

1 **Direct measurement of appressorium turgor using a molecular**
2 **mechanosensor in the rice blast fungus *Magnaporthe oryzae***

3
4 Lauren S. Ryder¹, Sergio G. Lopez^{2#}, Lucile Michels^{3#}, Alice B. Eseola¹, Joris
5 Sprakel³, Weibin Ma¹ and Nicholas J. Talbot^{1*}

6
7 ¹The Sainsbury Laboratory, University of East Anglia, Norwich Research Park,
8 Norwich, NR47UH, United Kingdom.

9 ²Cell and Developmental Biology, The John Innes Centre, Norwich Research Park,
10 Norwich, NR47UH, United Kingdom.

11 ³Laboratory of Biochemistry, Wageningen University & Research, 6708 WE
12 Wageningen, The Netherlands.

13 # Contributed equally

14

15 *corresponding author, email: nick.talbot@tsl.ac.uk

16

17

18 **Abstract**

19 Many plant pathogenic fungi forcibly enter their hosts to cause disease. The rice blast
20 fungus *Magnaporthe oryzae*, for example, infects plants using a specialised infection
21 cell called an appressorium, which generates enormous turgor to drive a rigid
22 penetration peg through the rice leaf cuticle. While these vast internal pressures are a
23 critical weapon in fungal host penetration, they have remained very challenging to
24 probe directly during host invasion, leaving our understanding of these extreme
25 cellular mechanics incomplete. Here, we combine Fluorescence Lifetime Imaging
26 (FLIM) with a membrane-targeting molecular mechanoprobe to quantify changes in
27 membrane tension as a direct proxy for appressorial turgor in *M. oryzae*. We report
28 that mature melanin-pigmented *M. oryzae* appressoria display a heterogeneous low
29 fluorescence lifetime and high membrane tension, consistent with enormous turgor.
30 These extreme pressures lead to large-scale spatial heterogeneities in membrane
31 mechanics, much greater than observed in any other cell type previously, highlighting
32 the extreme mechanics of turgor-driven appressorium-mediated plant infection. By
33 contrast, appressoria of non-pathogenic melanin-deficient mutants, *alb1* and *buf1*, or
34 immature non-melanised appressoria, exhibit high fluorescence lifetime, consistent
35 with low membrane tension and turgor, that remain spatially homogeneous. To
36 evaluate the method, we investigated turgor dynamics in a range of mutants impaired
37 in appressorium function. We show that the turgor sensor kinase mutant $\Delta sln1$,
38 recently proposed to generate excess appressorium turgor, displayed a significantly
39 higher membrane tension compared to an isogenic wild type *M. oryzae* strain. This
40 non-invasive, live cell imaging technique allows direct quantification and visualization
41 of the enormous turgor pressures deployed during pathogen infection.

42

43 **Introduction**

44

45 Rice blast disease poses an increasing threat to global food security and remains
46 challenging to control in all rice-growing regions of the world ¹⁻³. Rice blast disease is
47 caused by the heterothallic ascomycete fungus *Magnaporthe oryzae* [synonym of
48 *Pyricularia oryzae*] ⁴. *M. oryzae* can breach the surface of rice leaves and, remarkably,
49 a variety of synthetic membranes. The renowned 'gold leaf' experiment performed by
50 Brown and Harvey in 1927, in which leaves were wrapped in a thin gold layer and
51 inoculated with fungal spores, elegantly demonstrated the capacity of fungi to puncture
52 an inert surface using force generation rather than enzymatic activity ^{5,6}. Many plant
53 pathogenic species have the capacity to infect their plant hosts using specialised
54 infection cells called appressoria ⁶⁻⁸. These structures act as a gateway to facilitate
55 pathogen entry into host internal tissue to cause disease. *M. oryzae* elaborates
56 appressoria which generate turgor by accumulation of glycerol and other polyols to
57 high concentrations, drawing water into the cell by osmosis, and creating turgor of up
58 to 8.0 MPa ⁹. The melanin cell wall is impermeable to glycerol, but freely permeable
59 to water which rapidly enters the cell, generating hydrostatic pressure that is deployed
60 as mechanical force, leading to cuticle rupture and plant disease. Mutation of the *M.*
61 *oryzae* melanin biosynthetic enzyme-encoding genes *ALB1*, *RSY1* and *BUF1* causes
62 loss of appressorium melanisation. Absence of the melanin barrier from the
63 appressorium cell wall results in constant movement of solutes and water in and out
64 of the cell, leading to a loss of turgor generation and, consequently, loss of the ability
65 to cause disease ^{10,11}. Direct measurement of appressorium turgor has proved
66 challenging, largely because *M. oryzae* appressoria generate such high pressure,
67 making it extremely difficult to reliably quantify using physical techniques, such as

68 pressure probes. Previously, appressorium turgor measurements have relied instead
69 on proxy measures such as the incipient cytorrhysis assay, in which appressoria are
70 incubated in hyperosmotic concentrations of glycerol or polyethylene glycol and the
71 resulting rate of cell collapse recorded, providing an indirect measure of appressorium
72 turgor^{9,12,13}. However, in melanin-deficient mutants, for example, this assay cannot be
73 used because the mutants undergo plasmolysis rather than cell collapse when
74 exposed to high concentrations of glycerol^{9,12}. More recently, a Flipper-TR probe
75 containing a twisted push-pull fluorophore that locates to the plasma membrane, has
76 displayed fluorescent characteristics sensitive to mechanical forces acting on the
77 plasma membrane. Previous reports have suggested the fluorescence lifetime of the
78 probe changes linearly with plasma membrane tension in both yeast and mammalian
79 cells¹⁴. In *M. oryzae*, this probe was used for measuring plasma membrane tension
80 in vegetative hyphae for Guy11 and a Δ vast1 mutant, which affects TOR (Target-Of-
81 Rapamycin) signalling, which is implicated in the cAMP response and cell integrity
82 pathways, and control of autophagy¹⁵⁻¹⁹. While the probe indicated the Δ vast1 mutant
83 had increased tension when compared to Guy11, these experiments were only
84 performed in hyphae²⁰. Considering appressorium-specific turgor generation is a
85 prerequisite for plant-infection, we were interested in exploring whether we could
86 quantify and visualise turgor directly.

87 Recently, a set of chemically modified molecular rotors were developed to yield
88 complete microviscosity maps of cells and tissues in the cytosol, vacuole, plasma
89 membrane and wall of plant cells²¹. These boron-dipyrromethene (BODIPY)-based
90 molecular rotors are rigidochromic by means of coupling the rate of an intramolecular
91 rotation, which depends on the mechanics of their direct surroundings – influenced by
92 viscosity or membrane tension for example – with their fluorescence lifetime. The N⁺-

93 BDP plasma membrane probe revealed clear differences in membrane mechanics
94 between the plant root cap and the meristem, for instance. Fluorescence lifetime
95 imaging microscopy (FLIM) revealed the plant meristem to undergo continuous growth
96 and cell division, resulting in constant tension in the plasma membrane ²¹. The tension
97 increases the spacing between lipids, leading to a significant reduction in membrane
98 rotor lifetime when compared to the relaxed plasma membranes of root cap cells giving
99 an increased lifetime ²². Furthermore, closer examination of the plasma membrane
100 revealed distinct lipid microdomains within a single bilayer. Likewise, in root hairs the
101 fluorescence lifetime was found to be lower at the growing tip (3.6 ± 0.8 ns), when
102 compared to the non-growing epidermal cell plasma membrane (4.3 ± 0.6 ns). The
103 change in lifetime corresponds to the increase in tension in the growing root hair tip,
104 where membrane curvature is greatest. Plasmolysis assays in rotor-stained root hairs,
105 for example, confirmed the probe's responsiveness to changes in tension within
106 *Arabidopsis* root tissues, as the fluorescence lifetime within root hair tips significantly
107 increased upon exposure to hyperosmotic stress, and a drop in membrane tension.

108 In this article, we demonstrate the use of the mechanosensor N⁺-BDP plasma
109 membrane rotor probe in *M. oryzae* and provide new quantifiable insights to spatial
110 variations in microviscosity and appressorium-mediated turgor-driven plant cell
111 infection. We show that the N⁺-BDP rotor probe can detect spatial variations in
112 membrane tension in *M. oryzae* appressoria. Furthermore, these experiments support
113 previous studies showing that melanin biosynthesis is required for appressorium turgor
114 generation in *M. oryzae*. This rotor not only provides a direct and quantitative
115 measurement for the average tension in an appressorium, but also reveals the degree
116 of membrane heterogeneity in wild type and mutant appressoria. A FLIM time course
117 of infection-related-development reveals that the $\Delta sln1$ mutant generates significantly

118 more turgor compared to an isogenic wild type *M. oryzae* strain consistent with recent
119 findings that Sln1 acts as a specific sensor of turgor control in the rice blast fungus
120^{23,24}.

