detected synthetic dataset genes with a
systematically better accuracy compared to the original algorithm. A sim-
ilar difference in the number of detected genes was also present for real
datasets related to type 2 diabetes suggesting similar accuracy

improvements. The differences are particularly marked when the overlap
signal is diffuse (e.g., Fig. 3D down-down quadrant) as the step size
misses the minimum, the surrounding P-values being very close in a large
area. The observed differences are propagated in the pathway analyses.
Hence, pinpointing the minimal P-value with accuracy is an important and
unique feature of RedRibbon.

The package has been further applied to and validated for previously re-
ported alternative splicing results in EndoC-BH1 cells and human islets
(Juan-Mateu, et al., 2018) (Fig. 4 and Fig. 5). These analyses were done
at transcript level on lists comprising around 150,000 transcripts (see Sup-
plemental Table S1), list lengths that are beyond the reach of the original
R package. RedRibbon allowed to run these analyses with accuracy and
permutation adjusted P-values in a matter of minutes. Our results suggest
that SRSF6 splicing regulation transposes from EndoC-BHI cells to hu-
man islets as the SRSF6 splicing pathways are enriched in both for down-
regulated transcripts. Moreover, most of the upregulated transcript path-
ways in EndoC-BHI cells are recapitulated in human islets. The availabil-
ity of human islets of Langerhans is limited, whereas EndoC-BHI1 cells are
readily available. The present analyses suggests that EndoC-BHI cells re-
capitulate human islets alternative splicing patterns, making this cell line
an appropriate model to study alternative splicing in human beta cells by
deep sequencing (Hastoy, et al., 2018; Lawlor, et al., 2019; Scharfmann,
et al., 2014; Tsonkova, et al., 2018).

The results obtained here show the importance of transcript level analyses
in order to capture the effects of alternative splicing. We designed the
SRSF6 regulatory pathway based on previous splicing analysis (Juan-
Mateu, et al., 2018), and it is only detectable at transcript level. For other
pathways, one of the challenges is that pathway databases are gene ori-
ented. For those, transcript sets returned by RedRibbon can be converted
to genes before pathway enrichment to compensate for the lack of tran-
script level pathway databases. Using this method, we obtained a large
intersection between gene and transcript level pathway analyses and iden-
tified many new pathways for transcript level analyses. Obviously, the fi-
nal enrichment is only as good as the pathway databases. Splicing network
regulatory pathways may not be detected without specifically tailored da-
tabases, as done here for SRSF6. The creation of new transcript level path-
way databases will enable refined alternative splicing analyses.

In conclusion, RedRibbon is a very useful novel tool to compare both gene
level and transcript level differential analyses. Specifically, RedRibbon
allows the detection of splicing networks. Using this tool, we documented
large transcript level similarities between EndoC-H1 cells and human is-
lets. Worth of note, the method is robust even when the cell types are not
matched, as is the case here for immortalized beta cells and bulk human
islets that contain around 50% beta cells. RedRibbon will be a very useful
addition to the bioinformatic toolsets for the analysis and comparison of

diverse ever bigger datasets.
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Fig. 1. RedRibbon RRHO workflow. (A) Transcript level differential analysis by RRHO. The RedRibbon RRHO package can handle very large
data because of improved data structures and algorithms (see benchmark). Transcript level differential analysis can be overlapped with a permutation
scheme to correct P-values. The overlap analysis is followed by a pathway analysis. (B) The evolutionary algorithm will find the minimal P-value
among coordinates. The best fitness individuals of a population of coordinates are mated and then randomly mutated to obtain a new population. This
process is repeated until stability is reached among the best population or a fixed number of steps. (C) Hybrid prediction-permutation method to com-
pute the adjusted minimal P-value. A set of uncorrelated elements (genes, transcripts; shown in blue squares) is identified. Their value (P-value or fold
change) is permuted. The remaining correlated elements of the lists are predicted from this set with a linear model. The minimal RRHO P-value is then

computed for the two permutated lists. The operation is repeated a fixed number of times and the adjusted P-value assessed.
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Fig. 2.

Rank-Rank Hypergeometric Overlap for artificial datasets. (A) RRHO map of two perfectly identical lists a (on the x-axis) and b (on the y-
axis). (B) RRHO map of two perfectly symmetrical list going in opposite direction. (C) Two lists with half of the elements going in the same direction

and the other half in opposite direction. The 96 permutation-adjusted P-values are reported. (D) RRHO map of two random lists. All adjusted P-values

are below the significance threshold and therefore not shown (greater than 3 = —10g(0.05)).


https://doi.org/10.1101/2022.08.31.505818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.505818; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A. Piron et al.

available under aCC-BY-NC-ND 4.0 International license.