121

122 **Results**

123 **The mechanoprobe N⁺-BDP reveals spatial variations in plasma membrane
124 tension in *M. oryzae*.**

125 We were interested in determining whether the mechanoprobe N⁺-BDP could reveal
126 changes in appressorium-specific membrane tension during a time course of infection-
127 related-development of the wild type *M. oryzae* strain Guy11. During the initial stages
128 of appressorium development, 4 h after conidia are germinated on hydrophobic glass
129 coverslips, incipient appressoria are not melanised and have not yet generated turgor.
130 By contrast, 24 hours after inoculation, appressoria are mature, fully melanised,
131 generate high levels of turgor which can be deployed as mechanical force as
132 appressoria are bound tightly to the hydrophobic glass surface, creating a tight seal
133 necessary for appressorium function^{3,25,26}, as shown in Fig. 1a. Previously, a set of
134 molecular rotors were designed to target various compartments within a cell²¹. The
135 chemical structure of the mechanoprobe N⁺-BDP is based on a modified phenyl-
136 substituted boron-dipyrromethene (ph-BODIPY) molecular rotor, in which the phenyl
137 ring carries an aliphatic tail with two permanent cationic charges, creating a positive
138 charge and thereby targeting the negatively charged phospholipid bilayer (Fig.1b).
139 Upon staining, the probe is positioned between the tails of the bilayer, with its aliphatic
140 tail facing towards the heads of the phospholipids (Fig.1c). Previous work using rotor-
141 stained giant unilamellar vesicles (GUVs) composed of sphingomyelin (SM), 1,2-
142 dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (0.56:0.24:0.20) has

143 allowed for the study of lipid phase transition. The lipid phase separation in GUVs
144 creates an inhomogeneous biological membrane composed of different lipid
145 microdomains, similar to formation of lipid microdomains in biological membranes by
146 immiscibility of different lipids^{21,27-29}. Upon staining of the different GUVs, the N⁺-BDP
147 mechanoprobe demonstrated and sensed the stronger mechanical restriction for
148 rotations imposed by the tightly packed and solid-like SM rich gel-like ordered phase,
149 generating longer average fluorescence lifetimes, when compared to the less tightly
150 packed liquid-like phase enriched in DOPC, generating average shorter fluorescence
151 lifetimes. When considering an appressorium, we hypothesised that early-stage (4 h)
152 appressoria would display a more compact membrane as a result of being under little
153 or no tension, thereby causing mechanical restriction of the rotor probe upon
154 photoexcitation and longer average fluorescence lifetimes (Fig 1c). However, in a 24
155 h appressorium with high appressorium turgor and high membrane tension, the
156 membrane would become stretched and disordered, allowing free rotation of the probe
157 and consequently shorter average fluorescence lifetimes (Fig 1d). To test this
158 hypothesis, we used the N⁺-BDP mechanoprobe to stain early-stage 4 h and mature
159 24 h appressoria of the wild type *M. oryzae* strain Guy11, to observe the spatial
160 variations in membrane tension (Fig 1e). Strikingly, we observed that early 4 h
161 appressoria displayed a homogeneous high average rotor lifetime of 3.98 ± 0.084 ns
162 (Fig 1f, Supplementary Video 1), in contrast to 24 h appressoria which displayed
163 consistent heterogeneity and a significant lower average rotor lifetime of 2.79 ± 0.026
164 ns (Fig 1f, Supplementary Video 2). Furthermore, we tested whether artificially
165 lowering the turgor of appressoria by incubating them in hyperosmotic concentrations
166 of glycerol, would independently corroborate probe responsiveness to changes in
167 membrane tension within an appressorium. Under hyperosmotic conditions, the

168 fluorescence lifetime within a wild type Guy11 24 h appressorium significantly
169 increased from 2.79 ± 0.041 ns with no treatment to 3.10 ± 0.067 ns upon addition of
170 exogenous 1M glycerol (Extended Data Fig.1). This change is consistent with a drop
171 in tension as water exits the appressorium by osmosis ^{11,23}. Considering melanin
172 biosynthesis and deposition occur between 4 and 8 h post-inoculation (hpi) on a glass
173 coverslip ³, we reasoned that this would provide a suitable time to capture changes in
174 local tension and turgor. A real-time movie of a Guy11 appressorium stained with the
175 N⁺-BDP rotor probe was therefore captured during a 3 h period, in which spatial
176 variations in membrane tension were apparent and the overall fluorescence lifetime
177 observed to decrease (Fig.1g, Supplementary Video 3, Extended Data Fig.2).

178 In order to determine whether the vast majority of inhomogeneity observed in
179 24 h appressoria was due to changes in membrane tension, or due to changes in
180 chemical polarity and lipid order, we employed the plasma membrane molecular
181 sensor NR12S, a solvatochromic Nile red-based probe ³⁰. The Nile red chromophore
182 is functionalized with a long alkyl tail and a zwitterionic group, which allows for specific
183 staining of the outer leaflet of the plasma membrane. This probe exhibits a shift in
184 wavelength of maximum emission in response to changes in the local chemical polarity
185 of its surroundings. Ratiometric imaging, in which the total emission of the dye is split
186 into two channels, provides a non-lifetime based read out for this probe. Changes in
187 membrane chemical composition and lipid phase affect the chemical polarity of the
188 probe microenvironment, initiating a change in the intensity ratio between the blue and
189 red channels ³¹. Previously, this probe was used for mapping spatial variation in the
190 plasma membrane chemical polarity of *Phytophthora infestans* germlings ³¹. We
191 observed that appressorium polarity becomes globally lower during appressorium
192 maturation. In early 4 h appressoria, ratiometric imaging of the appressoria plasma

193 membrane appears blue, indicating the membrane has a high polarity, is less ordered
194 and possibly more hydrated, and that protein composition is very different (or both)
195 (Extended Data Fig. 3a-g). However, in 24 h appressoria, the plasma membrane
196 appears yellow and red, indicating the membrane has a low polarity. This low polarity
197 may reflect a different lipid order, protein composition, level of hydration, or a
198 combination of all three (Extended Data Fig.3h-m). Intriguingly, the magnified sections
199 of the plasma membrane for both 4 h appressoria (Extended Data Fig.3b, c, e and f)
200 and 24 h appressoria (Extended Data Fig.3i, j, l and m) shows the polarity probe
201 NR12S displaying either homogeneous polarity, or polarity variations whose pattern is
202 not consistent with the larger changes in tension we observe with the N⁺-BDP rotor
203 probe (Extended Data Fig. 3). We conclude that the mechanoprobe N⁺-BDP can
204 reveal spatial changes in appressorium-specific tension during a time course of
205 infection-related-development of *M. oryzae*, without its response being significantly
206 affected by chemical polarity.

207

208 **Melanin biosynthesis is critical for appressorium turgor generation in *M. oryzae***
209 The synthesis of dihydroxy-naphthalene (DHN) melanin in *M. oryzae* is essential for
210 appressorium-specific-turgor driven plant infection. A layer of melanin is located
211 between the appressorium membrane and cell wall where it acts as a structural barrier
212 to the efflux of solutes from the appressorium, essential for turgor generation and
213 pathogenicity^{2,11}. Mutation of any of the genes encoding the core enzymes required
214 for DHN-melanin biosynthesis, *ALB1*, *RSY1* and *BUF1*, causes impairment in
215 appressorial and hyphal melanisation¹⁰. Consequently, melanin-deficient mutants fail
216 to infect intact host plants¹⁰. Incipient cytorrhysis assays are difficult to score and
217 quantify in melanin-deficient mutants, because they display plasmolysis rather than

218 cytorrhysis when exposed to hyperosmotic glycerol concentrations ⁹. We were
219 interested in determining whether the N⁺-BDP rotor probe could detect a reduction in
220 membrane tension in the melanin-deficient mutants *alb1* and *buf1* when compared to
221 the wild type Guy11. Interestingly, both *alb1* (Supplementary Video 4) and *buf1*
222 displayed homogeneous high fluorescence lifetimes of 3.23 ± 0.063 ns and $3.20 \pm$
223 0.056 ns respectively, similar to the values we previously observed for early stage non-
224 melanised 4 h appressoria in Guy11 (Fig.2a, b and e). Furthermore, when we treated
225 Guy11 with the melanin biosynthesis inhibitor tricyclazole at 3 h compared to the
226 untreated Guy11 control, we observed a high fluorescence lifetime of 3.18 ± 0.031 ns,
227 consistent with the lifetimes of the melanin-deficient mutants and low appressorium
228 tension (Fig.2c, d and e). We conclude that the mechanoprobe N⁺-BDP is capable of
229 demonstrating that *alb1* and *buf1* mutants do not generate appressorium turgor, and
230 furthermore, the probe shows that tension in the appressorial membrane of melanin
231 mutants and tricyclazole-treated Guy11 is universally low.

232

233 ***M. oryzae* mutants display varying amounts of turgor pressure**

234 We were interested in testing the N⁺-BDP rotor probe on other *M. oryzae* mutants
235 impaired in appressorium function. Septins are required for pathogenicity of *M. oryzae*,
236 regulating F-actin organisation in the appressorium, and acting as lateral diffusion
237 barriers for proteins involved in penetration peg emergence and elongation ³². A total
238 of five septin genes have been characterised in *M. oryzae*, four of which share
239 similarity to core septins identified in yeast and named Sep3, Sep4, Sep5 and Sep6.
240 More recently, very long chain fatty acid (VLCFA) biosynthesis has been shown to
241 regulate phosphatidylinositol phosphate (PIP)-mediated septin ring formation by
242 recruiting septins to curved plasma membranes, initiating septin ring formation and

243 subsequent penetration peg emergence ³³. Staining the $\Delta sep5$ mutant with the N⁺-
244 BDP rotor probe revealed no significant change in membrane tension and
245 appressorium turgor (2.90 ± 0.059 ns) when compared to Guy11 (2.79 ± 0.046 ns)
246 (Fig.3a, b, d). This suggests that absence of a single septin-encoding gene, *SEP5*,
247 has no effect on appressorium turgor generation, but instead impairs re-polarisation.
248 We were also curious to test the $\Delta nox2$ mutant, because previous work has shown
249 that in the absence of *NOX2*, septins and F-actin do not form the highly organized
250 toroidal network essential for penetration peg formation and pathogenicity ³⁴. In
251 addition to playing an important role in septin-mediated cytoskeletal reorganization,
252 Nox enzymes have been implicated in the chemiosmotic generation of turgor pressure,
253 particularly in mammalian cells ³⁵. Staining the $\Delta nox2$ mutant with the N⁺-BDP rotor
254 probe revealed a significant reduction in membrane tension (3.12 ± 0.041 ns) when
255 compared to the wild type Guy11 (2.79 ± 0.046 ns) (Fig.3a, c, d), suggesting that
256 absence of the Nox2 NADPH oxidase catalytic sub-unit does affect turgor generation
257 in the appressorium. We conclude that the mechanoprobe N⁺-BDP is effective as a
258 means of screening mutants impaired in appressorium function for a role in turgor
259 pressure generation.

260

261 **The N⁺-BDP mechanosensor reveals that the $\Delta sln1$ mutant of *M. oryzae*
262 generates high appressorium turgor**

263 A recent report has suggested that the Sln1 histidine aspartate kinase in *M. oryzae*
264 acts as a sensor to detect when a critical threshold of turgor has been reached in the
265 appressorium to enable penetration peg emergence and host penetration ²³.
266 Consistent with this idea, $\Delta sln1$ mutants in *M. oryzae* are unable to sense turgor and
267 consequently their appressoria are predicted to have excess, runaway turgor pressure,

268 and hyper-melanised appressoria^{23,24}. We decided to test whether the N⁺-BDP
269 mechanoprobe could detect the aberrant turgor generation in a $\Delta sln1$ mutant. First,
270 we used septin localisation using GFP (green fluorescent protein) to determine the
271 time when maximum turgor is achieved, at which point a septin ring is formed in the
272 appressorium pore to facilitate repolarisation (Fig.4a, Supplementary Video 5)^{3,32,36}.
273 F-actin and septin ring recruitment occurs in a pressure-dependent-manner^{23,37} and
274 in the melanin-deficient mutant *buf1*¹⁰, septin and F-actin localisation is disordered
275 and unable to form a clear ring conformation^{23,36,37}. Similarly, the hyper-melanised
276 $\Delta sln1$ mutant also displays aberrant septin and actin localisation patterns (Fig4.c,
277 Supplementary Video 6)²³. To investigate whether the N⁺-BDP rotor probe could
278 detect the predicted abnormal turgor of $\Delta sln1$ mutants we carried out staining of a time
279 course of infection-related-development and determined the average lifetime for each
280 developmental stage. For Guy11 incipient appressoria at 4 hpi, we observed an
281 average lifetime of 3.95 ± 0.091 ns, which significantly reduced to 3.11 ± 0.061 ns at
282 6 hpi, consistent with the initiation of melanin synthesis and the onset of turgor
283 generation. By 8 hpi the average lifetime had significantly reduced again to $2.81 \pm$
284 0.079 ns, and by 24 hpi the average lifetime observed was 2.73 ± 0.042 ns. The
285 average lifetime of the N⁺-BDP rotor probe did not significantly change between 8-24
286 hpi suggesting either that membrane tension remains constant after 8 hpi, or the rotor
287 probe is saturated and unable to resolve higher tensions (Fig.4b, e). The commitment
288 point for septin ring organization is between 8-10 h^{3,32}. Previously, septin ring
289 formation was shown to be impaired after lowering appressorium turgor with
290 application of exogenous glycerol, or treatment with the melanin biosynthesis inhibitor
291 tricyclazole when applied up to 16 hpi²³. This suggests that appressorium turgor
292 reaches a critical threshold at the point of higher order septin ring assembly, and its

293 modulation and maintenance through the action of the Sln1-turgor-sensing-complex
294 helps to stabilize the conditions required for preserving septin ring organization,
295 consistent with our findings. In the Δ sln1 mutant a similar trend in membrane tension
296 when compared to wild type Guy11 was observed. However, the amount of tension
297 during infection-related-development when compared to Guy11 was significantly
298 higher. The most significant change in appressorium turgor was observed between 4
299 hpi and 6 hpi averaging 3.70 ± 0.057 ns and 2.89 ± 0.110 ns respectively. By 8 hpi the
300 average lifetime had significantly reduced again to 2.55 ± 0.057 ns, and by 24 hpi the
301 average lifetime observed was 2.51 ± 0.062 ns. Once again, the lifetime of the N⁺-BDP
302 rotor probe remained constant between 8 hpi and 24 hpi, but the lifetime was
303 significantly lower at 4 hpi, 8 hpi and 24 hpi compared to the isogenic wild type Guy11
304 (Fig.4d, e, Supplementary Video 7). We conclude that the Δ sln1 mutant shows
305 significant changes in appressorium turgor generation which can be resolved by the
306 N⁺-BDP rotor probe.

307

308 **Discussion**

309 Many fungal pathogens develop infection cells to breach the tough external barrier of
310 a plant or animal^{6,7}. These cells have been characterised as hyphopodia, infection
311 cushions and appressoria^{6,8,25,38-40}. Appressoria are, however, the most studied
312 infection cells and essential for many of the most destructive plant diseases⁴¹. Cereal
313 pathogens like the powdery mildew pathogen *Blumeria graminis*, the corn smut fungus
314 *Ustilago maydis*, and the soybean rust fungus *Phakopsora pachyrhizi*, all, for example,
315 elaborate appressoria. Oomycete pathogens, such as *Phytophthora* and *Pythium*
316 species also develop appressoria⁶ and recently it was shown that the oomycete late

317 blight pathogen *Phytophthora infestans*, enters its host at a diagonal angle, using a
318 specific 'naifu' cutting action to break the host leaf surface ⁴².

319 The devastating rice blast fungus *Magnaporthe oryzae* uses its appressoria to
320 break into rice leaves, by generating enormous osmotic turgor of 8.0MPa, equivalent
321 to 40 times the internal pressure of a car tyre ¹¹. A differentiated cell wall rich in melanin
322 is essential for the generation of turgor, acting as a structural barrier to prevent the
323 efflux of solutes ^{9,10}. Using a plasma membrane targeting rigidochromic molecular
324 rotor, we have generated complete mechanical maps of wild type and mutant
325 appressoria in *M. oryzae*. These have shown how the mechanics of the plasma
326 membrane are adaptively modulated to accommodate appressorium growth and
327 turgor generation. Creating detailed tension maps of appressoria during different
328 stages of infection-related-development, has for the first time allowed us to observe
329 real-time changes in turgor generation. Previous studies have suggested that changes
330 in mechanical tension of a composite lipid membrane are facilitated through the
331 formation of bulges and protrusions of membrane domains ⁴³. In addition, other studies
332 have suggested how mechanical stress on a membrane can increase the line tension
333 between a microdomain and the rest of the lipid bilayer ⁴⁴, which can in turn lead to
334 microdomain growth ⁴⁵. How membranes deal with these extreme tensions is
335 unknown, as so far all membrane studies have been performed on cells with much
336 lower internal pressures. Our study has for the first time in a fungal system, highlighted
337 how the appressorium develops different microdomains when subjected to extreme
338 levels of mechanical stress. In fact, this study provides the first clue of how membrane
339 tension is distributed under extreme turgor, clearly showing much larger membrane
340 heterogeneities than previously reported, which reflects the extreme mechanics of an
341 appressorium. Intriguingly, in contrast to the low fluorescence lifetimes we consistently

342 observed in appressoria, we also observed a consistent and uniform high fluorescence
343 lifetime in the germ tube (Extended Data Fig.4). Considering the primary function of
344 the germ tube is to deliver the contents of the conidium to the developing appressorium
345 for maturation, there is no requirement for germ tube-based turgor generation, which
346 is corroborated by the rotor probe.

347 To test the efficacy of the N⁺-BDP mechanosensory, we first validated the well-
348 known role of melanin in appressorium turgor generation. Here, the rotor dye was able
349 to reveal the severe impairment in appressorium turgor generation very clearly and
350 the lack of membrane heterogeneity that accompanied the build-up of pressure in wild
351 type appressoria of *M. oryzae*. We also showed that mutants in which turgor dynamics
352 have not been investigated can be readily studied using N⁺-BDP. While septin
353 assembly is necessary for appressorium re-polarisation and penetration peg
354 emergence, our analysis revealed that a Δ sep5 mutant did not show a significant
355 reduction in turgor, based on FLIM analysis. This is consistent with previous reports
356 that have shown that septin assembly itself is turgor-dependent and only occurs once
357 a threshold of pressure has already been generated in the appressorium. It is only
358 then that the heteromeric septin ring is formed in the appressorium pore defining the
359 subsequent site of peg development and plant cuticle rupture ^{23,36}. By contrast, the
360 Δ nox2 mutant showed a reduction in appressorium turgor. The Nox2 NAPDH oxidase
361 catalytic sub-unit is necessary for appressorium function, including septin assembly
362 and penetration peg formation ³⁴. Our analysis here suggests that Nox2 may act
363 upstream of septin assembly serving a wider role in appressorium maturation,
364 including ensuring that sufficient turgor has been generated. To investigate whether
365 this is a direct result of enzymatic function in the regulated synthesis of reactive oxygen
366 species, chemical inhibition with antioxidants such as ascorbic acid and the

367 flavocytochrome inhibitor diphenylene iodonium (DPI) could be carried out. It would
368 also be valuable to investigate the function of the regulatory sub-unit NoxR in
369 conditioning the ability of Nox2 to regulate appressorium turgor.

370 Finally, we tested whether N⁺-BDP could reveal perturbations in appressorium
371 turgor associated with the $\Delta sln1$ mutant ²³. The Sln1 histidine-aspartate kinase has
372 been proposed to act as a turgor sensor and is necessary to enable a mature
373 appressorium to re-polarise and cause infection²³. A mathematical model of
374 appressorium-mediated plant infection predicted that a mutant lacking a turgor sensor
375 would be unable to modulate turgor and therefore display excess pressure, but would
376 be unable to ever re-polarise an appressorium. The $\Delta sln1$ mutant displays these
377 phenotypes, but until now its excess turgor was only predicted using the incipient
378 cytorrhysis assay, which relies on determining the rate of cell collapse in the presence
379 of a hyperosmotic solution, and is a rather imprecise and indirect method. Here, we
380 have found that $\Delta sln1$ mutants do show excess turgor revealed by the N⁺-BDP rotor
381 and severe membrane heterogeneity. Even though we are clearly operating close to
382 the limit of resolution of the rotor dye based on our calibration curve, because of the
383 enormous pressures being measured, which are well beyond the scope of pressure
384 probes for instance, a significant difference in turgor can be determined in mature
385 appressoria of $\Delta sln1$ mutants. This provides direct evidence that Sln1 does act as a
386 sensor of appressorium turgor as predicted ²³, highlighting the utility of a direct means
387 of analysing membrane tension in a living appressorium.

388 Fungal mechanobiology is a new and exciting approach for studying the
389 mechanics of the plasma membrane, with scope to explore other compartments
390 including the fungal cell wall, vacuoles and cytosol ²¹. Future experiments employing
391 the use of the molecular rotor may provide new quantifiable insights to spatial

392 variations in microviscosity at the point of penetration, and the crossing points during
393 cell-to cell movement, where it is possible that transpressoria– which form specifically
394 at cell junctions –generate turgor pressure to successfully breach neighbouring cells
395 ^{8,46}. Furthermore, a combination of surface-deformation imaging, rotor probe staining
396 and mathematical modelling could help establish in detail the precise mode of entry
397 and the forces translated at the host leaf surface which may prove invaluable in the
398 search for effective blast disease control strategies ⁴².

399

400 **Materials and Methods**

401 **Fungal Strains and Growth Conditions**

402 The growth and maintenance of the blast fungus *M. oryzae* and media composition
403 were performed as described previously ⁴⁷. All strains used in the study are stored in
404 the laboratory of NJT and are freely available on request.