>

200-

=

w

o
v

Time (seconds)
=
o
o

10000- 80-
Package Algorithm
-~ Plaisier et al. “- Classic
-+ RedRibbon 10004 60- & EA

100- 40-
50- 10- 20-
0- 0- - R & 0-
0 0 0 0 ] \‘\ r\ 0 Q 0 Q
5000 00 0094000 ?_5000 \a\s\e‘ ae dR‘b £ dmbbo d"\‘bbo 5000 XQOOO l5000
Slze of the lists ¥ ' Size of the lists
Softwa re
B TPR TNR Accuracy
Wilcoxon, p < 2.2e-16 Wilcoxon, p < 2.2e-16 Wilcoxon, p < 2.2e-16
1.0000- 1.0000- e 1.0000-
0.9995- 0.9999- 0.9999-
0.9990- S—— 0.9998-
0.9985- ’ 0.9997-
0.9980- 0.99971 0.9996-
0.9975- 0.9996- 0-99957
0.9994-
0.9970- ES 0.9995- i
0.9993-
C Wilcoxon, p < 2.2e-16 Wilcoxon, p = 1.3e-05 Wilcoxon, p < 2.2e-16
1.000- ——————— 1.0000- 1.0000-
0.9999- <
0.998- 0.9998- 0.9995- s
0.9997-
A% 0.9996- 0.9990-
0.994- 0.9995-
0.9994- 0.9985-
0.992- _ ! 0.9993- | | !
classic ea classic classic ea
D E
-
=
o
S
[ rewo
2 B sotn
© [ RedRribbon
(a]

T2D vs CTL



https://doi.org/10.1101/2022.08.31.505818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.505818; this version posted September 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RedRibbon: A new rank-rank hypergeometric overlap pipeline to compare gene and transcript expression signatures

Fig. 3. Benchmark of RedRibbon. (A) Assessment of RedRibbon performance. Left: Time to compute the minimal P-value for n genes with a step
size of sqrt(n) with the Plaisier et al. (Plaisier, et al., 2010) grid method compared to our re-implementation of this method using the same parameters.
Center: Comparison of our P-value permutation method with Plaisier et al. for 5,000 genes and a step size of 50. Time according to Plaisier et al. is
reported and corrected for CPU performance improvement (single thread performance on https://www.cpubenchmark.net/). The RedRibbon method is
reported in single thread (RedRibbon), multithreads (// RedRibbon), and multithreads with the evolutionary algorithm (// EA RedRibbon). Right: Time
to compute the minimal P-value of n genes with a step size of sqrt(n) with permutation P-value correction. Our re-implementation of the Plaisier et al.
grid algorithm is compared to the new evolutionary algorithm that has no step size limitation and hence higher accuracy. (B) Results for 192 artificial
datasets of 23,000 genes with 5000 genes with perfectly identical fold changes in both lists, split in half between lowest and highest fold change (see
method test set TS1). The remaining genes have randomly assigned fold changes. True Positive Rate (TPR), True Negative Rate (TNR) and accuracy
are reported. TPR and accuracy are significantly better for evolutionary algorithms (ea) than with the classic grid method. (C) Violin plots for 192 artifi-
cial datasets of 23,000 genes with 5000 log fold change correlated genes (see method test set TS2). (D) RedRibbon hypergeometric map of >16,547
genes comparing human islets from type 2 diabetic (T2D) vs non-diabetic (CTL) donors and human islets recovering from palmitate+glucose exposure
in vitro (D8PG vs CTL), as in (Marselli, et al., 2020). (E) Comparison of the original RRHO algorithm with default step size (128 genes, red) with Re-
dRibbon (blue). Green shows elements detected with both methods. Top figure shows the overlapping gene counts. Bottom figure shows pathway en-

richment counts.
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SRSF6 REGULATION splicing pathways from Jonas Juan-Mateu et al. 2017.
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RedRibbon: A new rank-rank hypergeometric overlap pipeline to compare gene and transcript expression signatures

Fig. 4. Transcript level analysis of SRSF6 regulated alternative splicing network. (A) Genes and pathways regulated by SRSF6 as identified in
(Juan-Mateu, et al., 2018). (B) RedRibbon transcript level overlap maps comparing differential analyses of [FNa-treated and SRSF6-silenced EndoC-

BHI cells (left), and IFNo-treated EndoC-BH]1 cells and IFNo-treated human islets (right). (C) Molecular Signature Database and canonical pathways

enriched in overlapping downregulated transcripts. The pathways known to be regulated by SRSF6 are highlighted in bold.
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Fig. 5. Molecular Signature Database and canonical pathways enriched in overlapping upregulated transcripts in beta cells following SRSF6 silenc-
ing and IFNa exposure. (A) Pathways enriched in upregulated transcripts in IFNa-treated and SRSF6-silenced EndoC-BH1 cells. (B) Pathways enriched

in upregulated transcripts in IFNa-treated EndoC-BH1 cells and human islets. Pathways present in (A) are highlighted in bold in (B).
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