405 **Two Dimensional FLIM Imaging**

406 Appressorium development was induced *in vitro* on borosilicate 18 x 22-mm glass
407 coverslips (Thermo Fischer Scientific), adapted from a previous study ⁴⁸. A total of 50
408 µL of conidial suspensions (5×10^4 mL⁻¹) and placed on a coverslip and incubated at
409 24 °C. The aqueous phase of the droplet from Guy11 24 h appressoria was replaced
410 with a 50 µL droplet of 10 µmol L⁻¹ N⁺-BDP probe dissolved in sterile distilled H₂O.
411 Staining was performed at room temperature for 20 min for the hyper-melanised Δ sln1
412 mutant and for 5 min for the wild type (Guy11) and all other mutants, after which
413 unbound dye was removed by replacing 50 µL of the droplet five times with water. For
414 calibration of the probe in appressoria, the aqueous phase of the droplet was removed
415 and replaced with a 50 µL droplet of glycerol (0.2M, 0.4M, 0.75M or 1M). FLIM imaging

416 was performed on a Leica TCS SP8X upright scanning confocal microscope coupled
417 to a PicoHarp 300 TCSPC module (PicoQuant GmbH). Samples were excited with the
418 488-nm output of a pulsed SuperK EXTREME supercontinuum white light laser (NKT
419 Photonics) working at a repetition rate of 20 MHz. The full width at half maximum
420 (FWHM) of the laser pulse was \approx 170 ps, as determined from instrument response
421 functions (IRF) recorded using Erythrosin B (Sigma-Aldrich, >95% purity) in KI-
422 saturated (Sigma-Aldrich) water. The fluorescence emission was captured in the 510-
423 530 nm range using a Leica HyD SMD detector. The objective lens was an HC Plan
424 Apo 63x/NA 1.20 water immersion objective (Leica Microsystems). SymPhoTime 64
425 (version 2.4, PicoQuant GmbH) was used to select a region of interest ⁴⁹ and then fit
426 the overall fluorescence decay curve of the ROI with a three-component exponential
427 decay function. The fits were only deemed acceptable if the residuals were evenly
428 distributed around zero and the χ^2 values were within the 0.70-1.30 range. The
429 average fluorescence lifetimes reported in this work are the intensity-weighted
430 average lifetimes, which have been calculated as

431

$$432 \quad \langle \tau \rangle = \frac{\sum_i a_i \tau_i^2}{\sum_i a_i \tau_i}$$

433

434 where a_i and τ_i are the amplitude and the lifetime of species i , respectively (Li et al.,
435 2020). Images are reported in a false-colour scale that represents the weighted
436 average of the fluorescence decay for each pixel. For multi-exponential decays, the
437 weighted average of the fluorescence decay is equivalent to the intensity-weighted
438 average fluorescence lifetime.

439

440 **FLIM time series experiments**

441 Conidia were harvested from Guy11 and inoculated onto glass coverslips. Early
442 appressoria at 4 hpi were stained, washed and mounted onto glass slides as
443 previously described. FLIM imaging was performed on a Stellaris 8 Falcon upright
444 scanning confocal microscope (Leica Microsystems). Samples were excited at 488 nm
445 using a pulsed SuperK Fianium FIB-12 PP laser source (NK Photonics) working at a
446 20 MHz repetition rate. The FWHM of the laser pulse was \approx 190 ps, as determined
447 from IRFs obtained using the Erythrosin B solution mentioned above. The detection
448 range and objective lens were the same as those mentioned previously. The detector
449 was a Leica HyD X detector. Images were acquired at 0 (4.5 h appressoria), 13, 31,
450 48, 65, 83, 109, 125, 138 and 146 min (7.5 h appressoria). The images were
451 processed and analysed in LAS X (version 4.2, Leica Microsystems) and the movies
452 were generated using Python, a high-level programming language distributed under
453 the GNU public license [Anaconda Software Distribution. Computer software. Vers.
454 3.8.10. Anaconda. 2016. Web. <<https://anaconda.com>>]. The Python libraries used to
455 generate the movie were NumPy ⁵⁰, Scikit-image ⁵¹, pystackreg ⁵² and OpenCV ⁵³.
456 The Python script can be found at
457 https://github.com/SergioGabrielLopez/movie_script.
458 The fluorescence lifetime for each frame was obtained by selecting an ROI and then
459 fitting the overall fluorescence decay of the ROI with a four-exponential decay function.
460 The fit was judged according to the previously mentioned criteria.
461

462 **Three Dimensional Lifetime Imaging**

463 *M. oryzae* strains were inoculated onto glass coverslips, stained with the N⁺-BDP
464 probe and imaged at the desired times. Images were acquired on a Stellaris 8

465 FALCON upright scanning confocal microscope (Leica Microsystems). All imaging
466 parameters were identical to those described for the acquisition of the FLIM time
467 series. The z-stacks had a length in the z-direction of \approx 12-15 mm, took 3-7 min to
468 complete, and were acquired in compliance with the Nyquist-Shannon sampling
469 theorem. The 3D-rendering of the z-stacks was carried out in LAS X (version 4.2, Leica
470 Microsystems).

471

472 **Two Dimensional imaging of appressoria using the NR12S chemical polarity
473 probe**

474 To image plasma membrane polarity in *M. oryzae* appressoria using the chemical
475 polarity probe NR12S, a portion of the aqueous phase of the droplet, 50 μ L, was
476 replaced with a solution of NR12S, dissolved at 10 μ mol L $^{-1}$ in water. The staining was
477 performed for 7 min, after which any unbound dye was removed by replacing 50 μ L of
478 the droplet five times with water. 2D-ratiometric imaging with NR12S was performed
479 on a Leica TCS SP8X upright scanning confocal microscope. Samples were excited
480 with the 514-nm output of a SuperK EXTREME supercontinuum white light laser (NKT
481 Photonics) working at repetition rate of 80 MHz. The fluorescence was detected at
482 529-585 (“blue channel”) and 610-700 nm (“red channel”) using Leica HyD SMD
483 detectors. Ratiometric images obtained with NR12S staining were constructed from
484 the recorded intensity images using a custom MATLAB routine that divides the photon
485 count in each pixel of the blue channel image, by the photon count in the
486 corresponding pixel in the red channel image. Resulting images are reported in a false-
487 colour scale that represents the intensity ratio for each pixel.

488

489

490

491

492 **References**

493

494

495 1 Fisher, M. C. *et al.* Emerging fungal threats to animal, plant and ecosystem health. *Nature* **484**, 186, doi:10.1038/nature10947

496

497 <https://www.nature.com/articles/nature10947#supplementary-information> (2012).

498 2 Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant

499 infection by Magnaporthe oryzae. *Nature Reviews Microbiology* **7**, 185,

500 doi:10.1038/nrmicro2032 (2009).

501 3 Eseola, A. B. *et al.* Investigating the cell and developmental biology of plant infection

502 by the rice blast fungus Magnaporthe oryzae. *Fungal Genet Biol* **154**, 103562,

503 doi:10.1016/j.fgb.2021.103562 (2021).

504 4 Zhang, N. *et al.* Generic names in Magnaportheales. *IMA Fungus* **7**, 155-159,

505 doi:10.5598/imapfungus.2016.07.01.09 (2016).

506 5 Brown, W. & Harvey, C. Studies in the physiology of parasitism. X. On the entrance

507 of parasitic fungi into the host plant. *Annals of Botany* **41**, 643-662 (1927).

508 6 Talbot, N. J. Appressoria. *Current Biology* **29**, R144-R146,

509 doi:10.1016/j.cub.2018.12.050 (2019).

510 7 Mendgen, K., Hahn, M. & Deising, H. Morphogenesis and mechanisms of penetration

511 by plant pathogenic fungi. *Annual Review of Phytopathology* **34**, 367-386, doi:DOI

512 10.1146/annurev.phyto.34.1.367 (1996).

513 8 Ryder, L. S. *et al.* The appressorium at a glance. *J Cell Sci* **135**, doi:10.1242/jcs.259857

514 (2022).

515 9 de Jong, J. C., McCormack, B. J., Smirnoff, N. & Talbot, N. J. Glycerol generates turgor

516 in rice blast. *Nature* **389**, 244-244, doi:10.1038/38418 (1997).

517 10 Chumley, F. G. & Valent, B. Genetic-Analysis of Melanin-Deficient, Nonpathogenic

518 Mutants of Magnaporthe-Grisea. *Mol Plant Microbe In* **3**, 135-143, doi:DOI

519 10.1094/Mpmi-3-135 (1990).

520 11 Talbot, N. J. On the Trail of a Cereal Killer: Exploring the Biology of Magnaporthe

521 grisea. *Annual Review of Microbiology* **57**, 177-202,

522 doi:10.1146/annurev.micro.57.030502.090957 (2003).

523 12 Foster, A. J., Ryder, L. S., Kershaw, M. J. & Talbot, N. J. The role of glycerol in the

524 pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. *Environmental*

525 *Microbiology* **19**, 1008-1016, doi:10.1111/1462-2920.13688 (2017).

526 13 Howard, R. J., Ferrari, M. A., Roach, D. H. & Monea, N. P. Penetration of hard

527 substrates by a fungus employing enormous turgor pressures. *Proceedings of the*

528 *National Academy of Sciences* **88**, 11281-11284, doi:doi:10.1073/pnas.88.24.11281

529 (1991).

530 14 Raggi, M. *et al.* Decrease in plasma membrane tension triggers PtdIns(4,5)P(2) phase

531 separation to inactivate TORC2. *Nat Cell Biol* **20**, 1043-1051, doi:10.1038/s41556-

532 018-0150-z (2018).

533 15 Lopez-Berges, M. S., Rispail, N., Prados-Rosales, R. C. & Di Pietro, A. A Nitrogen

534 Response Pathway Regulates Virulence Functions in *Fusarium oxysporum* via the

535 Protein Kinase TOR and the bZIP Protein MeaB. *Plant Cell* **22**, 2459-2475,

536 doi:10.1105/tpc.110.075937 (2010).

537 16 Marroquin-Guzman, M., Sun, G. C. & Wilson, R. A. Glucose-ABL1-TOR Signaling

538 Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

539 *PLoS Genet* **13**, doi:ARTN e1006557

540 10.1371/journal.pgen.1006557 (2017).

541 17 Oh, Y. *et al.* Transcriptome analysis reveals new insight into appressorium formation
542 and function in the rice blast fungus *Magnaporthe oryzae*. *Genome Biol* **9**, doi:ARTN
543 R85
544 10.1186/gb-2008-9-5-r85 (2008).
545 18 Qian, B. *et al.* MoPpe1 partners with MoSap1 to mediate TOR and cell wall integrity
546 signalling in growth and pathogenicity of the rice blast fungus *Magnaporthe oryzae*.
547 *Environmental Microbiology* **20**, 3964-3979, doi:10.1111/1462-2920.14421 (2018).
548 19 Yu, F. W. *et al.* The TOR signaling pathway regulates vegetative development and
549 virulence in *Fusarium graminearum*. *New Phytologist* **203**, 219-232,
550 doi:10.1111/nph.12776 (2014).
551 20 Zhu, X. M. *et al.* A VASt-domain protein regulates autophagy, membrane tension, and
552 sterol homeostasis in rice blast fungus. *Autophagy* **17**, 2939-2961,
553 doi:10.1080/15548627.2020.1848129 (2021).
554 21 Michels, L. *et al.* Complete microviscosity maps of living plant cells and tissues with a
555 toolbox of targeting mechanoprobes. *Proceedings of the National Academy of Sciences*
556 **117**, 18110-18118, doi:10.1073/pnas.1921374117 (2020).
557 22 Colom, A. *et al.* A fluorescent membrane tension probe. *Nature Chemistry* **10**, 1118-
558 1125, doi:10.1038/s41557-018-0127-3 (2018).
559 23 Ryder, L. S. *et al.* A sensor kinase controls turgor-driven plant infection by the rice
560 blast fungus. *Nature* **574**, 423-427, doi:10.1038/s41586-019-1637-x (2019).
561 24 Zhang, H. *et al.* *A two-component histidine kinase, MoSLN1, is required for cell wall*
562 *integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae*. Vol. 56
563 (2010).
564 25 Ryder, L. S. & Talbot, N. J. Regulation of appressorium development in pathogenic
565 fungi. *Current opinion in plant biology* **26**, 8-13, doi:10.1016/j.pbi.2015.05.013 (2015).
566 26 Rocha, R. O., Elowsky, C., Pham, N. T. T. & Wilson, R. A. Spermine-mediated tight
567 sealing of the *Magnaporthe oryzae* appressorial pore-rice leaf surface interface. *Nat*
568 *Microbiol* **5**, 1472-1480, doi:10.1038/s41564-020-0786-x (2020).
569 27 Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. *Science*
570 **327**, 46-50, doi:10.1126/science.1174621 (2010).
571 28 Silvius, J. R. Role of cholesterol in lipid raft formation: lessons from lipid model
572 systems. *Biochimica et Biophysica Acta (BBA) - Biomembranes* **1610**, 174-183,
573 doi:[https://doi.org/10.1016/S0005-2736\(03\)00016-6](https://doi.org/10.1016/S0005-2736(03)00016-6) (2003).
574 29 Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-
575 rich membrane rafts. *J Biol Chem* **275**, 17221-17224, doi:10.1074/jbc.R000005200
576 (2000).
577 30 Kucherak, O. A. *et al.* Switchable Nile Red-Based Probe for Cholesterol and Lipid
578 Order at the Outer Leaflet of Biomembranes. *Journal of the American Chemical Society*
579 **132**, 4907-4916, doi:10.1021/ja100351w (2010).
580 31 Michels, L. *et al.* Molecular sensors reveal the mechano-chemical response of
581 Phytophthora infestans walls and membranes to mechanical and chemical stress. *The*
582 *Cell Surface* **8**, 100071, doi:<https://doi.org/10.1016/j.tcs.2021.100071> (2022).
583 32 Dagdas, Y. F. *et al.* Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus,
584 Magnaporthe oryzae. *Science* **336**, 1590-1595,
585 doi:10.1126/science.1222934 (2012).
586 33 He, M. *et al.* Discovery of broad-spectrum fungicides that block septin-dependent
587 infection processes of pathogenic fungi. *Nat Microbiol* **5**, 1565-1575 (2020).
588 34 Ryder, L. S. *et al.* NADPH oxidases regulate septin-mediated cytoskeletal remodeling
589 during plant infection by the rice blast fungus. *Proceedings of the National Academy of*
590 *Sciences* **110**, 3179, doi:10.1073/pnas.1217470110 (2013).

591 35 Segal, A. W. NADPH oxidases as electrochemical generators to produce ion fluxes and
592 turgor in fungi, plants and humans. *Open Biology* **6**, 160028,
593 doi:doi:10.1098/rsob.160028 (2016).

594 36 Dulal, N., Rogers, A., Wang, Y. & Egan, M. Dynamic assembly of a higher-order septin
595 structure during appressorium morphogenesis by the rice blast fungus. *Fungal Genetics*
596 and *Biology* **140**, 103385, doi:<https://doi.org/10.1016/j.fgb.2020.103385> (2020).

597 37 Dulal, N. *et al.* Turgor-dependent and coronin-mediated F-actin dynamics drive septin
598 disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. *J Cell Sci* **134**,
599 jcs251298 (2021).

600 38 Goos, R. D. & Gessner, R. V. Hyphal Modifications of Sphaerulina-Pedicellata -
601 Appressoria or Hyphopodia. *Mycologia* **67**, 1035-1038, doi:Doi 10.2307/3758596
602 (1975).

603 39 Bozkurt, T. O. & Kamoun, S. The plant-pathogen haustorial interface at a glance. *J Cell*
604 *Sci* **133**, doi:ARTN jcs237958
605 10.1242/jcs.237958 (2020).

606 40 Choquer, M. *et al.* The infection cushion of Botrytis cinerea: a fungal 'weapon' of plant-
607 biomass destruction. *Environmental Microbiology* **23**, 2293-2314, doi:10.1111/1462-
608 2920.15416 (2021).

609 41 Dean, R. *et al.* The Top 10 fungal pathogens in molecular plant pathology. *Molecular*
610 *Plant Pathology* **13**, 414-430, doi:10.1111/j.1364-3703.2011.00783.x (2012).

611 42 Bronkhorst, J. *et al.* A slicing mechanism facilitates host entry by plant-pathogenic
612 Phytophthora. *Nat Microbiol* **6**, 1000-1006, doi:10.1038/s41564-021-00919-7 (2021).

613 43 Sens, P. & Turner, M. S. Budded membrane microdomains as tension regulators.
614 *Physical Review E* **73**, 031918, doi:10.1103/PhysRevE.73.031918 (2006).

615 44 Akimov, S. A., Kuzmin, P. I., Zimmerberg, J. & Cohen, F. S. Lateral tension increases
616 the line tension between two domains in a lipid bilayer membrane. *Physical Review E*
617 **75**, 011919, doi:10.1103/PhysRevE.75.011919 (2007).

618 45 García-Sáez, A. J., Chiantia, S. & Schwille, P. Effect of Line Tension on the Lateral
619 Organization of Lipid Membranes*. *J Biol Chem* **282**, 33537-33544,
620 doi:<https://doi.org/10.1074/jbc.M706162200> (2007).

621 46 Cruz-Mireles, N., Eseola, A. B., Osés-Ruiz, M., Ryder, L. S. & Talbot, N. J. From
622 appressorium to transappressorium-Defining the morphogenetic basis of host cell
623 invasion by the rice blast fungus. *Plos Pathogens* **17**, doi:ARTN e1009779
624 10.1371/journal.ppat.1009779 (2021).

625 47 Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1,
626 a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. *The*
627 *Plant Cell* **5**, 1575-1590 (1993).

628 48 Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A Mechanism for Surface
629 Attachment in Spores of a Plant Pathogenic Fungus. *Science* **239**, 288,
630 doi:10.1126/science.239.4837.288 (1988).

631 49 Kagan, V. E. *et al.* Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.
632 *Nat Chem Biol* **13**, 81-90, doi:10.1038/Nchembio.2238 (2017).

633 50 Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357-362,
634 doi:10.1038/s41586-020-2649-2 (2020).

635 51 van der Walt, S. *et al.* scikit-image: image processing in Python. *PeerJ* **2**, e453,
636 doi:10.7717/peerj.453 (2014).

637 52 Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel
638 registration based on intensity. *IEEE Trans Image Process* **7**, 27-41,
639 doi:10.1109/83.650848 (1998).

640 53 Pulli, K., Baksheev, A., Konyakov, K. & Eruhimov, V. Realtime Computer Vision
641 with OpenCV: Mobile computer-vision technology will soon become as ubiquitous as
642 touch interfaces. *Queue* **10**, 40–56, doi:10.1145/2181796.2206309 (2012).
643

644

645 **Acknowledgements**

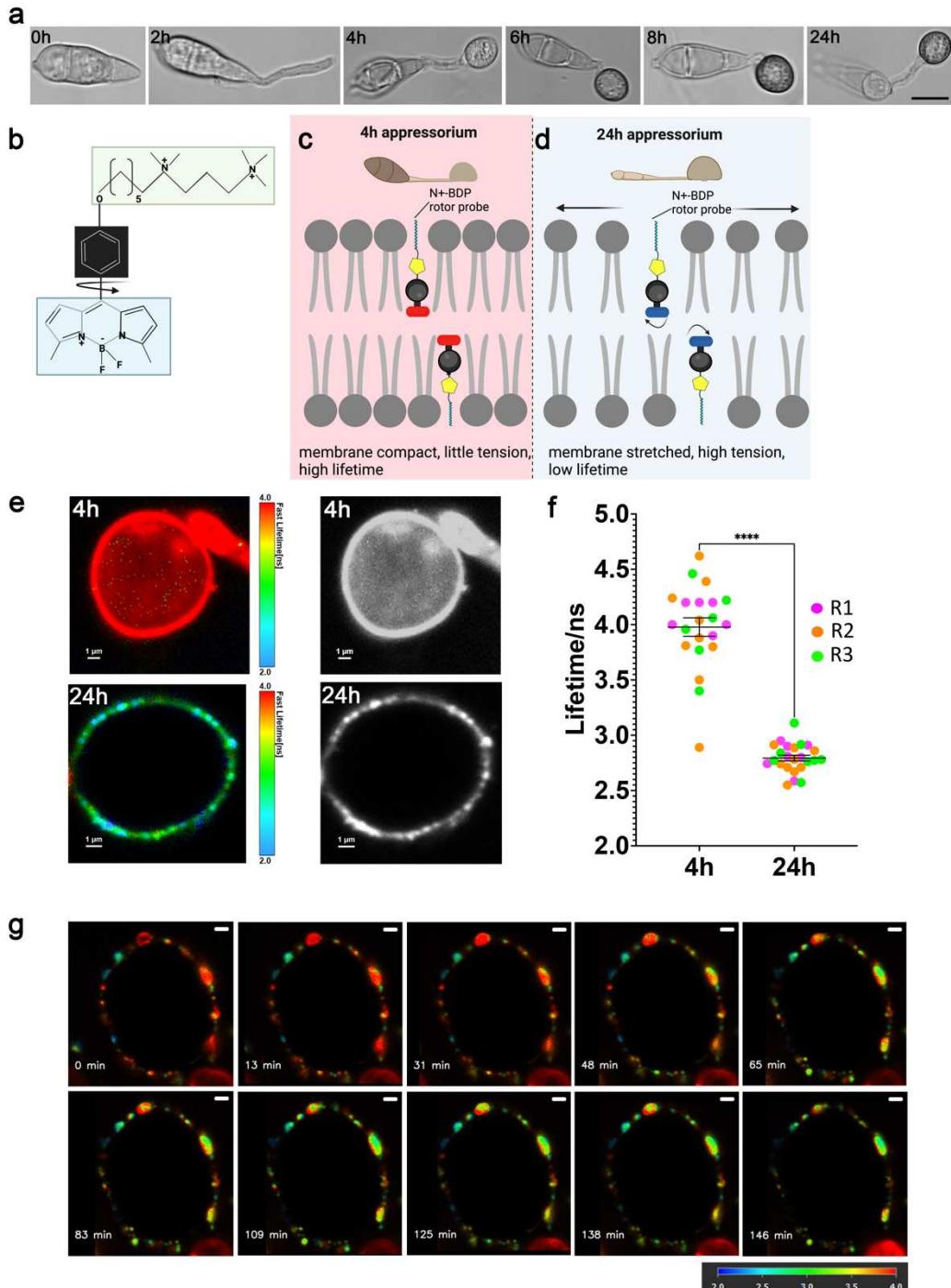
646 This project was funded by the BBSRC grant BB/V016342/1 and by the Gatsby
647 Charitable Foundation.

648

649 **Contributions**

650 L.S.R, N.J.T. and J.S. conceptualized the project. Experimental analyses were carried
651 out by L.S.R, S.G.L, L.M, A.B.E and W.M. The paper was written by L.S.R. and N.J.T.

652


653 **Ethics declarations**

654 **Competing interests**

655 The authors declare no competing interests.

656

657

658

659 **Fig. 1. The mechanosensor N⁺-BDP reveals spatial variations in membrane tension in *M. oryzae***
660 **appressoria.** **a**, Time-course of infection-related-development of *M. oryzae* development and

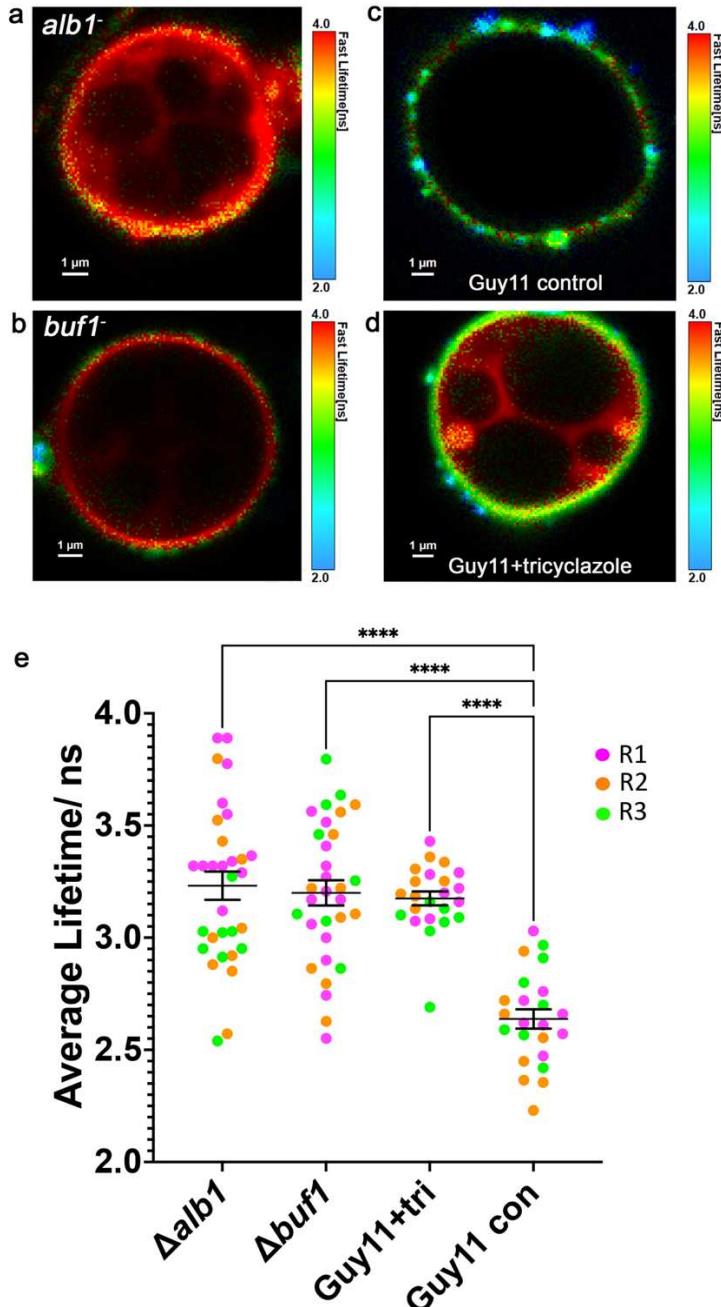
661 maturation. Images show developing appressoria of the wild type strain Guy11 germinated on glass

662 coverslips between 0-24 h. Scale bar = 10 μm. **b**, Chemical structure of the N⁺-BDP rotor.

663 **c, d**, Schematic illustration showing the molecular mechanism by which N⁺-BDP reports changes in

664 membrane tension in 4 h and 24 h Guy11 wild type appressoria. **e**, Representative FLIM images of 4

665 h and 24 h N⁺-BDP rotor stained appressoria. The colour corresponds to the fluorescence lifetime

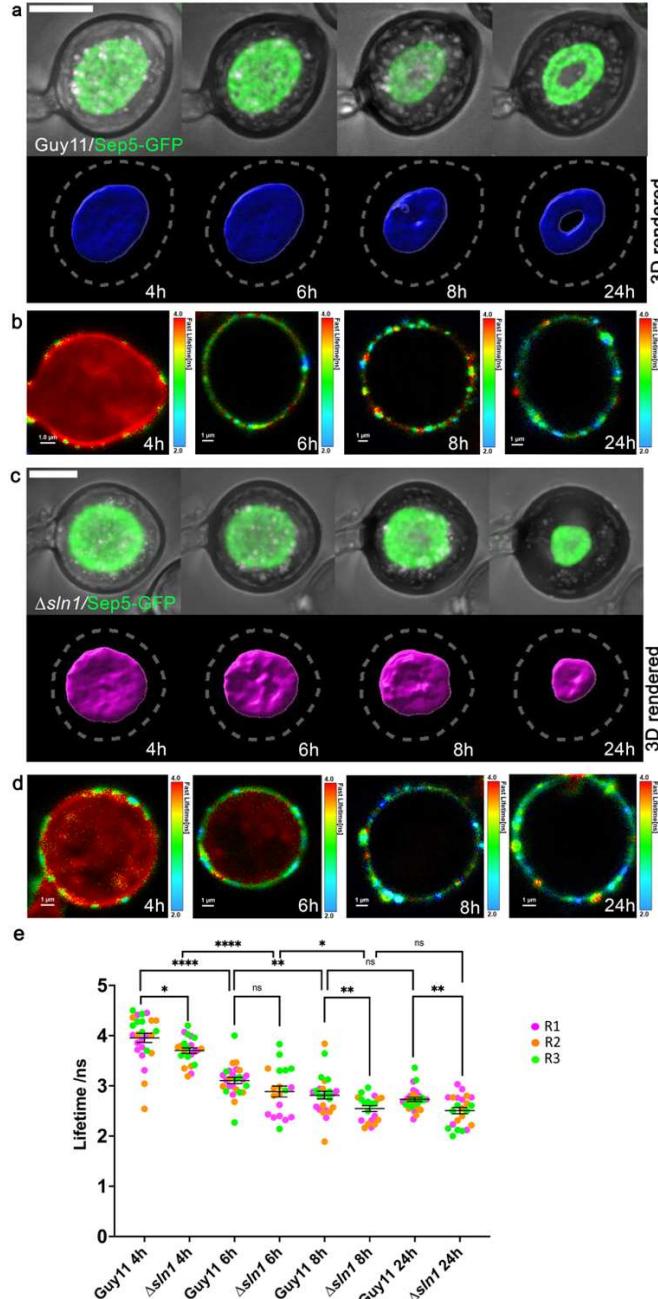

666 values expressed in nanoseconds, as shown in the key. **f**, Dot plots showing the average fluorescence

667 lifetime for 4 h and 24 h appressoria. Values are means ± 2SE for 3 biological replicates of the

668 experiment, n= 6-10. ****P<0.0001, two tailed unpaired Student's t-test with Welch correction. **g**, Time-

669 lapse FLIM images of appressorium development in Guy11 4.5-7 hpi (0-145 minutes, respectively).

670 Scale bars = 1 μm.


671
672 **Fig.2. The N^+ -BDP mechanosensor reveals the role of melanin for appressorium turgor**
673 **generation in *M. oryzae*.** a, FLIM image of an *alb1* melanin-deficient mutant at 24 h germinated on
674 glass coverslips and stained with the mechanosensory rotor probe N^+ -BDP. b, FLIM image of a *buf1*
675 melanin-deficient mutant at 24 h germinated on glass coverslips and stained with N^+ -BDP. c, FLIM
676 image of Guy11 appressoria at 24 h germinated on glass coverslips and stained with N^+ -BDP. d, FLIM
677 image of tricyclazole-treated appressoria of Guy11 at 24 h germinated on glass coverslips and stained
678 with N^+ -BDP. e, Dot plot showing the average fluorescence lifetime for *alb1*, *buf1*, Guy11+tricyclazole
679 and Guy11 control appressoria imaged at 24 h. Values are means $\pm 2SE$ for 3 biological replicates of
680 the experiment, $n=8-10$. Pairwise comparisons of fluorescence lifetime were made against Guy11
681 control **** $P<0.0001$, two tailed unpaired Student's *t*-test with Welch correction. Scale bars = 1 μ m.
682

683

684 **Fig. 3 The mechanosensor N⁺-BDP identifies spatial variations in membrane tension in *M. oryzae* mutants impaired in appressorium function.** a, FLIM micrograph of Guy11 at 24 h germinated on
685 glass coverslips and stained with the rotor probe N⁺-BDP. b, FLIM micrograph of an appressorium of
686 the Δsep5 mutant at 24 h germinated on glass coverslips and stained with N⁺-BDP. c, FLIM micrograph
687 of an appressorium of a Δnox2 mutant at 24 h germinated on glass coverslips and stained with N⁺-BDP.
688 d, Dot plot showing the average fluorescence lifetime for Guy11 control, Δsep5 and Δnox2 appressoria
689 imaged at 24 h. Values are means \pm 2SE for 3 biological replicates of the experiment, $n=8-10$. Pairwise
690 comparisons of fluorescence lifetime were made against Guy11 control $****P<0.0001$, two tailed
691 unpaired Student's *t*-test with Welch correction. Scale bar = 1 μ m.
692
693
694

695

696

697 **Fig.4. The N⁺-BDP mechanosensor reveals that the $\Delta sln1$ mutant of *M. oryzae* generates high**
698 **appressorium turgor.** a, Time course of cortical septin ring formation during appressorium

699 morphogenesis in *M. oryzae* wild type strain Guy11. Conidial suspensions at 5×10^4 mL⁻¹ were

700 inoculated onto glass coverslips and images captured at different time intervals during infection-related-

701 development (4-24 h). Scale bar = 5 μ m. b, A FLIM time course of Guy11 appressorium development

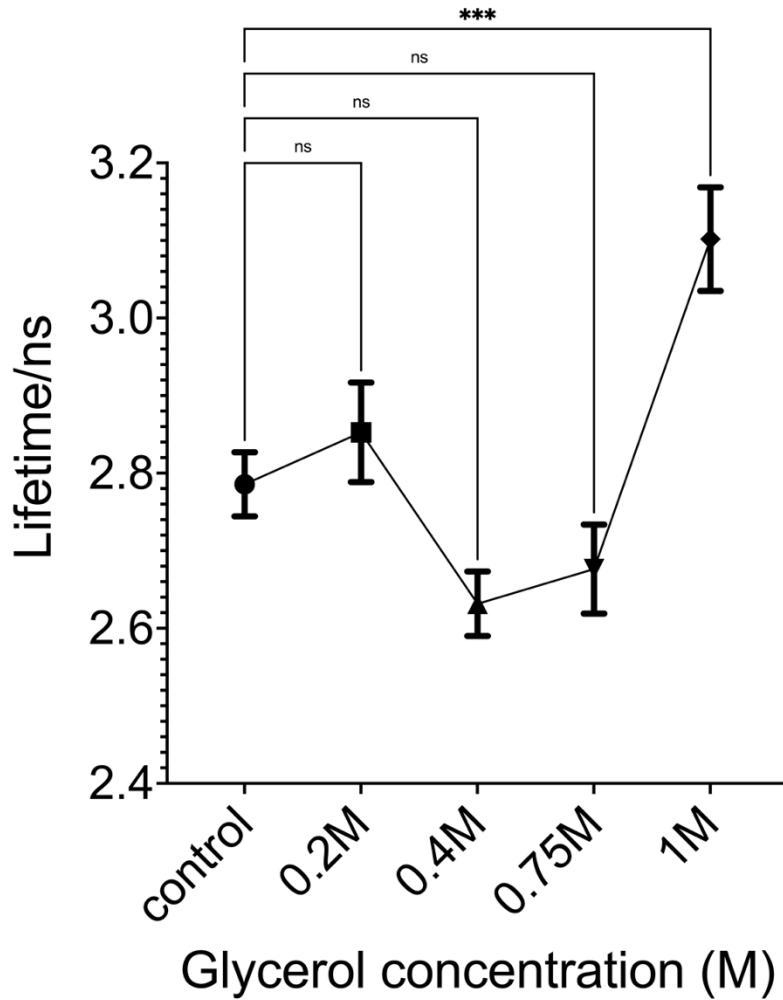
702 stained with the N⁺-BDP probe (4-24 h). The colour translates the fluorescence lifetime values

703 expressed in nanoseconds. Scale bar = 1 μ m. c, Time course of cortical septin ring formation and

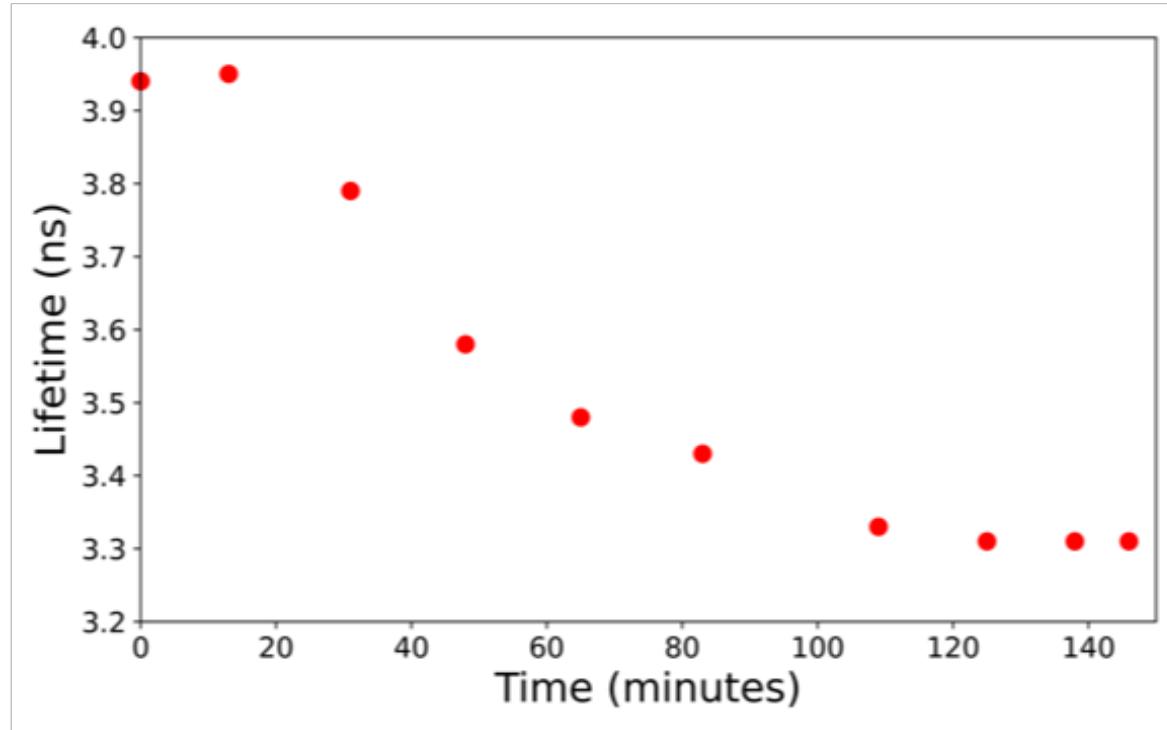
704 mislocalisation in a $\Delta sln1$ mutant during appressorium morphogenesis. Conidial suspensions at 5×10^4

705 mL⁻¹ were inoculated onto glass coverslips and images captured at different time intervals during

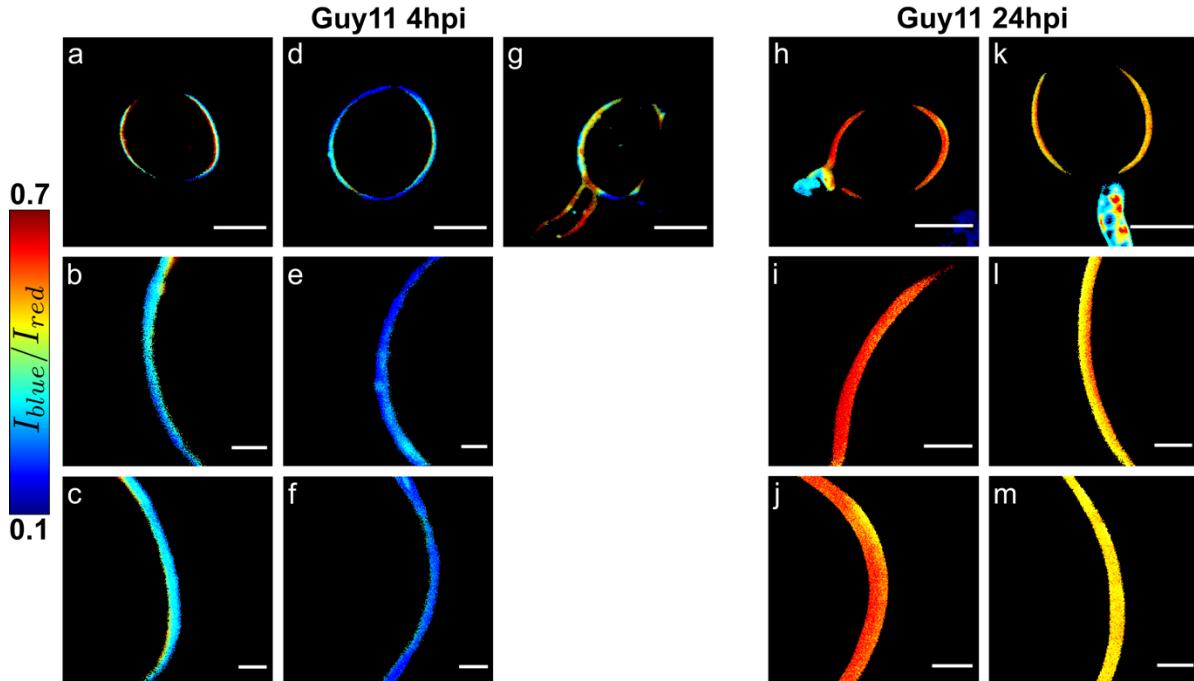
706 infection-related-development (4-24 h). Scale bar = 5 μ m. d, A FLIM time course of $\Delta sln1$ appressorium


707 development stained with N⁺-BDP (4-24 h). e, Dot plots showing the average fluorescence lifetimes for

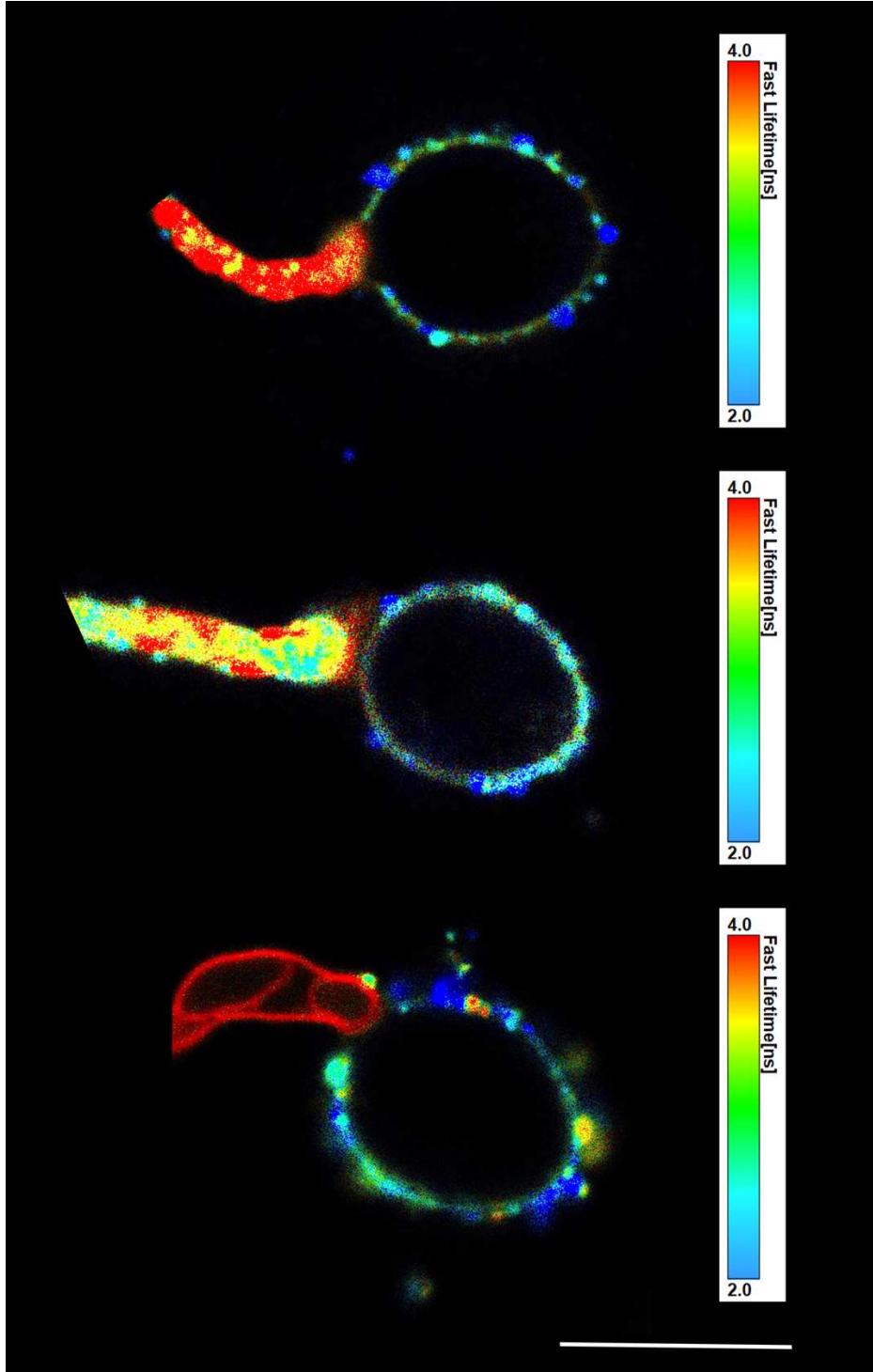
708 Guy11 and $\Delta sln1$ at 4 h, 6 h, 8 h and 24 h time points. Pairwise comparisons were made between


709 Guy11 time points, $\Delta sln1$ time points and like-for-like time points between the two strains. Values are

710 means \pm 2SE for 3 biological replicates repetitions of the experiment, $n=5-11$. ****P<0.0001, **P<0.01,


711 *P<0.05, two tailed unpaired Student's t-test with Welch correction. Scale bar = 1 μ m.

712
713 **Extended Data Fig.1 Rotor dye N⁺-BDP calibration in *M. oryzae* appressoria incubated in**
714 **glycerol.** Line graph showing the average fluorescence lifetime of N⁺-BDP stained appressoria of
715 Guy11 incubated in different molar concentrations of glycerol. Values are means \pm 2SE for 3 biological
716 replicates of the experiment, $n=6-18$, *** $P<0.001$ as determined by one-way analysis (ANOVA) with
717 Dunnett's multiple comparisons test.
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736


737
738 **Extended Data Fig.2 Membrane tension of the appressorium decreases during maturation.**
739 Guy11 appressoria were stained with the rotor probe N⁺-BDP at 4.5 hpi (0 min) and FLIM images
740 captured for 3 h and fluorescence lifetimes plotted.
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

772
773
774 **Extended Data Fig.3 Mapping spatial variations in chemical polarity of the plasma membrane in**
775 ***M. oryzae* appressoria using the solvatochromic probe NR12S. a-g**, Intensity ratio chemical polarity
776 maps in *M. oryzae* wild type strain Guy11 4 h appressoria. Images **b, c, e** and **f** are magnified areas of
777 4 h appressoria. The colour scale translates the intensity ratio values ($n=31$ three independent
778 repetitions of the experiment were performed). **h-m**, Intensity ratio chemical polarity maps of *M. oryzae*
779 wild type strain Guy11 24 h appressoria. Images **i, j, l** and **m** are zoomed in areas of 24 h appressoria,
780 ($n=34$ three independent repetitions of the experiment were performed). Images **a, d, g, h** and **k**, scale
781 bars = 5 μ m, images **b, c, e, f, i, l** and **m** scale bars= 1 μ m.
782

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807

808
809

810 **Extended Data Fig.4 Mapping the spatial variations in tension in *M. oryzae* appressoria and germ**
811 **tubes.** Representative FLIM images of wild type Guy11 24 h rotor stained appressoria and germ tubes.
812 Scale bar= 10 μ m.

813

814

815

816

817

818

819

820
821
822
823
824
825

Video 1. Three-dimensional FLIM rotational movie of Guy11 4 h appressorium.

Three-dimensional Fluorescence Lifetime Imaging Microscopy (FLIM) of N⁺-BDP stained 4 h incipient appressoria of Guy11 was performed on a Stellaris 8 FALCON upright scanning confocal microscope. Conidia were harvested from the *M. oryzae* wild type Guy11 and inoculated onto glass coverslips.

826
827
828
829
830

Video 2. Three-dimensional FLIM rotational movie of Guy11 7.5 h appressorium.

Three-dimensional Fluorescence Lifetime Imaging (FLIM) of N⁺-BDP stained Guy11 appressoria at 7.5 h was performed on a Stellaris 8 FALCON upright scanning confocal microscope. Conidia were harvested from the *M. oryzae* wild type strain Guy11 and inoculated onto glass coverslips.

831
832
833
834
835
836

Video 3. Live cell imaging of turgor generation in a developing Guy11 appressorium stained with the rotor probe N⁺-BDP 4.5 h-7 hpi.

Conidia were harvested from a *M. oryzae* Guy11 and inoculated on glass coverslips. 4 h appressoria were incubated with 80 μ L of N⁺-BDP rotor probe at 10 μ mol⁻¹ in water for 5 minutes, washed 5 times and imaged.

837
838
839
840
841

Video 4. Three-dimensional FLIM rotational movie of a 24 h appressorium of the *alb1* melanin-deficient mutant. Three-dimensional Fluorescence Lifetime Imaging (FLIM) of *alb1* 24 h appressoria stained with N⁺-BDP performed on a Stellaris 8 FALCON upright scanning confocal microscope. Conidia were harvested from a *M. oryzae* wild type Guy11 and inoculated onto glass coverslips.

842
843
844
845
846
847
848

Video 5. Dynamic assembly of a septin ring in Guy11 appressoria.

Live cell imaging of septin dynamics during appressorium development in *M. oryzae*. Movie shows Guy11 expressing Sep5-GFP during infection-related-development on a hydrophobic glass coverslip. The movie was captured using a Leica SP8 laser confocal microscope 0-24 h. The movie is a maximum projection Z-stack. Frames were captured every 5 min and are displayed at 15 frames per sec. Time scale is in hour: min: sec. Scale bar= 5 μ m.

849
850
851
852
853
854
855

Video 6. Aberrant septin ring aggregation and hyper-melanisation in the $\Delta sln1$ mutant. Live cell imaging of aberrant septin dynamics during appressorium development in *M. oryzae*. Movie shows the $\Delta sln1$ mutant expressing Sep5-GFP during infection-related-development on hydrophobic glass coverslips. The movie was captured using a Leica SP8 laser confocal microscope 0-24 hpi. The movie is a maximum projection Z-stack. Frames were captured every 5 min and are displayed at 15 frames per sec. Time scale is in hour: min: sec. Scale bar= 10 μ m.

856
857
858
859
860

Video 7. Three-dimensional FLIM rotational movie of $\Delta sln1$ 24 h appressorium.

Three-dimensional Fluorescence Lifetime Imaging Microscopy (FLIM) of N⁺-BDP stained $\Delta sln1$ 24 h appressoria was performed on a Stellaris 8 FALCON upright scanning confocal microscope. Conidia were harvested from *M. oryzae* wild type Guy11 and inoculated onto glass coverslips.